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ABSTRACT
In recent years, Unsupervised Domain Adaptation (UDA) has
emerged as a popular technique for transferring knowledge from a
labeled source domain to an unlabeled target domain. However, al-
most all of the existing approaches implicitly assume that the source
domain is correctly labeled, which is expensive or even impossible
to satisfy in open-world applications due to ubiquitous imperfect
annotations (i.e., noisy labels). In this paper, we reveal that noisy
labels interfere with learning from the source domain, thus leading
to noisy knowledge being transferred from the source domain to the
target domain, termed Dual Noisy Information (DNI). To address
this issue, we propose a robust unsupervised domain adaptation
framework (ROAD), which prevents the network model from over-
fitting noisy labels to capture accurate discrimination knowledge for
domain adaptation. Specifically, a Robust Adaptive Weighted Learn-
ing mechanism (RSWL) is proposed to adaptively assign weights to
each sample based on its reliability to enforce the model to focus
more on reliable samples and less on unreliable samples, thereby
mining robust discrimination knowledge against noisy labels in
the source domain. In order to prevent noisy knowledge from mis-
leading domain adaptation, we present a Robust Domain-adapted
Prediction Learning mechanism (RDPL) to reduce the weighted de-
cision uncertainty of predictions in the target domain, thus ensuring
the accurate knowledge of source domain transfer into the target
domain, rather than uncertain knowledge from noise impact. Com-
prehensive experiments are conducted on three widely-used UDA
benchmarks to demonstrate the effectiveness and robustness of our
ROAD against noisy labels by comparing it with 13 state-of-the-art
methods. Code is available at https://github.com/penghu-cs/ROAD.
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1 INTRODUCTION
Recent years have witnessed the success of deep learning in pushing
forward the rapid development of multimedia applications, such as
image captioning [19, 45], cross-modal retrieval [33, 35], etc. How-
ever, deep neural networks (DNNs) heavily rely on large labeled
datasets and often struggle to generalize well to data from different
domains, making them impractical for a new unlabeled domain in
open-world scenarios. To overcome the challenge, Unsupervised
Domain Adaptation (UDA) techniques are proposed to transfer
knowledge from a labeled source domain to an unlabeled target
domain in the presence of domain shift in data distribution.

While domain shift and label scarcity are significant obstacles
in UDA, practical scenarios also involve additional challenges, one
of which this paper mainly focuses on, namely noisy labels. To
be specific, source domain data also frequently encounter vari-
ous types of interference and noise, including but not limited to
image motion blur, tailing, and sensor noise. These factors pose
challenges for data annotation in various applications like medi-
cal image classification [48], industrial inspection [4, 22], and au-
tonomous driving [29], resulting in the presence of certain label
noise in the datasets. Moreover, the high cost of expert annota-
tion and time drives more and more people to choose open-source
annotation platforms and crowdsourcing for labeling, which can
easily introduce noisy labels into the source data. Intuitively, noisy
labels will inevitably mislead deep models to learn from the source
domain, leading to performance degradation in the target domain.
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Figure 1: The challenges encountered in unsupervised do-
main adaptation with noisy labels in the source domain. The
upper part presents a comparison of prediction examples
specific to each scenario, while the lower part depicts the
classification performance during training. Notably, the pres-
ence of noisy labels in the source domain leads to the network
model that gradually overfits noisy labels, resulting in noisy
knowledge. This noisy knowledge transfer to the target do-
main amplifies decision uncertainty, leading to a degradation
of domain adaptation performance in the target domain.

Therefore, we have to consider not only domain shifts but also
noisy labels in UDA, which however is less touched so far.

Existing studies on learning with noisy labels [30, 38, 49] demon-
strate that DNNs tend to overfit the corrupted labels, resulting in
performance degradation. Similarly, the presence of noisy labels
within the source domain inevitably leads to the overfitting issue
during training on that domain, resulting in the transfer of noisy
knowledge to target domains. Specifically, the presence of noisy
knowledge amplifies prediction uncertainty/noise in the target do-
main, hindering the learning of correct discrimination from target
domains and consequently decreasing the performance of domain
adaptation. We refer to this cascading adverse effect caused by
noisy labels in the source domain as Dual Noisy Information (DNI),
which is depicted schematically in Figure 1. Notably, DNI poses a
greater challenge than learning with noisy labels in a single domain,
as it requires simultaneous mitigation of noisy information across
different domains.

To tackle this challenge, this paper proposes a robust unsuper-
vised domain adaptation framework (ROAD) to convey the discrimi-
nation knowledge from a source domain to target domains as shown
in Figure 2, which consists of a novel Robust Self-adaptiveWeighted
Learning mechanism (RSWL) and a Robust Domain-adapted Predic-
tion Learning mechanism (RDPL). To be specific, RSWL is proposed
to alleviate the negative impact of noisy labels in the source domain
by dynamically assigning weights to each sample based on its relia-
bility. This adaptive weighting scheme aims to pay more attention
to reliable samples and less to unreliable ones in the source domain.
To achieve this, our RSWL divides the noisy data into clean and

noisy (aka reliable and unreliable) partitions by mutual information
between predictions and ground-truth labels and self-information
of predictions in the source domain based on the memorization
effect of Deep Neural Networks (DNNs) [1]. By adaptively assign-
ing higher learning weights to reliable samples and lower weights
to unreliable samples, RSWL mitigates the impact of noisy labels,
enabling the learning of robust discrimination knowledge in the
source domain. On the other hand, RDPL is presented to reduce
weighted prediction uncertainty in the target domain, thereby fa-
cilitating the robust transfer of discrimination knowledge from the
source domain to the target domain. To achieve this, RDPL assigns
higher weights to samples that contain significant self-information
of predictions, thus making the model focus on minimizing decision
uncertainty within similar categories for target domains, instead
of chaotic uncertainty obtained from noise impact. Consequently,
thanks to RSWL and RDPL, our ROAD could simultaneously reduce
the adverse impacts of both noisy labels and noisy predictions (i.e.,
DNI) to achieve a robust transfer of discrimination knowledge.

Overall, this paper makes four main contributions:
• We reveal and summarize the existence of cascading adverse
effects caused by noisy labels in the source domain for unsu-
pervised domain adaptation, termed Dual Noisy Information
(DNI). To solve DNI, we propose a robust unsupervised do-
main adaptation framework (ROAD) to capture accurate
discrimination knowledge for robust domain adaptation. To
the best of our knowledge, this work could be the first study
on the problem.

• To mitigate the impact of noisy labels in the source domain,
a novel Robust Self-adaptive Weighted Learning mechanism
(RSWL) is proposed to dynamically assign learning weights
for each sample based on its reliability to enforce the model
focus on reliable samples, thereby mining robust discrimina-
tion knowledge against noisy labels in the source domain.

• To prevent noisy knowledge from misleading the domain-
adaptive learning on target domains, a Robust Domain-
adapted Prediction Learning mechanism (RDPL) is proposed
tominimize theweighted prediction uncertainty in the target
domain, thus preferentially facilitating the robust transfer of
reliable discrimination knowledge from the source domain,
instead of chaotic knowledge from noise impact.

• We experimentally demonstrate the robustness and effective-
ness of our ROAD against symmetric/asymmetric noisy la-
bels in the source domain. Our method shows an impressive
performance in three multi-domain image datasets, outper-
forming the state-of-the-art UDA methods without bells and
whistles.

2 RELATEDWORKS
2.1 Unsupervised Domain Adaptation
Over the past decade, numerous transferable methods have been
proposed to tackle the issue of performance degradation in deep
neural networks (DNNs) caused by inherent domain shifts between
labeled source and unlabeled target domains. These methods could
be roughly grouped into three categories: 1) Discrepancy-based
methods treat cross-domain data as distinct distributions and aim
to mitigate domain shifts by minimizing the differences between
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each pair of distributions. To achieve this, they utilize various met-
rics to measure the dissimilarity between distributions, such as Max-
imumMeanDiscrepancy (MMD) [11, 24] and its variants [25, 42, 51].
By minimizing the discrepancies, these methods attempt to align
the distributions across distinct domains. 2) Adversarial-based
methods tackle the problem of domain shifts by introducing ad-
versarial learning in the training process, such as adversarial-based
methods [7, 27, 36], fine-grained generating adversarial-based meth-
ods [10, 44, 46, 47], etc. 3) Self-supervision-based methods ad-
dress the issue of domain shifts by leveraging pre-trained DNNs
on labeled source domain data to obtain pseudo-labels in the target
domain. The pseudo-labels are seen as noisy labels and then used to
retrain the DNNs using the robust learning paradigm [5, 8, 15, 52].
However, they heavily rely on the well-labeled source domain,
which can lead to overfitting issues in the presence of noisy labels.

2.2 Learning with Noisy Labels
To address the problem of ubiquitous imperfect annotations during
training, various methods have been proposed to mitigate the ad-
verse effect of noisy labels and improve the robustness of DNNs.
These works could be roughly categorized into three classes: 1)
Model-oriented methods focus on designing different DNN ar-
chitectures that explicitly model the transformation matrices of
label noise to capture the underlying patterns of label noise, thus
enabling the network to learn effectively in the presence of noisy
labels [2, 3]. 2) Sample-oriented methods leverage a small set
with perfectly labeled data to learn priori clean discrimination to re-
weight samples [23] or refurbish labels [12, 18, 20], thus achieving
robust learning against noisy labels. However, acquiring additional
well-labeled data is also expensive or even impossible in some real-
world applications, which directly limits the applicability of these
methods. 3) Loss-oriented methods primarily focus on design-
ing robust optimization objectives [9, 14, 28, 50] or regularization
techniques [41, 43] that prevent DNNs from being corrupted by
noisy labels during training. Although these loss functions are con-
cise and theoretically sound in preventing DNNs from overfitting
to noisy labels, they are designed specifically for single-domain
learning, ignoring the adverse effect of dual noisy information.

3 THE PROPOSED METHOD
3.1 Problem Formulation
To ensure clarity and facilitate understanding, we begin by provid-
ing definitions for the notations used in this paper. Throughout the
paper, boldface uppercase letters, boldface lowercase letters, and
general uppercase letters represent matrices, vectors, and scalars,
respectively. Let D = {I𝑠 ,I𝑡 } denote a 𝐶-category source-target
domain dataset. Here, I𝑠 = {X𝑠 ,Y𝑠 } = {𝒙𝑠

𝑖
, 𝑦𝑠

𝑖
}𝑁𝑠

𝑖=1 represents the
source domain data with noisy labels, where 𝑁𝑠 represents the
number of samples in the source domain, 𝒙𝑠

𝑖
and 𝑦𝑠

𝑗
∈ {1, 2, · · · ,𝐶}

respectively are the 𝑖𝑡ℎ sample and its class label which is potentially
corrupted. Similarly, I𝑡 = {𝒙𝑡

𝑗
}𝑁𝑡

𝑗=1 represents the target domain
data, where 𝒙𝑡

𝑗
denotes the 𝑖𝑡ℎ sample, and 𝑁𝑡 denotes the num-

ber of samples in the target domain. We also define {Ŷ𝑠 , Ŷ𝑡 } =

{𝑦𝑠
𝑖
, 𝑦𝑡

𝑗
}𝑁𝑠 ,𝑁𝑡

𝑖=1, 𝑗=1 = {[𝑦𝑠
𝑖1, · · · , 𝑦

𝑠
𝑖𝐶
], [𝑦𝑡

𝑗1, · · · , 𝑦
𝑡
𝑗𝐶
]}𝑁𝑠 ,𝑁𝑡

𝑖=1, 𝑗=1 as the pre-
dictions of the domain-shared network 𝑓 = [𝑓1, · · · , 𝑓𝐶 ], 𝑓𝑖 is the 𝑖𝑡ℎ

class output of the domain-shared network, 𝑦𝑠
𝑖 𝑗

=
exp(𝑓𝑗 (𝒙𝑠𝑖 )/𝜏 )∑𝐶
𝑘
exp(𝑓𝑘 (𝒙𝑠𝑖 )/𝜏 )

and𝑦𝑡
𝑖 𝑗

=
exp(𝑓𝑗 (𝒙𝑡

𝑖
)/𝜏 )∑𝐶

𝑘
exp(𝑓𝑘 (𝒙𝑡

𝑖
)/𝜏 ) are the prediction probability of 𝑖𝑡ℎ sam-

ple for 𝑗𝑡ℎ class in the source and target domain, respectively, 𝜏 is
the temperature parameter.

In unsupervised domain adaptation (UDA), the aforementioned
corrupted label information in the source domain is inevitably in-
troduced explicitly or implicitly into the cross-domain knowledge
transfer, as illustrated in Figure 1. Consequently, the noise infor-
mation in the source and target domains jointly and progressively
dominates the training process, causing the networks to overfit
the noisy labels in the source domain and resulting in a degrada-
tion in domain adaptation performance. This cascading adverse
effect caused by noisy labels in the source domain, namely Dual
Noisy Information (DNI), simultaneously corrupts the learning in
both the source and target domains. It is evident that DNI poses
greater challenges compared to traditional learning methods with
single-domain noisy labels.

3.2 Overview of Method
To address the challenges posed by unsupervised domain adaptation
in the presence of DNI, we propose a robust unsupervised domain
adaptation framework (ROAD), which consists of two phases: the
warm-up phase and the main training phase.

In the warm-up phase, we leverage the memorization effect of
DNNs [1] and train the domain-shared network for a brief period
of 𝑁𝑤 epochs to obtain an initial reliable discriminative model. The
objective function during this phase is defined as follows:

L𝑤𝑎𝑟𝑚−𝑢𝑝 =
1
𝑁𝑠

𝑁𝑠∑︁
𝑖

𝑐𝑒𝑡𝑝𝑠𝑖 , (1)

where 𝑐𝑒𝑡𝑝𝑠
𝑖

= −∑𝐶
𝑗 𝑦

𝑠
𝑖 𝑗
log𝑦𝑠

𝑖 𝑗
represents the general cross-

entropy loss calculated for the 𝑖𝑡ℎ sample in the source domain.
In the main training phase, building upon the memorization

effect of DNNs obtained from the warm-up phase, our ROAD in-
corporates two mechanisms: the Robust Self-adaptive Weighted
Learning mechanism (RSWL) and the Robust Domain-adapted Pre-
diction Learning mechanism (RDPL). Specifically, RSWL is designed
to mitigate the negative impact of label noise in the source domain
to learn discrimination knowledge robustly. Meanwhile, RDPL is
employed to eliminate the decision uncertainty brought by domain
adaptation and noisy knowledge, thereby facilitating reliable knowl-
edge transfer from the source domain to the target domain. The
joint utilization of RSWL and RDPL establishes a defense against
noisy labels, enabling our ROAD to effectively address unsuper-
vised domain adaptation under the influence of DNI. The overall
training objective function is defined as follows:

L = L𝑟𝑤𝑐𝑒 + 𝜇L𝑑𝑎, (2)

where L𝑟𝑤𝑐𝑒 denotes the loss function employed by RSWL (see
Equation (6)),L𝑑𝑎 represents the loss function utilized by RDPL (see
Equation (9)), 𝜇 is the trade-off parameter controlling their relative
importance. The optimization of our ROAD involves minimizing
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Figure 2: The pipeline of our Robust Unsupervised Domain Adaptation Framework (ROAD). The data of different domains are
fed into the domain-shared network to compute their soft class predictions. Then the Robust Self-adaptive Weighted Learning
mechanism (RSWL) and Robust Domain-adapted Prediction Learning mechanism (RDPL) are conducted on the predictions
of source and target domains, respectively. Specifically, RSWL employs a self-adaptive weighted scheme upon the mutual
information (i.e. cross-entropy) between predictions and labels and self-information (i.e. entropy) of predictions to make the
model focus on reliable samples. Furthermore, RDPL attempts to minimize the weighted decision uncertainty of predictions in
the target domain, resulting in the robust transfer of discrimination knowledge against dual noisy information (DNI).

Equation (2) by using stochastic gradient descent. The following
sections elaborate on the two components of ROAD.

3.3 Robust Self-adaptive Weighted Learning
In order to mitigate the negative effects of noisy labels on pre-
dictions in the source domain, we propose a mechanism called
Robust Self-adaptive Weighted Learning (RSWL) to prioritize reli-
able samples and de-emphasize unreliable ones. To achieve this, we
first estimate the reliability of each sample by calculating the mu-
tual information between predictions and labels, and subsequently
assigning dynamic learning weights to each sample based on its
reliability.

Recent works reveal that deep neural networks (DNNs) are in-
clined to fit simple patterns [1]. Specifically, after a short warm-up
period, DNNs tend to provide correct predictions for simple (i.e.,
clean) samples that are close to the ground-truth labels, while in-
correct predictions for challenging (i.e., noisy) ones that deviate
significantly from the erroneous labels. This phenomenon, aka the
memorization effect of DNNs, can be leveraged to estimate the
reliability of samples in the source domain. We employ the mu-
tual information between the predictions and the ground-truth
labels, specifically the cross-entropy, to quantify the degree of ap-
proximation of each sample’s prediction to the ground-truth labels.
This leads to the construction of reliability for the source-domain
samples, denoted as 𝑉 𝑐𝑒𝑡𝑝

𝑖
, as follows:

𝑉
𝑐𝑒𝑡𝑝

𝑖
= 1 − 𝑒𝑐𝑒𝑡𝑝

𝑠
𝑖 − 𝑒−𝑐𝑒𝑡𝑝

𝑠
𝑖

𝑒𝑐𝑒𝑡𝑝
𝑠
𝑖 + 𝑒−𝑐𝑒𝑡𝑝

𝑠
𝑖

, (3)

where𝑉 𝑐𝑒𝑡𝑝

𝑖
represents the reliability of the 𝑖𝑡ℎ sample, while 𝑐𝑒𝑡𝑝𝑠

𝑖

denotes the cross-entropy calculated from the 𝑖𝑡ℎ sample in the
source domain.

Additionally, considering the memorization effect of DNNs [1],
where DNNs provide more confident predictions for clean samples
after a warm-up period, we leverage the self-information of the
predictions, i.e., entropy, to estimate the confidence of predictions
for each sample in the source domain. The level of confidence,
denoted as 𝑉 𝑒𝑡𝑝

𝑖
, could be quantified as follows:

𝑉
𝑒𝑡𝑝

𝑖
=
𝐵 · 𝑒𝛼 (−𝑒𝑡𝑝𝑠𝑖 +1)∑𝐵

𝑗 𝑒
(−𝑒𝑡𝑝𝑠

𝑖
+1) , (4)

where 𝑉 𝑒𝑡𝑝

𝑖
represents the prediction confidence of the 𝑖𝑡ℎ sam-

ple in the source domain, 𝐵 denotes the size of the mini-batch,
𝑒𝑡𝑝𝑠

𝑖
= −∑𝐶

𝑗 𝑦
𝑠
𝑖 𝑗
log𝑦𝑠

𝑖 𝑗
is the entropy function, and 𝛼 is a trade-off

parameter.
Consequently, we combine the reliability 𝑉 𝑐𝑒𝑡𝑝 and the confi-

dence 𝑉 𝑒𝑡𝑝 to weigh the cross-entropy loss for each sample. This
adaptive weighting scheme emphasizes reliable and confident sam-
ples while de-emphasizes the unreliable and unconfident samples,
resulting in the following weighted cross-entropy loss:

L𝑟𝑤𝑐𝑒 = −

∑𝑁𝑠

𝑖

(
𝑉
𝑒𝑡𝑝

𝑖
𝑉
𝑐𝑒𝑡𝑝

𝑖

∑𝐶
𝑗 (𝑦𝑠𝑖 𝑗 log𝑦

𝑠
𝑖 𝑗
)
)

∑𝑁𝑠

𝑗
𝑉
𝑒𝑡𝑝

𝑗
𝑉
𝑐𝑒𝑡𝑝

𝑗

. (5)

This loss dynamically assigns weights to each sample based on
the reliability and confidence of its prediction during discriminant
learning in the source domain. Hence, it effectively prevents noisy
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samples from dominating the training process in the source domain
through the adaptive weighting scheme.

3.4 Robust Domain-adapted Prediction
Learning

Although our RSWL could effectively address the issue of noisy
labels in the source domain, achieving robust domain-adapted pre-
dictions remains a fundamental challenge in UDA with noisy labels.
Additionally, blindly focusing on robustness and performance in
the source domain while ignoring domain shifts may not lead to a
corresponding improvement in the target domain.

Recent UDA methods suggest that domain shifts result in uncer-
tain decisions of source-only networks between similar categories
in the target domain [21]. This observation indicates that domain-
adapted discrimination is influenced by the decision uncertainty
in the target domain. To tackle this challenge, our Robust Domain-
adapted Prediction Learning mechanism (RDPL), inspired by [17],
models the degree of decision uncertainty for each target sample
using the following equation:

𝑇𝑖 =
1
𝐶

𝐶∑︁
𝑗

∑𝐶
𝑘≠𝑗

𝑦𝑡
𝑖 𝑗
𝑦𝑡
𝑖𝑘∑𝐶

𝑙
𝑦𝑡
𝑖 𝑗
𝑦𝑡
𝑖𝑙

. (6)

The objective is to minimize the average of the decision uncer-
tainty term 𝑇 for all target samples, which facilitates obtaining
domain-adapted discriminative predictions in the target domain.
Thus, we define the vanilla domain-adaptation loss L′

𝑑𝑎
as follows:

L
′

𝑑𝑎
=

1
𝑁𝑡

𝑁𝑡∑︁
𝑖

𝑇𝑖 . (7)

Unfortunately, the aforementioned decision uncertainty is not
solely caused by domain shifts for DNI. The propagation of noisy
knowledge from the source domain will result in chaotic predictions
for same samples, significantly amplifying the decision uncertainty.
However, eliminating the decision uncertainty of these contami-
nated samples could lead to an influx of unreliable discrimination
knowledge, thereby misleading the domain adaptation process.

To address this challenge, we quantify the prediction confidence
of each sample in the target domain using the self-information of
predictions, i.e., the entropy. This quantification is similar to RSWL,
and it is defined as follows:

𝑊
𝑒𝑡𝑝

𝑖
=
𝐵 · 𝑒𝛼 (−𝑒𝑡𝑝𝑡𝑖 +1)∑𝐵

𝑗 𝑒
(−𝑒𝑡𝑝𝑡

𝑗
+1) , (8)

where 𝑒𝑡𝑝𝑡
𝑖
= −∑𝐶

𝑗 𝑦
𝑡
𝑖 𝑗
log𝑦𝑡

𝑖 𝑗
is the entropy function.

Based on the above, we exploit the prediction confidence𝑊 𝑒𝑡𝑝

to weigh the uncertainty of each sample, constructing the loss
function L𝑑𝑎 for our RDPL, as shown below:

L𝑑𝑎 =

∑𝑁𝑡

𝑖
(𝑊 𝑒𝑡𝑝

𝑖
𝑇𝑖 )∑𝑁𝑡

𝑗
𝑊

𝑒𝑡𝑝

𝑗

. (9)

By minimizing this weighted decision uncertainty loss, we enforce
the model focus on reducing the decision uncertainty of the sam-
ples with high confidence to alleviate the adverse effects of noisy

knowledge, thus ensuring the robust transfer of discrimination
knowledge to the target domain.

4 EXPERIMENTS
To thoroughly evaluate the effectiveness of our ROAD against dual
noisy information (DNI), we conducted extensive comparative ex-
periments on three widely used multi-domain datasets for image
domain adaptation: Office-31 [34], Office-Home [37] and VisDA-
2017 [31].

4.1 Experimental Settings
All experiments are performed on GeForce RTX 3090 GPUs, and all
the reported quantitative results are the average of three runs for
all the methods. Here is a brief introduction to the multi-domain
datasets used in the experiments:

Office-31 [34]: This dataset is a widely-usedmulti-domain image
dataset for image domain adaptation, consisting of 4,652 natural
images from 31 categories. It comprises three image domains: Ama-
zon (A), Webcam (W), and Dslr (D) with 2,817, 795, and 498 images,
respectively. To enable bias-free evaluation, we evaluate all meth-
ods on 6 transfer tasks: A→D, D→W, D→A, D→W,W→A and
W→D.

Office-Home [37]: This dataset is a larger multi-domain image
dataset for image domain adaptation, containing 65 categories. It
includes four image domains: Art (Ar), Clipart (Cl), Product (Pr),
and Real World (Rw). Compared to Office-31, Office-Home presents
a greater challenge due to more differences between different do-
mains and a larger number of categories. To enable unbiased eval-
uation, we evaluate all methods on all 12 transfer tasks: Ar→Cl,
Ar→Pr, Ar→Rw, Cl→Ar, Cl→Pr, Cl→Rw, Pr→Ar, Pr→Cl,
Pr→Rw, Rw→Ar, Rw→Cl and Rw→Pr.

VisDA-2017 [31]: This dataset consists of a large volume of data
belonging to 12 categories. It contains two image domains: 152,397
synthetic images (T) and 55,388 natural images (V). We build a
transfer task: T→V as in [6, 17]

In the experiments, we compared our ROADwith 13 state-of-the-
art methods, including ResNet50/101 [13], DAN [24], DANN [7],
AFN [40], CDAN [26], TCM [46], DMAL [16], CAF [39], MCC [17]),
CGDM [6], SENTRY [32], SHOT [21], and CoUDA [48]. For com-
prehensive evaluations, two types of synthetic noise are adopted
for comparison in our experiments, i.e., symmetric and asymmetric
noisy labels. To be specific, we conducted extensive comparison
experiments using symmetric noisy labels on the three datasets, and
asymmetric noisy labels on VisDA-2017. In addition, we followed
the established practices of previous works [17, 21] for selecting
backbone networks and configuring the training and evaluation set-
tings. To investigate the impact of different noise levels, we set the
symmetric noise rates to 0.2, 0.4, 0.6, and 0.8, while the asymmetric
noise rates were set to 0.1, 0.2, and 0.4.

4.2 Comparison with the State-of-the-Art
Methods

We conducted extensive UDA experiments for image classification
on three datasets to evaluate the performance of our ROAD in
comparison to the 13 baselines. Due to space limitations, we present
the average experimental results of all domain adaptation tasks on
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Table 1: Performance comparison in terms of average accu-
racy (%) under the symmetric noise rates of 0, 0.2, 0.4, 0.6, and
0.8 on the Office-31 and Office-Home datasets. The highest
accuracy is shown in bold and the second highest accuracy
is underlined.

Method Office-31 [34] Office-Home [37]
0% 20% 40% 60% 80% 0% 20% 40% 60% 80%

ResNet-50 [13] 76.1 63.7 53.7 37.3 19.2 46.1 39.7 30.0 22.4 12.3
DAN [24] 80.4 71.3 61.5 48.5 26.5 56.3 41.9 30.9 25.1 14.1
DANN [7] 82.2 69.3 56.3 43.3 22.2 57.6 42.0 29.8 22.6 10.5
AFN [40] 85.7 80.8 71.3 62.8 41.2 67.3 63.2 59.2 46.9 28.4
CDAN [26] 87.7 76.6 66.5 52.2 28.2 63.8 50.4 38.9 28.4 14.2
TCM [46] 89.7 81.2 74.2 61.5 37.8 71.1 49.8 39.6 31.2 16.9
DMAL [16] 86.6 80.0 70.9 59.6 35.7 66.1 47.2 43.7 38.8 14.7
CAF [39] 88.6 76.7 64.8 52.1 32.7 69.0 42.4 34.5 28.4 17.7
MCC [17] 89.4 74.5 69.9 62.6 44.4 74.2 55.7 49.9 43.1 30.8
CGDM [6] 88.4 82.1 77.9 67.4 39.0 68.5 62.1 58.0 46.6 20.3

SENTRY [32] 87.3 81.9 74.9 66.0 35.3 72.3 63.3 59.8 49.8 31.6
SHOT [21] 88.6 82.0 75.6 63.5 29.9 71.8 65.8 61.3 51.8 33.8
CoUDA [48] 83.0 59.8 50.4 35.5 16.0 42.1 35.6 31.5 20.7 12.9

Ours 89.6 85.6 82.0 78.1 60.9 76.0 67.5 64.2 56.7 47.2

Table 2: Performance comparison in terms of average accu-
racy (%) under the symmetric noise rates of 0.2, 0.4, 0.6, 0.8
and asymmetric noise rates of 0, 0.1, 0.2, 0.4 on the VisDA-
2017 dataset. The highest accuracy is shown in bold and the
second highest accuracy is underlined.

Method Asymmetric Symmetric
0% 10% 20% 40% 20% 40% 60% 80%

ResNet-101 [13] 52.4 51.6 46.1 39.7 36.6 31.9 17.2 14.2
DAN [24] 61.1 43.3 39.6 33.1 37.7 33.9 27.6 19.1
DANN [7] 59.2 47.1 43.9 45.3 49.6 43.3 33.7 18.3
AFN [40] 76.1 53.9 46.0 42.6 44.8 36.8 31.5 22.0
CDAN [26] 66.8 58.0 52.2 52.3 64.0 51.4 43.0 19.2
TCM [46] 68.4 65.7 62.4 52.7 66.7 64.6 55.8 30.2
DMAL [16] 60.0 41.1 36.0 31.2 35.8 27.3 28.1 13.9
CAF [39] 80.3 62.0 62.0 49.0 54.1 50.3 50.8 32.8
MCC [17] 78.8 70.8 68.7 65.6 67.9 58.7 29.7 22.9
CGDM [6] 82.3 68.2 61.6 55.2 66.0 60.4 42.2 30.8
SENTRY [6] 69.2 66.9 64.0 60.2 52.7 53.0 40.1 21.3
SHOT [21] 74.6 69.5 68.9 62.0 70.5 59.0 45.1 22.7
CoUDA [48] 45.7 38.8 33.9 33.0 38.4 36.1 30.5 21.4

Ours 82.3 69.2 69.0 65.8 72.4 70.3 69.8 61.6

each dataset as shown in Tables 1 and 2. Specifically, we report the
experimental results for the Office-31 and Office-Home datasets
under symmetric label noise in Table 1. The experimental results
for the VisDA-2017 dataset under both symmetric and asymmetric
label noise are shown in Table 2. Furthermore, the category-wide
experimental results for the VisDA-2017 dataset with high noise
rates (80% symmetric label noise and 40% asymmetric label noise)
are presented in Table 3. From these results, we could draw the
following observations:

1) The Dual Noisy Information (DNI) caused by source-domain
noisy labels significantly degrades the domain-adaptation per-
formance of each UDA baseline. Under high noise rates and
challenging tasks, the performance degradation is so severe that
some methods even perform worse than Resnet50/101 without
any domain adaptation design.

2) In the face of chaotic synthetic symmetric noisy labels, our
ROAD shows excellent robustness. Especially, our method could
achieve 61.6% in terms of accuracy under 80% noise on the
large-scale VisDA-2017 dataset, which is higher than the second-
highest method CAF by 28.8%.

3) Despite the challenging asymmetric noise, which introduces
highly disorienting class conditional noise that will weaken the
memorization effect of DNNs, our ROAD still achieves superior
robustness.

4) Although some methods (e.g., CGDN and SENTRY) maintain
considerable average performance in the presence of high-level
noise, as shown in Table 3, they suffer from unbalanced classifica-
tion predictions and tend to exclude challenging categories due
to the influence of noisy labels. In contrast, our ROAD achieves
a well-balanced performance across all categories.

4.3 Ablation Study
In this section, we conduct an ablation study to investigate the
contribution of each proposed loss (i.e., L𝑟𝑤𝑐𝑒 and L𝑑𝑎), as well
as each component within the losses (i.e., 𝑉 𝑒𝑡𝑝 , 𝑉 𝑐𝑒𝑡𝑝 ,𝑊 𝑒𝑡𝑝 and
𝑇 ), and the warm-up phase to UDA with noisy labels in the source
domain. We perform comparison experiments on six UDA tasks
using the Office-31 dataset to thoroughly evaluate the contribution
of ablating each component independently from our framework.
In particular, to comprehensively study the robustness of L𝑟𝑤𝑐𝑒 ,
we replace it with a general Cross-Entropy loss (CE) instead of de-
taching it. The results are presented in Table 4. From the table, one
could make the following observation: 1) ROAD with/without any
component leads to an improvement/drop in domain-adaptation
performance, respectively, demonstrating the contribution of each
component to our framework. 2) Replacing L𝑑𝑎 with the vanilla
loss of RDPLL′

𝑑𝑎
(i.e.,L𝑑𝑎 w/o𝑊 𝑒𝑝𝑡 ) results in performance degra-

dation, which demonstrates the significance of𝑊 𝑒𝑝𝑡 in enabling
RDPL to mitigate the learning of unreliable discrimination knowl-
edge propagated from the source domain to the target domain. 3)
Substituting L𝑟𝑤𝑐𝑒 with CE leads to a remarkable drop in domain-
adaptation performance, underscoring the robustness of our L𝑟𝑤𝑐𝑒 ,
which assigns self-adaptive weights to clean and noisy data, partic-
ularly for challenging tasks (e.g., D→A andW→A).

Overall, the ablation study demonstrates the effectiveness of
each component in our framework and emphasizes the crucial role
of L𝑑𝑎 , L𝑟𝑤𝑐𝑒 and𝑊 𝑒𝑝𝑡 in addressing UDA with noisy labels.

4.4 Parameter Analysis
In order to evaluate the sensitivity of our ROAD to different hyper-
parameter settings, namely 𝑁𝑤 and 𝛼 , we plot the accuracy scores
for the parameter analysis on Office-31, as shown in Figure 3. With-
out loss of generality, we consider both low (20%) and high (60%)
noise levels in all experiments. From Figure 3a, it could be ob-
served that selecting 𝑁𝑤 in the range of 10 to 20 training epochs,
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Table 3: Category-wide performance comparison under extremely high noise rates (40% asymmetric label noise and 80%
symmetric label noise) in T → V transfer task of the VisDA-2017 datasets. We abbreviate Plane, Bicycle, Bus, Car, Horse, Knife,
Motorcycle, Person, Plant, Skateboard, Train, and Truck to PL, BC, BS, CR, HO, KN, MC, PS, PLT, SB, TR, and TK, respectively.
The highest accuracy is shown in bold and the second highest accuracy is underlined.

Method Asymmetric(40%) Symmetric(80%)
PL BC BS CR HO KN MC PS PLT SB TR TK Avg. PL BC BS CR HO KN MC PS PLT SB TR TK Avg.

ResNet-101 [13] 57.2 56.1 22.4 39.5 36.2 44.7 66.1 18.7 41.8 7.4 76.6 9.3 39.7 7.5 0.8 19.4 15.0 20.9 56.3 8.3 13.8 5.3 0.0 19.4 4.0 14.2
DAN [24] 56.1 51.2 20.8 26.7 48.1 41.8 30.0 2.5 38.1 30.7 35.8 14.8 33.1 28.1 19.5 53.2 2.3 39.5 3.9 21.2 5.3 26.7 17.3 11.9 0.0 19.1
DANN [7] 89.7 51.2 34.6 62.1 35.0 13.2 71.8 25.3 79.1 7.1 67.5 7.5 45.3 1.8 17.1 42.0 18.1 20.0 28.9 31.0 2.7 10.4 7.4 32.6 8.1 18.3
AFN [40] 58.7 3.7 13.8 55.7 79.4 30.7 89.3 15.7 67.5 10.6 76.8 9.0 42.6 21.3 25.6 31.4 12.7 34.5 3.7 35.5 10.3 4.1 28.8 50.8 5.0 22.0
CDAN [26] 89.5 80.5 74.1 66.1 66.3 29.0 36.6 52.0 82.1 11.1 22.1 18.6 52.3 8.7 17.1 61.7 15.3 31.2 13.2 26.8 4.0 14.9 7.4 15.8 14.0 19.2
TCM [46] 84.2 55.4 55.7 55.4 47.1 23.7 75.7 47.3 84.6 18.5 65.8 18.4 52.7 43.1 43.9 46.9 21.1 28.5 18.4 56.5 16.4 12.2 14.8 46.1 14.4 30.2
DMAL [16] 38.7 68.2 19.8 11.9 20.0 46.0 15.3 24.1 18.2 3.4 93.4 15.6 31.2 2.2 5.5 28.6 8.9 8.4 10.3 9.4 10.3 12.4 3.7 63.2 4.3 13.9
CAF [39] 93.4 78.1 48.1 42.9 60.3 31.6 32.4 41.3 68.7 7.4 63.6 19.8 49.0 42.1 61.0 54.3 31.1 47.5 21.1 25.4 30.7 30.0 11.1 25.1 13.9 32.8
MCC [17] 89.7 78.0 49.4 50.8 81.4 82.1 67.6 58.7 83.6 30.0 83.1 32.6 65.6 34.7 2.2 16.6 21.9 28.5 6.7 31.5 15.5 18.9 10.5 63.1 24.7 22.9
CGDM [6] 91.4 45.2 18.9 58.1 87.0 77.1 41.3 64.2 52.2 85.7 18.8 22.4 55.2 57.1 43.6 38.0 13.2 31.4 10.8 38.8 5.4 24.2 26.1 80.1 1.2 30.8

SENTRY [32] 87.7 61.0 4.9 64.0 80.0 60.5 71.7 52.0 86.6 29.6 88.3 36.1 60.2 8.8 14.6 22.2 23.2 5.0 7.9 66.2 28.0 10.4 18.5 39.0 11.6 21.3
SHOT [21] 96.2 43.9 24.7 54.2 87.2 65.7 90.1 62.7 85.1 14.8 75.3 44.2 62.0 5.3 9.8 58.0 57.6 3.8 13.2 90.1 10.7 7.5 3.7 1.4 11.6 22.7
CoUDA [48] 43.6 14.9 8.4 52.1 46.2 45.3 57.9 3.4 47.7 14.8 54.9 6.9 33.0 19.3 9.8 38.3 7.1 21.5 36.8 47.9 5.4 4.5 22.2 29.9 13.9 21.4

Ours 91.4 80.2 66.7 54.6 93.7 23.7 76.2 52.0 83.5 40.7 82.9 44.1 65.8 87.2 42.4 74.6 38.6 91.7 10.8 87.1 63.9 81.4 45.2 78.2 38.1 61.6

Table 4: Ablation studies for ROAD on the Office-31 datasets
with 0.6 symmetric noise. ✓ stands for use.

L𝑟𝑤𝑐𝑒 L𝑑𝑎 A→D A→W D→A D→W W→A W→D Avg.
𝑉𝑒𝑡𝑝 𝑉𝑐𝑒𝑡𝑝 𝑊𝑒𝑡𝑝 𝑇

✓ ✓ ✓ ✓ 84.6 84.8 55.1 85.2 64.9 93.8 78.1
✓ ✓ ✓ 75.2 75.8 23.5 74.7 56.9 87.8 65.7
✓ ✓ ✓ 78.3 79.1 48.5 84.1 63.2 91.7 76.3
✓ ✓ ✓ 78.9 78.4 39.4 70.8 57.4 83.3 68.0

✓ ✓ ✓ 80.9 81.3 51.7 83.2 62.7 92.8 75.4
✓ 73.8 74.9 21.1 73.9 55.8 84.9 64.1

CE only ✓ 75.4 76.9 41.7 63.1 50.0 66.8 62.3
w/o warm-up 4.2 4.5 3.5 4.7 4.3 10.6 5.3

(a) Comparison of candidates of 𝑁𝑤 (b) Comparison of candidates of 𝛼

Figure 3: The image classification performance in terms of
accuracy versus various candidates of 𝑁𝑤 and 𝛼 on the Office-
31. (a) shows the relationship between training epochs and
classification performance in three domains (i.e., Amazon,
Dslr, and Webcam), and (b) shows the relationship between
𝛼 and performance in three transfer tasks (i.e., A→W, D→A,
andW→D). The gray box shows the range of optimal choices.

as suggested by the memorization effect of DNNs [1], leads to the
most robust performance, which remains consistent across differ-
ent datasets and noise rates. Furthermore, Figure 3b demonstrates
that our ROAD achieves optimal performance when 𝛼 is within
the range of 0.5 to 5. This indicates that our framework strikes a
balance between mitigating the adverse impact of samples with
uncertain predictions and retaining reliable discriminative infor-
mation, resulting in superior performance.

4.5 Visualization of Robustness Analysis
To provide a comprehensive understanding of the robustness ex-
hibited by our ROAD, we conduct visualization experiments for
UDA with noisy labels on the Office-31 dataset. Firstly, we present
a performance comparison between our ROAD and the MCC [17]
in both the source and target domains throughout the learning
process, as shown in Figure 4. Additionally, to shed light on the
reasons behind the robustness and superior performance of our
ROAD, we visualize the weights assigned to different phases, as
illustrated in Figure 5. From the experimental results, the follow-
ing observations can be drawn: 1) Throughout the whole training
process, our ROAD mitigates the negative impact of noisy labels in
the source domain without overfitting the dual noisy information.
As a result, it maintains superior and robust performance, while
MCC suffers from performance degradation in both domains. 2) As
the learning proceeds, our ROAD gradually learns to distinguish
between clean and noisy samples in the source domain by assign-
ing small weights to noisy and uncertain samples, thus effectively
filtering out the noise present in the data. In the target domain, our
ROAD can gradually reduce the decision uncertainty of predictions
by assigning small weights to contaminated samples with high
prediction entropy, thus enabling our model to achieve robust and
domain-adapted predictions.
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Figure 4: The unsupervised domain adaptation performance in terms of accuracy of MCC and our ROAD under 20% and 60%
source noise on three transfer tasks (i.e., A→W, D→A, and W→D) of Office-31.
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Figure 5: The weights or entropy of samples in different phases of our ROAD under 40% noise on A→W tasks of Office-31. The
upper half shows the weighs of samples before warm-up, after warm-up, during training and after training. The bottom half
shows the prediction entropy and weighs of samples after warm-up and after whole training.

5 CONCLUSION
In this paper, we address a less-touched challenge of unsupervised
domain adaptation (UDA) in open-world scenarios, where noisy
labels in the source domain interfere with the learning process
and propagate adverse effects to the target domain. To overcome
the challenge, we propose a novel UDA framework, named ROAD,
to learn discriminative and domain-adapted predictions robustly,
which consists of two key mechanisms: the Robust Self-adaptive
Weighted Learning mechanism (RSWL) and the Robust Domain-
adapted Prediction Learningmechanism (RDPL). Specifically, RSWL
is employed to adaptively assign weights to samples, enabling our
model to focus on reliable samples for robust discrimination knowl-
edge. In addition, RDPL enhances the transferability of discrimina-
tion knowledge from the source to the target domain by reducing
the decision uncertainty of domain-adaptive predictions in the tar-
get domain. To demonstrate the robustness and effectiveness of

our ROAD, we conduct comprehensive experiments by compar-
ing it against 13 state-of-the-art UDA methods on three datasets,
considering scenarios with and without synthetic noisy labels.
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