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ABSTRACT

Unsupervised domain adaptation methods aim to generalize well on unlabeled
test data that may have a different (shifted) distribution from the training data.
Such methods are typically developed on image data, and their application to time
series data is less explored. Existing works on time series domain adaptation
suffer from inconsistencies in evaluation schemes, datasets, and backbone neu-
ral network architectures. Moreover, labeled target data are usually employed for
model selection, which violates the fundamental assumption of unsupervised do-
main adaptation. To address these issues, we propose a benchmarking evaluation
suite (ADATIME) to systematically and fairly evaluate different domain adaptation
methods on time series data. Specifically, we standardize the backbone neural net-
work architectures and benchmarking datasets, while also exploring more realistic
model selection approaches that can work with no labeled data or just few labeled
samples. Our evaluation includes adapting state-of-the-art visual domain adap-
tation methods to time series data in addition to the recent methods specifically
developed for time series data. We conduct extensive experiments to evaluate 10
state-of-the-art methods on 4 representative datasets spanning 20 cross-domain
scenarios. Our results suggest that with careful selection of hyper-parameters, vi-
sual domain adaptation methods are competitive with methods proposed for time
series domain adaptation. In addition, we find that hyper-parameters could be se-
lected based on realistic model selection approaches without relying on labeled
samples from target domain. Our work unveils practical insights for applying do-
main adaptation methods on time series data, and builds a solid foundation for
future works in the field.

1 INTRODUCTION

Time series classification problem is predominant in many real-world applications including health-
care and manufacturing. Yet, time series data with its inherit temporal dynamics and complex un-
derlying pattern can be more challenging than static data. Recently, deep learning has gained more
attention in time series classification tasks, assuming access to a vast amount of labeled data for
training (Fawaz et al., 2019). However, annotating time series data can be challenging and bur-
densome due to its complex underlying patterns and complicated domain knowledge (Chang et al.,
2020). One way to reduce labeling burden is to leverage annotated data (e.g., synthetic or public
data) from a relevant domain (i.e., source domain) to train the model, while testing it on the domain
of interest (i.e., target domain). Nevertheless, deep learning tends to perform poorly when tested
on unseen data that have different distribution from the training data, which is well-known as the
domain shift problem. Considering time series applications, source and target domains usually rep-
resent data from different subjects (persons) as in human activity recognition (HAR) (Wilson et al.,
2020; Chang et al., 2020) or sleep stage classification (SSC) tasks (Phan et al., 2020). A consider-
able amount of literature has been developed on Unsupervised Domain Adaptation (UDA) for visual
applications to mitigate the domain shift problem (Long et al., 2015; Ganin et al., 2016; Long et al.,
2018; Chen et al., 2020; Rahman et al., 2020).

Recently, more attention has been paid to time series UDA (TS-UDA) (Wilson et al., 2020; Chang
et al., 2020; Ragab et al., 2020; Liu & Xue, 2021). However, the literature of TS-UDA methods
suffers from the following limitations:
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• Existing TS-UDA works lack consistent evaluation schemes including benchmark datasets,
preprocessing, and backbone networks. For instance, some methods that leverage recur-
rent neural network as backbone network (Purushotham et al., 2017) are compared against
methods with convolutional based backbone networks (Wilson et al., 2020). In addition,
even with a similar architecture, training procedures can also vary among different algo-
rithms including number of epochs, weight decay, and learning rate schedulers (Tonutti
et al., 2019; Purushotham et al., 2017).

• Existing TS-UDA works use labeled data from the target domain for model selection, vio-
lating the basic assumption of UDA (Wilson et al., 2020; Liu & Xue, 2021), and providing
an overoptimistic view of their performance. It is worth noting that model selection for
domain adaptation in the absence of target domain labels is a long standing problem.

• Most of existing algorithms are mainly application specific, and few works have been pro-
posed for general TS-UDA. As a result, there is a shortage of baseline methods when ap-
plying domain adaptation on time series data.

All the aforementioned challenges can highly affect the performance and can be mistakenly at-
tributed to the proposed domain adaptation methods.

In this work, we propose a systematic evaluation suite (ADATIME) to tackle the aforementioned
obstacles and remove all extraneous factors to ensure a fair evaluation of different UDA algorithms
on time series data. Specifically, to address the inconsistent evaluation schemes and backbone net-
works, we first standardize the preparation and processing of four benchmarking datasets from two
classic real-world applications, including healthcare and human activity recognition. Besides, we
unify the backbone network and the training procedures when comparing between different UDA
methods. Second, to select the model hyper-parameters in the absence of target labels, we explore
more realistic model selection strategies for TS-UDA problem that do not require target labels. Par-
ticularly, we investigate the model performance when selecting models based on source dataset (i.e.,
source risk (Ganin et al., 2016)), unlabeled target data (i.e., deep embedded evaluation (DEV) (You
et al., 2019)), or only few-shot labeled samples from target data. Last, to address the lack of TS-
UDA baselines, we re-implement various state-of-the-art visual UDA methods that can be adapted
to time series data while comparing to the existing TS-UDA methods

Given our standard methodology, we aim to systematically study the following questions: (1) With
standard backbone network and evaluation schemes, how will the visual UDA methods perform on
time series data; (2) Can we use realistic model selection methods —relying on only few or no
target labels— and still achieve acceptable adaptation performance on time series data; (3) How
can the backbone network contribute to the performance. In this paper, we conduct comprehensive
experiments to answer the aforementioned three questions. Some of our findings are summarized as
follows:

• Visual domain adaptation methods can achieve comparable or even better performance than
the methods proposed for time series data.

• Unlike image data, selecting models based on source risk can achieve reasonable perfor-
mance and outperforms the DEV risk for time series data. Additionally, we find that our
proposed few-shot target risk can achieve comparable performance to target risk, with af-
fordable few labels samples.

• Changing the base architecture can be pivotal to the performance. Moreover, complex
architectures with time series data can have lower generalization performance on cross-
domain experiments.

2 DOMAIN ADAPTATION PROBLEM

We start by defining the unsupervised domain adaptation problem. We assume the access to a labeled
source domain XS = {(xsi , ysi )}

NS
i=1 that represents uni-variate or multivariate time series data,

and unlabeled target domain XT = {(xTi )}
NT
i=1 where NS and NT denote the number of samples

for XS and XT respectively. The source and target domains are sampled from different marginal
distributions, i.e., PS(x) 6= PT (x), while the conditional distribution remains stable (PS(y|x) =
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Figure 1: Our benchmarking methodology ADATIME consists of three main steps: Data Preparation,
Domain Alignment, and Model Selection. We first prepare the train and test data in both source and
target domains (i.e., XS

train, X
S
test, X

T
train, X

T
test). Then the processed source and target data are

passed through the backbone network to extract the corresponding features. The domain alignment
algorithm being evaluated is then used to address the distribution shift between the source and target
features. Last, we pass the source and target data to select the best hyper-parameters for the domain
alignment algorithm. We used three different model selection approaches (Best viewed in color).

PT (y|x)). The main goal of UDA is to reduce the distribution shift between PS(x) and PT (x),
assuming they share the same label space.

The mainstream of UDA algorithms is addressing the domain shift problem by finding domain
invariant feature representation. Formally, given a backbone model fθ : X → Z, which transforms
the input space to the feature space, the UDA algorithm mainly optimizes the backbone network
to find new invariant representation for the target features such that Ps(fθ(x)) = Pt(fθ(x)). As a
results, a model trained on the source domain can generalize well to the adapted target domain.

3 ADATIME: A BENCHMARKING APPROACH FOR TIME SERIES DOMAIN
ADAPTATION

In this work, we systematically evaluate domain adaptation algorithms on time series data, ensuring
fair and realistic procedures. Figure 1 shows the details of ADATIME, which proceeds as follows.
Given a dataset, we first apply our standard time series preparation schemes on the selected source
and target domains. Subsequently, the source train data XS

train and target train data XT
train are

passed through the backbone network to extract source and target features, i.e., ZStrain and ZTtrain
respectively. The selected UDA algorithm is then applied to mitigate the distribution shift between
the extracted features of two domains. Last, to set the hyper-parameters of the UDA algorithm, we
consider three practical model selection approaches (i.e., without any target domain labels or only
few-shot labeled samples) namely source (SRC) risk, deep embedded evaluation (DEV) risk, and
few-shot target (FST) risk. The proposed evaluation pipeline can prevent any extraneous factors and
enable fair comparison between different UDA methods. The code of ADATIME will be made pub-
licly available for researchers to enable seamless evaluation of different domain adaptation methods
on time series data.

3.1 BACKBONE NETWORK

The general domain adaptation network consists of a feature extractor, a classifier, as well as dif-
ferent components to align the domains. We refer to the feature extractor and the classifier as the
backbone network. The backbone network can have a pivotal contribution to the UDA model per-
formance, as using different architectures may result in different performance. Hence, changing
the backbone network when comparing different UDA methods can result in misleading outcomes,
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which can hinder the fair evaluation protocol. In most visual applications, ResNet-50 is the domi-
nantly adopted feature extractor, as its complex architecture can extract representative features from
images. However, in time series, using such complex architectures can lead to overfitting problems
(Fawaz et al., 2019). Therefore, we use a 1D-CNN architecture in ADATIME (see Figure 6). In
addition, we study the effect of different backbone architectures on the performance of TS-UDA
methods.

3.2 DOMAIN ADAPTATION ALGORITHMS

While numerous UDA approaches have been proposed to address the domain shift problem (Zhao
et al., 2020b), a comprehensive review of existing UDA methods is out of our scope. Instead, we
only included the most solid and recent baselines for visual UDA that can be adapted to time series.
Besides, we included the state-of-the-art methods proposed for time series data. Overall, the selected
algorithms in ADATIME can fit into two main categories according to the domain adaptation method,
namely discrepancy based methods and adversarial based methods. The former aims to minimize a
statistical distance between source and target features to mitigate the domain shift problem (Tzeng
et al., 2014; Sun & Saenko, 2016; Chen et al., 2020). The latter leverages a domain discriminator
network that enforces the feature extractor to produce domain invariant features (Ganin et al., 2016;
Tzeng et al., 2017). Each method in the above categories can also be classified according to the
aligned distribution. Specifically, some algorithms only align the marginal distribution of the feature
space, while other algorithms jointly align the marginal and conditional distributions.

The selected UDA algorithms are as follows: Deep Domain Confusion (DDC Tzeng et al. (2014));
Higher-order Moment Matching (HoMM Zhao et al. (2020a)); Correlation Alignment via Deep
Neural Networks (Deep-CORAL Sun et al. (2017)); Minimum Discrepancy Estimation (MMDA
Rahman et al. (2020)); Domain-Adversarial Training of Neural Networks (DANN Ganin et al.
(2016)); Conditional Adversarial Domain Adaptation (CDAN Long et al. (2018)); Deep Subdomain
Adaptation (DSAN Zhu et al. (2021)); (DIRT-T Shu et al. (2018)). In addition, we also include
two UDA methods applied in time series classification, which are CoDATS (Wilson et al., 2020)
and AdvSKM (Liu & Xue, 2021), noting that there are very few TS-UDA methods in the literature.
We excluded the methods proposed for time series prediction/forecasting since they are out of our
scope. Table 1 shows a summary of the selected methods and their corresponding categories.

Table 1: Summary of Domain Adaptation algorithms used for our benchmarking framework

Algorithm Application Category Distribution Losses Model Selection
DDC Visual Discrepancy Marginal MMD Target Risk

Deep-Coral Visual Discrepancy Marginal CORAL Not Mentioned

HoMM Visual Discrepancy Marginal High-order MMD Not Mentioned

MMDA Visual Discrepancy Joint MMD, Target Risk
CORAL,
Entropy

DSAN Visual Discrepancy Joint Local MMD Not Mentioned

DANN Visual Adversarial Marginal Domain Classifier, Source Risk
Gradient Reversal Layer

CDAN Visual Adversarial Joint Conditional adversarial Importance Weighting
Domain Classifier

DIRT-T Visual Adversarial Joint Virtual adversarial Target Risk
Entropy

Domain Classifier

CoDATS Time Series Adversarial Marginal Domain Classifier, Target Risk
Gradient Reversal Layer

AdvSKM Time Series Adversarial Marginal Spectral Kernel Target Risk
Adversarial MMD
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3.3 MODEL SELECTION APPROACHES

Model selection and hyper-parameter tuning for UDA are long standing non-trivial problems due to
the absence of target domain labels. However, we find that papers describing 5 out of the 10 included
UDA methods use target domain labels to select hyper-parameters, as shown in Table 1, which vi-
olates the basic assumption of UDA. In addition, another three papers used fixed hyper-parameters,
without describing how these parameters were selected. This issue can lead to unrealistic perfor-
mance and unfair evaluation. To address this issue, we evaluate multiple realistic model selection
approaches that could be applied for TS-UDA without the need of any target domain labels, such
as: SRC risk (Ganin et al., 2016) and DEV risk (You et al., 2019). Besides, we design a FST risk,
which utilizes affordable few labeled samples from the target domain. Detailed explanation of each
risk can be found as follows:

Source Risk (SRC Risk) In this approach,we select the hyper-parameters that achieve the min-
imum risk on the source domain test set, which is readily available. Hence, this approach can be
easily applicable without additional labeling efforts, since it relies on the existing labeled source
data (Ganin et al., 2016). However, the effectiveness of the source risk is mainly controlled by the
sample size of source data and severity of distribution shift.

Deep Embedded Validation (DEV Risk) This approach tries to yield unbiased estimation to the
target risk. Its key idea is to consider the relationship between the source and target data when
calculating the risk. Particularly, DEV risk considers the source features that are highly correlated to
the target features via importance weighting schemes. By ranking candidate models based on their
computed DEV risks, the model with the smallest DEV risk is chosen as the best candidate model to
be used for adaptation. However, this approach is computationally expensive and may have unstable
performance with smaller source and target datasets.

Few-Shot Target Risk (FST Risk) We propose few-shot target risk as a relaxed target risk. While
labeling of vast amount of time series data can be laborious, annotating few-shot samples can still
be affordable. We use these samples as a validation set to select the best hyper-parameters. This
strategy can achieve similar performance to using target risk, but it does require labeling a few target
domain samples.

Target Risk (TGT Risk) This approach involves leaving out a subset of the target domain samples
and their labels as a validation set, and using them to select the best performing hyper-parameters on
the target domain. Using this model selection technique provides an upper bound on the performance
of the UDA method, as it leverages labeled data from the target domain. Even though this risk is
impractical in unsupervised settings, it has been used by many UDA papers for model selection (Shu
et al., 2018; Saito et al., 2017).

4 EXPERIMENTS

4.1 BENCHMARKING DATASETS

We evaluate the various UDA algorithms on four benchmark datasets from two real-world appli-
cations, namely human activity recognition and sleep stage classification. The benchmark datasets
span a range of different characteristics including complexity, type of sensors, samples size, class-
distribution, and severity of domain shift, enabling more broad evaluation. The selected datasets are
detailed as follows:

UCIHAR (Anguita et al., 2013) UCIHAR is one of the most widely used datasets to evaluate per-
formance on time series data. It contains three different sensors namely, accelerometer, gyroscope,
and body sensors. These sensors have been used to collect data from 30 different persons. In our
experiments, we treat each subject as a separate domain. Due to the large number of cross-domain
combinations, we randomly selected five cross domain scenarios, as in (Liu & Xue, 2021; Wilson
et al., 2020).
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Table 2: Details of datasets. More details about selected cross-domain scenarios for each dataset
cab be found in Tables 4, 5, and 7.

Dataset Number of Total # samples

Users/Domains Channels Classes Timesteps/sample Training set Testing set

UCIHAR 32 9 6 128 2300 990
WISDM 36 3 6 128 1350 720
SSC 20 1 5 3000 14280 6130
HHAR 9 3 6 128 12716 5218

WISDM (Kwapisz et al., 2011) WISDM is another popular activity recognition dataset for the
evaluation of time series domain adaptation. In this dataset, accelerometer sensors were applied to
collect data from 36 subjects. This data can be more challenging because of the class imbalance
issue among different subjects. Particularly, some subjects may contain only samples from a subset
of the overall classes. Further detailed about ratio of different classes among subjects can be found
in the Appendix. Similar to UCIHAR dataset, we consider each subject as a separate domain and
we randomly select five cross-domain scenarios.

SSC (Goldberger et al., 2000) Sleep stage classification (SSC) problem aims to classify the elec-
troencephalography (EEG) signals into five stages i.e. Wake (W), Non-Rapid Eye Movement stages
(N1, N2, N3), and Rapid Eye Movement (REM). We adopted Sleep-EDF dataset (Goldberger et al.,
2000), which contains EEG readings from 20 healthy subjects. We selected a single channel (i.e.,
Fpz-Cz) following previous studies (Eldele et al., 2021a), and 10 different subjects to construct five
subject-wise cross-domain scenarios.

HHAR (Stisen et al., 2015) The Heterogeneity Human Activity Recognition (HHAR) dataset has
been collected from 9 different users using sensor readings from smartphones and smartwatches. In
our experiments, we consider each user as a domain. We constructed 10 cross-domain scenarios
from randomly selected users. We used the same smartphone device for all the selected users to
reduce the heterogeneity.

Table 2 summarizes the details of each dataset, e.g., the number of selected domains, the number
of sensor channels, the number of classes, the length of each sample, as well as the total number of
samples in both training and test portions.

4.2 EXPERIMENTAL SETUP

Hyper-parameters Sweep For each algorithm and dataset combination, we conducted extensive
random hyper-parameter search with 100 trials. The hyper-parameters are picked by a uniform
sampling from a range of predefined values. Details about the specified ranges can be found in
Table 8. In addition, for each set of hyper-parameters, we calculated the risk values over three
different random seeds, removing the bias to a single seed. We picked the model that achieves the
minimum risk value for each model selection strategy. For few-shot target risk experiments, we used
five samples per class in each dataset to compute the risk.

Datasets Preprocessing The preprocessing of time series data includes data slicing, train/test
splitting, normalization. To promote fair evaluation, we preserved consistency among all the afore-
mentioned processing steps when comparing between different UDA algorithms. We used a sliding
window of 128 for human activity recognition datasets. For SSC dataset, we kept the original sam-
ple length of 3000 time steps. Next, we split both source and target domains into train/test splits
with a ratio of 0.7/0.3. Finally, we normalized both training and testing data based on the training
statistics (Wilson et al., 2020; Liu & Xue, 2021). It worth noting that WISDM dataset is severely
imbalanced among different subjects (see Figure 4(b) in the appendix), with some classes not being
available for some subjects. To stabilize the training, we selected subjects that contain samples from
all the classes when constructing the source and target domains.
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Backbone Network To ensure a fair evaluation among all the baselines, we used a fixed backbone
network among all the compared UDA methods. We employed a 3-layer 1D-CNN with an adaptive
average pooling, to handle signals with different lengths, as a feature extractor. This architecture is
commonly used in series applications (Wilson et al., 2020; Eldele et al., 2021b). We adopted a single
layer fully connected network as the classifier. Yet, to include CoDATS in our experiments, we used
a 3-layer fully connected classifier (as proposed in their work) to differentiate it from DANN.

Training Procedure All the training procedures have been standardized across all UDA algo-
rithms. For instance, we trained each models for 40 epochs, as performance tends to decrease with
longer training. We reported the model performance after completing the last epoch. Regarding
the optimization of the model, we used Adam optimizer with a fixed weight decay of 1e-4 and
(β1, β2) = (0.5, 0.99). The learning rate was set to be a tunable hyper-parameter for each method
on each dataset. We excluded any learning rate scheduling schemes from our experiments to ensure
that the contribution is mainly attributed to the selected UDA algorithm.

5 RESULTS DISCUSSION

We conducted extensive experiments for each UDA method on all the datasets. The average F1-
score of the five cross-domain scenarios for each dataset-algorithm combination is reported in Table
3. We also show the results of each risk to compare the performance to the target risk. Detailed
versions of Table 3 can be found in Tables 4, 5, and 7 in the appendix. We further discuss the main
findings in the following paragraphs.

(a) UCIHAR dataset (b) WISDM dataset (c) SSC dataset (d) HHAR dataset

Figure 2: Results of best models according to target risk for different methods in terms of accuracy
and macro average F1-score.

Visual UDA methods achieve comparable performance to TS-UDA methods on time series
data. Table 3 shows the performance of the adapted visual UDA methods along with the existing
TS-UDA methods. Surprisingly, with standardizing the backbone network, we find that visual UDA
methods achieve competitive or even better performance than TS-UDA methods. This finding is
consistent for all the model selection strategies across the benchmarking datasets. A possible ex-
planation is that all selected UDA algorithms are applied on the vectorized output features of the
backbone network, which can be independent from the input data modality. This finding suggests
that with a standard backbone network, visual UDA algorithms can be strong baselines for TS-UDA.

Methods with joint distribution alignment tend to perform consistently better. As shown in
Table 1, methods that address the joint distributions (i.e., both marginal and conditional distributions
concurrently) such as DIRT-T, MMDA, and DSAN, achieve the state-of-the-art performance on
the four datasets, outperforming TS-UDA methods. For example, the best performing method, as
selected by the target risk, is DIRT-T in both UCIHAR and WISDM datasets, and DSAN in SSC
and HHAR datasets. Similarly, with respect to the different risks, DIRT-T, MMDA, and DSAN are
interchangeably achieving performing best across the benchmarking datasets. Hence, considering
the conditional distribution when aligning the source and target can be beneficial to the performance.

Model selection has a significant effect on the performance. Model selection strategies can
yield different performance for the same UDA algorithm, as shown in Table 3. This reveals the
significant contribution of the model selection approach to the overall performance. While target
risk achieves superior performance, it is infeasible for practical scenarios with the absence of target
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Table 3: The average results (from 5 cross-domain scenarios) according to the minimum risk value
in terms of MF1-score.

Dataset Algorithm SRC Risk DEV Risk FST Risk TGT Risk

DDC 68.83 74.14 74.25 75.67
Deep-Coral 71.99 71.43 77.23 77.71
HoMM 75.86 78.28 81.3 84.10
MMDA 80.12 80.12 79.54 81.40
DSAN 83.31 81.07 87.13 90.96
DANN 79.82 80.89 83.1 84.97
CDAN 86.55 64.66 86.79 86.79
DIRT-T 86.72 82.54 88.47 92.20
CoDATS 79.05 65.12 79.1 85.47
AdvSKM 71.08 74.62 74.47 74.67

UCIHAR

Avg/risk 78.33 75.29 81.14 83.39

DDC 54.98 52.80 50.05 55.03
Deep-Coral 55.54 53.85 49.45 57.43
HoMM 57.49 61.23 46.56 62.98
MMDA 57.53 57.30 52.12 63.97
DSAN 56.51 56.51 53.41 60.08
DANN 53.21 54.48 49.45 57.81
CDAN 52.49 53.27 52.75 57.85
DIRT-T 60.43 53.24 62.61 66.28
CoDATS 52.72 54.27 48.64 56.57
AdvSKM 53.95 57.46 49.02 60.55

WISDM

Avg/risk 53.93 53.52 51.91 60.82

DDC 59.18 59.21 59.22 59.22
Deep-Coral 59.12 58.81 58.82 59.12
HoMM 59.06 60.95 58.70 59.06
MMDA 62.08 61.49 57.98 62.79
DSAN 58.14 59.85 58.97 60.57
DANN 60.26 57.77 60.26 60.26
CDAN 54.89 56.86 56.17 59.04
DIRT-T 58.44 59.26 58.23 59.42
CoDATS 56.76 55.79 54.64 58.44
AdvSKM 59.94 59.92 59.93 60.21

SSC

Avg/risk 59.37 59.34 59.10 60.30

Deep-Coral 70.78 69.88 70.68 72.28
HoMM 71.18 72.50 68.62 73.47
MMDA 66.20 70.23 71.07 77.04
DSAN 76.18 78.95 78.18 81.14
DANN 76.24 72.62 73.68 76.42
CDAN 77.74 77.43 77.43 78.09
DIRT-T 75.56 78.69 78.41 80.04
CoDATS 75.11 73.72 74.74 76.09
ADVSKM 66.58 66.96 69.93 69.93

HHAR

Avg/risk 72.32 72.73 73.20 75.44

domain labels. Surprisingly, source risk can achieve a comparable performance to the target risk
on UCIHAR, HHAR and SSC datasets. In addition, with affordable labeling efforts, our proposed
few-shot target risk can also achieve a competitive performance to the target risk. However, for
severely imbalanced WISDM dataset, different model selection approaches fail to follow the target
risk performance.
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(a) UCIHAR dataset (b) HHAR dataset

Figure 3: Comparison between 1D-CNN and 1D-ResNet-18 backbones applied on the both UCI-
HAR and HHAR dataset. Results are in terms of macro F1-score.

Backbone network can be pivotal to the performance. To investigate the impact of the back-
bone network on the method’s performance, we evaluate all the UDA algorithms under two different
backbone networks for both small-scale and large-scale datasets, i.e., UCIHAR and HHAR. Particu-
larly, we employ 1D-CNN (described in Section 4.2) and 1D-ResNet-18 (i.e., a standard ResNet-18
with 1D convolutional kernel) as backbone networks. The two architectures are different in terms of
their complexity and the number of trainable parameters. Figure 3 shows a comparison of different
UDA algorithms under two backbone architectures. Clearly, the two backbone networks can have
different absolute performance for each UDA methods. Nevertheless, the relative performance be-
tween different UDA methods can still be consistent when fixing the backbone network. For instance
in Figure 3b, the DSAN and DIRT approaches perform best for both 1D-CNN and 1D-ResNet-18
backbone networks. Besides, it is still clear that visual UDA methods perform better than TS-UDA
methods with the two different backbone networks.

Accuracy metric should not be used to measure performance for imbalanced data. While it is
well-known that accuracy is not a representative metric for class-imbalanced datasets, existing TS-
UDA methods are still using it to report their performance (Chang et al., 2020; Wilson et al., 2020;
Liu & Xue, 2021). We aim to re-emphasize that the accuracy metric can give over-optimistic re-
sults when considering the imbalanced nature in most time series data. For example, in Figure 2(b),
although CDAN achieves higher accuracy than some other methods such as DDC, MMDA and
DSAN, it performs the worst in terms of F1-score. In contrast, with a balanced dataset (i.e., UCI-
HAR), accuracy can still be representative and achieve similar performance to F1-Score, as shown
in Figure 3(a).

6 CONCLUSIONS AND RECOMMENDATIONS

In this work, we provided ADATIME, a systematic evaluation methodology for evaluating the ex-
isting domain adaptation methods on time series data. To ensure fair and realistic evaluation, we
standardized the benchmarking dataset, evaluation schemes, and backbone networks among differ-
ent domain adaptation methods. Moreover, we explored more realistic model selection approaches
that can work with without any target domain labels or only few-shot labeled samples. Based on our
systematic study and unveiled findings, we suggest the following recommendations:

• Future research on time series domain adaptation should consider visual UDA methods as
strong baselines.

• Considerable amount of target labels should not be used for the UDA model selection.
Instead, source risk or few-shot target risk can be better candidates for a more realistic
model selection approach.

• The backbone network should be fixed when comparing between different UDA methods.
• Larger datasets should be considered when comparing baselines to obtain reliable results.
• Accuracy metric should no longer be used to evaluate imbalance datasets, as it can yield

misleading results.
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A DETAILED RESULTS OF OUR FRAMEWORK

Here, we provide the detailed results including mean and standard deviation for each cross-domain
scenario. It can be clearly seen, that datasets with small sample size suffers from high variance
among the different cross-domain scenarios.

Table 4: Detailed results of scenarios of UCIHAR dataset in terms of MF1 score.

Risk Algorithm 0→11 12→16 9→18 6→23 7→13 AVG

DDC 60.00±13.32 66.77±8.46 61.41±5.80 88.55±1.42 77.29±2.11 75.67
Deep-Coral 67.2±13.67 64.58±8.72 54.38±9.69 89.66±2.54 90.46±2.96 77.71
HoMM 83.54±2.99 63.45±2.07 71.25±4.42 94.97±2.49 91.41±1.33 84.10
MMDA 72.91±2.78 74.64±2.88 62.62±2.63 91.14±0.46 90.61±2.00 81.40
DSAN 99.23±1.09 65.71±2.92 89.69±7.44 97.82±1.54 94.33±0.00 90.96
DANN 98.09±1.68 62.08±1.69 70.7±11.36 85.6±15.71 93.33±0.00 84.97
CDAN 98.19±1.57 61.20±3.27 71.3±14.64 96.73±0.00 93.33±0.00 86.79
DIRT-T 98.13±2.64 82.05±8.61 85.90±6.63 93.76±3.10 93.35±0.00 92.20
CoDATS 86.65±4.28 61.03±2.33 80.51±8.47 92.08±4.39 92.61±0.51 85.47

Target

AdvSKM 65.74±2.69 60.52±1.99 53.25±5.19 79.63±8.52 88.89±3.12 74.67

DDC 67.95±7.51 58.58±1.55 48.33±4.06 84.34±5.22 86.33±2.19 74.25
Deep-Coral 70.86±5.85 59.3±0.77 58.5±10.7 89.5±1.6 85.23±3.01 77.23
HoMM 78.87±8.37 60.34±1.07 66.97±3.41 93.84±2.04 87.82±4.43 81.3
MMDA 74.36±9.26 66.01±5.15 54.92±4.27 95.88±1.2 93.33±0.0 79.54
DSAN 89.47±8.76 65.97±2.59 78.02±7.52 96.68±2.74 92.61±0.51 87.13
DANN 87.73±5.29 60.33±1.9 69.69±9.83 89.88±6.34 93.33±0.0 83.10
CDAN 98.19±1.57 61.2±3.27 71.31±14.64 96.73±0.0 93.33±0.0 86.79
DIRT-T 92.33±1.49 71.63±6.64 86.87±0.39 86.71±14.17 93.33±0.0 88.47
CoDATS 71.6±15.34 65.1±0.68 64.51±14.12 92.04±4.05 81.41±6.04 79.10

Few-shot

AdvSKM 64.45±2.59 61.99±4.07 53.13±4.59 78.09±9.92 88.89±3.12 74.47

DDC 72.0±3.51 59.65±4.11 45.42±5.89 86.14±1.97 81.66±8.07 74.14
Deep-Coral 67.55±11.65 62.13±7.74 47.77±2.84 72.44±13.45 78.7±18.24 71.43
HoMM 73.38±7.34 59.84±1.43 60.02±11.83 90.48±0.8 85.94±2.52 78.28
MMDA 83.22±3.46 62.64±10.42 58.43±2.55 96.73±0.0 94.12±1.11 80.12
DSAN 75.58±9.18 61.71±1.75 67.1±4.61 93.22±2.49 88.82±3.08 81.07
DANN 77.77±18.26 63.26±2.49 57.49±7.77 95.86±1.84 91.71±0.84 80.89
CDAN 71.51±8.84 54.66±2.91 40.94±3.18 61.31±9.02 82.06±11.91 64.66
DIRT-T 88.44±9.23 58.47±2.98 65.89±13.25 90.56±8.73 93.73±0.56 82.54
CoDATS 51.81±4.67 54.81±2.76 31.83±8.89 81.23±4.07 80.98±13.74 65.12

DEV

AdvSKM 65.74±2.69 60.09±1.4 53.7±4.61 79.31±8.95 88.89±3.12 74.62

DDC 53.28±5.44 64.59±6.34 41.99±1.47 89.01±2.14 85.65±7.92 68.83
Deep-Coral 62.42±1.97 62.19±4.68 31.4±7.7 88.42±1.01 87.84±2.78 71.99
HoMM 62.95±20.6 59.82±0.4 53.14±4.71 90.04±4.45 89.59±4.01 75.86
MMDA 83.22±3.46 62.64±10.42 58.43±2.55 96.73±0.0 94.12±1.11 80.12
DSAN 84.81±13.2 62.91±0.39 77.63±0.94 81.91±23.31 92.97±0.51 83.31
DANN 70.28±2.86 65.45±4.76 71.34±6.17 90.0±2.71 90.51±0.86 79.82
CDAN 88.73±4.7 60.25±4.61 81.39±6.15 96.73±0.0 92.97±0.51 86.55
DIRT-T 88.44±9.23 61.36±2.41 78.88±4.12 98.64±1.39 93.01±0.46 86.72
CoDATS 71.45±12.93 61.98±2.88 72.11±4.98 96.12±0.86 78.92±12.71 79.05

Source

AdvSKM 69.97±3.68 53.73±11.04 35.46±8.02 85.73±6.11 82.29±4.67 71.08
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Table 5: Detailed results of scenarios of WISDM dataset in terms of MF1 score.

Risk Algorithm 35→31 7→18 20→30 6→19 18→23 AVG

DDC 51.84±5.68 43.56±0.66 65.83±2.04 62.58±2.72 51.36±10.81 55.03
Deep Coral 56.48±8.18 44.32±1.79 66.33±2.17 63.11±3.17 56.91±3.24 57.43
HoMM 58.49±7.79 53.64±3.48 70.94±2.8 74.88±6.55 56.96±24.07 62.98
MMDA 54.37±5.23 47.75±2.04 66.35±2.1 76.68±5.71 74.7±2.28 63.97
DSAN 70.35±1.44 44.77±4.4 69.53±4.91 49.85±7.48 65.88±7.21 60.08
DANN 62.53±6.97 43.55±2.06 53.96±3.03 79.05±15.62 49.96±5.83 57.81
CDAN 60.93±8.6 58.98±5.36 60.43±11.19 59.61±0.89 49.3±1.05 57.85
DIRT-T 68.59±10.7 73.57±9.09 72.06±8.6 50.14±7.43 67.03±2.41 66.28
CODATS 50.93±5.46 51.21±5.66 67.28±3.2 65.24±3.68 49.1±10.92 56.75

Target

AdvSKM 55.15±9.56 52.36±2.73 72.83±3.69 58.64±4.33 63.78±10.2 60.55

DDC 38.86±14.69 43.3±1.8 56.56±0.93 62.43±7.42 49.11±0.23 50.05
Deep Coral 39.37±15.11 45.62±4.25 56.86±0.72 56.46±5.43 48.95±0.19 49.45
HoMM 35.41±13.8 30.52±3.6 60.99±1.1 54.74±7.85 51.15±7.39 46.56
MMDA 43.47±4.95 57.9±1.84 55.9±2.97 59.8±8.45 43.52±8.41 52.12
DSAN 52.92±14.31 51.98±4.93 64.35±3.78 49.26±7.09 48.51±8.15 53.41
DANN 43.11±9.84 43.08±1.21 57.63±2.53 55.2±4.93 48.23±0.4 49.45
CDAN 54.53±1.31 57.03±0.53 64.55±6.06 39.76±7.63 47.85±0.46 52.75
DIRT-T 62.52±10.06 68.8±7.94 62.31±5.49 51.86±6.68 67.56±0.51 62.61
CODATS 40.68±24.05 37.82±2.61 61.01±1.2 56.3±8.87 47.38±1.23 48.64

Few-shot

AdvSKM 57.43±12.5 73.58±1.33 71.2±3.2 78.28±3.05 67.78±0.79 49.02

DDC 48.85±16.15 45.17±6.65 70.04±10.28 57.51±6.89 42.4±8.53 52.80
DeepCoral 42.36±11.34 47.07±7.25 67.16±4.86 65.06±3.76 47.57±8.73 53.85
HoMM 66.29±0.84 48.67±6.31 65.3±2.45 63.78±4.35 62.11±7.57 61.23
MMDA 60.34±7.52 41.58±8.79 64.39±4.28 55.74±3.88 64.47±10.75 57.30
DSAN 57.25±6.07 52.77±2.23 63.4±0.7 53.35±5.37 55.76±1.46 56.51
DANN 52.21±1.09 41.16±6.62 71.96±10.1 59.09±3.57 48.0±0.9 54.48
CDAN 49.02±4.2 57.65±0.18 65.5±0.61 44.03±0.81 50.16±0.44 53.27
DIRT-T 46.75±3.54 57.89±0.15 65.49±0.62 45.16±0.0 50.9±0.4 53.24
CODATS 40.96±19.0 42.0±3.75 69.65±7.6 70.59±12.51 48.15±15.11 54.27

DEV

AdvSKM 61.91±6.95 49.84±5.31 69.35±1.38 54.89±4.14 51.3±10.33 57.46

DDC 51.47±5.69 43.65±0.78 65.83±2.04 62.58±2.72 51.36±10.81 54.98
Deep Coral 53.46±7.12 43.65±0.78 66.08±2.05 63.16±3.14 51.36±10.81 55.54
HoMM 57.94±7.0 43.23±0.53 65.47±1.13 63.91±4.12 56.91±3.24 57.49
MMDA 61.44±6.08 49.79±6.76 67.82±1.37 60.83±0.27 47.78±5.98 57.53
DSAN 57.25±6.07 52.77±2.23 63.4±0.7 53.35±5.37 55.76±1.46 56.51
DANN 46.56±11.92 44.04±2.61 68.13±1.27 54.41±4.61 52.92±2.86 53.21
CDAN 44.25±6.84 57.44±7.58 63.67±0.63 47.81±5.88 49.27±0.12 52.49
DIRT-T 72.59±4.03 57.74±0.06 53.47±2.17 60.91±0.38 57.46±8.41 60.43
CODATS 74.06±4.77 35.8±0.78 54.21±4.5 45.54±1.33 54.0±13.2 52.72

Source

AdvSKM 42.3±16.63 53.66±5.72 62.59±2.7 60.37±0.81 50.84±2.66 53.95
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Table 6: Detailed results of scenarios of SSC dataset in terms of MF1 score.

Risk Algorithm 16→1 9→14 12→5 7→18 0→11 AVG

DDC 55.47±1.72 63.57±1.43 55.43±2.75 67.46±1.45 54.17±1.79 59.22
Deep-Coral 55.50±1.74 63.50±1.36 55.35±2.64 67.49±1.50 53.76±1.89 59.12
HoMM 55.51±1.79 63.49±1.14 55.46±2.71 67.50±1.50 53.37±2.47 59.06
MMDA 62.92±0.96 71.04±2.39 65.84±1.08 70.95±0.82 43.23±4.31 62.79
DSAN 59.87±2.84 70.71±2.79 65.55±0.79 68.44±1.39 38.28±3.57 60.57
DANN 58.68±3.29 64.29±1.08 64.65±1.83 69.54±3.00 44.13±5.84 60.26
CDAN 59.65±4.96 64.18±6.37 64.43±1.17 67.61±3.55 39.38±3.28 59.04
DIRT-T 61.31±4.23 66.39±4.86 66.95±1.72 70.51±0.89 33.05±2.49 59.42
CoDATS 63.84±3.36 63.51±6.92 52.54±5.94 66.06±2.48 46.28±5.99 58.44

Target

AdvSKM 57.83±1.42 64.76±3.0 55.73±1.42 67.58±3.64 55.2±4.19 60.21

DDC 55.48±1.76 63.54±1.33 55.32±2.94 67.5±1.5 54.28±1.68 59.22
Deep-Coral 55.5±1.84 63.55±1.33 55.42±2.66 67.53±1.54 52.1±2.85 58.82
HoMM 55.51±1.79 63.5±1.14 55.46±2.71 67.5±1.5 53.37±2.47 59.06
MMDA 65.63±0.67 65.92±4.44 57.99±6.43 71.5±0.97 28.9±3.78 57.98
DSAN 56.39±0.67 63.85±0.63 62.47±2.6 68.92±1.67 43.25±2.76 58.97
DANN 58.68±3.3 64.3±1.08 64.65±1.83 69.54±3.0 44.13±5.84 60.26
CDAN 59.87±2.67 63.55±3.16 62.13±1.8 64.12±0.48 31.19±8.26 56.17
DIRT-T 56.33±5.86 65.15±1.99 64.88±5.58 69.83±1.57 34.99±0.54 58.23
CoDATS 59.84±0.64 53.02±4.53 57.58±1.75 55.12±3.55 47.64±2.4 54.64

Few-shot

AdvSKM 57.68±0.79 64.31±2.93 55.29±2.58 67.22±3.9 55.16±4.39 59.93

DDC 55.53±1.87 63.57±1.26 55.35±2.73 67.46±1.55 54.14±1.7 59.21
Deep-Coral 55.5±1.84 63.55±1.33 55.42±2.66 67.5±1.5 52.1±2.85 58.81
HoMM 55.57±2.0 63.66±1.48 55.87±2.93 67.49±1.51 50.93±4.31 58.70
MMDA 63.44±1.49 67.14±4.78 64.93±1.21 71.89±1.44 39.88±4.96 61.49
DSAN 58.76±2.02 69.45±4.04 64.92±1.65 68.69±0.99 37.43±2.9 59.85
DANN 58.78±4.76 64.61±0.93 65.47±0.95 68.88±2.81 31.13±1.74 57.77
CDAN 60.95±1.13 60.54±10.01 65.0±1.34 67.02±1.13 30.79±10.69 56.86
DIRT-T 54.42±12.46 71.33±3.72 64.99±4.98 69.94±0.43 35.62±3.79 59.26
CoDATS 60.03±1.18 52.22±10.55 56.96±2.4 68.64±2.93 41.1±5.14 55.79

DEV

AdvSKM 57.8±0.69 64.27±2.93 55.12±2.52 67.31±3.83 55.11±4.56 59.92

DDC 55.48±1.76 63.57±1.29 55.16±2.76 67.5±1.5 54.24±1.79 59.18
Deep-Coral 55.5±1.74 63.5±1.36 55.35±2.64 67.5±1.5 53.76±1.89 59.12
HoMM 55.51±1.79 63.5±1.14 55.46±2.71 67.5±1.5 53.37±2.47 59.06
MMDA 59.6±0.51 68.25±4.17 65.63±0.85 71.06±0.99 45.89±1.97 62.08
DSAN 63.05±3.14 63.84±10.11 57.55±11.16 68.84±2.25 37.46±4.76 58.14
DANN 58.68±3.3 64.3±1.08 64.65±1.83 69.54±3.0 44.13±5.84 60.26
CDAN 62.06±0.91 63.32±5.02 48.8±1.02 63.46±1.18 36.86±8.23 54.89
DIRT-T 59.11±3.24 65.08±1.42 65.5±4.92 67.27±1.58 35.29±2.92 58.44
CoDATS 56.52±1.76 68.2±5.72 59.72±6.66 63.31±3.9 36.05±8.95 56.76

Source

AdvSKM 57.78±0.72 64.29±2.97 55.15±2.52 67.33±3.82 55.16±4.4 59.94
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Table 7: Detailed results of scenarios of HHAR dataset in terms of MF1 score.

Risk Algorithm 0→6 1→6 2→7 3→8 4→5 AVG

DDC 51.22±14.18 85.11±7.11 48.6±5.66 77.43±2.47 86.97±1.85 69.87±0
Deep-Coral 57.64±4.59 89.81±0.33 44.15±0.92 79.3±0.3 90.53±3.05 72.28±0
HoMM 64.85±0.96 89.12±0.61 44.44±0.6 80.2±1.1 88.73±3.01 73.47±0
MMDA 61.66±4.66 90.85±0.51 53.36±8.87 88.07±5.29 91.24±4.96 77.04±0
DSAN 56.47±10.89 92.77±1.03 61.07±1.46 98.14±0.51 97.26±0.47 81.14±0
DANN 47.02±0.57 93.02±1.9 49.06±8.38 95.77±1.91 97.24±0.51 76.42±0
CDAN 56.52±8.35 92.4±0.76 50.76±6.24 93.09±9.94 97.67±0.48 78.09±0
DIRT-T 64.5±9.4 94.84±1.52 59.9±13.38 83.26±2.25 97.73±0.47 80.04±0
CoDATS 46.45±0.64 92.59±0.71 48.13±8.96 96.89±1.97 96.38±2.42 76.09±0

Target

ADVSKM 59.39±4.59 81.43±5.52 47.75±3.98 79.05±0.42 82.03±3.24 69.93±0

DDC 61.61±1.95 78.86±14.46 47.77±4.89 78.4±1.31 79.65±3.13 69.26±0
Deep-Coral 59.35±4.8 86.58±6.14 44.8±2.79 77.65±2.23 85.04±6.2 70.68±0
HoMM 54.97±5.29 84.99±9.19 41.65±1.86 78.38±1.9 83.12±9.49 68.62±0
MMDA 60.13±6.66 84.15±10.34 55.47±4.41 80.31±10.76 75.26±4.33 71.07±0
DSAN 52.92±16.13 92.67±1.39 50.85±10.21 97.11±0.39 97.33±0.84 78.18±0
DANN 53.84±6.34 86.38±12.08 57.48±1.61 78.94±6.82 91.78±8.26 73.68±0
CDAN 45.52±0.9 92.99±0.7 54.1±7.12 98.17±0.37 96.39±1.37 77.43±0
DIRT-T 54.88±15.6 94.05±1.3 64.63±0.3 80.6±0.45 97.9±0.68 78.41±0
CoDATS 44.72±5.1 93.61±0.7 53.33±7.71 93.52±1.67 88.51±6.23 74.74±0

Few-shot

ADVSKM 56.25±7.15 82.68±3.1 45.91±5.88 76.62±5.49 83.84±2.96 69.06±0

DDC 62.61±1.32 73.99±9.45 43.61±0.89 76.24±2.53 75.17±5.66 66.32±0
Deep-Coral 54.82±9.16 89.31±1.44 48.44±1.98 77.39±2.81 79.44±4.64 69.88±0
HoMM 63.58±2.24 88.49±2 47.12±4.27 79.23±1.13 84.07±1.19 72.5±0
MMDA 59.52±3.77 86.53±2.06 48.99±10.42 77.8±2.28 78.3±7.36 70.22±0
DSAN 58.81±7.19 93.42±0.64 45.61±0.5 98.44±0.23 98.47±0.32 78.95±0
DANN 46.54±0.61 90.73±1.97 46.58±3.13 83.43±10.12 95.83±0.28 72.62±0
CDAN 45.52±0.9 92.99±0.7 54.1±7.12 98.17±0.37 96.39±1.37 77.43±0
DIRT-T 52.63±9.77 93.1±2.06 63.49±1.95 87.08±10.06 97.13±0.44 78.69±0
CoDATS 44.7±1.65 91.98±1.01 47.56±5.04 91.83±4.56 92.52±3.14 73.72±0

DEV

ADVSKM 45.52±0.9 92.99±0.7 54.1±7.12 98.17±0.37 96.39±1.37 77.43±0

DDC 62.18±1.56 79.2±9.5 44.53±1.32 76.65±1.83 75.53±4.9 67.62±0
Deep-Coral 63.14±1.57 88.27±3.02 44.59±0.43 78.33±1.77 79.55±2.64 70.78±0
HoMM 63.14±2.11 87.58±2.59 47.27±4.92 77.62±1.67 80.28±0.56 71.18±0
MMDA 65.42±1.48 69.07±1.49 41.67±0.96 76.62±3.05 78.2±6.97 66.2±0
DSAN 56.42±8.91 93±0.54 49.68±7.7 84.28±12.64 97.53±0.3 76.18±0
DANN 61.04±3.52 91.78±0.61 53.44±2.85 80.95±1.68 94±1.88 76.24±0
CDAN 45.52±0.9 92.99±0.7 54.1±7.12 98.17±0.37 96.39±1.37 77.43±0
DIRT-T 47.26±0.16 94.06±0.81 57.55±9.64 81.14±0.15 97.78±0.78 75.56±0
CoDATS 52.32±9.64 93.36±0.11 43.67±0.86 91.06±11.21 95.16±2.16 75.11±0

Source

ADVSKM 56.08±2.45 76.28±8.67 38.54±9.01 79.73±1.33 82.29±5.25 66.58±0
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B CLASS DISTRIBUTION OF DIFFERENT SUBJECTS

In this section, we visualize the class distribution of each selected subjects for all the datasets.
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(a) HAR dataset
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(b) WISDM dataset

Figure 4: Class distribution of selected subjects among different datasets
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C HYPER-PARAMETER IMPORTANCE

The importance of each hyper-parameter can be valuable when you have low budget for hyper-
parameter tuning. As such you can tune the most important hyper-parameter while fixing others
to specific value. In this work, We also study how different hyper-parameters can affect the model
performance. We test the learning rate against other model specific performance for 5 different do-
main adaptation algorithms. To do so, we leverage random forest model and feed the corresponding
hyper-parameters as input and the target metric as output (Probst et al., 2019). In our case, we av-
eraged all the model selection risks and use them as a metric to calculate the importance of each
parameter.

Figure 5, we study the effect of learning rate, as well as the weights of domain alignment loss
(differs according to each method) and the source classification loss. We calculate the importance
of these parameters while running the sweeps of three different methods i.e., DDC, Deep-CORAL
and AdvSKM. We find that the learning rate is the most significant parameter especially with SSC
dataset, as it contributes with more than 80% of the performance. We conclude that more effort
should be put in finding the best learning rate that suites each dataset. In addition, we find that the
source classification loss comes next in the importance, and hence, more weight should be assigned
to it.

Figure 5: Parameters importance for some selected UDA methods through the three datasets.
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D DETAILED PARAMETER RANGES FOR THE HYPER-PARAMETER SEARCH

Here, we provide the detailed ranges for each parameter among all selected domain adaptation meth-
ods.

Table 8: Details of hyper-parameter tuning setup.

Method Hyperparameter Range
Learning Rate 10−2 to 101

DDC MMD loss
Classification loss

10−2 to 101

10−1 to 101

Deep CORAL Coral loss
Classification loss

10−2 to 101

10−1 to 101

HoMM High-order-MMD loss
Classification loss

10−2 to 101

10−1 to 101

MMDA MMD loss
Coral Loss
Conditional loss
Classification loss

10−2 to 101

10−2 to 101

10−2 to 101

10−1 to 101

DSAN Local MMD loss
Classification loss

10−2 to 101

10−2 to 101

DANN MMD loss
Classification loss

10−2 to 101

10−1 to 101

CDAN Adversarial loss
Conditional loss
classification loss

10−2 to 101

10−2 to 101

10−1 to 101

DIRT-T Adversarial loss
Conditional loss
virtual adversarial
Discriminator steps
classification loss

10−2 to 101

10−2 to 101

10−2 to 101

10−2 to 101

10−1 to 101

CODATS Adversarial loss
classification loss α

10−2 to 101

10−1 to 101

AdvSKM Adversarial MMD loss
Classification loss

10−2 to 101

10−1 to 101
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E BACKBONE NETWORK ARCHITECTURE

Here, we present the detailed architecture of ADATIME backbone network.

Feature Extractor

1D Conv (64, K, s)

BatchNorm

ReLU

1D MaxPool (2,2)

1D Conv (128,8,1)

BatchNorm

ReLU

1D MaxPool (2,2)

1D Conv (128,8,1)

BatchNorm

ReLU

1D MaxPool (2,2)

Fully Connected

Classifier

Figure 6: Backbone network of our ADATIME, where K is the kernel size and s is the stride.

F PERFORMANCE STUDY OF TWO DIFFERENT BACKBONE NETWORKS

We added 1D-ResNet18 [1] as an additional backbone network. We conducted the experiments on
on both small- and large-scale datasets. Table below shows the results of 1D-CNN and 1D-Resnet18
on both HAR and HHAR datasets. We found that our conclusions are consistent among different
backbone networks and datasets. Altgouh the absolute performance can be different, the relative
performance between different UDA methods is preserved.

Table 9: Evaluation Performance of two backbone network on two different datasets

Dataset Networks DDC DCoral HoMM MMDA DSAN DANN CDAN DIRT-T CoDATS AdvSKM

HHAR CNN 69.87 72.28 73.47 77.04 81.14 76.42 78.09 80.04 76.09 69.93
ResNet18 58.426 62.32 62.69 65.31 75.08 64.97 70.75 80.24 64.58 58.67

HAR CNN 72.71 73.26 83.03 86.81 87.63 82.43 83.68 89.07 82.83 75.82
ResNet18 70.59 74.53 79.1 78.19 79.71 74.05 79.13 80.745 77.75 71.77
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