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ABSTRACT

Linear regression is one of the most fundamental linear algebra problems. Given a
dense matrix A ∈ Rn×d and a vector b, the goal is to find x′ such that ∥Ax′−b∥22 ≤
(1 + ϵ)minx ∥Ax − b∥22. The best classical algorithm takes O(nd) + poly(d/ϵ)
time [Clarkson and Woodruff STOC 2013, Nelson and Nguyen FOCS 2013]. On
the other hand, quantum linear regression algorithms can achieve exponential
quantum speedups, as shown in [Wang Phys. Rev. A 96, 012335, Kerenidis and
Prakash ITCS 2017, Chakraborty, Gilyén and Jeffery ICALP 2019]. However, the
running times of these algorithms depend on some quantum linear algebra-related
parameters, such as κ(A), the condition number of A. In this work, we develop
a quantum algorithm that runs in Õ(ϵ−1

√
nd1.5) + poly(d/ϵ) time and outputs a

classical solution. It provides a quadratic quantum speedup in n over the classical
lower bound without any dependence on data-dependent parameters. In addition,
we also show our result can be generalized to multiple regression and ridge linear
regression.

1 INTRODUCTION

Linear regression is one of the fundamental problems in machine learning and data science (Hilary,
1967; Yan & Su, 2009; Freedman, 2009). It is a statistical method that models the relationship
between a dependent variable and one or more independent variables. Multiple regression is an
extension of linear regression that predicts a target variable using multiple feature variables. They
have many applications across different areas such as predictive analysis (Khine & Nyunt, 2019; Vovk
et al., 2009), economics (Nizam et al., 2020; Porta et al., 2008; Acemoglu et al., 2001), marketing
(Berger & Nasr, 1998), finance (Götze et al., 2023), healthcare (Lukong & Jafaru, 2021; Kan et al.,
2019; Valsamis et al., 2019; Tomar & Agarwal, 2013), education (Reddy & Sarma, 2015; Baker
& Richards, 1999; Olsen et al., 2020), social sciences (Uyanik & Güler, 2013; Yin, 2023), sports
analytics (Sarlis & Tjortjis, 2020; Chu & Wang, 2019), manufacturing (Chiarini & Brunetti, 2019;
Baturynska & Martinsen, 2021), and quality control (QIU & Bo, 2012). The definition of linear
regression is as follows:

Definition 1.1 (Linear Regression). Given a matrix A ∈ Rn×d and a vector b ∈ Rn, we let ϵ ∈ (0, 1)
denote an accuracy parameter. The goal is to output a vector x ∈ Rd such that ∥Ax − b∥22 ≤
(1 + ϵ)minx′∈Rd ∥Ax′ − b∥22.

The state-of-the-art algorithms for solving linear regression are due to Clarkson & Woodruff (2013);
Nelson & Nguyên (2013), where the running time is O(nd) + poly(d/ϵ). The formal definition of
multiple regression is as follows:

Definition 1.2 (Multiple Regression). Given two matrices A ∈ Rn×d and B ∈ Rn×N , we let
ϵ ∈ (0, 1) denote an accuracy parameter. The goal is to output a matrix X ∈ Rd×N such that
∥AX −B∥F ≤ (1 + ϵ)minX′∈Rd×N ∥AX ′ −B∥F .

Ridge regression is a regularized version of linear regression that adds an ℓ2 penalty to the regression
coefficients, preventing overfitting. This property makes it well-suited for handling high-dimensional
data, where feature collinearity is common. In machine learning, ridge regression serves as a common
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baseline and benchmark method. Several studies have analyzed ridge regression concerning high-
dimensional data and models (Dobriban & Wager, 2018; Maronna, 2011), feature selection (Paul
& Drineas, 2016; Zhang et al., 2018; Cawley, 2008), and regularization path algorithms (Friedman
et al., 2010). Moreover, it has found extensive use in diverse applications such as image recognition
(An et al., 2007; Xue et al., 2009), natural language processing (Bedo et al., 2006; Liu, 2021), and
bioinformatics (Xu et al., 2020; Cule et al., 2011; Bedo et al., 2006).

Definition 1.3 (Ridge Regression). Given a matrix A ∈ Rn×d and a vector b ∈ Rn, we let ϵ ∈ (0, 1)
denote an accuracy parameter and let λ > 0 denote a regularization parameter. The goal is to output
a vector x ∈ Rd such that ∥Ax− b∥22 + λ∥x∥22 ≤ (1 + ϵ)minx′∈Rd(∥Ax′ − b∥22 + λ∥x′∥22).

In this paper, we study the quantum algorithms for the linear regression problem and its variations,
including ridge regression and multiple regression. Quantum computing is a rapidly advancing
technology, and we now have quantum computers with dramatically increasing capabilities that are
on the cusp of achieving quantum advantages over classical computers. It is thus a pertinent question
whether quantum computers can accelerate solving classical machine learning optimizations like
linear regression. Quantum algorithms for linear regression have been studied for a long time (Wiebe
et al., 2012; Schuld et al., 2016; Wang, 2017; Kerenidis & Prakash, 2017; Chakraborty et al., 2019;
Shao & Xiang, 2020; Chen & de Wolf, 2021; Shao, 2023; Chen et al., 2023; Chakraborty et al.,
2023). However, the majority of existing algorithms rely on quantum linear algebra techniques, which
harbor noteworthy limitations. Specifically, their time complexities hinge on the condition number
κ of the input matrix. This predicament impedes a direct comparison with state-of-the-art classical
methods, whose runtimes remain independent of κ. Consequently, these quantum algorithms can only
guarantee acceleration over classical ones for instances featuring well-conditioned input matrices.

Overcoming this conditional dependence is an open question. We would like quantum regression
algorithms that can provably achieve speedups for any input matrix, not just “easy” ones. Developing
such algorithms requires departing from the quantum linear algebra framework and exploring novel
techniques. In our work, we make progress in this direction by proposing quantum algorithms for
linear regression, ridge regression, and multiple regression based on leverage score distribution. Our
approach achieves a runtime proportional to the square root of the data dimension n, without the
dependence on the condition number κ. This marks the first unconditional acceleration for these three
regression problems in comparison to the best-known classical algorithm. In the classical setting, it is
well known that solving linear regression requires Ω(n) time (Clarkson & Woodruff, 2013; Nelson
& Nguyên, 2013). In the quantum setting, it has been known for a while that Ω(

√
n+ d) time is a

lower bound (Wang, 2017; Shao, 2023). Thus, we can ask the following question:

Is it possible to solve linear regression in Od(
√
n) time and without paying matrix-dependent

parameters (e.g., κ(A))?

1.1 OUR RESULTS

We provide a positive answer to this question. The main contribution of our work is to propose a
quantum algorithm that solves linear regression in Od(

√
n) time while the classical algorithm requires

Ωd(n) time. Notice that the complexity of our algorithm does not have any data-dependent parameter.
For comparison, the quantum linear regression algorithms proposed by Wang (2017); Kerenidis &
Prakash (2017); Chakraborty et al. (2019) have a time complexity poly(log n, d, κ(A), ϵ−1). On
the other hand, there exists a series of works on developing “quantum-inspired” algorithms for
linear regression problems, which show that classical algorithms can also achieve log(n)-dependence
by assuming some sampling access to the input matrix. However, the time complexities of these
algorithms have large polynomial dependence on some matrix parameters. In particular, Chia et al.
(2022) presented a quantum-inspired algorithm that runs in O((∥A∥F /∥A∥)6κ(A)28) time. Further,
Gilyén et al. (2020) improved to O((∥A∥F /∥A∥)6κ(A)12) time. We show our results for linear
regression and its generalizations (multiple regression and ridge regression) in more detail below.

Linear regression. We develop a quantum algorithm solving linear regression with classical output.

Theorem 1.4 (Quantum algorithm for linear regression). Let ϵ ∈ (0, 1). Let ω ≈ 2.37 denote the
exponent of matrix multiplication. Given a matrix A ∈ Rn×d and b ∈ Rn, there is a quantum
algorithm that outputs x ∈ Rd such that ∥Ax − b∥2 ≤ (1 + ϵ)minx′∈Rd ∥Ax′ − b∥2, which takes
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Õ(
√
nd/ϵ) row queries to A and Õ(

√
nd1.5/ϵ+ dω/ϵ) time, where r is the row of sparsity of matrix

A and r ≤ d. The success probability is 0.999.

Multiple regression. We also improve the classical multiple linear regression algorithm from
O(nd) + N poly(d) (Clarkson & Woodruff, 2013; Nelson & Nguyên, 2013) to Õ(

√
nd1.5) +

N poly(d), where N is the number of columns of the matrix B (see Definition 1.2)
Theorem 1.5 (Quantum algorithm for multiple regression). Let ϵ ∈ (0, 1). Let ω ≈ 2.37 denote
the exponent of matrix multiplication. Given a matrix A ∈ Rn×d with row sparsity r, where r ≤ d,
B ∈ Rn×N , there is a quantum algorithm that outputs X ∈ Rd×N such that ∥AX − B∥F ≤
(1 + ϵ)minX′∈Rd×N ∥AX ′ − B∥F , which takes Õ(

√
nd/ϵ) row queries to A and Õ(

√
nd1.5/ϵ +

dω/ϵ+Ndω−1/ϵ) time. The success probability is 0.999.

Ridge regression. For ridge regression, the previous best ridge regression algorithm is due to Avron
et al. (2017), which has a running time O(nd)+poly(d, sdλ(A), 1/ϵ), where sdλ(A) is the statistical
dimension of A. In quantum, Shao (2023) gave a quantum algorithm with classical outputs that has
a linear dependence in n in the worst case. Shao & Xiang (2020); Chen et al. (2023); Chakraborty
et al. (2023) showed quantum algorithms that can prepare quantum states encoding the solution. In
particular, the algorithm by Chakraborty et al. (2023) has a cost Õ(κ+ αA√

λ
), where κ = 1+ ∥A∥

λ and
αA ≤ ∥A∥F is a data-dependent parameter. We note that these algorithms (with quantum outputs) are
incomparable to ours since the output formats are different. Chen & de Wolf (2021) studied quantum
algorithms for LASSO (linear regression with ℓ1-constraint) and ridge regressions. However, they
focused on improving the d-dependence and only considered the regime when n = O(log(d)/ϵ2).
We present a quantum algorithm that runs in Õ(

√
n · sdλ(A)d) + poly(sdλ(A), 1/ϵ) time.

Theorem 1.6 (Quantum algorithm for ridge regression). Given a matrix A ∈ Rn×d and b ∈ Rn, we
let sdλ(A) denote the statistical dimension of matrix A (see Definition 3.8), ϵ ∈ (0, 1), and λ > 0
denote a regularization parameter. There is a quantum algorithm that outputs x ∈ Rd such that
∥Ax−b∥22+λ∥x∥22 ≤ (1+ϵ)minx′∈Rd(∥Ax′−b∥22+λ∥x′∥22), which takes Õ(

√
n · sdλ(A)/ϵ) row

queries to A and Õ(
√
n · sdλ(A)d/ϵ+ poly(d, sdλ(A), 1/ϵ)) time, with 0.999 success probability.

Roadmap. In Section 2, we introduce the related work. In Section 3, we present the preliminary of
our work. In Section 4, we analyze the linear regression problem and the multiple regression problem
and present the formal version of our main results. In Section 5, we analyze the ridge regression
problem and present the formal version of our main result. In Section 6, we make a conclusion for
this paper and discuss the limitations and societal impacts.

2 RELATED WORK

Quantum optimization algorithms Optimization is one of the promising areas to demonstrate
quantum advantages. Since the groundbreaking result by Harrow et al. (2008) on the quantum linear
system solver, a significant number of works (such as Childs et al. (2017); Low & Chuang (2019);
Gilyén et al. (2019); Chakraborty et al. (2019)) have focused on developing quantum algorithms
to accelerate linear algebra operations. These algorithms are commonly referred to as “quantum
linear algebra”. Unlike classical numerical linear algebra algorithms whose solutions are classical
vectors or matrices, the outputs of quantum linear algebra algorithms are usually quantum states
that encode the solution. Specifically, it is possible to represent an n-dimensional vector as a
O(log(n))-qubit quantum state. This allows a quantum computer to solve problems exponentially
faster than classical computers. Based on the quantum linear algebra approach, several quantum
optimization algorithms have been developed. In addition to the quantum linear regression algorithms
mentioned before, there has been a long list of work on fast quantum linear programming (LP)
and semi-definite programming (SDP) solvers (Brandao & Svore, 2017; Apeldoorn et al., 2017;
Brandão et al., 2019; Apeldoorn & Gilyén, 2019; Kerenidis & Prakash, 2020; Huang et al., 2022).
On the other hand, based on Jordan’s algorithm (Jordan, 2005) for computing gradients in quantum,
van Apeldoorn et al. (2020); Chakrabarti et al. (2020) showed quantum speedups of optimizing a
convex function over an n-dimensional convex body. Other quantum optimization algorithms include
finding the Nash equilibrium of a zero-sum game (Bouland et al., 2023; Vasconcelos et al., 2023),
sub-modular optimization (Hamoudi et al., 2019), approximate convex optimization (Li & Zhang,
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2022), stochastic optimization (Sidford & Zhang, 2023), escaping from saddle points (Zhang et al.,
2021a). Another approach for quantum optimization is via variational quantum algorithms such
as the variational quantum eigensolver (VQE) (Peruzzo et al., 2014) or the quantum approximate
optimization algorithm (QAOA) (Farhi et al., 2014). A large number of algorithms have been
developed to solve combinatorial optimization problems, e.g., Guerreschi & Matsuura (2019); Basso
et al. (2021); Zhang et al. (2021b). The approach requires only a small amount of quantum resources
and can be implemented in a real-world device soon. However, a rigorous analysis on the performance
and quantum advantage for this approach remains open.

Quantum machine learning Quantum machine learning (QML) is a field that examines how
quantum computing can enhance machine learning. Several quantum algorithms have been proposed
to provide speedups or improved capabilities compared to classical machine learning approaches,
such as clustering (Harrow, 2020; Doriguello et al., 2023), boosting (Arunachalam & Maity, 2020),
support vector machine (Rebentrost et al., 2014), principal component analysis (Lloyd et al., 2014),
statistical query learning (Arunachalam et al., 2020), etc. However, the seminal work by Tang
(2018) showed that some quantum linear algebra-based QML algorithms (such as the quantum
recommendation system (Kerenidis & Prakash, 2016)) can be “de-quantized” by some classically
samplable data structures. Later, more quantum-inspired algorithms have been proposed for principal
component analysis (Tang, 2018), low-rank approximation (Gilyén et al., 2018; Chia et al., 2020), etc.
Another approach of QML is to use parameterized quantum circuits and hybrid quantum-classical
training strategies to learn from classical or quantum data, such as quantum neural networks (Farhi
& Neven, 2018; Cong et al., 2019; Beer et al., 2020; Abbas et al., 2021), quantum kernel methods
(Mengoni & Di Pierro, 2019; Schuld & Killoran, 2019; Bartkiewicz et al., 2020).

Classical Linear Algebra Given such a family Π, it is natural to apply an S to A and then
solve the smaller problem directly. This is the so-called sketch-and-solve paradigm. Sketch-and-
solve has led to the development of fast algorithms for many problems, such as linear regression
(Clarkson & Woodruff, 2013; Nelson & Nguyên, 2013), low rank approximation with Frobenious
norm (Clarkson & Woodruff, 2013; Nelson & Nguyên, 2013), fairness of regression (Song et al.,
2023a), matrix CUR decomposition (Boutsidis & Woodruff, 2014; Song et al., 2017; 2019c), weighted
low rank approximation (Razenshteyn et al., 2016; Song et al., 2023d), entrywise ℓ1 norm low rank
approximation (Song et al., 2017; 2019b), tensor regression (Song et al., 2021a; Reddy et al., 2022;
Diao et al., 2018; 2019; Deng et al., 2023b), tensor low rank approximation (Song et al., 2019c),
general norm column subset selection (Song et al., 2019a), low rank matrix completion (Gu et al.,
2023), designing an efficient neural network training method (Qin et al., 2023b), and attention
regression problem (Song et al., 2023f; Gao et al., 2023a).

3 PRELIMINARIES

In Section 3.1, we introduce the definitions and properties related to the subspace embedding and
approximate matrix product. In Section 3.2, we formally define leverage score distribution. In
Section 3.3, we formally define the statistical dimension. In Section 3.4, we present a quantum tool
for subspace embedding.

Notation. We define [n] := {1, 2, 3, . . . , n} and the ℓ2 norm of x, ∥x∥2 :=
√∑n

i=1 x
2
i . Ai,∗ ∈ Rd

is the i-th row of A, and A∗,j ∈ Rn is the j-th column of A. Given y ∈ Rd with ∥y∥2 = 1, we
define the spectral norm of A, ∥A∥ := maxy∈Rd ∥Ay∥2. The Frobenius norm of A is ∥A∥F :=√∑n

i=1

∑d
j=i |Ai,j |2. The ℓ0 norm of A, ∥A∥0 ∈ R is the number of nonzero entries in A. Id is

the d × d identity matrix. A⊤ ∈ Rd×n denotes the transpose of the matrix A, and A† denotes the
pseudoinverse of A. Given two symmetric matrices B,C ∈ Rn×n, we use B ⪯ C to represent that
the matrix C−B is positive semidefinite (or PSD), namely for all x ∈ Rn, we have x⊤(C−B)x ≥ 0.

3.1 DEFINITIONS OF SE AND AMP

In this section, we introduce key concepts that will be central to proving the guarantees of our quantum
algorithms for regression. Specifically, we formally define two main concepts–subspace embedding
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and approximate matrix product. Subspace embedding is when multiplying by a sketching matrix
approximately preserves the geometry or “norms” of vectors from a given subspace. Approximate
matrix product means that multiplying a sketch by matrices A and B roughly preserves the Frobenius
or spectral norm as if A was directly multiplied by B.
Definition 3.1 (Subspace embedding, (Sarlos, 2006)). Let ϵ, δ ∈ (0, 1). Let n > d. Given a matrix
U ∈ Rn×d which is an orthonormal basis (i.e., U⊤U = Id), we say S ∈ Rm×n is an SE(ϵ, δ, n, d)
subspace embedding for U if ∥SUx∥22 = (1 ± ϵ)∥Ux∥22, holds with probability 1 − δ, which is
equivalent to ∥U⊤S⊤SU − U⊤U∥ ≤ ϵ.

In general, if S does not depend on U , then we call it oblivious subspace embedding. In most places
of this paper, our S does depend on U . Therefore, we do not use “oblivious” in the definition like
other papers (Song et al., 2023e).
Definition 3.2 (Frobenius norm approximate matrix product, (Woodruff, 2014)). Let ϵ, δ ∈ (0, 1). We
say S ∈ Rm×n is FAMP(ϵ, δ, n, d) Approximate Matrix Product for A ∈ Rn×d if for any B ∈ Rn×N

we have ∥A⊤S⊤SB −A⊤B∥2F ≤ ϵ2 · ∥A∥2F · ∥B∥2F holds with probability 1− δ.

Here matrix B has to have the same number of rows as A. However, B does not necessarily have the
same number of columns as A.
Definition 3.3 (Spectral norm approximate matrix product, see Theorem 17 in Avron et al. (2017)).
Let ϵ, δ ∈ (0, 1). We say S ∈ Rm×n is SAMP(ϵ, δ, n, d) Approximate Matrix Product for A ∈ Rn×d

if for any B ∈ Rn×N we have ∥A⊤S⊤SB −A⊤B∥ ≤ ϵ · ∥A∥ · ∥B∥ holds with probability 1− δ.

Here matrix B has to have the same number of rows as A. However, B is not necessarily to have the
same number of columns as A. Due to the page limit, we delay the proof of Claim 3.4 to Section B.1.
Claim 3.4. Let A ∈ Rn×d, U denote the orthonormal basis of A, and D denote a diagonal matrix
such that ∥DAx∥22 = (1± ϵ)∥Ax∥22 for all x. Then, we have

∥DUx∥22 = (1± ϵ)∥Ux∥22.

3.2 LEVERAGE SCORE DISTRIBUTION

We introduce leverage score (see Definition 3.5) and leverage score distribution (see Definition 3.7),
which are well-known concepts in numerical linear algebra. We provide definitions that quantify the
leverage score of a matrix row as its squared Euclidean norm under an orthonormal transformation
of the matrix. Additionally, we define a leverage score distribution as a probability distribution that
samples rows with probabilities proportional to these row leverage scores. Intuitively, leverage scores
control how much influence each row vector has in spanning the column space.
Definition 3.5 (Leverage score, see Definition B.28 in Song et al. (2019c) as an example). Given a
matrix A ∈ Rn×d, we let U ∈ Rn×d denote the orthonormal basis of A. We define σi := ∥Ui,∗∥22 for
each i ∈ [n]. We say σ ∈ Rn is the leverage score of A ∈ Rn×d.
Fact 3.6. It is well known that

∑n
i=1 σi = d.

Definition 3.7 (D ∼ LS(A), see Definition B.29 in Song et al. (2019c) as an example). Let c > 1
denote some universal constant. For each i ∈ [n], we define pi := c · σi/d. Let q ∈ Rn be the vector
that qi ≥ pi. Let m denote the sparsity of diagonal matrix D ∈ Rn×n. We say a diagonal matrix D
is a sampling and rescaling matrix according to leverage score of A if for each i ∈ [n], Di,i =

1√
mqi

with probability qi and 0 otherwise. (Note that each i is picked independently and with replacement)
We use D ∼ LS(A) to denote that.

3.3 STATISTICAL DIMENSION

In addition to leverage scores capturing the geometric influence of matrix rows, another related notion
that will play an important role is the statistical dimension. While leverage scores are row-specific
concepts, statistical dimension provides an aggregate measure of the complexity of a matrix that
governs the sample size needed to effectively sketch it.
Definition 3.8 (Statistical dimension, see Definition 1 in Avron et al. (2017) as an example). For λ ≥ 0

and rank-d matrix A ∈ Rn×d with singular values σi(A), the quantity sdλ(A) :=
∑d

i=1
1

1+λ/σi(A)2

is the statistical dimension of the ridge regression problem with regularizing weight λ.
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3.4 QUANTUM TOOLS FOR SUBSPACE EMBEDDING

Now, we construct a sampling matrix from estimated scores that serve as a subspace embedding.
Lemma 3.9 (Informal Version of Lemma A.2). Consider query access to matrix A ∈ Rn×d with
row sparsity r. Let U denote the orthonormal basis of A. For any ϵ ∈ (0, 1), there is a quantum
algorithm that returns a diagonal matrix D ∈ Rn×n satisfying ∥D∥0 = O(ϵ−2d log d), ∥DUx∥22 =
(1± ϵ)∥Ux∥22 (subspace embedding), and D ∼ LS(A) (see Definition 3.7). This quantum algorithm
makes Õ(

√
nd/ϵ) row queries to A and

Õ(r
√
nd/ϵ+ dω)

time, with the success probability 0.999.

Sketch of our proof. We use Lemma A.1 to estimate the leverage scores σi of the input matrix A

to constant precision in Õ(
√
nd) time. Classically, it is known that if we sample O(ϵ−2d log d)

rows according to the leverage score distribution, the subsampled matrix D acts as an ϵ-subspace
embedding for A. Quantumly, we can perform this sampling using the estimated leverage scores.
Sampling k = ∥D∥0 = O(ϵ−2d log d) rows requires O(

√
nk) row queries to A. The total runtime

follows from the estimation cost in Lemma A.1 plus the sampling cost, which is Õ(r
√
nd/ϵ+dω).

4 MULTIPLE REGRESSION AND LINEAR REGRESSION

In Section 4.1, we show that the leverage score distribution may imply the subspace embedding and
approximate matrix product. In Section 4.2, we show that by using the subspace embedding and
approximate matrix product, we get multiple regression. In Section 4.3, we analyze the running
time for each of the matrices SA, SB, (SA)†, and (SA)† · (SB). In Section 4.4, we combine the
important properties of this section to form the formal version of our result for multiple regression,
and based on that, we take N = 1 to form the formal version of our result for linear regression.

4.1 LS IMPLIES SE AND AMP

In this section, we present a tool from Song et al. (2019c) showing that if S ∼ LS(A), a leverage
score distribution, then S is a subspace embedding (see Definition 3.1) and satisfies the definition of
Frobenius norm approximate matrix product (see Definition 3.2). The purpose is to rigorously justify
why sampling from leverage scores enables dimensionality reduction for regression problems. By
showing that the sampled matrix retains the structure of the original matrix, we lay the groundwork
to prove that solving regression on the smaller sampled matrix yields an approximate solution for
the full regression problem. This then sets up the development in later sections showing how this
sampling-based reduction leads to faster quantum algorithms.
Lemma 4.1 (Corollary C.30 in Song et al. (2019c)). Given A ∈ Rn×d, we let U denote the
orthonormal basis of A, S ∼ LS(A) (see Definition 3.7), and ∥S∥0 = m. If m = O(d log d), then
S is a SE(1/2, 0.99, n, d) subspace embedding (see Definition 3.1) for U . If m = O(d/ϵ), then S

satisfies FAMP(
√

ϵ/d, 0.99, n, d) (see Definition 3.2) for U .

4.2 FROM SE AND AMP TO REGRESSION

In this section, we present another tool from Song et al. (2019c) showing that if S is a subspace
embedding (see Definition 3.1) and satisfies the definition of Frobenius norm approximate matrix
product (see Definition 3.2), then the multiple regression is satisfied. Therefore, solving the sketched
regression problem on the smaller matrix SA yields solutions that generalize to approximate the full
regression problem on A.
Lemma 4.2 (Lemma C.31 in Song et al. (2019c)). Let A ∈ Rn×d, B ∈ Rn×N , S ∼ LS(A) (see
Definition 3.7), X∗ = argminX ∥AX −B∥2F , X ′ = argminX ∥SAX − SB∥2F , and U denote an
orthonormal basis for A. If S is SE(1/2, 0.99, n, d) (see Definition 3.1) and FAMP(

√
ϵ/d, 0.99, n, d)

(see Definition 3.2) for U , then we have

∥AX ′ −B∥2F ≤ (1 + ϵ)∥AX∗ −B∥2F .
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4.3 COMPUTING THE RUNNING TIME

In this section, we state and prove a lemma bounding the running time for using leverage score
sampling (see Definition 3.7), then forming the sketched matrices SA and SB, computing the
pseudoinverse of SA, and multiplying this pseudoinverse by SB to obtain the sketched solution.
Each of these pieces is analyzed in terms of the input dimension n, d, and the accuracy parameter
ϵ. The purpose of this section is to complement the correctness guarantees from Section 4.1 and
Section 4.2 by quantifying the computational efficiency of the sampling reduction process.
Lemma 4.3 (Informal Version of Lemma B.3). Let A ∈ Rn×d, B ∈ Rn×N , ϵ ∈ (0, 0.1), ω ≈ 2.37,
S denote a diagonal matrix that ∥S∥0 = O(d log d+ d/ϵ), and X ′ = (SA)†SB. Then, we have we
can compute X ′ ∈ Rd×N in

Õ(dω/ϵ+Ndω−1/ϵ)

time.

Sketch of our proof. The key steps to analyze the running time of computing the sketched solution
X ′ = (SA)†SB are as follows. First, compute the sketch SA in Õ(d2/ϵ) time, where S is an
n× n diagonal matrix with Õ(d/ϵ) non-zero entries. Second, compute the sketch SB in Õ(Nd/ϵ)

time. Third, compute (SA)† in Õ(dω/ϵ) time, where SA is a d × Õ(d/ϵ) matrix. Finally, com-
pute (SA)†(SB) in Õ(Ndω−1/ϵ) time using fast matrix multiplication (Fact A.6), where SB is a
Õ(d/ϵ)×N matrix. Thus, the total time to compute X ′ = (SA)†SB is Õ(dω/ϵ+Ndω−1/ϵ).

4.4 MAIN RESULT

At this point, we have developed all the theoretical concepts required to obtain faster quantum
algorithms for regression problems based on a sampling reduction approach. Thus, in this section, we
present our main results for the multiple regression and the linear regression. First, we incorporate
the mathematical properties developed earlier to present our result for the multiple regression.
Theorem 4.4 (Quantum algorithm for multiple regression, restatement of Theorem 1.5). Let ϵ ∈
(0, 1). Let ω ≈ 2.37 denote the exponent of matrix multiplication. Given a matrix A ∈ Rn×d with
row sparsity r, where r ≤ d, B ∈ Rn×N , there is a quantum algorithm that outputs X ∈ Rd×N such
that

∥AX −B∥F ≤ (1 + ϵ) min
X′∈Rd×N

∥AX ′ −B∥F ,

which takes Õ(
√
nd/ϵ) row queries to A and Õ(

√
nd1.5/ϵ+ dω/ϵ+Ndω−1/ϵ) time. The success

probability is 0.999.

Proof. Note that by combining Lemma 4.1 and Lemma 4.2, we can have ∥AX ′ − B∥2F ≤ (1 +
ϵ)∥AX∗ −B∥2F .

Lemma 3.9 and Lemma 4.3 give us the running time.

Then, we present our result for the linear regression. This is the multiple regression with N = 1.
Theorem 4.5 (Quantum algorithm for linear regression, restatement of Theorem 1.4). Let ϵ ∈ (0, 1).
Let ω ≈ 2.37 denote the exponent of matrix multiplication. Given a matrix A ∈ Rn×d and b ∈ Rn,
there is a quantum algorithm that outputs x ∈ Rd such that

∥Ax− b∥2 ≤ (1 + ϵ) min
x′∈Rd

∥Ax′ − b∥2,

which takes Õ(
√
nd/ϵ) row queries to A and Õ(

√
nd1.5/ϵ + dω/ϵ) time, where r is the row of

sparsity of matrix A and r ≤ d. The success probability is 0.999.

Proof. Let x := X ∈ Rd×N when N = 1. Let b := B ∈ Rn×N when N = 1. Then, by
Theorem 4.4, we have ∥Ax− b∥2 ≤ (1+ ϵ)minx′∈Rd ∥Ax′− b∥2, which takes Õ(r

√
nd/ϵ+dω/ϵ+

dω−1/ϵ) = Õ(
√
nd1.5/ϵ+ dω/ϵ) time.
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5 RIDGE REGRESSION

In Section 5.1, we present a property of the orthonormal basis for the ridge matrix. In Section 5.2, we
introduce a sampling oracle related to U1. In Section 5.3, we present the property of the leverage
score distribution that for a matrix S sampled from it, S is a subspace embedding (Definition 3.1) and
satisfy the definition of the spectral norm approximate matrix product (Definition 3.3). In Section 5.4,
we present the guarantee of the sketched solution. In Section 5.5, we present our main result for the
ridge regression.

5.1 PROPERTY OF ORTHONORMAL BASIS FOR RIDGE MATRIX

To develop our quantum ridge regression algorithm, we require an efficient way to reduce the ridge
regression problem on the original matrix A to a regularized regression problem on a much smaller
sampled matrix. Therefore, in this section, we present the property of the orthonormal basis for the
ridge matrix, and our proof is delayed to Section B.2. Compared to Lemma 12 in Avron et al. (2017),
our analysis of the orthonormal basis is the part that strengthens this lemma. Lemma 12 in Avron
et al. (2017), on the other hand, provides an explicit formula for the squared Frobenius norm of U1 in
terms of the statistical dimension of the ridge problem. It also bounds the spectral norm of U1, which
will be useful for ensuring subspace embedding properties (see Definition 3.1) when we subsample
the ridge leverage scores of U1.

Claim 5.1 (A stronger version of Lemma 12 in Avron et al. (2017)). Given matrix A ∈ Rn×d, we let
U ∈ Rn×d denote the orthonormal basis of A, U1 ∈ Rn×d comprise the first n rows of orthonormal

basis of
[

A√
λId

]
, and for each i ∈ [d], σi(A) denote the singular value of matrix A. Then we have

∥U∥2F = d, ∥U∥ = 1, ∥U1∥2F =
∑d

i=1
1

1+λ/σi(A)2 = sdλ(A), and ∥U1∥ = 1√
1+λ/σ2

1

.

5.2 SAMPLING ORACLE RELATED TO U1

In this section, we present a sampling oracle related to U1. Specifically, given query access to an n×d
matrix A, we show how to sample rows from A according to the ridge leverage score distribution of
U1 in input sparsity time. This sampling oracle serves as a crucial subroutine in our quantum ridge
regression algorithm, enabling us to reduce solving the ridge regression problem on A to solving a
sampled regular regression problem on a much smaller sampled matrix.

Lemma 5.2 (Sampling oracle). Consider query access to matrix A ∈ Rn×d with row sparsity r. Let

U1 denote the comprise of first n row of orthonormal basis of Ã =

[
A√
λId

]
. For any ϵ ∈ (0, 1), there

is a quantum algorithm that, returns a diagonal matrix D ∈ Rn×n, where ∥D∥0 denote the sparsity
of D, such that D ∼ LS(Ã1:n) (see Definition 3.7), where Ã1:n is the distribution with respect to U1,
and this quantum algorithm makes Õ(

√
n · ∥D∥0) row queries to A and takes

Õ(r
√
n∥D∥0 + poly(d, ∥D∥0))

time, with a success probability of 0.999.

Proof. The proof is similar to Lemma 3.9. The major difference is, in Lemma 3.9, we estimate a
distribution with n scores, and take samples from it. Here, we estimate a distribution n+ d scores
(with respect to Ã ∈ R(n+d)×d), but we only take samples from first n scores (with respect to
U1 ∈ Rn×d). Since the summation of first n scores is fixed and can be explicitly computed (see
Claim 5.1 for computation of ∥U1∥2F ). Thus, our sampling is correct.

5.3 FROM LS TO SE AND SAMP

With the sampling oracle and the structural ridge regression properties established in the previous
sections, we now have the key ingredients to show the reduction from ridge regression on A to
subsampled regular regression. In this section, we present a tool from Avron, Clarkson, and Woodruff
Avron et al. (2017), which shows that if S is sampled from the leverage score distribution, then it

8
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is a subspace embedding and spectral norm approximate matrix product. The formal guarantees
showing that the ridge leverage score sampler S satisfies the desired properties with respect to U1

are presented in the following Lemma. This lemma helps establish the validity of our approach to
subsample the ridge regression problem and solve the smaller sketched problem. In later sections,
we show how solving this sketched regression problem leads to fast quantum algorithms for ridge
regression.

Lemma 5.3 (Theorem 16 in Avron et al. (2017)). Given matrix A ∈ Rn×d, we let U1 ∈ Rn×d com-

prise the first n rows of the orthonormal basis of
[

A√
λId

]
, S ∼ LS(A), and ∥S∥0 = Õ(ϵ−1sdλ(A)).

Then we have that S is SE(1/2, 0.99, n, d) and SAMP(
√
ϵ, 0.99, n, d) for U1

5.4 GUARANTEE OF SKETCHED SOLUTION

What remains is to formally argue that solving the sketched regression problem on the sampled matrix
SU1 yields a good approximation to the original ridge regression problem on A. We fill this missing
step by showing that the guarantees provided by subspace embedding and spectral norm approximate
matrix product on U1 imply that the ridge regression objective is well-preserved between the original
problem and the sketched problem.

Lemma 5.4 (Lemma 11 in Avron et al. (2017)). Given matrix A ∈ Rn×d, we let U1 ∈ Rn×d

comprise the first n rows of orthonormal basis of
[

A√
λId

]
. Suppose S is SE(1/2, 0.99, n, d) and

SAMP(
√
ϵ, 0.99, n, d) for U1. Then, we have ∥Ax′−b∥22+λ∥x′∥22 ≤ (1+ϵ)·(∥Ax∗−b∥22+λ∥x∗∥22).

5.5 MAIN RESULT

Now we present our main result for the ridge regression, bringing together the sampling oracle and
the reduction arguments based on subspace embedding and approximate matrix multiplication.

Theorem 5.5 (Quantum algorithm for ridge regression, restatement of Theorem 1.6). Given a matrix
A ∈ Rn×d and b ∈ Rn, we let sdλ(A) denote the statistical dimension of matrix A (see Definition 3.8),
ϵ ∈ (0, 1), and λ > 0 denote a regularization parameter. There is a quantum algorithm that outputs
x ∈ Rd such that

∥Ax− b∥22 + λ∥x∥22 ≤ (1 + ϵ) min
x′∈Rd

(∥Ax′ − b∥22 + λ∥x′∥22),

which takes Õ(
√
n · sdλ(A)/ϵ) row queries to A and Õ(

√
n · sdλ(A)d/ϵ+ poly(d, sdλ(A), 1/ϵ))

time, with 0.999 success probability.

Proof. It follows from combining Lemma 3.9, 5.2, 5.3, 5.4, and Claim 5.1.

6 CONCLUSION

In this paper, we present quantum algorithms for linear regression, multiple regression, and ridge
regression that achieve quadratic speedups in the data dimension n compared to classical algorithms
(Clarkson & Woodruff, 2013; Nelson & Nguyên, 2013), without dependence on data-related pa-
rameters. Specifically, the quantum linear regression algorithm runs in Õ(

√
nd1.5/ϵ+ dω/ϵ) time,

improving over the running time of the classical algorithm O(nd) + poly(d/ϵ). The multiple regres-
sion and ridge regression algorithms achieve similar quadratic improvements. Our key contribution
is developing these accelerated quantum algorithms while removing their previous dependence on
matrix-specific parameters like the condition number. Without removing the condition number,
the quantum algorithm can only speed up over the classical algorithm when encountering well-
conditioned matrices. Our algorithms rely on a sampling-based dimensionality reduction leveraging
properties of leverage scores and statistical dimension. By reducing the original regression problem to
one on a smaller subsampled matrix, quantum routines can solve this smaller problem and generalize
the solution to the full data.
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Franco Nori. Experimental kernel-based quantum machine learning in finite feature space. Scientific
Reports, 10(1):12356, 2020.

Joao Basso, Edward Farhi, Kunal Marwaha, Benjamin Villalonga, and Leo Zhou. The quantum
approximate optimization algorithm at high depth for maxcut on large-girth regular graphs and the
sherrington-kirkpatrick model. arXiv preprint arXiv:2110.14206, 2021.

Ivanna Baturynska and Kristian Martinsen. Prediction of geometry deviations in additive manu-
factured parts: comparison of linear regression with machine learning algorithms. Journal of
Intelligent Manufacturing, 32:179–200, 2021.

Justin Bedo, Conrad Sanderson, and Adam Kowalczyk. An efficient alternative to svm based
recursive feature elimination with applications in natural language processing and bioinformatics.
In Australasian joint conference on artificial intelligence, pp. 170–180. Springer, 2006.

Kerstin Beer, Dmytro Bondarenko, Terry Farrelly, Tobias J Osborne, Robert Salzmann, Daniel
Scheiermann, and Ramona Wolf. Training deep quantum neural networks. Nature communications,
11(1):808, 2020.

Paul D Berger and Nada I Nasr. Customer lifetime value: Marketing models and applications. Journal
of interactive marketing, 12(1):17–30, 1998.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Song Bian, Zhao Song, and Junze Yin. Federated empirical risk minimization via second-order
method. arXiv preprint arXiv:2305.17482, 2023.

Adam Bouland, Yosheb M Getachew, Yujia Jin, Aaron Sidford, and Kevin Tian. Quantum speedups
for zero-sum games via improved dynamic gibbs sampling. In International Conference on
Machine Learning, pp. 2932–2952. PMLR, 2023.

Christos Boutsidis and David P Woodruff. Optimal cur matrix decompositions. In Proceedings of the
forty-sixth annual ACM symposium on Theory of computing (STOC), pp. 353–362, 2014.

Fernando GSL Brandao and Krysta M Svore. Quantum speed-ups for solving semidefinite programs.
In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp. 415–426.
IEEE, 2017.

Fernando GSL Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta M Svore, and Xiaodi
Wu. Quantum sdp solvers: Large speed-ups, optimality, and applications to quantum learning.
In 46th International Colloquium on Automata, Languages, and Programming (ICALP). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

Gavin C Cawley. Causal & non-causal feature selection for ridge regression. In Causation and
Prediction Challenge, pp. 107–128. PMLR, 2008.

Shouvanik Chakrabarti, Andrew M Childs, Tongyang Li, and Xiaodi Wu. Quantum algorithms and
lower bounds for convex optimization. Quantum, 4:221, 2020.

Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. The Power of Block-Encoded Ma-
trix Powers: Improved Regression Techniques via Faster Hamiltonian Simulation. In Chris-
tel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi (eds.), 46th Inter-
national Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132
of Leibniz International Proceedings in Informatics (LIPIcs), pp. 33:1–33:14, Dagstuhl, Ger-
many, 2019. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN 978-3-95977-109-2.
doi: 10.4230/LIPIcs.ICALP.2019.33. URL https://drops.dagstuhl.de/entities/
document/10.4230/LIPIcs.ICALP.2019.33.

Shantanav Chakraborty, Aditya Morolia, and Anurudh Peduri. Quantum regularized least squares.
Quantum, 7:988, 2023.

Menghan Chen, Chaohua Yu, Gongde Guo, and Song Lin. Faster quantum ridge regression algorithm
for prediction. International Journal of Machine Learning and Cybernetics, 14(1):117–124, 2023.

Yanlin Chen and Ronald de Wolf. Quantum algorithms and lower bounds for linear regression with
norm constraints. arXiv preprint arXiv:2110.13086, 2021.

Nai-Hui Chia, András Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang.
Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum ma-
chine learning. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, pp. 387–400, 2020.

Nai-Hui Chia, András Pal Gilyén, Tongyang Li, Han-Hsuan Lin, Ewin Tang, and Chunhao Wang.
Sampling-based sublinear low-rank matrix arithmetic framework for dequantizing quantum ma-
chine learning. Journal of the ACM, 69(5):1–72, 2022.

Andrea Chiarini and Federico Brunetti. What really matters for a successful implementation of
lean production? a multiple linear regression model based on european manufacturing companies.
Production Planning & Control, 30(13):1091–1101, 2019.

Andrew M Childs, Robin Kothari, and Rolando D Somma. Quantum algorithm for systems of linear
equations with exponentially improved dependence on precision. SIAM Journal on Computing, 46
(6):1920–1950, 2017.

David P Chu and Cheng W Wang. Empirical study on relationship between sports analytics and
success in regular season and postseason in major league baseball. Journal of Sports Analytics, 5
(3):205–222, 2019.

11

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.33
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2019.33


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in input sparsity
time. In Symposium on Theory of Computing Conference (STOC), pp. 81–90, 2013.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. Journal of the ACM (JACM), 68(1):1–39, 2021.

Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quantum convolutional neural networks. Nature
Physics, 15(12):1273–1278, 2019.

Erika Cule, Paolo Vineis, and Maria De Iorio. Significance testing in ridge regression for genetic
data. BMC bioinformatics, 12(1):1–15, 2011.

Yichuan Deng, Zhao Song, and Omri Weinstein. Discrepancy minimization in input-sparsity time.
arXiv preprint arXiv:2210.12468, 2022.

Yichuan Deng, Zhihang Li, and Zhao Song. Attention scheme inspired softmax regression. arXiv
preprint arXiv:2304.10411, 2023a.

Yichuan Deng, Zhao Song, and Junze Yin. Faster robust tensor power method for arbitrary order.
arXiv preprint arXiv:2306.00406, 2023b.

Huaian Diao, Zhao Song, Wen Sun, and David Woodruff. Sketching for kronecker product regression
and p-splines. In International Conference on Artificial Intelligence and Statistics, pp. 1299–1308.
PMLR, 2018.

Huaian Diao, Rajesh Jayaram, Zhao Song, Wen Sun, and David Woodruff. Optimal sketching
for kronecker product regression and low rank approximation. Advances in neural information
processing systems, 32, 2019.

Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction: Ridge regression
and classification. The Annals of Statistics, 46(1):247–279, 2018.

João F Doriguello, Alessandro Luongo, and Ewin Tang. Do you know what q-means? arXiv preprint
arXiv:2308.09701, 2023.

Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmetric hashing.
arXiv preprint arXiv:2210.10173, 2022.

Edward Farhi and Hartmut Neven. Classification with quantum neural networks on near term
processors. arXiv preprint arXiv:1802.06002, 2018.

Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization algorithm,
2014.

David A Freedman. Statistical models: theory and practice. cambridge university press, 2009.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of statistical software, 33(1):1, 2010.

Franccois Le Gall. Faster rectangular matrix multiplication by combination loss analysis. arXiv
preprint arXiv:2307.06535, 2023.

Yeqi Gao, Zhao Song, Weixin Wang, and Junze Yin. A fast optimization view: Reformulating single
layer attention in llm based on tensor and svm trick, and solving it in matrix multiplication time.
arXiv preprint arXiv:2309.07418, 2023a.

Yeqi Gao, Zhao Song, and Junze Yin. Gradientcoin: A peer-to-peer decentralized large language
models. arXiv preprint arXiv:2308.10502, 2023b.

Yeqi Gao, Zhao Song, and Junze Yin. An iterative algorithm for rescaled hyperbolic functions
regression. arXiv preprint arXiv:2305.00660, 2023c.

András Gilyén, Seth Lloyd, and Ewin Tang. Quantum-inspired low-rank stochastic regression with
logarithmic dependence on the dimension. arXiv preprint arXiv:1811.04909, 2018.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value transformation
and beyond: exponential improvements for quantum matrix arithmetics. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing (STOC), pp. 193–204, 2019.

András Gilyén, Zhao Song, and Ewin Tang. An improved quantum-inspired algorithm for linear
regression. arXiv preprint arXiv:2009.07268, 2020.
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Roadmap. In Section A, we present the mathematical notations, definitions, and properties. In
Section B, we present the missing proofs.

A PRELIMINARIES

In Section A.1, we incorporate the quantum tools to study the properties of subspace embedding. In
Section A.2, we show that the leverage score sample preserves the approximate matrix product. In
Section A.3, we present the running times of fast matrix multiplication.

Notations. First, we introduce the notations related to the sets. We define Z+ := {1, 2, 3, . . . } to
be the set containing all positive integers. Let n, d ∈ Z+. We define [n] := {1, 2, 3, . . . , n}. We use
R, Rn, and Rn×d to denote the set containing all real numbers, all n-dimensional vectors with real
entries, and the n× d matrices with real entries.

Now, we introduce the notations related to vectors. Let x ∈ Rn. For all i ∈ [n], we let xi ∈ R be the
i-th entry of x. We define the ℓ2 norm of x, denoted as ∥x∥2, as

√∑n
i=1 x

2
i .

After that, we present the notations related to the matrices. Let A ∈ Rn×d. For all i ∈ [n], j ∈ [d],
we define Ai,j ∈ R as the entry of A at the i-th row and j-th column; we define Ai,∗ ∈ Rd as the i-th
row of A; we define A∗,j ∈ Rn as the j-th column of A. Given a vector y ∈ Rd satisfying ∥y∥2 = 1,
we define the spectral norm of A, denoted as ∥A∥, to be maxy∈Rd ∥Ay∥2. We define the Frobenius

norm of A as ∥A∥F :=
√∑n

i=1

∑d
j=i |Ai,j |2. The ℓ0 norm of A, denoted as ∥A∥0 ∈ R, is defined

to be the number of nonzero entries in A. We use Id to represent the d× d identity matrix. We use
A⊤ ∈ Rd×n to denote the transpose of the matrix A. A† denote the pseudoinverse of A. Given two
symmetric matrices B,C ∈ Rn×n, we use B ⪯ C to represent that the matrix C − B is positive
semidefinite (or PSD), namely for all x ∈ Rn, we have x⊤(C −B)x ≥ 0.

Finally, we define the notations related to functions. We use poly(n) to represent a polynomial in n.
Let f, g : R → R be two functions. We use Õ(f) to denote f · poly(log f). We use g(n) = O(f(n))
to represent that there exist two positive real numbers C and x0 such that for all n ≥ x0, we have
|g(n)| ≤ C · f(n). argminx f(x) denote the x value such that f(x) attains its minimum.

A.1 QUANTUM TOOLS FOR SUBSPACE EMBEDDING

In this section, our purpose is to bridge the gap between classical theory and quantum techniques:
we present a quantum tool we use for designing a fast algorithm based on leverage score sampling.
This tool was recently developed by Apers and Gribling Apers & Gribling (2023). In particular, we
state two Lemmas analyzing efficient quantum routines for leverage score estimation and sampling,
respectively. The first allows approximating row leverage scores (see Definition 3.5) with queries to
the input matrix scaling as the square root of the dimension. The second one constructs a sampling
matrix from these estimated scores that serve as a subspace embedding (see Definition 3.1).

Lemma A.1 (Theorem 3.2 in Apers & Gribling (2023)). Consider query access to matrix A ∈ Rn×d

with row sparsity r. For any ϵ0 ∈ (0, 1), there exists a quantum algorithm that provides query access
to estimate σ̃i for any i ∈ [n] satisfying σ̃i = (1± ϵ0)σ(A)i, with the following guarantees:

• The algorithm makes Õ(
√
nd/ϵ0) row queries to A.

• It runs in Õ(r
√
nd/ϵ0 + dω/ϵ20 + d2/ϵ40) time.

• The success probability is at least 0.999

• The cost per estimate σ̃i is one row query to A and Õ(r/ϵ20) time

Lemma A.2 (Formal Version of Lemma 3.9). Consider query access to matrix A ∈ Rn×d with row
sparsity r. Let U denote the orthonormal basis of A. For any ϵ ∈ (0, 1), there is a quantum algorithm
that, returns a diagonal matrix D ∈ Rn×n such that

• ∥D∥0 = O(ϵ−2d log d)
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• ∥DUx∥22 = (1± ϵ)∥Ux∥22 (subspace embedding)

• D ∼ LS(A) (see Definition 3.7)

• It makes Õ(
√
nd/ϵ) row queries to A.

• It takes Õ(r
√
nd/ϵ+ dω) time.

• The success probability 0.999

Proof. To do the leverage score sampling, we only need to set ϵ0 = 0.1 to be constant in Lemma A.1.

Using classical correctness, we know that if the sampling size is O(ϵ−2d log d), then we will get
subspace embedding (see Definition 3.1).

Using quantum sampling lemma, we know that sampling ∥D∥0 rows from an n rows of A requires√
n∥D∥0 row queries to A.

Using Lemma A.1 it takes

Õ(r
√

n∥D∥0 + dω)

Thus, we complete the proof.

A.2 LEVERAGE SCORE SAMPLE PRESERVES APPROXIMATE MATRIX PRODUCT

In this section, we show that the leverage score sample preserves the approximate matrix product.
Specifically, we analyze the Lemma showing that sampling rows of a matrix A proportionally to
leverage scores (see Definition 3.5) generates a sketching matrix that approximates the product
between A and any other matrix B with respect to the Frobenius norm.

Lemma A.3 (Lemma C.29 in Song et al. (2019c)). If the following conditions hold

• Let A ∈ Rn×d

• Let B ∈ Rn×N

• Let ϵ ∈ (0, 1)

• Let S ∼ LS(A) (see Definition 3.7)

• Let ∥S∥0 = O(1/ϵ2)

Then, for any fixed matrix B, we have

• ∥A⊤S⊤SB −A⊤B∥2F ≤ ϵ2∥A∥2F ∥B∥2F
• The success probability is 0.999

A.3 FAST MATRIX MULTIPLICATION

In this section, we present the running time of the fast matrix multiplication. We define the variable
Tmat to represent the time cost of multiplying two matrices of designated dimensions. Further,
we use ω to refer to the matrix multiplication exponent governing the asymptotic scaling of these
runtimes Williams (2012); Le Gall (2014); Alman & Williams (2021); Duan et al. (2022); Gall (2023);
Williams et al. (2023). We also introduce useful facts about manipulating the matrix multiplication
time function. These rules will assist with analyzing the runtimes of operations like computing
(SA)†SB which occur inside our regression analysis (see Lemma 4.3).

Definition A.4. Given two matrices a× b size and b× c, we use the Tmat(a, b, c) to denote the time
of multiplying a× b matrix with another b× c.

We use ω to denote the number that Tmat(n, n, n) = nω .
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Fact A.5. Given three positive integers, we have

Tmat(a, b, c) = O(Tmat(a, c, b)) = O(Tmat(b, a, c)) = O(Tmat(b, c, a)) = O(Tmat(c, a, b)) = O(Tmat(c, b, a))

Fact A.6. Given a, b, c, d are positive integers. Then we have

• Part 1.

Tmat(a, b, c) = O(d · Tmat(a/d, b, c))

• Part 2.

Tmat(a, b, c) = O(d · Tmat(a, b/d, c))

• Part 3.

Tmat(a, b, c) = O(d · Tmat(a, b, c/d))

B MISSING PROOFS

In Section B.1, we present the proof of Claim 3.4. In Section B.2, we present the proof of Claim 5.1.
In Section B.3, we state the formal version of Lemma 4.3 and present its proof.

B.1 PROOF OF CLAIM 3.4

In this section, we restate and prove Claim 3.4.
Claim B.1 (Restatement of Claim 3.4). Let A ∈ Rn×d, U denote the orthonormal basis of A, and D
denote a diagonal matrix such that ∥DAx∥22 = (1± ϵ)∥Ax∥22 for all x.

Then, we have

∥DUx∥22 = (1± ϵ)∥Ux∥22

Proof. Let R ∈ Rd×d denote the QR factorization of A. Then we have

A = UR

From ∥DAx∥22 = (1± ϵ)∥Ax∥22, we know that

∥DURx∥22 = (1± ϵ)∥URx∥22,∀x

Since R is full rank, then we can replace Rx by y to obtain

∥DUy∥22 = (1± ϵ)∥Uy∥22,∀y.

B.2 PROOF OF CLAIM 5.1

In this section, we restate and prove Claim 5.1.
Claim B.2 (Restatement of Claim 5.1). Given matrix A ∈ Rn×d, we let U ∈ Rn×d denote the

orthonormal basis of A, U1 ∈ Rn×d comprise the first n rows of orthonormal basis of
[

A√
λId

]
, and

for each i ∈ [d], σi(A) denote the singular value of matrix A.

Then we have

• Part 1. ∥U∥2F = d

• Part 2. ∥U∥ = 1

• Part 3. ∥U1∥2F =
∑d

i=1
1

1+λ/σi(A)2 = sdλ(A)
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• Part 4. ∥U1∥ = 1√
1+λ/σ2

1

Proof. For ∥U∥2F = d, it trivially follows from the definition of the orthonormal basis.

We consider the SVD1 of

A = UΣV ⊤, (1)

where U ∈ Rn×n, Σ ∈ Rn×d and V ∈ Rd×d.

We define

D := (Σ⊤Σ+ λId)
−1/2. (2)

We define

Â :=

[
UΣD

V
√
λD

]
(3)

Then we have

Â⊤Â = Id

For any x, we define y

y := D−1V ⊤x (4)

Then, we have

Ây =

[
UΣD

V
√
λD

]
D−1V ⊤x

=

[
UΣDD−1V ⊤

V
√
λDD−1V ⊤

]
x

=

[
UΣV ⊤
√
λV V ⊤

]
x

=

[
A√
λId

]
x,

where the first step follows from the definition of Â (see Eq. (3)) and y (see Eq. (4)), the second step
follows from simple algebra, the third step follows from the fact that DD−1 is the identity matrix,
and the last step follows from the SVD of A (see Eq. (1)) and the fact that V is orthogonal.

Finally, we can show

∥U1∥2F = ∥UΣD∥2F
= ∥ΣD∥2F

=

d∑
i=1

1

1 + λ/σi(A)2
,

where the first step follows from the Lemma statement, the second step follows from U is an
n× n orthonormal basis, and the last step follows from the definition of statistical dimension (see
Definition 3.8).

B.3 RUNNING TIME ANALYSIS

In this section, we analyze the running time by presenting the formal version of Lemma 4.3.
Lemma B.3 (Formal Version of Lemma 4.3). Let A ∈ Rn×d, B ∈ Rn×N , ϵ ∈ (0, 0.1), ω ≈ 2.37, S
denote a diagonal matrix that ∥S∥0 = O(d log d+ d/ϵ), and X ′ = (SA)†SB.

Then, we have we can compute X ′ ∈ Rd×N in Õ(dω/ϵ+Ndω−1/ϵ)

1Here we use a different shape of SVD, which is not as usual Σ ∈ Rd×d
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Proof. The proof directly follows from computing the time of SA, SB, (SA)†, and (SA)† · (SB).

Before computing the running time, let us recall the definition

• S is an n× n size diagonal entries which only has Õ(d/ϵ) non-entries on diagonal

• A has size n× d

Here are the computation costs:

• Computing Õ(d/ϵ)× d size matrix SA takes Õ(d2/ϵ)

• Computing Õ(d/ϵ)×N size matrix SB takes Õ(Nd/ϵ) time

• Computing d× Õ(d/ϵ) size matrix (SA)† takes Õ(dω/ϵ) time

• Computing d×N size matrix (SA)†(SB) takes Tmat(d, Õ(d/ϵ), N) = Õ(Ndω−1/ϵ) time
(due to Fact A.6).

Thus, we complete the proof.

C MORE RELATED WORK

Sketching can also be adapted to an iterative process to reduce the cost of iteration. This is the so-
called Iterate-and-sketch approach and it has led to fast algorithms for many fundamental problems,
such as linear programming (Cohen et al., 2021; Song & Yu, 2021; Jiang et al., 2021; Liu et al.,
2023), empirical risk minimization (Lee et al., 2019; Qin et al., 2023c), dynamic kernel estimation
(Qin et al., 2022b), projection maintenance (Song et al., 2023c) semi-definite programming (Gu &
Song, 2022), John Ellipsoid computation (Song et al., 2022c), Frank-Wolfe algorithm (Xu et al.,
2021; Song et al., 2022a), reinforcement learning (Shrivastava et al., 2023), rational database (Qin
et al., 2022a), matrix sensing (Qin et al., 2023d), softmax-inspired regression (Deng et al., 2023a;
Gao et al., 2023c; Li et al., 2023; Sinha et al., 2023), submodular maximization (Qin et al., 2023a),
federated learning (Song et al., 2023b; Bian et al., 2023; Gao et al., 2023b), discrepancy problem
(Deng et al., 2022; Song et al., 2022b), non-convex optimization (Song et al., 2021b;c; Alman et al.,
2023; Zhang, 2022).
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