Under review as a conference paper at ICLR 2026

DEEPMMSEARCH-R1: EMPOWERING MULTIMODAL
LLMS IN MULTIMODAL WEB SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Multimodal Large Language Models (MLLMs) in real-world applications require access
to external knowledge sources and must remain responsive to the dynamic and ever-
changing real-world information in order to address information-seeking and knowledge-
intensive user queries. Existing approaches, such as retrieval augmented generation (RAG)
methods, search agents, and search equipped MLLMs, often suffer from rigid pipelines,
excessive search calls, and poorly constructed search queries, which result in inefficiencies
and suboptimal outcomes. To address these limitations, we present DeepMMSearch-R1,
the first multimodal LLM capable of performing on-demand, multi-turn web searches
and dynamically crafting queries for both image and text search tools. Specifically,
DeepMMSearch-R1 can initiate web searches based on relevant crops of the input im-
age making the image search more effective, and can iteratively adapt text search queries
based on retrieved information, thereby enabling self-reflection and self-correction. Our
approach relies on a two-stage training pipeline: a cold start supervised fine-tuning phase
followed by an online reinforcement learning optimization. For training, we introduce
MMWebSearchVQA, a novel multimodal VQA dataset created through an automated
pipeline intermixed with real-world information from web search tools. This dataset con-
tains diverse, multi-hop queries that integrate textual and visual information, teaching the
model when to search, what to search for, which search tool to use and how to reason over
the retrieved information. We conduct extensive experiments across a range of knowledge-
intensive benchmarks to demonstrate the superiority of our approach. Finally, we analyze
the results and provide insights that are valuable for advancing multimodal web-search.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) (Hurst et al., 2024; Team et al., 2023; Li et al., 2024a;
Bai et al., 2025; Chen et al., 2024; You et al., 2023; Wang et al., 2024; Deitke et al., 2024) combine pre-
trained visual encoders with large language models (LLMs), and have achieved remarkable progress across
a range of visual perception, grounding and generation tasks. These capabilities have made them integral
to a wide range of everyday intelligent assistance applications. Despite these advances, they continue to
struggle with knowledge-intensive and information-seeking visual question answering (VQA) (Chen et al.,
2023; Mensink et al., 2023), which requires not only accurate recognition of visual entities but also access
to relevant background knowledge. The sheer breadth of open-world visual knowledge places many queries
in the long-tail distribution, and inevitably demands information beyond a model’s internal training corpus.
Constructing ever-larger training datasets is impractical, as it requires costly pipelines of data collection,
cleaning, organization, and retraining. Furthermore, because the web is continuously updated, static training
corpora quickly become outdated, leaving MLLMs unable to answer questions that require access to up-
to-date information. For example, Qwen2.5-VL (Bai et al., 2025), last updated on January 2025, fails to
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Prior Search-Equipped MLLMs

(a) No self-reflection and self-correction
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Figure 1: Unlike previous baselines, which lack self-reflection, self-correction, and cropped image-based
search, the proposed DeepMMSearch-R1 is capable of performing on-demand, multi-turn web searches
with enhanced image search that incorporates an intermediate cropping tool to select the most relevant
region of an image. It demonstrates self-reflection and self-correction abilities, iteratively refining its text
queries to better navigate noisy real-world web information. The model outperforms other baselines, notably
GPT-40, and is competitive with the GPT-03 model.

answer:‘‘<image> even timage </image>Where is the boat race happening?”’ [Answer: The image shows the
annual Pacu Jalur boat races in Riau Province, Indonesia]. The image is provided in Appendix F.1.

To address these limitations, recent research has sought to integrate search tools with MLLMs to provide
dynamic access to external information. These existing approaches can be broadly classified into three
categories: (1) Retrieval-Augmented Generation (RAG) methods: Ling et al. (2025); Qi et al. (2024);
Liu et al. (2024e) which rely on external knowledge bases; however, no static corpus can capture the full
breadth of open-world knowledge, making this assumption unrealistic in practice. Furthermore, the rigid
retrieve-then-generate pipeline of RAG-based methods often results in excessive and unnecessary retrieval.
(2) Search Agents: Li et al. (2024c;b) prompt LLMs/MLLMs to perform multi-turn web searches and
incorporate the retrieved content into the model’s context for subsequent turns. These agents are typically
implemented as plug-and-play modules rather than being optimized for interaction with noisy, real-world
web-search results. As a consequence, they often fail to reason effectively over retrieved content and struggle



Under review as a conference paper at ICLR 2026

to generalize in open-world scenarios not seen during pretraining. More recent efforts fall in the category
of (3) Search-Equipped MLLMs (Jin et al., 2025; Song et al., 2025; Chen et al., 2025), which are trained
to operate in unison with search tools and to reason over retrieved content. However, most existing works
remain confined to text search, severely constraining their applicability to multimodal knowledge-intensive
question answering. Wu et al. (2025) is the only work that extends retrieval into the multimodal domain
by incorporating an image search tool. Nonetheless, it faces significant limitations. First, while the model
can autonomously decide which tool to invoke, it is restricted to a single call per tool, limiting its capacity
for self-reflection and self-correction. Second, in information-seeking and knowledge-intensive VQA tasks,
accurately identifying the specific visual entity in the image that the question targets is crucial. In real-world
deployment, however, background content and additional visual entities often introduce noise during image
search. This noise can lead to suboptimal retrieval and incorrect identification of the relevant visual entity,
creating a major bottleneck that renders image search largely inefficent in practice (see Figure 1 (left)).

To overcome the two key limitations identified in prior works, we propose DeepMMSearch-R1, a model
capable of performing on-demand, multi-turn web searches with dynamic query generation for both image
and text search tools as shown in Figure 1(right). Specifically, DeepMMSearch-R1 can adaptively generate
and refine text-search queries over multiple turns through self-reflection and self-correction, using the re-
trieved content as feedback along with the original question. To improve the effectiveness of image search,
we address the challenges posed by background noise and the presence of distracting visual entities by in-
troducing an intermediate image cropping tool, which in our case is Grounding DINO (Liu et al., 2024b).
DeepMMSearch-R1 first generates a concise description of the visual entity most pertinent to the question,
which is then used by the cropping tool to dynamically identify and crop the corresponding region of the im-
age. The resulting crop is used for image search, retrieving more contextually relevant results. This targeted
approach significantly enhances retrieval quality and significantly boosts overall performance. We adopt a
two-stage training pipeline consisting of an initial supervised fine-tuning (SFT) phase followed by online
reinforcement learning (RL) using GRPO algorithm (Shao et al., 2024). Our goal is to teach the model when
to search, which tool to use, what to search for, and how to reason over retrieved content to determine the
next action, whether that is providing a final answer or refining the query for another search. Our main
contributions are summarized below:

. Proposed Dataset: We introduce DeepMMSearchVQA, a novel dataset containing diverse, multi-hop VQA
samples with multi-turn conversations. It offers a balanced representation across knowledge categories and
includes both search-required and search-free questions. The dataset teaches the model: when and what to
search, which tool to use, and how to reason over retrieved content.

. Multimodal Search Tool Integration: We construct a real-world multimodal search pipeline composed of
three tools: (1) a text search tool that enables the model to issue targeted queries for retrieving relevant
webpages and acquiring up-to-date factual knowledge; (2) a grounding tool (Grounding DINO Liu et al.
(2024b)) that identifies and crops the relevant region of an input image based on a model-generated textual
description of the visual entity in question; and (3) an image search tool that retrieves web content, in-
cluding titles and descriptions, based on the input image (cropped or whole), helping the model gather web
information to recognize unfamiliar visual entity.

. Performance Improvement: We achieve state-of-the-art performance, surpassing previous open-source
baselines (see Figure 1), through a two-stage training process: cold-start initialization with SFT, followed
by online RL using GRPO. We discuss the impact of self-reflection, self-correction, and cropped image
search, and provide additional analysis of tool call behavior, which together serve as a valuable resource for
advancing multimodal web-search tool integration in MLLMs.

2 PROPOSED DATA: DEEPMMSEARCHV QA

There is a lack of instruction tuning dataset to equip multimodal LLMs with web-search capabilities. To fill
this gap, we propose DeepMMSearchVQA, consisting of multi-turn conversations that integrate structured
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Figure 2: (top) DeepMMSearchVQA Data Generation Pipeline: It begins by passing a question—image
pair (g, ¢) to Gemini, which produces reasoning and concludes with an action tag. We then apply checks A,
B, and C: if either A or B fails, the example is discarded; if C passes, the final answer is reached and the
example is saved. Otherwise, the pipeline invokes a search tool guided by the action tag. This tool retrieves
the top-k web results, which are then summarized and fed back into Gemini, incorporating web-retrieved
information in its context for subsequent turns in the reasoning process. (bottom) DeepMMSearchVQA
Statistics: Knowledge taxonomy, Distribution of examples across different numbers of conversational turns,
Proportion of questions with image search, text search and both tool calls.

tool call annotations and web-retrieved information obtained from both image and text search tools. We
follow two core principles for the dataset generation: (1) the dataset should be diverse and cover the entire
spectrum of the knowledge taxonomy, and (2) the questions should include both search-free and search-
required types, with multiple conversational turns to foster reasoning, self-reflection and self-correction. An
overview of the automated pipeline used for dataset construction is presented in Figure 2(top).

We employ the InfoSeek (Chen et al., 2023) train set as our base corpus and generate the conversations
with reasoning distilled from Gemini-2.5-Pro Team et al. (2023). We provide the prompt used in Ap-
pendix E.1. The model decides which tool to invoke and what query to issue, outputting structured tool
tags that are included in each training example. If the entire image is relevant to answering the ques-
tion, the model appends <img_search>img</img_search> at the end of its output. When the ques-
tion pertains to a specific visual entity within the image, such as an object, logo, or person, the model
invokes a cropped image search query by appending <img_search>[concise description of the
visual entity]</img_search>. In cases where the model can confidently identify the visual entity
but requires additional factual information from external sources, it invokes the text-search tool with a
focused query by outputting <text_ search>[search query]</text_search>. In some examples,
the model issues multiple refined text searches, which are crucial for capturing self-reflection and self-
correction capabilities. Once sufficient information has been gathered, the model provides the final re-
sponse inside as tag. Before generating any tool tag, the model
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explains its decision inside <reason>. ..</reason> block, ensuring that the reasoning can be captured
in the dataset. All the information retrieved from image or text search is returned to the model within
<information>...</information>, which is then incorporated into subsequent reasoning and tool se-
lection. This structured interaction design allows us to capture Gemini-2.5-Pro’s reasoning, tool selection,
self-reflection, and self-correction capabilities in our training dataset. An illustration of the data is shown in
Figure 1, and we provide more examples in Appendix G.

We randomly select a subset of 200,000 samples from the InfoSeek train set and generate multi-turn con-
versations annotated with tool tags, reasoning steps, and web-retrieved information. To ensure quality, we
retain only those conversations in which Gemini-2.5-Pro’s predictions match the ground-truth answers pro-
vided in InfoSeek, yielding a refined set of approximately 47, 000 conversations. Subsequently, we employ
Gemini-2.5-Pro to categorize the questions according to a knowledge taxonomy. From these categories, we
sample 10,000 VQA examples to achieve an approximately balanced distribution across knowledge types.
We further ensure that the dataset is evenly divided between search-required and search-free questions. Fig-
ure 2(bottom) presents the knowledge taxonomy, the proportion of questions requiring image search, text
search, or both, as well as the distribution of examples across different numbers of conversational turns. The
resulting set of 10,000 VQA samples constitutes the training corpus for the supervised finetuning stage.

3 DEEPMMSEARCH-R1 TRAINING RECIPE

We follow a two-stage training pipeline. In the first stage, we perform supervised fine-tuning as a cold-start
initialization. This equips the model with grounding, image search and text search tools, and enables it to
reason over the web-retrieved content. In the second stage, we perform an online GRPO optimization to
further refine the model’s tool-selection ability and improve the efficiency of its search behavior.

3.1 SUPERVISED FINETUNING STAGE

We employ Qwen2.5-VL-7B-Instruct as our base model and perform supervised fine-tuning exclusively on the
LLM module, while keeping both the vision encoder and vision projection layers frozen. This approach preserves the
strong pretrained image representations and ensures that adaptation is directed toward enhancing the LLM’s ability to
reason over web-retrieved information and adhere to structured tool-usage protocols. To enable efficient training, we
incorporate LoRA adapters with a rank of » = 8 across all transformer blocks of the LLM, thereby providing suffi-
cient expressivity to capture the new behaviors required for web-information augmented reasoning while maintaining a
manageable number of trainable parameters. The SFT data consists of multi-turn conversations that include reasoning
sequences, tool-call annotations, and web-retrieved content from search tools. Through exposure to these structured
conversations, the model learns when to initiate searches, which tool to use, how to formulate effective queries, how to
integrate retrieved information into reasoning, and how to comply with the strict formatting conventions, which are all
necessary for the seamless integration of search tools.

Training Objective. We adopt the standard Causal Language Modeling (Causal LM) objective. Given a multimodal
input (z, I'), consisting of a textual question and an accompanying image, along with a multi-turn conversation y* that
includes the complete reasoning trace, tool calls, and final answer, the model is trained to predict each token in the target
sequence conditioned on all previous tokens:

T
Lsrr = —ZIOgTre(yZ ‘ 1’:L?Jit)~

t=1

Here, T" denotes the length of the target sequence, and 7y is the model’s conditional distribution. Importantly, the web-
retrieved information from the search tools are masked during loss computation, ensuring that training is concentrated
on reasoning and structured tool calls, rather than being influenced by raw web-retrieved information.
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3.2 REINFORCEMENT LEARNING STAGE

GRPO. The reinforcement learning stage relies on Group-Relative Policy Optimization (GRPO), introduced in
DeepSeekMath (Shao et al., 2024). GRPO extends Proximal Policy Optimization (PPO) by stabilizing training through
comparisons among candidate responses generated for the same prompt. Instead of evaluating each rollout indepen-
dently, GRPO computes advantages relative to the mean reward within a group of sampled rollouts. Given an input
(z,I), the policy generates K rollouts {y¥'} X, each associated with a reward R("). The advantage for a single roll-
out is then defined as A = R — R, where R is the average reward across the group. This centering removes the
dependency on the absolute scale of rewards and focuses the optimization on identifying responses that are better than
the group average. The objective is then optimized with a clipped importance-weighted surrogate, similar to PPO, but
incorporating this group-relative advantage. Mathematically, the update is expressed as
LGrro = Ei,t[min (pgl)A(l), clip(pgz)7 1—¢1+ e)A(Z))} — BKL(7mo || Tret),

where pi” is the ratio between the probabilities of a token under the current and old policies, € controls the clipping
range, and (3 scales the KL regularization with respect to a frozen reference model. This formulation encourages relative
improvements within each batch of responses, yielding stable optimization even under noisy reward signals.

Rollouts. The rollouts are generated from the model checkpoint after SFT. The SFT model interacts with the grounding
tool, image search tool, and text search tool using the learned tool-call tag schema, incorporating feedback from these
tools into subsequent turns. This process continues until either a final response is produced or the maximum number
of turns is reached. When generating responses, if the model cannot confidently identify a visual entity in an image, it
initiates either a full-image search or a cropped-image search. If the entity is identifiable but additional factual informa-
tion is required, the model issues one or more text search queries to retrieve relevant details from the web. Each rollout
thus represents a complete reasoning trajectory, annotated with the tag schema learned during SFT. During training,
constraints are applied on the number of tool calls and the maximum token length per trajectory, requiring the model to
balance accuracy with efficiency.

Reward. The GRPO optimization uses a composite reward balancing factual accuracy and structural compliance. We
employ gpt-5-chat-latest as the reward model which judges semantic correctness of the predictions against the
ground truth. The correctness score, denoted s, is binary (s € {0, 1}), indicating whether the model’s final answer is
judged correct. In parallel, a format score s measures adherence to the required output schema, ensuring correct tag
usage and valid tool-call structure. The final reward is computed as Riow = (1 — Afmi) S +  Afme Stme, Where A
is the format penalty coefficient. This reward formulation drives the model to produce responses that are both factually
reliable and consistent with the structured protocol required for seamless tool use.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Multimodal Search Tools: To retrieve additional context and up-to-date information, we employ a multimodal search
pipeline composed of three tools: a text search tool, an image search tool, and a grounding tool. The text search tool op-
erates on DeepMMSearch-R1 generated textual queries, which are processed by an in-house web search API to retrieve
relevant documents from a large-scale index. The top five results are then condensed by an LLM-based summarization
module, producing concise outputs directly relevant to the user’s question. To retrieve additional information about a vi-
sual entity, DeepMMSearch-R1 is trained to utilize the image search tool. When the model determines that the question
concerns only a specific region of the image, it first produces a referring expression that concisely describes the region
of interest. GroundingDINO (Liu et al., 2024b) is then employed to ground this expression, yielding a bounding box that
is cropped and used as input for retrieval. In other cases, when the entire image is relevant, the original image is directly
used without grounding. The resulting visual input is then passed to our in-house image search API, which retrieves
visually similar images from the web along with surrounding context and page metadata. An LLM-based summarization
module condenses the top five retrieved results, producing a concise description of the visual entity. Neither the text nor
the image search index or API were modified for use with DeepMMSearch-R1, demonstrating the model’s ability to
operate seamlessly with standardized retrieval tooling. We employ gpt-5—-chat—-1latest as the LLM summarizer to
summarize search results of both the tools. This step is essential for keeping the retrieved content concise in order to
avoid exceeding the model’s maximum context length. The prompt used for summarization is provided in Appendix E.7



Under review as a conference paper at ICLR 2026

Implementation Details: We finetune Qwen2.5-VL-7B-Instruct using the LLaMA-Factory framework Zheng
et al. (2024) with LoRA (rank 8) applied across all target modules. Training is performed for 3 epochs with a learning
rate of 1le~*, cosine scheduler, and bf16 mixed precision on 1 node with 8 H100 GPUs. The global batch size is
8, and input masking is applied to optimize only on generated outputs for the multi-turn VQA dataset. For online RL
optimization, we adopt the GRPO algorithm in the veRL Sheng et al. (2024) framework, using gpt-5-chat-latest
as the reward model. We set A\t = 0.1, apply a KL-penalty of 0.001, and use a clip ratio of 0.2. Training runs for 30
epochs on 4 nodes x 8H100 GPUs with a batch size of 512, and rollout number of 8. A warmup phase of 45 steps is
applied with learning rate initialized at 2¢~°. The maximum response length is 8192 tokens, and input masking is again
used to focus optimization on generated outputs. Additional implementation details are provided in Appendix D.

Baselines: To benchmark the effectiveness of DeepMMSearch-R1, we evaluate it against a diverse set of strong base-
lines, including closed-source models (GPT-40 and GPT-03) as well as open-source models from the Qwen2.5-VL
family. We organize our comparisons into four evaluation workflows: (1) Direct Answer, where models are instructed
to produce a concise answer without using any external retrieval; (2) RAG Workflow, where models are required to per-
form exactly two retrieval steps for each question, first conducting an image search, followed by a text search. In this
setting, the retrieved image results are provided in the first round to guide text query generation, and the retrieved text
results are supplied in the second round to produce the final answer. While this workflow maximizes exposure to exter-
nal knowledge, it can also introduce noise when irrelevant or low-quality search content is retrieved; (3) Prompt based
Search Agents, where the base model is prompted to make use of the multimodal search tools and the retrieved results
are incorporated in generating the final response; and (4) Web-search-equipped MLLMs, which refers to models capable
of performing on-demand, multi-turn search. Prior works such as Search-R1 (Jin et al., 2025) and ReSearch (Chen et al.,
2025) are restricted to text-based retrieval and therefore cannot be considered true baselines. MMSearch-R1 (Wu et al.,
2025), on the other hand, supports multimodal retrieval and serves as our only baseline. The prompts used for all the
workflows are detailed in the Appendix E.

Datasets: We use the InfoSeek (Chen et al., 2023) dataset to construct DeepMMSearchVQA, which serves as the
training set for SFT stage. For online GRPO optimization, we employ the FVQA (Wu et al., 2025) training set. We
select the FVQA dataset because it contains a higher proportion of questions requiring image search compared to the
InfoSeek dataset used in the SFT stage. This choice encourages more frequent image search tool calls, which is essential
for achieving better performance in multimodal information-seeking VQA. For evaluation, we employ the InfoSeek test
split along with DynVQA (Li et al., 2024c), SimpleVQA (Cheng et al., 2025), Encyclopedic-VQA (Mensink et al.,
2023), OKVQA (Marino et al., 2019), and A-OKVQA (Schwenk et al., 2022) as benchmark datasets. Due to the
large size of InfoSeek and Encyclopedic-VQA, we randomly sample 2000 examples from the test split of each. For
SimpleVQA, we include all QA examples written in English. OK-VQA and A-OKVQA consist of relatively simple
questions derived from COCO Lin et al. (2014) images, requiring little to no search. These benchmarks evaluate models
on outside-knowledge questions, but since many modern MLLMs now include COCO in their pretraining Bai et al.
(2025), the datasets have become easier and largely search-free.

Evaluation Metric: We evaluate model performance using the LLM-as-Judge framework, where a LLM is employed to
assess the accuracy of responses. We adopt this approach to capture nuanced correctness in the multimodal, open-ended
VQA task, which is often challenging for traditional automatic metrics. Specifically, we use gpt-5-chat-latest
as the judging model. It is provided with the question, the ground-truth answer, and the model’s response, and then
determines whether the response is correct. The full evaluation prompt is provided in Appendix E.5.

4.2 RESULTS AND ANALYSIS

Web-search equipped MLLMs outperform RAG workflows and prompt-based search agent baselines. As shown
in Table 1, DeepMMSearch-R1-7B (RL) surpasses both RAG workflows and prompt-based search agent baselines by
a significant margin (421.13 and 48.89 respectively), while achieving competitive performance with the OpenAl 03
model (OpenAl, 2025). On datasets such as OK-VQA and A-OKVQA, we observe a substantial drop in RAG workflow
performance compared to direct answering. This is because the majority of questions in these datasets (> 50%) can
be answered without search, and incorporating web-search results into the model’s reasoning introduces noise, leading
to a performance decline. In contrast, the prompt-based search agent baselines exhibit a more stable performance gain,
as the model is explicitly prompted to invoke multimodal search tools and incorporate retrieved results only when
necessary. However, since these models are not explicitly trained to interact with web-search tools, their performance
remains inferior to that of web-search equipped MLLMs. DeepMMSearch-R1-7B (RL) delivers the largest performance
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Model ‘ Average ‘ InfoSeek  Enc-VQA  SimpleVQA  DynVQA ‘ OKVQA A-OKVQA
Direct Answer
InternVL2.5-8B 40.46 17.57 19.70 35.44 13.71 74.61 81.75
InternVL3-8B 41.53 16.85 21.50 37.51 17.38 72.85 83.06
Qwen-2.5VL-7B 43.11 26.38 18.75 47.48 20.14 63.10 82.79
Qwen-2.5VL-32B 50.04 31.09 27.25 47.29 29.23 78.22 87.16
GPT-40 50.16 35.96 27.15 48.27 31.19 71.96 86.46
03 60.38 48.22 49.15 53.11 41.68 80.36 89.78
RAG Workflow
Qwen-2.5VL-7B 36.00 41.13 38.95 29.71 39.02 34.64 32.58
Qwen-2.5VL-32B 35.50 40.20 42.00 28.53 40.98 35.37 25.94
GPT-40 41.50 45.86 44.50 35.93 43.22 38.76 40.70
03 47.49 50.34 49.15 35.74 47.41 51.70 50.57
Prompt based Search Agent
Qwen-2.5VL-7B 48.24 29.75 27.85 46.89 22.38 77.15 85.41
Qwen-2.5VL-32B 50.94 28.61 32.80 48.67 40.00 72.87 82.71
Web-Equipped MLLMs
MMSearch-R1-7B* 50.56 41.33 36.85 53.90 40.14 59.89 71.27
DeepMMSearch-R1-7B (SFT) 56.23 47.45 50.35 52.02 43.08 67.52 76.94
DeepMMSearch-R1-7B (RL) 57.13 47.51 52.25 55.87 45.87 67.80 73.45

Table 1: Performance comparison of DeepMMSearch-R1 with baselines of three categories. *The reported
numbers are obtained by evaluating the model using the same image-search and text-search APIs that we
use. For a fair comparison, we follow the evaluation prompt on which the baseline was trained.

BN SFT base +0.43+0.96 InfoSeek —— 70:30
0 + multi-turn 50:50 / Uniform
I+ cropped image +0.57+0.32 Enc-vVQA —— 30:70
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Figure 3: (left) Impact of self-reflection, self-correction and cropped image search on performance. (right)
Effect of the ratio of search-required to search-free data, and of sampling strategies when curating SFT data.

boost, validating the importance of training models to use search tools rather than relying on fixed retrieval strategies or
test-time prompting. These results validate that fine-tuning models to leverage search tools and associated tag schema
improves performance and also makes the retrieval cost effective by making web-search more efficient and intelligent.

Cropped image search and distilled self-reflection and self-correction capabilities boost performance. We show-
case the impact of enabling multiple text searches and cropped image search capability in Figure 3(left). The SFT base
model refers to the setup with whole-image search and a single text search call. We see that, on average, performance
improves with distilled self-reflection and self-correction. This enables the model to iteratively refine its queries in
response to retrieved web results and better navigate noisy real-world information. A similar trend is observed with
cropped image search, yielding an average improvement of 41.75 across six datasets, highlighting its effectiveness. It
helps mitigate background noise and makes the search more effective, and is particularly useful for answering questions
that concern a single visual entity in the image rather than the entire scene. We also observe that improvements on Sim-
pleVQA and DynVQA are relatively higher, which aligns with expectations since these datasets are newer and contain
a higher proportion of questions that require search.

Search-balanced SFT data with examples uniformly sampled from all knowledge taxonomy categories provides
better performance. Firstly, we perform ablations with different ratios of search-required and search-free examples in
the SFT data to study their impact on performance. From Figure 3(right), we observe that when the percentage of search-
required questions is high, the fine-tuned model exhibits excessive search behavior and performs poorly on OKVQA and
A-OKVQA, which require fewer search calls. Conversely, when the proportion of search-required questions in the SFT
data is reduced, the model shows a performance drop on datasets with more challenging information-seeking questions,
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Figure 4: Tool usage statistics after SFT and RL on DynVQA and OK-VQA benchmarks.

such as InfoSeek, Enc-VQA, DynVQA, and SimpleVQA. We therefore conclude that a 50:50 balance provides the most
effective configuration, as it distills search tool call behavior well and yields the best average performance across all
datasets. Secondly, we examine the influence of maintaining a balanced distribution of examples across all categories in
the knowledge taxonomy. As shown in Figure 3(right), uniformly sampling examples from each category leads to better
average performance compared to random sampling.

SFT enables tool use, while RL refines the tool-selection behavior by reducing unnecessary calls. We summarized
the tool usage of our model after the SFT and RL stages for two datasets in Figure 4. DynVQA is a newer dataset with
more questions requiring external information, while OKVQA requires fewer search calls. The tool usage behavior of
our model aligns with the nature of each dataset, leveraging tools for 87.7% of the samples in DynVQA compared to
43.5% in OKVQA.

Moving from the SFT to RL stage, we make three critical observations regarding tool use behaviour. (1) The model per-
forms more image searches compared to text searches, resulting in an increase in both image search and mixed search
tool calls. This behavior is desirable, as most questions are multimodal in nature, requiring both the identification of
visual entities and the retrieval of factual information from the web. (2) After RL training, the model invokes multiple
text searches more frequently, highlighting the role of RL in promoting self-reflection and self-correction. Specifically,
we observe +1.54% and +2.64% more samples where the model refines its queries when the retrieved web informa-
tion is insufficient to answer the question. (3) The model drastically reduces its reliance on cropped image searches
(—36.81% on DynVQA and —34.86% on OK-VQA), yet still achieves overall performance gains. While this may seem
counterintuitive, closer analysis shows that the model becomes more selective, and performs cropping operation only
when necessary. For instance, the SFT model sometimes performed cropped image searches unnecessarily (examples
provided in Appendix F.2), whereas the RL model corrected these errors. This observation reinforces the importance of
RL in refining tool-use behavior and making it more efficient.

We further observe that DeepMMSearch-R1-7B (RL) exhibits cropped image searches or self-reflection behavior in
11.64% of questions on DynVQA and 18.95% on the OKVQA dataset, which constitutes a key part of our contributions.
Overall, this analysis reinforces that SFT training equips the model with tool-use capabilities, while RL training refines
tool selection, making it more efficient and better targeted for multimodal information-seeking tasks.

5 CONCLUSION

We propose DeepMMSearch-R1, a novel multimodal large language model designed to enhance visual question answer-
ing in knowledge-intensive and information-seeking contexts by integrating on-demand, multi-turn web search capabil-
ities. Our approach addresses the limitations of prior retrieval-augmented methods and multimodal agents by enabling
dynamic, iterative query refinement through self-reflection and self-correction, as well as incorporating a cropped image
search tool. We achieve this with a two-stage training pipeline: (1) a supervised fine-tuning (SFT) stage using the pro-
posed DeepMMSearchVQA, which equips the model with tool-use capabilities, followed by (2) online reinforcement
learning (RL) via GRPO, which further refines tool-use behavior to make it more efficient. DeepMMSearch-R1 out-
performs prior baselines across six benchmarks. We believe DeepMMSearch-R1 represents a compelling step forward
in real-world, multimodal information-seeking Al, with promising applications in web agents, education, and digital
assistance. Future works may explore expanding tool diversity, long-context reasoning, and scaling training to broader
multilingual and multimodal domains.
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ETHICS STATEMENT

This work introduces methods to enhance multimodal LLMs with real-time web-search capabilities. While such sys-
tems offer clear benefits in improving informativeness and adaptability, they also raise ethical risks. Retrieved content
may include biased, outdated, or misleading information, and automatic summarization can amplify misinformation or
raise copyright concerns. Moreover, the approach depends on external infrastructure, which may limit accessibility for
resource-constrained institutions. We encourage responsible deployment practices, including source attribution, content
filtering, and human oversight in high-stakes applications.

REPRODUCIBILITY STATEMENT

We have taken care to ensure that our work can be reproduced by the research community. All details of our training
and evaluation setup are provided in the paper, including data generation pipeline, base model architecture, datasets,
and training procedures. We report all hyperparameters used for both supervised fine-tuning and reinforcement learning,
along with implementation details such as batch sizes, learning rates, and optimization schedules. Additionally, we
provide the full prompts used for dataset generation, evaluation, and reward modeling in Appendix E. Together, these
resources make it possible to replicate our experiments and verify our results.
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APPENDIX

In the appendix, we provide our LLM usage statement, discuss related works and mention the limitations and broader
impact of our work. Additionally, we focus on its implementation and provide extensive details about the prompts used
for dataset curation and the evaluation. Furthermore, we expand on the results presented in the main paper, providing
general VQA experiments and some additional analysis. In the end, we provide visual examples of the proposed dataset.
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A LLM USAGE STATEMENT

We use large language model (LLM) as a supportive tool in this work. It was employed to assist in debugging portions of
the code, generating and refining visualization figures, and improving the clarity of the manuscript through proofreading,
grammar checking, and polishing the overall writing style. The LLM’s role was limited to these supportive tasks, while
all substantive research ideas, methodological decisions, analyses, interpretations, and final code implementations were
developed and validated independently by us.

B RELATED WORKS

B.1 MULTIMODAL LLMs

Multimodal large language models (MLLMs) combine visual encoders with powerful text-based large language models,
enabling them to process and reason over both textual and visual inputs. Recent models such as GPT-40 Hurst et al.
(2024), Gemini Team et al. (2023), Qwen2.5-VL Bai et al. (2025), InternVL Chen et al. (2024), LLaVA series Li et al.
(2024a); Lin et al. (2023); Liu et al. (2023b;a; 2024a), Phi Series Abdin et al. (2024), Mantis Series Jiang et al. (2024a),
OVIS series Lu et al. (2024b); Wang et al. (2025), VILA series Lin et al. (2024); Nath et al. (2025), Gemma series Team
et al. (2024a;b) have demonstrated strong capabilities in visual perception, grounding, and multimodal reasoning, achiev-
ing remarkable progress in tasks like visual question answering, captioning, and multimodal dialogue. These advances
highlight their potential as core components in real-world applications such as digital assistants, education, and infor-
mation access. Despite these strengths, MLLMs face fundamental limitations in addressing knowledge-intensive or
information-seeking queries Mensink et al. (2023); Chen et al. (2023); Cheng et al. (2025); Li et al. (2024c). Their
training relies on static corpora, which inevitably leads to outdated knowledge as the real world evolves. Furthermore,
the breadth of open-world knowledge follows a long-tail distribution, and it is infeasible to cover every rare or emerging
fact within a fixed training dataset Mensink et al. (2023). This makes MLLMs struggle with long-tail knowledge and
information that requires up-to-date context.

B.2 RAG-BASED SEARCH

The RAG paradigm as the name suggests retrieves external information from a fixed knowledge corpora using vector
search and augments it into the model context to generate factually grounded responses. Early contributions in this
space include REALM Guu et al. (2020), which introduced retrieval-augmented pretraining by jointly optimizing a
dense retriever with a language model to enable knowledge-intensive tasks. RAG Lewis et al. (2020) further advanced
this paradigm by integrating a generative seq2seq model with neural retrieval, demonstrating strong gains in open-
domain question answering. Recent efforts have extended retrieval augmentation to multimodal settings. REVEAL Hu
et al. (2023) presented a retrieval-augmented visual-language pretraining framework, in which the memory, encoder,
retriever and generator are all pre-trained end-to-end on a massive amount of data. ViSRAG Yu et al. (2024) proposed a
vision-language model based RAG pipeline that directly embeds documents as images for retrieval, avoiding information
loss from text parsing. This strategy enables the joint filtering of retrieved documents, retaining only the most relevant
and accurate references. RoRA-VLM Qi et al. (2024) introduced a two-stage retrieval process with image-anchored
textual-query expansion to synergistically combine the visual and textual information in the query and retrieve the
most relevant multimodal knowledge snippets. Moreover, they improve the robustness of retrieval-augmented vision-
language model by injecting adversarial noise in the training process. RaR Liu et al. (2024e) proposed a retrieving-and-
ranking augmented multimodal framework tailored for visual recognition, highlighting the role of retrieval quality in
multimodal perception tasks. Recently, MMKB-RAG Ling et al. (2025) proposed a novel multi-modal RAG framework
that leverages the inherent knowledge boundaries of models to dynamically generate semantic tags for the retrieval
process. Despite these advances, RAG methods rely on static corpora, and work with an unrealistic assumption that all
information can be captured within a fixed dataset. In real-world scenarios, web information is dynamic and constantly
evolving, and the complexity of retrieval remains high. These factors pose significant challenges for adopting RAG in
real-world, open-ended VQA.
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B.3 PROMPT-BASED SEARCH AGENTS

The prompt-based search agents act as plug-and-play modules that can be integrated with existing multimodal LLMs
without additional finetuning. In this setup, the MLLM functions as an agent, incorporating web-retrieved information
into its responses. For example, VSA Zhang et al. (2024) enables any vision-language model to operate as a multimodal
automatic search engine. Its pipeline follows three steps: (1) visual content formulation, where the model identifies
the object of interest; (2) web-knowledge search, where it generates multiple sub-questions and queries the web; and
(3) summarization, where it consolidates the retrieved information before answering the user’s query. Similarly, MM-
Search Jiang et al. (2024b) introduces the MMSearch-Engine, a pipeline that augments large multimodal models with
search capabilities through requerying, reranking, and summarization. OmniSearch Li et al. (2024c) further advances
this idea by proposing a self-adaptive planning agent for multimodal retrieval. It dynamically decomposes complex ques-
tions into sequential sub-questions and selects retrieval actions accordingly. At each step, the planner evaluates prior
retrieval feedback (via a solver) to decide whether to refine the query, switch retrieval mode (e.g., text, image, web),
or generate new sub-questions. This flexible, feedback-driven process replaces rigid heuristics with a query-planning
loop, better suited for dynamic, multi-hop, and multimodal VQA scenarios. However, across these approaches, the base
model itself is not trained to engage effectively with web-retrieved information and external search tools, leaving it less
capable of handling the noisy and complex nature of such real-world web information.

B.4 WEB-SEARCH EQUIPPED MLLMS

Recent work focuses on R1-optimization of MLLMs to equip web-search capabilities in MLLMs. This trend follows
from the success of reasoning models such as OpenAl 01,03 and DeepSeek-R1. DeepResearcher Zheng et al. (2025)
uses a multi-agent browsing architecture and the GRPO algorithm to learn to navigate, extract, and filter information
from arbitrary web pages under realistic constraints (e.g., API limits, network latency, anti-crawling). R1-Searcher Song
et al. (2025) presents a two-stage outcome-based reinforcement learning framework that allows LLMs to autonomously
invoke external search systems during reasoning for knowledge-intensive tasks. In stage one, the model is rewarded for
learning to trigger retrieval (without regard to answer correctness), and in stage two it is further trained to integrate re-
trieved evidence to maximize answer accuracy. Search-R1 Jin et al. (2025) incorporates retrieved-token masking, which
prevents the RL objective from directly optimizing over retrieved content, stabilizing training when mixing generated
and retrieved tokens. However, all these works are restricted to text search and are unable to perform an image search,
which limits their applicability in mulitmodal knowledge-intensive question answering. MMSearch-R1 Wu et al. (2025)
is the only prior work that performs multimodal retrieval, but it has notable limitations. First, although the model can
autonomously decide which tool to use, it is constrained to a single invocation per tool, which limits its ability to re-
vise decisions through self-reflection and self-correction. Second, in knowledge-intensive VQA tasks, it is essential to
precisely identify the visual entity in the image that the question refers to. However, in real-world settings, background
clutter and the presence of irrelevant visual entities often introduce noise into the retrieval process. This noise can hinder
accurate localization of the target entity, leading to suboptimal retrieval and reduced effectiveness of image search in
practice. To address these limitations, we propose DeepMMSearch-R1, which performs image search using relevant
image crops and can iteratively refine its text search queries to better navigate noisy real-world web information.

C DATASETS

C.1 INFOSEEK

InfoSeek Chen et al. (2023) is a large-scale knowledge-intensive visual question answering dataset designed for
information-seeking tasks. It consists of 8,900 human-written question—answer pairs over 806 entities and 527 en-
tity types, as well as 1.35 million automatically generated QA triplets covering 11,481 entities across 2,739 entity types.
The dataset is split into UNSEEN ENTITY and UNSEEN QUESTION partitions to test generalization. InfoSeek is
widely used for evaluating multimodal models in knowledge retrieval and reasoning beyond surface-level recognition.

C.2 FVQA

FVQA Wu et al. (2025) is a multimodal search VQA dataset constructed to enable evaluation and training of models
that must decide when and how to perform external searches in a knowledge-intensive setting. The FVQA training split
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(FVQA-train) comprises around 6,000 image—question—answer samples (“FVQA-auto-vc”) focused on visual knowl-
edge, plus 7,000 text-knowledge examples drawn from InfoSeek (“FVQA-auto-txt”), and an additional 800 manually
annotated “FVQA-manual-train” samples. The test split (FVQA-test) is manually curated for higher quality and diverse
knowledge demands.

C.3 ENCYCLOPEDIC VQA

Encyclopedic VQA Mensink et al. (2023) is a large-scale visual question answering dataset that focuses on visual
questions about detailed properties of fine-grained object categories and specific instances. It comprises 221,000 unique
question—answer pairs, each associated with up to 5 different images, yielding a total of around 1,000,000 (1 M) image-
question-answer instances. The dataset is backed by a controlled knowledge base derived from Wikipedia, where each
QA is linked to supporting evidence from Wikipedia articles.

C.4 SIMPLEVQA

SimpleVQA Cheng et al. (2025) is a multimodal benchmark created to evaluate the factuality of MLLMs in answering
short, natural-language visual questions. It contains 2,025 high-precision image—question—answer pairs, spanning 9 task
categories (e.g. Object Identification & Recognition, Time & Event, Person & Emotion, Location & Building, Text
Processing, Quantity & Position, Art & Culture, Object Attributes) and 9 topic domains. SimpleVQA’s design ensures
coverage across domains, concise and clear answer formats, and suitability for automated evaluation (e.g. via LLM-as-
judge). It is intended to challenge MLLMs’ abilities to ground answers in factual knowledge rather than hallucinate, and
is often used to probe the knowledge boundaries of vision-language models.

C.5 DYNVQA

DynVQA Li et al. (2024c) is a benchmark dataset constructed to assess multimodal retrieval-augmented generation
(mRAG) systems on dynamic visual question answering tasks that require adaptive retrieval strategies. It contains 1,452
questions spanning 9 domains, evenly split across English (715) and Chinese (737) items. The questions are categorized
into three dynamic types: (1) those with rapidly changing answers (385 questions, ~26.5%), (2) multimodal-knowledge
questions requiring non-textual evidence (178 questions, ~12.3%), and (3) multi-hop questions requiring multi-step
reasoning (112 questions, ~7.7%). Across all questions, 59.6% require external visual knowledge beyond what is
directly in the image, and 26.7% require more than two reasoning hops. DynVQA is designed with temporal dynamism,
and some answers may change over time. Therefore, the dataset is periodically updated to maintain answer correctness.

C.6 OKVQA

OKVQA Marino et al. (2019) is a knowledge-based visual question answering dataset in which the visual content
alone is insufficient to answer questions—models must draw on external knowledge. It comprises 14,055 open-ended
question—answer (QA) pairs associated with 14,031 images. Each QA is annotated with 5 ground truth answers per
question. To reduce dataset bias, frequently repeated answers were pruned, such that questions whose most common
answer appeared more than 5 times were removed. The dataset covers a diverse set of 10 knowledge categories (e.g.,
Vehicles & Transportation; Cooking & Food; Science & Technology) determined via crowd annotations. Baseline VQA
models that perform well on standard VQA benchmarks show significant performance drops on OKVQA, highlighting
the difficulty of knowledge retrieval and reasoning in this setup.

C.7 A-OKVQA

A-OKVQA (Augmented OK-VQA) is a crowdsourced visual question answering benchmark designed to re-
quire commonsense and world knowledge beyond simple fact lookup. It comprises approximately 24,903 ques-
tion—answer—rationale triplets spread across 17.1K training, 1.1K validation, and 6.7K test splits. Each question is
accompanied by both multiple-choice (MC) options and direct-answer (DA) alternatives, along with a rationale (one
explanatory sentence) for the train split. To ensure diversity, A-OKVQA filters out trivial or overly repetitive questions,
enforces quality control via crowd annotation, and clusters similar images to discourage repetitive phrasing. Compared
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to OKVQA, A-OKVQA contains about twice as many questions and adds rationale annotations to support explainable
reasoning.

D IMPLEMENTATION DETAILS

We use the LLaMA-Factory framework to perform supervised finetuning. Our base model is Qwen2.5-VL-7B-Instruct,
which we finetune using LoRA with a rank of 8 applied across all target modules. Training is performed for 3 epochs
with a learning rate of le-4, following a cosine scheduler with a warmup ratio of 0.1. We enable bf16 mixed precision
for computational efficiency. The model is trained using 1 node with 8 Nvidia H100 GPUs, with per-device batch size
is set to 1, with gradient accumulation of 1 step, resulting in a global batch size of 8. Since the VQA dataset consists
of multi-turn conversations, we apply input masking during training to ensure that the model is optimized only on the
generated outputs. For online RL optimization, we adopt the GRPO algorithm implemented in the veRL framework.
The reward model is GPT-40, which evaluates generated responses and provides feedback for optimization, with Am¢
set to 0.1. We apply a KL-penalty with a coefficient of 0.001 and the clip ratio is set to 0.2. Training is performed for 20
epochs on 4 nodes each with 8 Nvidia H100 GPUs. We use a batch size of 256 with a mini-batch size of 64, and set the
rollout number to 8 per iteration. A warmup phase of 45 steps is applied to stabilize learning rates, which are initialized
at 2e-6. The image search/cropped image search tool can be called once while the text-search tool can be called multiple
times, with total tool calls restricted to 10 per rollout. The maximum response length is set to 8192 tokens We again
mask the input tokens to ensure that optimization focuses only on the generated outputs.
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E PROMPTS

E.1 SFT DATASET GENERATION
Initial Prompt

You are an expert visual assistant. Your task is to answer a user’s question based on the provided image.

Step 1: Analyze the Image

Carefully examine the image and the user’s question: { question}. Identify all recognizable entities, objects,
text, and other visual clues.

Step 2: Plan Your Action

Based on your analysis, you must perform one of the following actions. You must include your thinking process
inside a <reason>. . .</reason> block before choosing an action.

* Action 1: Answer Directly
If you can confidently identify the visual element and have the internal knowledge re-
garding the facts sufficient to answer the question, provide a direct, concise answer inside
<answer>...</answer> tag.
Example: <answer>The construction of Eiffel Tower was finished on
March 31, 1889.</answer>

e Action 2: Use Image Search
If you are not sure about the visual element and need to identify the visual element in the image, you
can use one of the following image search methods.

— Cropped search (Preferred for specific questions): Use this if the question is clearly
about a specific visual element such as an object, person, animal, plant, aircraft, etc.,
or if the background is irrelevant. Describe the visual element concisely inside the
<img_search>...</img_search> tags.

Example:
<img_search>the face of the person on the left</img_search>
<img_search>the red logo on the baseball cap</img_search>

— Whole image search: Only use this if the question is about the entire scene in general, its
location, or the overall context. Output only: <img_search><img></img_search>.
Note: Do not output <img_search><img></img></img_search>.

» Action 3: Use Text Search
If you can identify the visual element confidently but need more specific information to an-
swer the question, invoke the text search tool. Generate a focused query and output it as
<text_search>your search query</text_search>.

Remember, search results will be provided to you in subsequent turn. You can analyze the search re-
sults and decide your next action. You can perform image search only once, but have the option to
perform multiple text searches to gather relevant information. All search results will be placed inside
<information>...</information>.

Here is the image and question: <image>{question}
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After Image Search

You have received information from an image search. Your goal is to use this new information to answer the
original question: {question}.

Step 1: Analyze the Results

Review the provided information within the <information>...</information> block. Synthesize
what you’ve learned about the visual element in question.

Step 2: Plan Your Next Action

Include your thinking process inside a <reason>. . .</reason> block. Then, choose one of the following
actions:

* Action 1: Answer Directly
If the image search results have helped you identify the visual element and you can confidently
answer the question with your internal knowledge, provide the final, concise answer inside an
<answer>...</answer> tag.

* Action 2: Use Text Search
If the image search results have helped you identify the visual element but you need more specific
details to answer the question, invoke the text search tool. Formulate a precise query based on the im-
age search results and output it as <text_search>your search query</text_search>.
You can use the text search tool multiple times in subsequent turns if needed.

After Text Search

You have received results from a text search. Your goal is to analyze this new information and decide the next
best step to answer the original question: {question}.

Step 1: Analyze the Results

Review the new information provided in the <information>...</information> block. Compare it
against the information you already have and what is still needed to answer the question.

Step 2: Plan Your Next Action

Include your thinking process inside a <reason>. . .</reason> block. Then, choose one of the following
actions:

* Action 1: Answer Directly
If you have now gathered all the necessary information, provide the final, concise answer inside an
<answer>...</answer> tag.

e Action 2: Search Again
If the results are helpful but still insufficient, perform another text search. Create a new, more spe-
cific, or modified query to find the missing facts. Output the new query as <text_search>your
refined search query</text_search>.

* Action 3: Give Up
If you have exhausted your search attempts and believe the answer cannot be found from the pro-
vided information, conclude by outputting <answer>Unable to answer due to lack of
relevant information</answer>.

E.2 WEBSEARCH EQUIPPED MLLMS EVALUATION PROMPT

The evaluation prompt is same as SFT data generation prompts as detailed in Section E. 1.
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E.3 RAG WORKFLOW PROMPT

Initial Prompt

You are a helpful assistant designed to answer questions about images using external knowledge. You are given
a question accompanied by an image that cannot be answered without external knowledge.

You are provided with a question, the corresponding image, and a text summary from a reverse image search
that identifies the main visual subject. Based on all this information, your task is to formulate a single, effective
query for a search engine (e.g., Google) to find the specific facts needed to answer the question.

Question: {question}

Reverse Image Search Information: {information}

Provide only the text query you will use for the search, in the format <text_search>your
query</text_search>.

Final Answer Prompt

You have now received the results from your text search. Your goal is to analyze the text search results to
provide a final concise answer to the original question based on the image provided.

Original Question: {question}

Text Search Results: {information}

Follow the following process:

1. Briefly explain your reasoning process by analyzing the facts from the search results that are relevant
to the question. Enclose this reasoning inside <reason>your reason</reason> tags.

2. Provide the final, direct answer to the question between <answer> and </answer> tags. If the
information is insufficient, respond ONLY with:
<answer>Unable to answer due to lack of relevant
information.</answer>

E.4 PROMPT-BASED SEARCH AGENT PROMPT

The prompt-based search agent prompts are same as SFT data generation prompts as detailed in Section E.1.

E.5 LLM-AS-JUDGE PROMPT

LLM-as-judge Prompt

You are an impartial judge evaluating a model’s answer for a visual question answering task. Your task is to
determine if the Predicted Answer is correct by comparing it against the Ground-Truth Answer(s).

IMPORTANT INSTRUCTION: The Ground-Truth Answer(s) field may contain alternate correct answers.
The predicted answer should be considered CORRECT if it is semantically equivalent to at least ONE of the

provided ground-truth answers.
Please respond with only [CORRECT] if the prediction is correct, and [ INCORRECT] otherwise.

— Evaluation Details —

Question: {question}

Ground-Truth Answer(s): {references_for_prompt }
Predicted Answer: {candidate}
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E.6 GPT AS REWARD MODEL PROMPT

GPT-40 as reward model prompt

You are a strict evaluation judge for short-answer matching. Given a model’s final answer and a list of gold
answers, decide if the model’s answer matches ANY gold answer.

Rules:

1.

Semantic Equivalence: Consider synonyms, paraphrases, and common aliases as valid matches.
Example: "NYC" ~ "New York City".

. Ignore Trivial Differences: Do not penalize differences in articles, punctuation, word order, or cas-

ing.
Example: "The Pacific Ocean" = "pacific ocean".

. At Least One Match: If the model’s answer aligns with ANY gold answer based on the rules, set

match=true. Otherwise, match=false.

. Numerical Flexibility: For answers involving numbers, an answer is a MATCH if it meets any of

these criteria:
(a) Range Inclusion: The model provides a range that contains the gold answer.
Example: Model: "20 to 24",Gold: ["21"].
(b) Reasonable Rounding: The model’s answer is a reasonably rounded version of the gold answer.
Example: Model: "176", Gold: ["176.124"].
(c) Unit Conversion: The model’s answer is equivalent but in a different unit.
Example: Model: "3 km", Gold: ["3000 m"].

. Substantive Difference: If the meaning, entity, or value differs in a way not covered by the rules

above, it is NOT a match.

Example: "Jupiter" # "Mars".

Example: "5.2" £ "52".

Example: Model: "10-15", Gold: ["16"] — NO MATCH.

Output Format:

MATCH:

true/false

REASON: A concise explanation focusing only on why the answer matches or
does not match.

E.7 LLM SUMMARIZER PROMPT

Image Search Summarization Prompt

Based on the following text extracted from the title and description of the retrieved images obtained from a
Google Lens search, concisely describe the primary visual content (such as faces, objects, locations, events,
logos, or text) of the original image in four to five sentences.

Extracted Text:

{formatted_results}
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Text Search Summarization Prompt

Review all the provided text references to find the most relevant information to answer the question. Analyze
the relevant facts from these references into a single, concise summary of 10-12 sentences that answers the
question.

Question: {original_question}

References:
{references_text}

F ADDITIONAL CONTENT AND RESULTS

F.1 INTRODUCTION FIGURE

Figure F.1: An image of a boat race.
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F.2 SFT MODEL CROPPING EXAMPLE

We present examples where the SFT model performs unnecessary cropping in Figure F.2. RL training with GRPO
corrects this issue, making tool usage more efficient. The RL-optimized model performs cropping only when required.

SFT

RL

Original Image

Original Image Cropped Image

Cropped Image

Figure F.2: Croppd image search usage: SFT model vs RL optimized model

F.3 PERFORMANCE ON GENERAL VQA

To quantify the impact of SFT + RL training on the proposed model’s general VQA and reasoning ability, we benchmark
DeepMMSearchR1-7B (RL) on a range of benchmarks, including OCRBench Liu et al. (2024d), MMVet Yu et al.
(2023), AI2D Kembhavi et al. (2016), MathVista Lu et al. (2024a), MMBench Liu et al. (2024c), DocVQA Mathew
et al. (2021), and InfoVQA Mathew et al. (2022). We observe that the model maintains its overall performance while
achieving improvements on MathVista and MM Vet. These results suggest that the proposed model effectively learns to
interact with web-search tools while preserving its general visual understanding and reasoning capabilities.

Models OCRBench MMVet AI2D MathVista MINI MMBench DocVQA InfoVQA
Qwen2.5-VL-7B-Instruct 88.30 68.30 83.74 68.20 83.84 94.97 82.58
DeepMMSearch-R1-7B (RL) 87.60 69.81  82.57 66.80 83.76 94.63 81.63

Table F.1: Comparison of model performance on General VQA.

Go to Appendix Index

25



G DEEPMMSEARCHVQA SAMPLES

What is the conservation status of this
fish? (The status is assigned by the
international union for conservation of
nature. Choose one among
Endangered,Least Concern,Critically
Endangered,extinct species,extinct in
the wild,Vulnerable,Near
Threatened,Data Deficient)

Q <reason> The fish in the image appears to be a goldfish, which is a common species known for its
bright orange color. To determine its conservation status, I need to confirm the specific status
assigned by the International Union for Conservation of Nature (IUCN). </reason>
<text_search>goldfish IUCN conservation status</text_search>

<information> The conservation status of the Saddleback clownfish (Amphiprion polymnus) is
classified as \"Least Concern\" by the International Union for Conservation of Nature (IUCN). This

status indicates that the species is not currently at significant risk of extinction in the
wild....</information>

the goldfish. To answer the question accurately, I need to perform another search specifically
targeting the IUCN Red List status of the goldfish. </reason>
<text_search>goldfish Carassius auratus IUCN Red List status</text_search>

Concern\" by the International Union for Conservation of Nature (IUCN). This assessment was last
conducted on August 4, 2010. The species is native to East Asia, including China and Japan, but has
been introduced worldwide due to its popularity as an ornamental pond ... </information>

Q <information> The conservation status of the goldfish (Carassius auratus) is classified as \"Least

Q <reason> The search results indicate that the goldfish (Carassius auratus) is listed as \"Least
Concern\" on the IUCN Red List. This information is sufficient to answer the original question
regarding the conservation status of the fish.</reason>
Least Concern

Q <reason> The search results did not provide specific information about the conservation status of }

Figure G.1: A sample in DeepMMSearchVQA
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_ [ ]
| What country does this city [ ]
belong to?

shows ancient ruins, including columns and building foundations, next to the sea. The style of the
ruins is reminiscent of Roman or Greek architecture, which is common in many countries around
the Mediterranean. To accurately identify the specific location and thus the country, I need to
perform an image search. A whole image search is suitable as the entire context of the ruins and the
coastline is important for identification.</reason>

<img_search><img></img_search>

! <reason> The user is asking for the country where the city in the image is located. The image

<information> Based on the extracted text, the original image most likely features the

coast, showing ancient stone structures from the Roman or medieval periods. These ruins are part of

9
@ archaeological ruins at Caesarea National Park in Israel. The scene is set on the Mediterranean
=]

a significant historical site that was once an ancient port city. The photograph may show a wide
view of the park against the sea or a close-up of a specific artifact, such as the inscribed Pilate

Stone.</information>

ruins at Caesarea National Park. The information explicitly states that this park is in Israel.
Therefore, I have sufficient information to directly answer the user's question about the

country.</reason>
The city shown in the image is Caesarea, and it is located in Israel.

! <reason> The image search results have identified the location in the image as the archaeological

Figure G.2: A sample in DeepMMSearchVQA
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H LIMITATION AND BROADER IMPACT

H.1 LIMITATION

Despite the demonstrated benefits, our work faced several limitations. First, reliance on multiple search tools inherently
increases susceptibility to errors arising from tool failures, latency, API query limits, or scraping blocks, all of which
can disrupt the reasoning process. Secondly, since web-search tools are dynamic and continuously updated, retrieval
outcomes may vary over time, introducing variability in both training and evaluation.

A major bottleneck we encountered during training was performing online GRPO with live web-search tools, which
posed challenges in terms of stability and reliability. To mitigate this, we had to implement extensive fail-checks, retries,
and safeguards to ensure robust information extraction from the web tools. These limitations highlight that integrating
real-time web-search retrieval is not a trivial task and requires substantial efforts.

H.2 BROADER IMPACT

Our work has the potential to significantly advance multimodal information-seeking systems by enabling multimodal
LLMs to dynamically retrieve and reason over real-world knowledge. This opens up promising applications in education,
digital assistants, research support, and accessibility tools, where timely and accurate information retrieval is essential.

However, reliance on web-search also introduces risks, including amplification of misinformation, propagation of biased
or low-quality sources, and challenges related to copyright when models retrieve or summarize content from proprietary
sources. Furthermore, depending on poorly reliable web data can undermine factual accuracy and erode user trust.
To address these concerns, future work should prioritize incorporating mechanisms for source attribution and quality
filtering of retrieved content. We emphasize the importance of responsible deployment, with safeguards to ensure factual
reliability, and equitable access, so that such systems can be harnessed in a safe and beneficial manner.

Go to Appendix Index 28



