003 004

006

008 009

010 011

012

013

014

015

016

017

018

019

021

023

HOTTEL ZONE PHYSICS-CONSTRAINED NETWORKS FOR FURNACES

Anonymous authors

Paper under double-blind review

ABSTRACT

This paper investigates a novel approach to improve the temperature profile prediction of furnaces in foundation industries, crucial for sustainable manufacturing. While existing methods like the Hottel Zone model are accurate, they lack real-time inference capabilities. Deep learning methods excel in speed and prediction but require careful generalization for real-world applications. We propose a regularization technique that leverages the Hottel Zone method to make deep neural networks physics-aware, improving prediction accuracy for furnace temperature profiles. Our approach demonstrates effectiveness on various neural network architectures, including Multi-Layer Perceptrons (MLP), Long Short-Term Memory (LSTM), Extended LSTM (xLSTM) and Kolmogorov-Arnold Networks (KANs). We also discussion the data generation involved.

1 INTRODUCTION

Majority of economically relevant industries (automobiles, machinery, construction, household 025 appliances, chemicals, etc) are dependent on the Foundation Industries (FIs) that provide crucial and 026 foundational materials like glass, metals, cement, ceramics, bulk chemicals, paper, steel, etc. FIs are 027 heavy revenue and employment drivers, for instance, FIs in the United Kingdom (UK) economy are 028 worth £52B (EPSRC report), employ 0.25 million people, and comprise over 7000 businesses (IOM3 029 report). However, despite their economic significance, the FIs leverage energy-intensive methods within their furnaces. This makes FIs major industrial polluters and the largest consumers of natural 031 resources across the globe. For example, in the UK, they produce 28 million tonnes of materials per 032 year, and generate 10% of the entire UK's CO₂ emissions (EPSRC report; IOM3 report). Similarly, in China, the steel industry accounted for 15% of the total energy consumption, and 15.4% of the 033 total CO_2 emissions (Zhang et al., 2018; Liang et al., 2020). These numbers put a challenge for the 034 FIs in meeting our commitment to reduce net Green-House Gas (GHG) emissions, globally. 035

With a closer look at any process industry (e.g., steel industry), one can observe that at the core, lies 037 the process of conversion of materials (e.g., iron) into final products. This is done using a series of unit processes (Yu et al., 2007) involving steps such as dressing, sintering, smelting, casting, rolling, 039 etc (see Qin et al. (2022) for an illustration). The equipment in such process industries operates in high-intensity environments (e.g., high temperature), and has bottleneck components such as 040 reheating furnaces, which require complex restart processes post-failure. This causes additional labor 041 costs and energy consumption. Thus, for sustainable manufacturing, it is important to monitor the 042 temperature profile, and thus, the operating status of the furnaces. (Hu et al., 2019) have shown 043 promise in achieving notable fuel consumption reduction by reducing the overall heating time. 044

Yuen & Takara (1997) in their study, have proved the elegance and superiority of the Hottel Zone method over counterparts to model the physical phenomenon of Radiative Heat Transfer (RHT) in high-temperature processes. Hu et al. (2016) proposed a computational model workflow based on the Hottel Zone method, and showed superiority over surrogate computational alternatives in terms of predictive performance. However, none of these approaches are suitable for real-time inference in modeling a furnace temperature profile. Deep Learning (DL) based neural network methods excel in achieving superior predictive performance and speed. Nonetheless, their generalization capabilities require special attention, particularly in critical real-world applications.

In our work, we propose to revisit the Hottel Zone method and devise a novel regularization technique that could be used as a plug-and-play module to make a neural network physics-constrained (or

physics-aware) with regard to the underlying phenomena of high-temperature processes in furnaces.
We show that for a time-step in a furnace, given a certain set of input entities, we could predict
the desired output temperature entities more accurately (in terms of regression metrics) using our
regularization technique, as opposed to using a vanilla neural network. We demonstrate the provess
of our proposal on different types of neural network architectures: Multi-Layer Perceptron (MLP)
or feed-forward networks, sequential models such as Long Short-Term Memory (LSTM) based
Recurrent Neural Networks (RNNs), as well as recently proposed Kolmogorov-Arnold Networks
(KANs) and Extended LSTM (xLSTM).

062 This work makes two key contributions: Tensor-based Reformulation and Physics-Aware Neural 063 Networks: We reformulate the Hottel Zone Method's Directed Flux Areas (DFAs) and Energy Bal-064 ance (EB) equations in tensor format, enabling neural network training. We further introduce a novel regularization technique that imbues the network with physics-awareness. Extensive Experimental 065 Validation: We comprehensively validate the proposed approach using various neural network archi-066 tectures. To this end, we suggest a dataset and benchmarking protocol (details provided in Section 067 A.8). A github repository is maintained at https://github.com/ to facilitate real-time updates 068 to the same as and when made. 069

Numerous real-world applications, including chemical reactors (Feng & Han, 2012), solar energy (Muhich et al., 2016; Marti et al., 2015), and 3D printing (Tran & Lo, 2018; Zhou et al., 2009), involve high-temperature processes exceeding $700^{\circ}C$. These processes rely heavily on Radiative Heat Transfer (RHT) as a dominant mechanism alongside conduction and convection. Notably, RHT remains crucial for thermal transport even in vacuum conditions encountered in astronomical applications. We envision that our learnings could perhaps be extended to those applications with bespoke approaches.

Due to space constraints, we have limited the length of the introduction section. Please refer to Section A.1 for a more detailed discussion, particularly regarding the motivation behind our research.

079 080

081 082

084

085

090

092

093

094

095

096

097

098

099

2 RELATED WORK

In Section A.2, we provide a detailed discussion of related works. Due to space limitations, we will focus here on how our approach significantly differs from existing methods.

- 1. View factor methods: Existing methods Ebrahimi et al. (2013); Melot et al. (2011); Hu et al. (2018); Li (2005) simplify the modeling area and are geometry-specific. We propose a generic, geometry-agnostic model encompassing all exchange areas (radiation transfer interfaces).
 - 2. Neural network methods: Existing methods Yuen (2009); Tausendschön & Radl (2021); García-Esteban et al. (2021); Zhai & Zhou (2020); Zhai et al. (2023); Halme Ståhlberg (2021); de Souza Lima et al. (2023); Liao et al. (2009); Hwang et al. (2019); Chen et al. (2022); Bao et al. (2023) often use simple MLPs, which lack generalization due to limited physics understanding. We introduce a Physics-constrained Neural Network (PCNN) framework that outperforms MLP and can be applied to other architectures like LSTM, KAN, xLSTM.
- 3. **Furnace temperature profiling**: Existing methods Kim & Huh (2000); Kim (2007); Jang et al. (2010); Tang et al. (2017); Nguyen et al. (2014); Hu et al. (2017); Ban et al. (2023); Li et al. (2023); Zanoli et al. (2023); Yu et al. (2022) focus on specific regions, while our method targets complete furnace temperature profiling, including gas zones, furnace walls, and slab surfaces. Our utilized data is more holistic. Existing neural methods in this category also lack physics awareness.
- 4. PINNs: Compared to the existing body of Physics-Informed Neural Network (PINN) literature Raissi et al. (2019); Karniadakis et al. (2021); Drgoňa et al. (2021); Shen et al. (2023); Cai et al. (2021); Kim et al. (2022); Zhao et al. (2020); He et al. (2021); Boca de Giuli (2023); Han et al. (2023); Bünning et al. (2022); Park (2022); Wang et al. (2023); Lahariya et al. (2022); Jing et al. (2023), we propose a novel variant specifically designed for zone method based modeling in reheating furnaces. Our approach is the first to utilize physics-constrained regularizers based on the zone method for temperature prediction. It requires minimal data (input-output pairs) and makes no geometry assumptions. Our data creation method is holistic and unique, encompassing all exchange areas. Our method, as we

110

will see later, is based on a set of simultaneous equations to incorporate physics-awareness, and directly does not involve a differential equation. Thus, we call it a physics-constrained method, though PINN could be also used philosophically.

111 112 113

PROPOSED METHOD 3

114 3.1 BACKGROUND 115

116 The Hottel Zone method subdivides a furnace into zones (volumes and surfaces) to predict Radiative 117 Heat Transfer (RHT). Volume and Gas (G) zone is used interchangeably. Surface (S) zones are 118 of two types, SF: furnace and SO: obstacle (e.g., slabs that are heated). Each zone has a uniform 119 temperature. Sets of Energy-Balance (EB) equations govern radiation exchange between zones, 120 considering incoming and outgoing radiation fluxes. These equations are iteratively updated to obtain the entire furnace's temperature profile. Following are the key concepts: 121

- 1. Total Exchange Areas (TEAs): Pre-computed values representing the total area for radiation exchange between zone pairs (SS: surface-surface, SG/GS: surface-gas, GG: gas-gas).
- 123 124

122

125 126

127 128

129 130

131

132 133

134 135

137

139

- 2. Directed Flux Areas (DFAs): Derived from TEAs and used to calculate radiant exchange between zone pairs at each step of the zone method.
- 3. Weighted Sum of Grey Gases (WSGG) model: Handles non-grey gases by representing them as a mixture of grey gases and a clear gas.

3.2 EXCHANGE AREA CALCULATION

The first step in the Zone method involves computation of Exchange Factors (Yuen & Takara, 1997). The exchange factor among a pair of volume zones V_i and V_j is expressed as:

$$g_i g_j = \int_{V_i} \int_{V_j} \frac{k_i k_j e^{-\tau} dV_i dV_j}{\pi r^2}$$
(1)

Physically, it represents the energy radiated from V_i and absorbed/ scattered by V_i . Here, k denotes 136 the respective extinction coefficient, τ is the optical thickness among differential volume elements dV_i and dV_j , and $r = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2 + (z_i - z_j)^2}$. Now, let n_i and n_j respectively be 138 unit normal vectors of dA_i and dA_j (corresponding to two surface zones A_i and A_j). Then, the exchange factors $g_i s_j$ (between volume zone V_i and surface zone A_j) and $s_i s_j$ (between surface zone 140 A_i and surface zone A_i), can be expressed as:

144

$$g_{i}s_{j} = \int_{V_{i}} \int_{A_{j}} \frac{k_{i} |\boldsymbol{n_{j}}.r| e^{-\tau} dV_{i} dA_{j}}{\pi r^{3}}; s_{i}s_{j} = \int_{A_{i}} \int_{A_{j}} \frac{|\boldsymbol{n_{i}}.r| |\boldsymbol{n_{j}}.r| e^{-\tau} dA_{i} dA_{j}}{\pi r^{4}}$$
(2)

Numerical evaluation of the above equations being complex, has led to analytical approximations, 145 by considering an enclosure as a cube-square system, i.e, by representing a volume as a cube, and a 146 surface as a square. This facilitates the tabulation of a "generic" set of exchange factors, which are 147 applicable for most practical industrial geometries, using an updated Monte-Carlo based Ray-Tracing 148 (MCRT) algorithm (Matthew et al., 2014). To this end, such pre-computed generic values are refered 149 to as Total Exchange Areas (TEA), and we denote them by: $\overline{G_iS_j}$, $\overline{S_iS_j}$, $\overline{G_iG_j}$ and S_iG_j . Here, 150 $\overline{S_iG_j} = \overline{G_iS_j}$. Note that throughout the text, G(or g) and S(or s) shall indicate terms corresponding 151 to Gas/Volume, and Surface respectively.

152 153 154

155

3.3 INTRODUCING TENSOR NOTATIONS FOR HOTTEL ZONE METHOD BASED NEURAL NETWORK

To account for our formulation of a neural network based approach, we first introduce the following 156 four tensors to collectively represent the above TEAs: $GS \in \mathbb{R}^{|G| \times |S| \times |N_g|}$, $SS \in \mathbb{R}^{|S| \times |S| \times |N_g|}$. 157 $GG \in \mathbb{R}^{|G| \times |G| \times |N_g|}$, $SG \in \mathbb{R}^{|S| \times |G| \times |N_g|}$. Here, |G|, |S| respectively denote the number of gas/ 158 volume zones, and number of surface zones. In practice, $|N_a|$ gases representing real gas medium 159 are used, and hence, a third dimension has also been used in the above tensors. As discussed above, 160 TEAs are pre-computed constants, used as inputs to our model. Slightly abusing notations, we can 161 refer to a TEA by considering only the first two dimensions (for a pair of zones).

Figure 1: Derivation of matrix forms of the DFA terms (using GS as reference).

The next step is to compute the Radiation Exchange factors, or the Directed Flux Areas (DFA), considering radiating gas medium through a Weighted Sum of the mixed Grey Gases (WSGG) model (Hu et al., 2016):

$$\vec{G_iG_j} = \sum_{n=1}^{N_g} a_{g,n}(T_{g,j})(\overline{G_iG_j})_{k=k_n}; \vec{S_iS_j} = \sum_{n=1}^{N_g} a_{s,n}(T_{s,j})(\overline{S_iS_j})_{k=k_n}$$
(3)

188 189 190

191 192

183

185

186 187

$$\vec{G_iS_j} = \sum_{n=1}^{N_g} a_{s,n}(T_{s,j}) (\overline{G_iS_j})_{k=k_n}; S_i G_j = \sum_{n=1}^{N_g} a_{g,n}(T_{g,j}) (\overline{S_iG_j})_{k=k_n}$$
(4)

Here, \leftarrow indicates the direction of flow. $T_{g,j}$ and $T_{s,j}$ denote the temperatures for the j^{th} volume and surface zones respectively, and are the values we want our model to predict (at each time step). Note that the collective representation of the DFAs can be expressed as: $\tilde{GS} \in \mathbb{R}^{|G| \times |S|}$, $\tilde{SS} \in \mathbb{R}^{|S| \times |S|}$, $\tilde{GG} \in \mathbb{R}^{|G| \times |G|}$, $\tilde{SG} \in \mathbb{R}^{|S| \times |G|}$. In Eq (3)-(4), the TEA terms correspond to a particular grey gas being used, for example, $(\overline{G_iG_j})_{k=k_n}$ represents the TEA $\overline{G_iG_j}$ with the n^{th} gas.

WSGG is a method used to represent the absorptivity/ emissivity of real combustion products with a mixture of a couple of grey gases plus a clear gas, i.e, the number of grey gases is equal to $N_g - 1$.

For each gas indexed by n, we have a set of pre-computed correlation coefficients $\{b_{i+1,n}\}_{i=0}^{N_g}$ for both gas and surface related coefficients, and an absorption coefficient $k_{g,n}$. Then, the weighting coefficient $a_{g,n}(T_{g,j})$ (for gas-zone temperatures) and the weighting coefficient $a_{s,n}(T_{s,j})$ (for surface-zone temperatures) can be expressed as a N_g^{th} order polynomial in $T_{g,j}$ (or $T_{s,j}$):

$$a_{g,n}(T_{g,j}) = \sum_{i=0}^{N_g} b_{i+1,n} T_{g,j}^i; a_{s,n}(T_{s,j}) = \sum_{i=0}^{N_g} b_{i+1,n} T_{s,j}^i$$
(5)

207 208

205 206

Using (3), (4, (5), and with GS as a reference, we make use of Figure 1 to illustrate the derivation of a compact matrix form for computing a DFA term efficiently for getting training samples of a neural network. Let, $(\overline{GS})_n$ be the n^{th} slice of GS along the third dimension, and $a_n = \tilde{b}_n(t_S)$. broadcast (a_n^{\top}) reshapes a_n^{\top} to the same dimension as $(\overline{GS})_n$, i.e., $\mathbb{R}^{|G| \times |S|}$. $t_S \in \mathbb{R}^{|S|}$ is a vector containing all the surface zone temperatures (in a time step), such that its j^{th} entry $t_S(j) = T_{s,j}$. The j^{th} entry $a_n(j)$ of $a_n \in \mathbb{R}^{|S|}$ is computed using the function \tilde{b}_n with the correlation coefficients $\{b_{i+1,n}\}_{i=0}^{N_g}$ as the parameters, and by following eq (5). We can also assume similar vector containing all gas zone temperatures (in a time step) $t_G \in \mathbb{R}^{|G|}$, with j^{th} entry $t_G(j) = T_{g,j}$.

Figure 2: Derviation of the matrix forms of the EBV equations for physics based regularizers.

Then, the DFA terms related to gas-zone temperatures can be expressed as:

$$\tilde{\boldsymbol{GS}} = \sum_{n=1}^{N_g} (\overline{GS})_n \odot \operatorname{broadcast}(\boldsymbol{a}_n^{\top}); \tilde{\boldsymbol{GG}} = \sum_{n=1}^{N_g} (\overline{GG})_n \odot \operatorname{broadcast}(\tilde{b}_n(\boldsymbol{t}_G)^{\top}).$$
(6)

and, the DFA terms related to surface-zone temperatures can be expressed as:

$$\dot{SS} = \sum_{n=1}^{N_g} (\overline{SS})_n \odot \operatorname{broadcast}(\tilde{b}_n(\boldsymbol{t}_S)^\top); \\ \dot{SG} = \sum_{n=1}^{N_g} (\overline{SG})_n \odot \operatorname{broadcast}(\tilde{b}_n(\boldsymbol{t}_G)^\top).$$
(7)

3.4 ENERGY-BALANCE BASED PHYSICS-REGULARIZATION

With the above DFA terms at our disposal, we can compute the gas/volume and surface zone temperatures at each time step of furnace operation by respectively using Energy-Balance Volume (EBV) and Energy-Balance Surface (EBS) equations. EBV and EBS are a set of simulataneous equations to capture the governing physics of RHT Hu et al. (2016). Figure 2 visually illustrates computation of the terms $g_{(q)arr}$, $s_{(g)arr}$ and g_{leave} involved in the EBV equation to compute the gas zone temperatures of a time step.

Let, $g_{(q)arr} \in \mathbb{R}^{|G|}$ be a vector whose i^{th} entry represents the amount of radiation arriving at the i^{th} gas zone from all the other gas zones, $m{s}_{(g)arr} \in \mathbb{R}^{|G|}$, a vector whose i^{th} entry represents the amount of radiation arriving at the i^{th} gas zone from all the other surface zones, $g_{leave} \in \mathbb{R}^{|G|}$, a vector whose i^{th} entry represents the amount of radiation leaving the i^{th} gas zone, and $h_q \in \mathbb{R}^{|G|}$ a heat term. Also, let $T_{q,j}$ (or T_q) and $T_{s,j}$ (or T_s) denote the j^{th} gas and surface zone temperatures respectively. Then, following EBV equations, the i^{th} entries of $g_{(g)arr}$, $s_{(g)arr}$, g_{leave} and h_g can be computed as:

$$\boldsymbol{g}_{(g)arr}(i) = \sum_{j}^{|G|} \boldsymbol{G}_{i} \boldsymbol{G}_{j} \sigma T_{g,j}^{4}; \qquad \boldsymbol{s}_{(g)arr}(i) = \sum_{j}^{|S|} \boldsymbol{G}_{i} \boldsymbol{S}_{j} \sigma T_{s,j}^{4}$$

$$\boldsymbol{g}_{leave}(i) = \sum_{n}^{|N_{g}|} a_{g,n}(T_{g,i}) k_{g,n} \sigma V_{i} T_{g,i}^{4} \quad \boldsymbol{h}_{g}(i) = -(\dot{Q}_{conv})_{i} + (\dot{Q}_{fuel,net})_{i} + (\dot{Q}_{a})_{i} + \boldsymbol{q}_{i}$$
(8)

Here, the constants (known apriori) $(\dot{Q}_{conv})_i, (\dot{Q}_{fuel,net})_i, \text{ and } (\dot{Q}_a)_i$ respectively denote the con-vection heat transfer, heat release due to input fuel, and thermal input from air/ oxygen. An enthalpy vector $q \in \mathbb{R}^{|G|}$ is computed using the flow-pattern obtained via polynomial curve fitting during simulation. σ is the Stefan-Boltzmann constant, V_i is volume of i^{th} gas zone.

Let, $s_{(s)arr} \in \mathbb{R}^{|S|}$, be a vector whose i^{th} entry represents the amount of radiation arriving at the i^{th} surface zone from all the other surface zones, $g_{(s)arr} \in \mathbb{R}^{|S|}$, a vector whose i^{th} entry represents the amount of radiation arriving at the i^{th} surface zone from all the other gas zones, $s_{leave} \in \mathbb{R}^{|S|}$, a vector whose i^{th} entry represents the amount of radiation leaving the i^{th} surface zone, and $h_s \in \mathbb{R}^{|S|}$ a heat term. Then, following EBS equations, the i^{th} entries of $s_{(s)arr}$, $g_{(s)arr}$, s_{leave} and h_s can be computed as:

274 275

$$\boldsymbol{s}_{(s)arr}(i) = \sum_{j}^{|S|} \boldsymbol{S}_{i} \boldsymbol{S}_{j} \sigma T_{s,j}^{4}; \quad \boldsymbol{g}_{(s)arr}(i) = \sum_{j}^{|G|} \boldsymbol{S}_{i} \boldsymbol{G}_{j} \sigma T_{g,j}^{4}$$

$$\boldsymbol{s}_{leave}(i) = A_{i} \epsilon_{i} \sigma T_{s,i}^{4}; \qquad \boldsymbol{h}_{s}(i) = A_{i} (\dot{q}_{conv})_{i} - \dot{Q}_{s,i}$$
(9)

276 277 278

For a surface zone *i*, the constants (known apriori) $A_i(\dot{q}_{conv})_i$ and $\dot{Q}_{s,i}$ respectively denote the heat flux to the surface by convection and heat transfer from it to the other surfaces. Here, A_i is the area, and ϵ_i is the emissivity of the *i*th surface zone.

The calculated terms in the Energy-Balance (EB) equations represent the heat entering and leaving each zone. In simpler terms, these equations ensure an energy balance by placing all incoming heat terms on the left-hand side (LHS) and outgoing terms on the right-hand side (RHS). Leveraging these terms in an optimization framework allows us to minimize the difference between LHS and RHS. To achieve this, we introduce the following terms:

288

289 290 $\boldsymbol{v}_{g} = (\boldsymbol{g}_{(g)arr} + \boldsymbol{s}_{(g)arr} - 4\boldsymbol{g}_{leave} + \boldsymbol{h}_{g}) \in \mathbb{R}^{|G|}$ $\boldsymbol{v}_{s} = (\boldsymbol{s}_{(s)arr} + \boldsymbol{g}_{(s)arr} - \boldsymbol{s}_{leave} + \boldsymbol{h}_{s}) \in \mathbb{R}^{|S|}$ (10)

Here, |G|/|S| denotes the number of Gas/ Surface zones. Intuitively, v_g and v_s are vector representatives corresponding to EBV and EBS. Let, λ_{ebv} , $\lambda_{ebs} > 0$ are hyper-parameters corresponding to \mathcal{L}_{ebv} and \mathcal{L}_{ebs} , such that $\mathcal{L}_{ebv}=||\text{normalize}(v_g)||_2^2$ is our proposed regularizer term corresponding to the **EBV**. Similarly, $\mathcal{L}_{ebs}=||\text{normalize}(v_s)||_2^2$ is our proposed regularizer term corresponding to the **EBS**. We use: normalize(v) = $v/\max(v)$, where $\max(v)$ is the maximum value from among all components in v.

The core idea is to leverage the Energy Balance (EB) equations, which represent well-established 297 physical laws governing heat transfer in the furnace. These equations enforce a balance between 298 incoming and outgoing heat for each zone. The vectors v_q and v_s capture the residuals between the 299 incoming and outgoing heat terms in the EB equations for gas (g) and surface (s) zones, respectively. 300 By minimizing the L2 norm of these residuals (after normalization), we are essentially penalizing 301 the network for deviating significantly from the physical constraints imposed by the EB equations. 302 This encourages the network to learn temperature profiles that adhere to these well-defined energy 303 balances. 304

Minimizing the L2 norm encourages the network to drive all components of the residual vectors towards zero. The normalization step ensures all zones contribute equally to the penalty, regardless of their absolute temperature values. This prevents zones with naturally higher temperatures from dominating the regularization term.

3.5 PUTTING TOGETHER THE NEURAL NETWORK OBJECTIVE

311 We now discuss the design of our final neural network. We formulate the objective in such a way that 312 we can plug the above proposed regularizers in a standalone neural network architecture trained to 313 regress output temperatures given a set of easily available input entities at each time step of a furnace 314 operation. While starting the furnace operation, ambient temperatures are readily available (depicting 315 the *initial state of the furnace*), along with walk interval, desired target set point temperatures. Then, based on the firing rates chosen for the burners of the furnace, there would be a resulting flow pattern 316 in the furnace. This is a result of heat flow, and mass flow within the furnace (mass flow happens 317 because of the slab movements, which need to be heated). This flow pattern would cause a change 318 in the overall enthalpy, leading to a new temperature profile (new state) of the furnace, which can 319 be measured by the resulting new gas and surface zone temperatures. These temperatures in turn 320 could serve as input temperatures for the next step's prediction. For a more intuitive understanding of 321 furnace operation, please refer Section A.8. 322

In a practical setup, a neural network deployed could expect to consume the previous step temperatures, firing rates, walk interval, and set point temperatures as inputs. The output could then be the new

324 temperatures, and the next firing rates as well. With input-output data $\mathcal{X} = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$ acquired 325 in this manner, we can estimate parameters θ of a neural network $f_{\theta}(.)$ by training it to predict $y^{(i)}$ 326 given $x^{(i)}$, for all time step *i*, as: 327

$$\theta^* \leftarrow \operatorname*{arg\,min}_{\theta} \mathcal{L}_{sup} \tag{11}$$

328

348 349

Here, $\mathcal{L}_{sup} = \mathbb{E}_{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)}) \in \mathcal{X}}[||\boldsymbol{y}^{(i)} - f_{\theta}(\boldsymbol{x}^{(i)})||_{2}^{2}]$ is a standard supervised term for regression. To 330 make such a network physics-aware, all we need to do is include the above proposed terms \mathcal{L}_{ebv} 331 and \mathcal{L}_{ebs} into the final objective. It should be noted that, in doing so, we do not need to make any 332 architectural changes to the network in terms of inputs and outputs. Also, all auxiliary variables used in computation of (8) and (9) are only used during training of a physics-aware network, and are not 333 required in the inference. 334

335 The regularization terms are computed using additional vectors as described earlier, influence the 336 learning because they have the temperature terms in them. For example, in (10), v_q depends on 337 gas zone temperatures $T_{g,j}$ via $g_{(g)arr}, g_{leave}$ in (8). While computing \mathcal{L}_{ebv} we obtain the $T_{g,j}$ 338 terms using the network output, which are associated with the computational graph and thus help 339 the updates during back-propagation. On the other hand, $s_{(q)arr}$ is associated with $T_{s,j}$ which are detached for back-propagation while updating gas zone temperatures. 340

341 Similarly, in (10), v_s depends on surface zone temperatures $T_{s,j}$ via $s_{(s)arr}$, s_{leave} in (9). While 342 computing \mathcal{L}_{ebs} we obtain the $T_{s,j}$ terms using the network output, which are associated with 343 the computational graph and thus help the updates during back-propagation. On the other hand, 344 $g_{(s)arr}$ is associated with $T_{q,j}$ which are detached for back-propagation while updating surface zone 345 temperatures.

346 The overall physics-aware loss is formulated as: 347

$$\mathcal{L}_{total} = \mathcal{L}_{sup} + \lambda_{ebv} \mathcal{L}_{ebv} + \lambda_{ebs} \mathcal{L}_{ebs}$$
(12)

(12)

When calculating the physics-aware loss terms we detach certain temperature terms associated 350 with one zone type (e.g., surface zone temperatures) during updates of the other zone type (e.g., 351 gas zone temperatures). This prevents the network from altering these relationships unnaturally 352 during backpropagation. As analogy, we can refer to a Teacher-Student Learning setup: Imagine the 353 network learning from a teacher (the EB equations) that provides the correct temperature relationships. 354 Detaching specific terms allows the network to focus on learning the mapping between furnace inputs 355 and its own predicted zone temperatures, while still adhering to the guidance provided by the teacher 356 (the EB equations) through the physics-aware loss terms. Algorithm 1 provides detailed steps of our 357 proposed approach.

358 359 Algorithm 1 Algorithm of the proposed method 360 1: Input: $\mathcal{X} = \{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)})\}_{i=1}^{N}$, furnace configuration (set points and walk interval). maxeps > 0. 361 2: Initialize θ , TEAs, λ_{ebv} , $\lambda_{ebs} > 0$. 362 3: Initialize $t_G \in \mathbb{R}^{|G|}, t_S \in \mathbb{R}^{|S|}$ with ambient temperatures, and firing rates. 4: for EN=1 to maxeps do \triangleright EN: Epoch No. 364 5: for i=1 to N do \triangleright i: time step Compute DFAs $\overline{G}\overline{G}^{(t)}, \overline{G}\overline{S}^{(t)}, \overline{S}\overline{G}^{(t)}, \overline{S}\overline{S}^{(t)}$ using (6) and (7). 365 6: 7: Compute \mathcal{L}_{ebv} using (8) and (10). 366 8: Compute \mathcal{L}_{ebs} using (9) and (10). 367 Compute L_{sup} using \mathcal{X} . $\theta^{(i)} \leftarrow \theta^{(i-1)} - \eta \nabla_{\theta} \mathcal{L}_{total}$ 9: 368 10: \triangleright Using (12) 369 11: end for 370 12: end for 13: $\theta^* \leftarrow \theta^{N.maxeps}$ 371 14: return θ^* 372

373 374 375

376

EXPERIMENTS 4

In this section we report results on 11 datasets obtained using different configurations of a real-world 377 furnace based on Hu et al. (2019) (details in Section A.8.3). Major objective of the experiments is

Dataset	N1-2		965_1220_1250_750											
Metric/ Method	MLP	PBMLP	LSTM	PBLSTM	DLSTM	PBDLSTM	KAN	PBKAN	xLSTM	PBxLSTM				
RMSE tG (↓)	113.4	35.6	33.0	26.7	117.1	32.4	24.3	22.6	130.6	29.3				
RMSE tS fur (\downarrow)	116.4	22.4	25.6	11.7	114.4	24.9	15.2	14.6	119.1	20.4				
RMSE tS obs (\downarrow)	106.9	43.4	61.1	66.5	109.3	67.4	35.1	33.6	139.8	45.4				
MAE tG (\downarrow)	89.5	28.2	27.4	16.9	100.9	27.2	21.4	19.9	129.1	26.8				
MAE tS fur (\downarrow)	96.2	17.8	21.5	9.9	101.1	20.1	14.3	13.8	118.6	19.5				
MAE tS obs (\downarrow)	79.9	29.6	39.4	31.4	86.9	44.4	29.8	29.3	136.3	39.8				
mMAPE fr (\downarrow)	176.6	58.5	29.5	23.5	201.0	26.2	44.2	32.6	200.8	27.8				

 Table 2: Comparison of proposed methods on the N2-1 Dataset

Dataset	N2-1		955_1190_1250_750												
Metric/ Method	MLP	PBMLP	LSTM	PBLSTM	DLSTM	PBDLSTM	KAN	PBKAN	xLSTM	PBxLSTM					
RMSE tG (↓)	121.1	45.4	36.8	37.0	123.4	28.3	29.5	18.0	95.5	33.0					
RMSE tS fur (\downarrow)	123.8	27.6	29.5	28.9	120.5	18.7	20.7	8.8	80.6	24.9					
RMSE tS obs (\downarrow)	113.1	52.4	65.6	63.3	114.5	51.9	41.0	27.2	90.7	51.7					
MAE tG (\downarrow)	96.9	38.8	31.3	31.4	106.9	19.7	26.2	15.4	93.5	30.3					
MAE tS fur (\downarrow)	103.6	24.8	26.7	25.5	106.4	16.5	19.8	7.7	80.1	24.1					
MAE tS obs (\downarrow)	87.4	39.9	46.2	44.2	92.2	21.9	35.9	22.9	86.6	46.5					
mMAPE fr (\downarrow)	187.6	67.8	28.4	29.8	210.6	24.9	43.7	34.2	212.3	26.2					

394

395

396

397

378379380381382

384 385

to consider different neural network architectures with and without our proposed regularizers (and keeping everything else constant). Any gains reported could be attributed to our proposed regularizers that seek to enhance the physics-awareness of a network. Results across all the 11 datasets are reported in Tables 6, 7, 8, 9.

For neural network architectures, we study following variants: MLP, LSTM, a stacked/deep LSTM 398 (DLSTM) and recently proposed KAN and xLSTM. We use commonly used regression performance 399 metrics such as RMSE and MAE for the temperature prediction. We also report MAPE additionally 400 for predicting the next firing rates (MAPE is more suitable due to the range of values that firing rates 401 take). A metric against each of the different entities has been reported. For example, RMSE tS fur 402 denotes the average RMSE for all the furnace surface zone predictions, RMSE tS obs denotes the 403 average RMSE for all the obstacle surface zone predictions, RMSE tG denotes the average RMSE for 404 all the gas zone predictions. mMAPE fr indicates the performance on the firing rate predictions. For 405 all metrics, a lower value indicates a better performance. All metrics are reported along the rows of a table, and the columns represent the different methods. For each row, the best performing metric 406 corresponding to a method is shown in bold. 407

In Table 1 we report the performance of the architectures MLP, LSTM, DLSTM, KAN and xLSTM
on the N1-2 dataset. We also report performances of PBMLP, PBLSTM, PBDLSTM, PBKAN
and PBxLSTM, which are the Physics-Based (PB) variants of MLP, LSTM, DLSTM, KAN and
PBxLSTM respectively. The green colored cells indicate that a PB variant has obtained a better
performance than a vanilla variant without our proposed regularizers. Compared to the simpler MLP,
we could see massive gains by the PBMLP.

414 The DLSTM (and xLSTM) variant possibly tends to overfit due to stacking of more LSTM layers, and 415 performs worse compared to a vanilla LSTM model. Stacking LSTMs offered no advantage likely 416 due to the data's inherent structure. Unlike language tasks that benefit from complex LSTM modeling with longer windows/time steps, zone-based method only requires capturing the relationship between 417 the current state (s(i)) and the next (s(i+1)). Our data generation (details in Appendix) captures the 418 relationship between current state (s(i)) and next state (s(i+1)), making complex LSTM architectures 419 unnecessary. Initial experiments confirmed this, showing no significant improvement with longer 420 windows compared to the simpler s(i), s(i+1) pairs. This aligns with Occam's razor - favoring simpler 421 models with comparable performance. 422

However, when equipped with our regularizers, the PBDLSTM (and PBxLSTM) method obtains
much better performance than the DLSTM (and xLSTM). The vanilla LSTM which performs better
than the MLP and DLSTM, also obtains improvements after using the physics based regularizers, as
indicated by the performance of PBLSTM. We also notice KAN to perform better than the base MLP
(as observed in recent literature). In fact, the PBKAN variant performs the best among all methods at
times.

In Table 2 we report performances of the same approaches on the N2-1 dataset. We observed similar conclusions: the PB variants were outperforming their vanilla variants (as shown by green), thus depicting the benefit of the proposed regularizers. In this case, we observed that the PBKAN method obtains the best performance among all.

Figure 3: Plot of actual (blue) and predicted (red) temperatures (in $^{\circ}C$) across all obstacle surface zones using PBMLP. In (a) we omit previous furnace temperatures from the neural network input to show that performance degrades.

Difference in the datasets N1-2 and N2-1 comes by varying setpoint temperatures of the first and second control zones of the furnace. This shows that depending on the furnace configuration of the same geometry, the performance of a deep learning model may vary as the data distribution changes due to the difference in underlying physical entities. However, if equipped with physics based regularizers, we could make the network adhere to the governing laws, and get a reasonable predictive performance.

We further report on how the different methods perform across varying configurations or datasets on average, in Table 3. We observed similar performances, where the PB variants led to better performance. In Tables 6, 7, 8, 9 we report the performances of the compared approaches across all the 11 datasets. We noticed that not only the PB variants obtain a better performance throughout, they are also more stable across different datasets as indicated by their standard deviations.

In Figure 4 we plot the convergence of our PBMLP method. Losses with respect to all the individual terms converge well. In Figure 3 we report visual plots of actual and predicted temperatures for PBMLP. We also show that omitting previous temperatures from the neural network inputs leads to an worse performance, thus, highlighting the impact of a furnace state on the model performance. We conducted a sensitivity analysis of λ_{ebv} and λ_{ebs} in Figure 5, observing stable performance across values.

468 469

470

432

433

434

435

436

437

438 439

447

4.1 FINAL NOTE ON IMPACT OF ENERGY-BALANCE REGULARIZATION

Throughout the text, for all baseline methods in a column, the counterpart with the PB- prefix
(eg, PBMLP, PBLSTM, PBDLSTM, PBKAN, PBxLSTM) indicates the usage of energy-balance
regularization terms, and the green colored metrics all denote the consistent performance boost, as
compared to the vanilla variants (eg, MLP, LSTM, DLSTM, KAN, xLSTM).

475 476

477

4.2 COMPARISON AGAINST RECENT STATE-OF-THE-ART (SOTA)

While we acknowledge the importance of contextualizing our work, we recognize that making direct
comparisons is challenging due to the unique characteristics of our framework. Most existing methods
in the literature focus on limited exchange areas in furnace temperature modeling. In contrast, our
robust data generation framework encompasses the entire set of exchange areas, which is essential
for accurate temperature profiling.

To facilitate meaningful comparisons, we relate our results to established baselines recognized as State-Of-The-Art (SOTA) techniques in settings similar to ours. Specifically, we evaluate the impact of our research by comparing our proposed Physics-Based (PB) variants against the following methods: i) MLRVPST (Bao et al. (2023)) and ii) PTDL-LSTM (de Souza Lima et al. (2023)), the

Dataset	Average										
Metric/ Method	MLRVPST (Bao et al. (2023))	PTDL-LSTM (de Souza Lima et al. (2023))	PBLSTM	PBDLSTM	PBKAN	PBxLSTM					
RMSE tG (↓)	31.2	37.2	30.4	27.9	19.3	31.7					
RMSE tS fur (\downarrow)	24.5	27.1	20.2	20.5	12.4	24.2					
RMSE tS obs (\downarrow)	51.1	64.9	64.1	61.7	29.8	45.8					
MAE tG (\downarrow)	28.8	29.7	23.8	22.4	16.8	29.5					
MAE tS fur (\downarrow)	23.7	23.1	18.1	17.3	11.6	23.5					
MAE tS obs (\downarrow)	45.9	40.7	38.6	36.0	25.7	40.5					
mMAPE fr (\downarrow)	29.6	39.2	26.7	25.9	39.3	37.5					

Table 4: Comparison of proposed methods on average across the datasets against recent SOTA.

latter of which is comparable to our LSTM implementation. The results of the comparisons are presented in Table 4. We observed that our proposed variants outperform the SOTA in general. The full set of results are presented in Tables 11, 12, 13, and 14.

5 CONCLUSIONS

486

495

496

497 498 499

500

511

522 523

524 525

526

This work proposes a novel regularization technique that leverages the Hottel Zone method to
make deep neural networks *physics-aware* for improved furnace temperature profile prediction. Our
approach is effective across various network architectures, including Multi-Layer Perceptrons (MLPs),
Long Short-Term Memory (LSTM) networks, Kolmogorov-Arnold Networks (KANs) and Extended
LSTM (xLSTM), as evidenced on datasets based on real-world furnace configurations with varying
set points. In Sections A.9 and A.10, we respectively discuss further real-life applications of our
work, along with limitations of our work and future research directions.

- 508 ACKNOWLEDGMENTS
- ⁵¹⁰ The authors wish to acknowledge
- 512 ETHICS STATEMENT
- 513 514 There are no ethical concerns related to our work.
- 515 516 REPRODUCIBILITY STATEMENT

Sections A.4, A.6, A.8.2, and A.8.3 respectively aim at ensuring reproducibility at the following four
levels: 1. Architectural and training details (e.g. number of epochs, hyper-parameters used, etc), 2.
PyTorch-styled code for understanding of the implementation, 3. Algorithmic methodology used to
generate dataset for ML model training, and 4. Exact data set creations and splits used for training
and evaluation, with details.

- References
- Yunqi Ban, Xianpeng Wang, Guodong Zhao, and Jian Wu. *Multiobjective Operation Optimization of Reheating Furnace based on Data Analytics*, 2023. 2, 17
- Qingfeng Bao, Sen Zhang, Jin Guo, Zhiqiang Li, and Zhenquan Zhang. Multivariate linear-regression variable parameter spatio-temporal zoning model for temperature prediction in steel rolling reheating furnace. *Journal of Process Control*, 123:108–122, 2023. 2, 9, 10, 18, 21

Laura Boca de Giuli. *Physics-based neural network modelling, predictive control and lifelong learning applied to district heating systems*, 2023. 2, 18

- Felix Bünning, Benjamin Huber, Adrian Schalbetter, Ahmed Aboudonia, Mathias Hudoba de Badyn, Philipp Heer, Roy S Smith, and John Lygeros. Physics-informed linear regression is competitive with two machine learning methods in residential building mpc. *Applied Energy*, 310:118491, 2022. 2, 18
- Shengze Cai, Zhicheng Wang, Sifan Wang, Paris Perdikaris, and George Em Karniadakis. Physics informed neural networks for heat transfer problems. *Journal of Heat Transfer*, 143(6):060801, 2021. 2, 18

- 540 Chien-Jung Chen, Fu-I Chou, and Jyh-Horng Chou. Temperature prediction for reheating furnace by 541 gated recurrent unit approach. IEEE Access, 10:33362–33369, 2022. 2, 18 542 M De Beer, CG Du Toit, and PG Rousseau. A methodology to investigate the contribution of 543 conduction and radiation heat transfer to the effective thermal conductivity of packed graphite 544 pebble beds, including the wall effect. Nuclear Engineering and Design, 314:67-81, 2017. 16 546 Rodrigo de Souza Lima, Leonardo Azevedo Scárdua, and Gustavo Maia de Almeida. Predicting 547 temperatures inside a steel slab reheating furnace using deep learning. Seven Editora, 2023. 2, 9, 548 10, 17, 21 549 Ján Drgoňa, Aaron R Tuor, Vikas Chandan, and Draguna L Vrabie. Physics-constrained deep learning 550 of multi-zone building thermal dynamics. Energy and Buildings, 243:110992, 2021. 2, 18 551 552 Hadi Ebrahimi, Akbar Zamaniyan, Jafar S Soltan Mohammadzadeh, and Ali Asghar Khalili. Zonal 553 modeling of radiative heat transfer in industrial furnaces using simplified model for exchange area 554 calculation. Applied Mathematical Modelling, 37(16-17):8004–8015, 2013. 2, 17 555 556 Heather N Emady, Kellie V Anderson, William G Borghard, Fernando J Muzzio, Benjamin J Glasser, and Alberto Cuitino. Prediction of conductive heating time scales of particles in a rotary drum. Chemical Engineering Science, 152:45–54, 2016. 16 558 559 EPSRC report. EPSRC report. https://gow.epsrc.ukri.org/NGBOViewGrant.aspx? 560 GrantRef=EP/V026402/1, 2020. 1, 15 561 562 YT Feng and K Han. An accurate evaluation of geometric view factors for modelling radia-563 tive heat transfer in randomly packed beds of equally sized spheres. International journal of heat and mass transfer, 55:6374–6383, 2012. URL https://doi.org/10.1016/j. 564 ijheatmasstransfer.2012.06.025.2 565 566 SL Costa Ferreira, RE Bruns, Hadla Sousa Ferreira, Geraldo Domingues Matos, JM David, 567
 - GC Brandão, EG Paranhos da Silva, LA Portugal, PS Dos Reis, AS Souza, et al. Box-behnken design: an alternative for the optimization of analytical methods. Analytica chimica acta, 597(2): 179–186, 2007. 29
- 571 Juan José García-Esteban, Jorge Bravo-Abad, and Juan Carlos Cuevas. Deep learning for the modeling and inverse design of radiative heat transfer. *Physical Review Applied*, 16(6):064006, 572 2021. 2, 17 573
- 574 Daniel Halme Ståhlberg. Digital twin of a reheating furnace, 2021. 2, 17 575

569

570

580

581

582

583

586

589

591

- 576 Jiawei Han, Mehrdad Mesgarpour, Lazarus Godson Asirvatham, Somchai Wongwises, Ho Seon Ahn, 577 and Omid Mahian. A hyper-optimisation method based on a physics-informed machine learning 578 and point clouds for a flat plate solar collector. Journal of Thermal Analysis and Calorimetry, pp. 1-20, 2023. 2, 18 579
 - Zhili He, Futao Ni, Weiguo Wang, and Jian Zhang. A physics-informed deep learning method for solving direct and inverse heat conduction problems of materials. *Materials Today Communications*, 28:102719, 2021. 2, 18
- 584 HC Hottel and ES Cohen. Radiant heat exchange in a gas-filled enclosure: Allowance for nonunifor-585 mity of gas temperature. AIChE Journal, 4(1):3-14, 1958. 16, 29
- Hoyt C Hottel and Adel F Saforim. Radiative transfer. McGraw-Hill, 1967. 16, 29 587
- 588 Yukun Hu, CK Tan, Jonathan Broughton, and Paul Alun Roach. Development of a first-principles hybrid model for large-scale reheating furnaces. Applied Energy, 173:555–566, 2016. 1, 4, 5, 16, 590 28, 29, 31
- Yukun Hu, CK Tan, Jonathan Broughton, Paul Alun Roach, and Liz Varga. Model-based multi-592 objective optimisation of reheating furnace operations using genetic algorithm. Energy Procedia, 142:2143-2151, 2017. 2, 17

594 595 596	Yukun Hu, CK Tan, Jonathan Broughton, Paul Alun Roach, and Liz Varga. Nonlinear dynamic simulation and control of large-scale reheating furnace operations using a zone method based model. <i>Applied Thermal Engineering</i> , 135:41–53, 2018. 2, 17
597 598 599 600 601	Yukun Hu, CK Tan, John Niska, Jahedul Islam Chowdhury, Nazmiye Balta-Ozkan, Liz Varga, Paul Alun Roach, and Chunsheng Wang. Modelling and simulation of steel reheating processes under oxy-fuel combustion conditions–technical and environmental perspectives. <i>Energy</i> , 185: 730–743, 2019. 1, 7, 15, 25, 26, 28
602 603 604 605	Soonsung Hwang, Gunwoo Jeon, Jongpil Jeong, and JunYoul Lee. A novel time series based seq2seq model for temperature prediction in firing furnace process. <i>Procedia Computer Science</i> , 155: 19–26, 2019. 2, 18
606 607	IOM3 report. IOM3 report. https://www.iom3.org/resource/ transforming-foundations-industries.html, 2023. 1, 15
608 609 610 611	Jung Hyun Jang, Dong Eun Lee, Man Young Kim, and Hyong Gon Kim. Investigation of the slab heating characteristics in a reheating furnace with the formation and growth of scale on the slab surface. <i>International Journal of Heat and Mass Transfer</i> , 53(19-20):4326–4332, 2010. 2, 17
612 613 614	Gang Jing, Chenguang Ning, Jingwen Qin, Xudong Ding, Peiyong Duan, Haitao Liu, and Huiyun Sang. Physics-guided framework of neural network for fast full-field temperature prediction of indoor environment. <i>Journal of Building Engineering</i> , 68:106054, 2023. 2, 18
615 616 617	George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-informed machine learning. <i>Nature Reviews Physics</i> , 3(6):422–440, 2021. 2, 18
618 619 620 621	Jong Gyu Kim and Kang Y Huh. Prediction of transient slab temperature distribution in the re-heating furnace of a walking-beam type for rolling of steel slabs. <i>ISIJ international</i> , 40(11):1115–1123, 2000. 2, 17
622 623 624	Kyung Mo Kim, Paul Hurley, and Juliana Pacheco Duarte. Physics-informed machine learning-aided framework for prediction of minimum film boiling temperature. <i>International Journal of Heat and Mass Transfer</i> , 191:122839, 2022. 2, 18
625 626 627 628	Man Young Kim. A heat transfer model for the analysis of transient heating of the slab in a direct-fired walking beam type reheating furnace. <i>International Journal of Heat and Mass Transfer</i> , 50(19-20): 3740–3748, 2007. 2, 17
629 630 631	Manu Lahariya, Farzaneh Karami, Chris Develder, and Guillaume Crevecoeur. Physics-informed lstm network for flexibility identification in evaporative cooling system. <i>IEEE Transactions on Industrial Informatics</i> , 19(2):1484–1494, 2022. 2, 18
632 633 634 635	Guojun Li, Wenchao Ji, Linyang Wei, and Zhi Yi. A novel fuel supplies scheme based on the retrieval solutions of the decoupled zone method for reheating furnace. <i>International Communications in Heat and Mass Transfer</i> , 141:106572, 2023. 2, 17
636 637	Kang Li. Eng-genes: a new genetic modelling approach for nonlinear dynamic systems. <i>IFAC Proceedings Volumes</i> , 38(1):162–167, 2005. 2, 17
638 639 640 641	Tian Liang, Shanshan Wang, Chunyang Lu, Nan Jiang, Wenqi Long, Min Zhang, and Ruiqin Zhang. Environmental impact evaluation of an iron and steel plant in china: Normalized data and direct/indirect contribution. <i>Journal of Cleaner Production</i> , 264:121697, 2020. 1, 15
642 643 644 645	Ying-Xin Liao, Jin-Hua She, and Min Wu. Integrated hybrid-pso and fuzzy-nn decoupling control for temperature of reheating furnace. <i>IEEE transactions on industrial electronics</i> , 56(7):2704–2714, 2009. 2, 17
646 647	Jan Marti, Andreas Haselbacher, and Aldo Steinfeld. A numerical investigation of gas-particle suspensions as heat transfer media for high-temperature concentrated solar power. <i>International Journal of Heat and Mass Transfer</i> , 90:1056–1070, 2015. 2, 16

648 649 650	AD Matthew, CK Tan, PA Roach, J Ward, J Broughton, and A Heeley. Calculation of the radiative heat-exchange areas in a large-scale furnace with the use of the monte carlo method. <i>Journal of Engineering Physics and Thermophysics</i> , 87(3):732–742, 2014. 3 , 29
652 653 654	Matthieu Melot, Jean-Yves Trépanier, Ricardo Camarero, and Eddy Petro. Comparison of two models for radiative heat transfer in high temperature thermal plasmas. <i>Modelling and Simulation in Engineering</i> , 2011, 2011. 2, 17
655 656 657	Christopher L Muhich, Brian D Ehrhart, Ibraheam Al-Shankiti, Barbara J Ward, Charles B Musgrave, and Alan W Weimer. A review and perspective of efficient hydrogen generation via solar thermal water splitting. <i>Wiley Interdisciplinary Reviews: Energy and Environment</i> , 5(3):261–287, 2016. 2
659 660	Net Zero by 2050. Net zero by 2050: A roadmap for the global energy sector. https://www.iea. org/reports/net-zero-by-2050, 2021. 15
661 662 663 664	 Xuan Manh Nguyen, Pedro Rodriguez-Ayerbe, F Lawayeb, Didier Dumur, and Alain Mouchette. Temperature control of reheating furnace based on distributed model predictive control. In 2014 18th International Conference on System Theory, Control and Computing (ICSTCC), pp. 726–731. IEEE, 2014. 2, 17
665 667 668	Tobias Oschmann and Harald Kruggel-Emden. A novel method for the calculation of particle heat conduction and resolved 3d wall heat transfer for the cfd/dem approach. <i>Powder Technology</i> , 338: 289–303, 2018. 16
669 670 671	Junho Park. Hybrid Machine Learning and Physics-Based Modeling Approaches for Process Control and Optimization. PhD thesis, Brigham Young University, 2022. 2, 18
672 673 674	Wei Qin, Zilong Zhuang, Yang Liu, and Jie Xu. Sustainable service oriented equipment maintenance management of steel enterprises using a two-stage optimization approach. <i>Robotics and Computer-Integrated Manufacturing</i> , 75:102311, 2022. 1, 15
675 676 677 678	Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. <i>Journal of Computational physics</i> , 378:686–707, 2019. 2, 18
679 680 681	Ling Shen, Zhipeng Chen, Xinyi Wang, and Jianjun He. Soft sensor modeling for 3d transient temperature field of large-scale aluminum alloy workpieces based on multi-loss consistency optimization pinn. <i>Sensors</i> , 23(14):6371, 2023. 2, 18
682 683 684	Guangwu Tang, Bin Wu, Dengqi Bai, Yufeng Wang, Rick Bodnar, and Chenn Q Zhou. Modeling of the slab heating process in a walking beam reheating furnace for process optimization. <i>International Journal of Heat and Mass Transfer</i> , 113:1142–1151, 2017. 2, 17
685 686 687 688	Josef Tausendschön and Stefan Radl. Deep neural network-based heat radiation modelling between particles and between walls and particles. <i>International Journal of Heat and Mass Transfer</i> , 177: 121557, 2021. 2, 17
689 690 691	Hong-Chuong Tran and Yu-Lung Lo. Heat transfer simulations of selective laser melting process based on volumetric heat source with powder size consideration. <i>Journal of Materials Processing Technology</i> , 255:411–425, 2018. 2
692 693 694 695	Ruihang Wang, Zhiwei Cao, Xin Zhou, Yonggang Wen, and Rui Tan. Phyllis: Physics-informed lifelong reinforcement learning for data center cooling control. In <i>Proceedings of the 14th ACM International Conference on Future Energy Systems</i> , pp. 114–126, 2023. 2, 18
696 697	Gregor D Wehinger. Radiation matters in fixed-bed cfd simulations. <i>Chemie Ingenieur Technik</i> , 91 (5):583–591, 2019. 16
699 700 701	Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E Bourne, et al. The fair guiding principles for scientific data management and stewardship. <i>Scientific data</i> , 3 (1):1–9, 2016. 33

702 703 704	Hong Yu, Jiangnan Gong, Guoyin Wang, and Xiaofang Chen. A hybrid model for billet tapping temperature prediction and optimization in reheating furnace. <i>IEEE Transactions on Industrial</i> <i>Informatics</i> , 2022. 2, 17
705 706 707 708	Qing-bo Yu, Zhong-wu Lu, and Jiu-ju Cai. Calculating method for influence of material flow on energy consumption in steel manufacturing process. <i>Journal of Iron and Steel Research, International</i> , 14(2):46–51, 2007. 1, 15
709 710 711	Walter W Yuen. Rad-nnet, a neural network based correlation developed for a realistic simulation of the non-gray radiative heat transfer effect in three-dimensional gas-particle mixtures. <i>International Journal of Heat and Mass Transfer</i> , 52(13-14):3159–3168, 2009. 2, 17
712 713 714 715	Walter W Yuen and Ezra E Takara. The zonal method: A practical solution method for radiative transfer in nonisothermal inhomogeneous media. <i>Annual review of heat transfer</i> , 8, 1997. 1, 3, 14, 17, 28, 29
716 717	Silvia Maria Zanoli, Crescenzo Pepe, and Lorenzo Orlietti. Multi-mode model predictive control approach for steel billets reheating furnaces. <i>Sensors</i> , 23(8):3966, 2023. 2, 17
718 719 720	Naiju Zhai and Xiaofeng Zhou. Temperature prediction of heating furnace based on deep transfer learning. <i>Sensors</i> , 20(17):4676, 2020. 2, 17
721 722 723	Naiju Zhai, Xiaofeng Zhou, Shuai Li, and Haibo Shi. Soft sensor model for billet temperature in multiple heating furnaces based on transfer learning. <i>IEEE Transactions on Instrumentation and Measurement</i> , 2023. 2, 17
724 725 726 727 728	Qi Zhang, Jin Xu, Yujie Wang, Ali Hasanbeigi, Wei Zhang, Hongyou Lu, and Marlene Arens. Comprehensive assessment of energy conservation and co2 emissions mitigation in china's iron and steel industry based on dynamic material flows. <i>Applied Energy</i> , 209:251–265, 2018. URL https://doi.org/10.1016/j.apenergy.2017.10.084. 1, 15
729 730 731	Xingang Zhao, Koroush Shirvan, Robert K Salko, and Fengdi Guo. On the prediction of critical heat flux using a physics-informed machine learning-aided framework. <i>Applied Thermal Engineering</i> , 164:114540, 2020. 2, 18
732 733 734 735 736	Jianhua Zhou, Yuwen Zhang, and JK Chen. Numerical simulation of laser irradiation to a randomly packed bimodal powder bed. <i>International Journal of Heat and Mass Transfer</i> , 52(13-14):3137–3146, 2009. 2
737 738	A APPENDIX
739 740 741 742 743 744 745 746	0.007 Supervised Loss 11.02 EBV Loss 0.00 EBS Loss 0.007 0.00 0.00 0.00 0.00 0.00 0.001 0.00 0.00 0.00 0.00 0.002 0.00 0.00 0.00 0.00 0.002 0.00 0.00 0.00 0.00 0.002 0.00 0.00 0.00 0.00
747 748	(a) (b) (c)
749	Figure 4: Convergence of PBMLP in training, considering: a) Supervised, b) EBV, and c) EBS terms.

A.1 MOTIVATION OF OUR WORK752

750

Yuen & Takara (1997) in their study, have proved the elegance and superiority of the zone method over contemporary counterparts to model the physical phenomenon in high-temperature processes. In our work, we use the zone method towards a real-world application for the Foundation Industries (FIs), applied to reheating furnaces, due to the close and natural association/ relation of the zone-method

765 with the latter. Foundation Industries (FIs) constitute glass, metals, cement, ceramics, bulk chemicals, 766 paper, steel, etc. and provide crucial, foundational materials for a diverse set of economically relevant industries: automobiles, machinery, construction, household appliances, chemicals, etc. FIs are 767 heavy revenue and employment drivers, for instance, FIs in the United Kingdom (UK) economy are 768 worth £52B (EPSRC report), employ 0.25 million people, and comprise over 7000 businesses (IOM3 769 report). The rapid acceleration in urbanization and industrialization over the decades has also led to 770 improved building design and construction techniques. Great emphasis has been gradually placed on 771 efficient heat generation, distribution, reduction, and optimized material usage. 772

However, despite their economic significance, as depicted by the above statistics, the FIs leverage energy-intensive methods. This makes FIs major industrial polluters and the largest consumers of natural resources across the globe. For example, in the UK, they produce 28 million tonnes of materials per year, and generate 10% of the entire UK's CO_2 emissions (EPSRC report; IOM3 report). Similarly, in China, the steel industry accounted for 15% of the total energy consumption, and 15.4% of the total CO_2 emissions (Zhang et al., 2018; Liang et al., 2020). These numbers put a challenge for the FIs in meeting our commitment to reduce net Green-House Gas (GHG) emissions, globally.

Various approaches have been relied upon to achieve the Net-Zero trajectory in FIs (Net Zero by 781 2050): switching of grids to low carbon alternatives via green electricity, sustainable bio-fuel, and 782 hydrogen sources, Carbon Capture and Storage (CCS), material reuse and recycling, etc. However, 783 among all transformation enablers, a more proactive way to address the current challenges would be 784 to tackle the core issue of process efficiency, via digitization, computer-integrated manufacturing, 785 and control systems. Areas of impact by digitization could be reducing plant downtime, material and 786 energy savings, resource efficiency, and industrial symbiosis, to name a few. Various computer-aided 787 studies have already been conducted in notable industrial scenarios. The NSG Group's Pilkington 788 UK Limited explored a sensor-driven Machine Learning (ML) model for product quality variation prediction (up to 72h), to reduce CO_2 emission by 30% till 2030 (IOM3 report). Similar studies on 789 service-oriented enterprise solutions for the steel industry have also been done recently in China (Qin 790 et al., 2022). 791

In this work, we tackle the key challenge of accurate and real-time temperature prediction in reheating 793 furnaces, which are the energy-intensive bottlenecks common across the FIs. To give a perspective to 794 the reader on why this is important, considering any process industry, such as the steel industry, one 795 can observe that at the core, lies the process of conversion of materials (e.g., iron) into final products. This is done using a series of unit processes (Yu et al., 2007). The production process involves key 796 steps such as dressing, sintering, smelting, casting, rolling, etc. A nice illustration of the different stages and processes in the steel industry can be found in Qin et al. (2022). The equipment in such 798 process industries operates in high-intensity environments (e.g., high temperature), and has bottleneck 799 components such as reheating furnaces, which require complex restart processes post-failure. This 800 causes additional labor costs and energy consumption. Thus, for sustainable manufacturing, it is 801 important to monitor the operating status of the furnaces via the furnace temperature profile. 802

A few studies (Hu et al., 2019) have shown promise in achieving notable fuel consumption reduction by reducing the overall heating time by even as less as 13 minutes while employing alternate combustion fuels. A key area of improvement for furnace operating status monitoring lies in leveraging efficient computational temperature control mechanisms within them. This is because energy consumption per kilogram of CO_2 could be reduced by a reduction in overall heating time.

As existing computational surrogate models have predictive capability bottlenecks, DL approaches can be used as suitable alternatives for real-time prediction. However, as only a handful of sensors/ thermo-couples could be physically placed within real-world furnaces (and that too at specific furnace 810 walls), the challenge of obtaining good-quality real-world data at scale to train DL models in such 811 scenarios remains infeasible. To alleviate this, we identify the classical Hottel's zone method (Hottel 812 & Cohen, 1958; Hottel & Saforim, 1967) which provides an elegant, iterative way to computationally 813 model the temperature profile within a furnace, requiring only a few initial entities which are easily 814 measurable. However, straightforward utilization of the same is not suitable for real-time deployment and prediction, due to computational expensiveness. For this reason, we propose that we generate 815 an offline data set using the zone method, consisting of input-output pairs to train and evaluate ML 816 models. We will provide a detailed description of the data generation methodology using the zone 817 method. 818

818 819

A.1.1 COMPUTATIONAL MODELS

Available computational surrogate models based on Computational Fluid Dynamics (CFD) (Wehinger, 2019; De Beer et al., 2017), Discrete Element Method (DEM) (Emady et al., 2016), CFD-DEM hybrids (Oschmann & Kruggel-Emden, 2018), Two Fluid Models (TFM) (Marti et al., 2015), etc. incur expensive and time-consuming data acquisition, design, optimization, and high inference times. To break through the predictive capability bottlenecks of these surrogate models, DL approaches can be suitable candidates for real-time prediction, owing to their accuracy and inherently faster inference times (often only in the order of milliseconds).

828 829

A.1.2 DISCUSSION ON COMPUTATIONAL ASPECTS

830 In general, PINNs/ PCNNs and accurate simulators (e.g., CFD models) are two different approaches 831 to solving a physical problem. In terms of computational efficiency, they cannot be compared at the 832 same level. While PCNNs could take milliseconds for inference, accurate simulators have difficulty 833 even achieving real-time simulation. Thus, PCNNs have the potential to be integrated directly into a 834 control system for real-time control. This is because PCNNs are a type of approaches that encode the 835 governing equations of the problem into the network training, whereas, accurate simulators are based 836 on numerical methods that discretize the problem domain and solve the equations on a mesh, which 837 can be time-consuming, and challenging to generate for complex geometries or moving boundaries (such as the furnace studied in our work). 838

Generally speaking, the zone method is faster and simpler to implement than the CFD method. For
example, even with a consumer-level PC, to simulate a 341-min real reheating process, the zone
model only takes 5 mins, but CFD models often take several days, if not weeks, to provide *useful*results (Hu et al., 2016). Therefore, in this study, we utilize the zone model to generate training data
for PCNNs. In future studies, the trained PCNNs will be integrated directly into furnace control
systems. For our study, typically, generating 1500 timesteps of data for a single furnace using the
zone method took about 2 hours, including the time for setting different configurations.

846 However, talking about the absolute time of a CFD case simulation itself depends on many factors, 847 such as mesh density, sub-model selection, step size settings, and computer hardware configuration. 848 Specific to our case, using the same configuration of PC, CFD simulation of the steady-state operating 849 conditions of each setting takes about 5 hours. So the total time taken is 5 hours multiplied by the number of simulated working conditions. For the simulation of unsteady operating conditions, CFD 850 is currently very difficult to implement, and some simplifications must be made. The specific time 851 consumption depends on the duration of the simulated unsteady process. For the real process of 341 852 min for the case we studied, CFD would take at least 5 days (vs, 5 min of the zone method). As for 853 the neural-network based implementations, for ML-based inference on a Apple M2 Max 32GB, our 854 PCNN takes roughly 0.5s for inferring the entire furnace profile for a single time step instance, given 855 the input variables as discussed.

856 857

858

859

A.1.3 COMPUTATIONAL EFFICIENCY (TRAINING AND TESTING TIME) BETWEEN METHODS WITH AND WITHOUT ENERGY-BALANCE BASED PHYSICS-REGULARIZATION

The training time per mini-batch/iteration increases by up to 10x for smaller batch sizes when compared to the vanilla variant without Energy-Balance (EB) regularization. This increase is primarily due to the various matrix multiplications involving the DFA/TEA terms with higher-order matrices, particularly from the surface zones that comprise the regularization terms. However, when considering absolute run times, the increase is minimal; for example, the runtime per mini-batch is approximately 76.11 seconds/iteration. We could reduce this further by using larger batch sizes to
 fully leverage GPU capabilities, although the performance gains would be marginal. In contrast, the
 simpler vanilla variants have a runtime of about 7.48 seconds/iteration.

During inference, the time remains the same for both variants, as the regularization terms are only required during training for the Physics-Based (PB) variants, with no changes in the architectures.

867

A.2 DETAILS OF RELATED WORK

872 While the research conducted in this work is at nascent stage, we believe it could pave way for further 873 developments from an ML perspective, to solve a real-world application problem with value in terms 874 of environmental sustainability. Our work, for an applied physical sciences reader, could inspire how 875 ML and DL could be used to address a niche domain scenario. At the same time, for an ML audience, 876 we believe that our work showcases a novel way to integrate physics based constraints into a neural 877 network, especially using the zone method. Arguably, there exists a plethora of works related to 878 PINNs, however, using PINNs to incorporate the zone method based regularizers as in our work, is a novel contribution to the community. The motivation to leverage the zone method also comes from 879 the fact that it provides an elegant (and superior) way, as studied by Yuen & Takara (1997), to model 880 the physical phenomenon in high-temperature processes inside reheating furnaces. 881

In this section, we exhaustively present a set of relevant approaches with which our work can be
loosely associated with. Specifically, we categorize them into two major classes: i) nonlinear dynamic
systems, radiative heat transfer and view factor modeling, and, ii) modeling in reheating furnaces.
We also talk about PINNs, and how our method is unique with respect to the existing literature.

(Category 1) Nonlinear dynamic systems, radiative heat transfer and view factor modeling:
 Our work at its heart is based on the zone method, which in turn relies on notions of radiative heat transfer and view factor modeling (or interchangeably, exchange area calculation). Describing the
 behavior of a furnace state involves combustion models, control loops, set point calculations, and
 fuel flux control in zones. It also involves linearization and model order reduction for state estimation
 and state-space control. The inherent complexity makes the modeling a nonlinear dynamic system.

While there is no exact similarity, our work shares some common philosophies with few earlier works. For instance, Ebrahimi et al. (2013) discuss the modeling of radiative heat transfer using simplified exchange area calculation. Radiative heat transfer in high-temperature thermal plasmas has been studied by Melot et al. (2011) while comparing two models. A nonlinear dynamic simulation and control based method has been studied by Hu et al. (2018). A classical work based on genetic algorithm for nonlinear dynamic systems (Li, 2005) is also present, which, instead of a data-driven approach, leverages a pre-defined set of mathematical functions.

Within this category, some approaches have also employed neural networks. In Yuen (2009), a network was trained for simulating non-gray radiative heat transfer effect in 3D gas-particle mixtures. Some approaches have used networks for view factor modeling with DEM-based simulations (Tausendschön & Radl, 2021), and some have addressed the near-field heat transfer or close regime (García-Esteban et al., 2021).

904 (Category 2) Modeling in reheating furnaces: We now discuss methods dealing with some form of 905 prediction or optimization in reheating furnaces. Classically, Kim & Huh (2000) discussed a method 906 to predict transient slab temperatures in a walking-beam furnace for rolling of steel slabs. Kim (2007) 907 proposed a model for analyzing transient slab heating in a direct-fired walking beam furnace. Jang 908 et al. (2010) investigated the slab heating characteristics with the formation and growth of scale. Tang et al. (2017) studied slab heating for process optimization. A distributed model predictive control 909 approach was proposed in Nguyen et al. (2014). Few multi-objective optimization methods were 910 discussed in Hu et al. (2017); Ban et al. (2023). A fuel supplies scheme based approach was proposed 911 in Li et al. (2023). Other related works involved multi-mode model predictive control approach for 912 steel billets (Zanoli et al., 2023), and a hybrid model for billet tapping temperature prediction (Yu 913 et al., 2022). 914

Some neural network based approaches in this category studied transfer learning (Zhai & Zhou, 2020; Zhai et al., 2023), digital twin modeling (Halme Ståhlberg, 2021), and steel slab temperature prediction (de Souza Lima et al., 2023). Liao et al. (2009) discussed an integrated hybrid-PSO and fuzzy-NN decoupling based solution. Other works have studied aspects related to time-series

modeling (Hwang et al., 2019; Chen et al., 2022), and multivariate linear-regression in steel rolling
 (Bao et al., 2023).

PINNs: The methods mentioned above discuss alternatives aimed at modeling either exchange factors with radiative heat transfer, or specific slab temperature predictions in reheating furnaces. However, they do not explicitly address physics-based prior incorporation within their optimization frameworks, especially for the neural network variants. To this end, we now discuss a few relevant works in the body of literature on PINNs. For a detailed review on PINNs in general, we refer the interested reader to the papers by Raissi et al. (2019); Karniadakis et al. (2021). It should be noted that PINNs are a broad category of approaches, and the literature is vast. Here, we discuss those methods which relate to certain aspects of thermal modeling.

928 Drgoňa et al. (2021) proposed a physics-constrained method to model multi-zone building thermal 929 dynamics. A multi-loss consistency optimization PINN (Shen et al., 2023) was proposed for large-930 scale aluminium alloy workpieces. Other approaches focus on prototype heat transfer problems and 931 power electronics applications Cai et al. (2021), minimum film boiling temperature (Kim et al., 2022), 932 critical heat flux (Zhao et al., 2020), solving direct and inverse heat conduction problems of materials 933 (He et al., 2021), lifelong learning in district heating systems (Boca de Giuli, 2023), PINN and point 934 clouds for flat plate solar collector (Han et al., 2023), residential building MPC (Bünning et al., 2022), 935 hybrid ML and PINN for Process Control and Optimization (Park, 2022), reinforcement learning for data center cooling control (Wang et al., 2023), flexibility identification in evaporative cooling 936 (Lahariya et al., 2022), and fast full-field temperature prediction of indoor environment (Jing et al., 937 2023). 938

939 Uniqueness of our work within existing literature: While we have observed a number of loosely
940 related methods as discussed above, upon a clear look at them, we can conclude the following:

941

942

943

944

945

946

947

- 1. **Comparison with category 1 methods:** Among the approaches focusing on view factor modeling with radiative transfer, the area of interest is often simplified. The modeling covers select few exchange areas. The methods are also geometry-specific. Our approach on the other hand seeks a generic, geometry-agnostic modeling that covers the entire set of exchange areas. The exchange areas can be intuitively perceived as those interfaces from where radiation can transfer, between a pair of zones (surface/gas). A background on exchange areas is provided in the proposed work section.
- 948The ones involving neural networks, often employ feed-forward Multi-Layer Perceptron949(MLP) models with few hidden layers. As showcased in our experiments, a simple MLP950trained to regress the outputs given certain inputs may not generalize well to unseen distribu-951tions, due to lack of explicit understanding of the underlying physics. On the other hand, we952empirically showcase that our proposed PCNN performs better than such a baseline MLP.953Within a single PCNN framework, our method can also cover other architectures such as953LSTMs, KANs, xLSTMs etc.
- 954 2. Comparison with category 2 methods: Both non-neural and neural-network based 955 methods presented in this category, as observed, focus on predicting temperatures only in 956 certain regions of a furnace, often, the slab temperature profiling. Our work, on the other 957 hand aims at achieving a complete furnace temperature profiling, ranging from the gas zones, to both types of surface zones: furnace walls as well as the slab/obstacle surfaces. 958 Our training data set is obtained based on the iterative zone method, and is more holistic in 959 nature as compared to the discussed methods. This makes an apple-to-apple comparison 960 difficult with other methods as they deal with different problem setups. Furthermore, the 961 neural methods in this category are not trained to be physics aware. 962
- 3. **Comparison with PINNs:** It should be noted that any PINN approach is driven by the 963 priors corresponding to the underlying physical phenomenon. As we did not find PINN 964 methods addressing zone method based modeling, we could claim our PCNN variant to be 965 novel in nature, especially, in this studied problem setup. Essentially, casting the temperature 966 prediction task in reheating furnaces as in our work, and modeling via explicit physics-967 constrained regularizers (based on zone method) as done in our work, is a first of its kind. It is a simple paradigm, and could be used to build further sophisticated developments. At 968 the same time, it simply requires input-output pairs (as shown later) to train the underlying 969 ML/PCNN model, and makes no geometry-specific assumptions of the furnace. The data 970 creation method discussed in our method is holistic, covers all possible exchange areas, and 971 thus, is unique in nature itself.

972 A.3 PERFORMANCE METRICS 973

976

982 983

984 985

986

987

988 989 990

For a data set containing N samples: $\mathcal{X} = \{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)})\}_{i=1}^{N}$, we make use of the following standard regression performance evaluation metrics:

1. Root Mean Squared Error (RMSE), defined as:

$$RMSE = \sqrt{\frac{\sum_{i=1}^{N} (\boldsymbol{y}^{(i)} - f_{\theta}(\boldsymbol{x}^{(i)}))^2}{N}}$$
(13)

2. Mean Absolute Error (MAE), defined as:

$$MAE = \frac{\sum_{i=1}^{N} |\boldsymbol{y}^{(i)} - f_{\theta}(\boldsymbol{x}^{(i)})|}{N}$$
(14)

Mean Absolute Percentage Error (MAPE) is unsuitable for firing rate prediction due to potential division by zero. We use a modified MAPE (mMAPE) with a small epsilon ($\epsilon = 0.05$) added to the denominator:

$$mMAPE = \frac{1}{N} \sum_{t=1}^{N} \left| \frac{f_t - \hat{f}_t}{f_t + \epsilon} \right|$$
(15)

Here, f_t is the actual firing rate, and \hat{f}_t is the predicted value.

We evaluate model performance for each entity (gas zone temperatures, tG; furnace surface temperatures, tS fur; obstacle surface temperatures, tS obs; firing rates, fr) separately as: RMSE tG, RMSE tS fur, RMSE tS obs, MAE tG, MAE tS fur, MAE tS obs, and mMAPE fr. Performance metrics (RMSE, MAE, mMAPE) are computed using corresponding predictions from the model ($f_{\theta}(\boldsymbol{x}^{(i)})$) and ground truth values from the data ($\boldsymbol{y}^{(i)}$). Results are presented for the test split (standard practice). mMAPE is evaluated only for the firing rates. RMSE, MAE and mMAPE range in $[0, \infty]$ with lower values indicating better performance (\downarrow) as shown in the tables.

1000 A.4 TRAINING DETAILS AND MODEL ARCHITECTURES

We train our PBMLP for 10 epochs using PyTorch (early stopping to avoid over-fitting), and report results with the final checkpoint. For the EB equations, we perform the same normalization for enthalpy, flux, and temperatures, as in the final neural network output as discussed earlier. We found a learning rate of 0.001 with Adam optimizer and batch size of 64 to be optimal, along with ReLU non-linearity.

We pick the [50,100,200] configuration for hidden layers, i.e., 3 hidden layers, with 50, 100, and 200 neurons respectively. We use $\lambda_{ebv} = \lambda_{ebs} = 0.1$. In general, a value lesser than 1 is observed to be better, otherwise, the model focuses less on the regression task. Following are values of other variables: |G| = 24, |S| = 178 (76 furnace surface zones and 102 obstacle surface zones), $N_g = 6$, and Stefan-Boltzmann constant=5.6687e-08. Unless otherwise stated, this is the setting we use to report any results for our method, for example, while comparing with other methods. Please note that the MLP baseline has exactly the same training configuration as the PBMLP except that it does not use the physics regularizers.

We provide details about the LSTM variants used. The LSTM variant has a single LSTM layer with 50 hidden nodes, followed by FC layer-1 with 50 input nodes and 100 output nodes, FC layer-2 with 100 input nodes and 200 output nodes. Both FC layer-1 and FC layer-2 have ReLU non-linearity. Lastly, there is a final FC layer with sigmoid nonlinearity that maps to the number of output features as in the data set. The DLSTM variant has three stacked LSTM layers, each with 100 hidden nodes, followed by a final FC layer with sigmoid nonlinearity. As we can see, we have kept the total number of layers in LSTM and DSLTM comparable to that of the baseline MLP.

For the xLSTM implementation, we follow a similar architeture as the DLSTM model. Similar to the DLSTM we place a LSTM layer that maps the input to 100 hidden nodes. However, after that, instead of stacking two more LSTM layers, we place a single xLSTM block stack (as mentioned in the official repository https://github.com/NX-AI/xlstm). After the xLSTM block, the remaining layers are similar to that of the DLSTM. Within the xLSTM block stack, the sLSTM block has 4 heads,

1026 conv1d_kernel_size=4, and, the mLSTM block has conv1d_kernel_size=4, qkv_proj_blocksize=4, and
 4 heads. Overall, xLSTM block has context length of 1, 7 blocks, and embedding dimension of 100.

For KAN, we follow the implementation suggestions as in https://github.com/ KindXiaoming/pykan and use a single hidden layer with one neuron. Interestingly, the KAN despite being simpler than the MLP baseline, is not only easier to train, but also outperforms the MLP, as evidenced in many contemporary works. Broadly speaking, the training specific hyperparameters across all the compared models are the same (e.g., number of epochs, optimizer, batch size, learning rate, etc). The only difference comes from their respective architectures. For a similar architecture, the additional difference for the physics based variants lie in terms of usage of the additional regularization terms. Table 5 summarizes the details.

Table 6: All results (Normal Type 1 Datasets)

Dataset	N1-1	925_1220_1250_750										
Metric/ Method	MLP	PBMLP	LSTM	PBLSTM	DLSTM	PBDLSTM	KAN	PBKAN	xLSTM	PBxLSTM		
RMSE tG (\downarrow)	136.4	55.3	15.6	43.3	28.4	16.1	40.7	12.6	39.6	13.7		
RMSE tS fur (\downarrow)	139.2	39.8	7.1	39.3	13.8	6.3	34.4	9.7	38.3	10.6		
RMSE tS obs (\downarrow)	124.8	64.9	43.7	73.8	54.2	52.6	54.2	21.2	63.9	22.8		
MAE tG (\downarrow)	108.6	51.0	11.1	39.5	20.7	10.9	38.8	10.2	37.5	11.7		
MAE tS fur (\downarrow)	115.7	39.2	6.0	38.1	12.2	5.1	34.1	9.1	37.8	10.0		
MAE tS obs (\downarrow)	100.2	54.8	19.5	58.1	32.1	22.1	50.1	18.1	59.3	18.7		
mMAPE fr (\downarrow)	232.9	70.7	25.6	26.5	21.9	23.7	51.1	40.7	22.1	27.6		
Dataset	N1-2				965	_1220_1250_7	50					
Metric/ Method	MLP	PBMLP	LSTM	PBLSTM	DLSTM	PBDLSTM	KAN	PBKAN	xLSTM	PBxLSTM		
RMSE tG (\downarrow)	113.4	35.6	33.0	26.7	117.1	32.4	24.3	22.6	130.6	29.3		
RMSE tS fur (\downarrow)	116.4	22.4	25.6	11.7	114.4	24.9	15.2	14.6	119.1	20.4		
RMSE tS obs (\downarrow)	106.9	43.4	61.1	66.5	109.3	67.4	35.1	33.6	139.8	45.4		
MAE tG (\downarrow)	89.5	28.2	27.4	16.9	100.9	27.2	21.4	19.9	129.1	26.8		
MAE tS fur (\downarrow)	96.2	17.8	21.5	9.9	101.1	20.1	14.3	13.8	118.6	19.5		
MAE tS obs (\downarrow)	79.9	29.6	39.4	31.4	86.9	44.4	29.8	29.3	136.3	39.8		
mMAPE fr (\downarrow)	176.6	58.5	29.5	23.5	201.0	26.2	44.2	32.6	200.8	27.8		
Dataset	N1-3				995	_1220_1250_7	50					
Metric/ Method	MLP	PBMLP	LSTM	PBLSTM	DLSTM	PBDLSTM	KAN	PBKAN	xLSTM	PBxLSTM		
RMSE tG (\downarrow)	31.1	30.5	39.3	39.2	100.0	35.7	23.1	20.9	114.9	30.1		
RMSE tS fur (\downarrow)	22.1	24.3	8.0	16.5	97.0	25.8	18.4	17.1	104.3	23.1		
RMSE tS obs (\downarrow)	54.4	47.8	69.0	77.4	97.2	60.5	27.7	26.4	124.2	35.1		
MAE tG (\downarrow)	23.0	23.8	25.3	29.1	87.0	29.4	20.9	18.4	113.6	27.9		
MAE tS fur (\downarrow)	16.8	20.8	6.4	14.6	85.8	22.4	17.7	16.4	104.1	22.4		
MAE tS obs (\downarrow)	31.4	29.4	36.6	46.5	73.1	32.7	24.0	22.5	120.7	30.4		
mMAPE fr (\downarrow)	32.0	28.1	25.8	26.9	128.7	29.4	33.0	27.7	127.7	31.7		

A.5 FULL SET OF RESULTS ON THE 11 DATASETS

In Tables 6, 7, 8, 9 we report the performances of the compared approaches across all the 11 datasets.
We noticed that not only the PB variants obtain a better performance throughout, they are also more stable across different datasets as indicated by their standard deviations (Table 10). On the other hand, the performances of the vanilla networks were not stable across different datasets.

However, we also noted that Physics-Based (PB) variants perform *slightly worse* than the vanilla
methods in certain datasets. This because we did not tune hyperparameters for each configuration, but
rather aimed to obtain average performance across configurations. While there may be potential for
further improvements at the configuration level, our primary goal was to assess the generalizability
of our approach. In real-world scenarios, variability is to be expected. It is possible that, for certain

1080		Table 7: All results (Normal Type 2 Datasets)													
1081	Dataset	N2-1				955	5_1190_1250_7	50							
1082	Metric/ Method	MLP	PBMLP	LSTM	PBLSTM	DLSTM	PBDLSTM	KAN	PBKAN	xLSTM	PBxLSTM				
1083	RMSE tG (↓)	121.1	45.4	36.8	37.0	123.4	28.3	29.5	18.0	95.5	33.0				
1084	RMSE tS fur (\downarrow) RMSE tS obs (\downarrow)	123.8	27.6	29.5 65.6	28.9 63.3	120.5	18.7 51.9	20.7	8.8 27.2	80.6 90.7	24.9 51.7				
1005	MAE tG (\downarrow)	96.9	38.8	31.3	31.4	106.9	19.7	26.2	15.4	93.5	30.3				
COUL	MAE tS fur (\downarrow)	103.6	24.8	26.7	25.5	106.4	16.5 21.9	19.8	7.7	80.1 86.6	24.1 46.5				
1086	mMAPE fr (\downarrow)	187.6	67.8	28.4	29.8	210.6	24.9	43.7	34.2	212.3	26.2				
1087	Dataset	N2-2				955	5_1230_1250_7	50							
1088	Metric/ Method	MLP	PBMLP	LSTM	PBLSTM	DLSTM	PBDLSTM	KAN	PBKAN	xLSTM	PBxLSTM				
1089	RMSE tG (↓)	116.1	39.2	34.3	34.6	122.5	33.3	27.6	18.0	135.5	31.0				
1090	RMSE tS fur (\downarrow) RMSE tS obs (\downarrow)	118.6	24.3 45.2	28.4	27.9 61.7	119.9	27.3 70.7	19.6	9.7 29.0	123.9	23.9 50.2				
1001	MAE tG (\downarrow)	91.1	32.9	29.5	29.7	105.4	28.9	24.7	15.5	134.0	28.7				
1091	MAE tS fur (\downarrow)	96.7	20.8	25.8	24.6	105.8	23.9	18.8	8.8	123.3	23.2				
1092	mAE tS obs (\downarrow) mMAPE fr (\downarrow)	82.8	32.5 66.7	28.4	42.5	91.2	49.6 25.6	34.4 46.8	24.0 35.0	220.6	44.9 26.7				
1093															
1094			Tab	le 8: A	ll results	(Normal	Type 3 Da	atasets	3)						
1095	Dataset	N3-1				955	5_1220_1250_7	50	,						
1096	Metric/ Method	MLP	PBMLP	LSTM	PBLSTM	DLSTM	PBDLSTM	KAN	PBKAN	xLSTM	PBxLSTM				
1007	DMCE (C (I)	110.5	12.0	044	24.7				10.0		21.0				
1097	RMSE IG (\downarrow)	119.5	42.9	34.4	34.7	122.7	33.3	27.6	18.0	135.5	51.0				
1098	RMSE tG (\downarrow) RMSE tS fur (\downarrow)	119.5	42.9 24.1	34.4 28.5	34.7 27.9	122.7 120.1	33.3 27.4 70.7	27.6 19.6	18.0 9.7	135.5	23.9				
1097	RMSE tG (\downarrow) RMSE tS fur (\downarrow) RMSE tS obs (\downarrow) MAE tG (\downarrow)	119.5 122.5 111.3 94.6	42.9 24.1 45.5 36.6	34.4 28.5 64.1 29.6	34.7 27.9 61.9 29.7	122.7 120.1 113.7 105.5	33.3 27.4 70.7 28.9	27.6 19.6 39.6 24.7	18.0 9.7 28.8 15.5	135.5 123.9 144.8 134.1	23.9 50.2 28.7				
1097 1098 1099	RMSE tG (\downarrow) RMSE tS fur (\downarrow) RMSE tS obs (\downarrow) MAE tG (\downarrow) MAE tS fur (\downarrow)	119.5 122.5 111.3 94.6 101.5	42.9 24.1 45.5 36.6 20.3	34.4 28.5 64.1 29.6 25.8	34.7 27.9 61.9 29.7 24.7	122.7 120.1 113.7 105.5 105.9	33.3 27.4 70.7 28.9 24.0	27.6 19.6 39.6 24.7 18.8	18.0 9.7 28.8 15.5 8.7	135.5 123.9 144.8 134.1 123.3	23.9 50.2 28.7 23.2				
1097 1098 1099 1100	RMSE tG (\downarrow) RMSE tS fur (\downarrow) RMSE tS obs (\downarrow) MAE tG (\downarrow) MAE tS fur (\downarrow) MAE tS obs (\downarrow) mMAPE fr (\downarrow)	119.5 122.5 111.3 94.6 101.5 85.1 194.2	42.9 24.1 45.5 36.6 20.3 33.3 88.0	34.4 28.5 64.1 29.6 25.8 44.4 28.4	34.7 27.9 61.9 29.7 24.7 42.6 30.0	122.7 120.1 113.7 105.5 105.9 91.3 220.4	33.3 27.4 70.7 28.9 24.0 49.6 25.6	27.6 19.6 39.6 24.7 18.8 34.4 46.8	18.0 9.7 28.8 15.5 8.7 24.5 35.0	135.5 123.9 144.8 134.1 123.3 141.3 220.6	23.9 50.2 28.7 23.2 44.9 26.6				
1097 1098 1099 1100 1101	RMSE tG (\downarrow) RMSE tS fur (\downarrow) RMSE tS obs (\downarrow) MAE tG (\downarrow) MAE tS fur (\downarrow) MAE tS obs (\downarrow) mMAPE fr (\downarrow) Dataset	119.5 122.5 111.3 94.6 101.5 85.1 194.2	42.9 24.1 45.5 36.6 20.3 33.3 88.0	34.4 28.5 64.1 29.6 25.8 44.4 28.4	34.7 27.9 61.9 29.7 24.7 42.6 30.0	122.7 120.1 113.7 105.5 105.9 91.3 220.4 955	33.3 27.4 70.7 28.9 24.0 49.6 25.6	27.6 19.6 39.6 24.7 18.8 34.4 46.8	18.0 9.7 28.8 15.5 8.7 24.5 35.0	135.5 123.9 144.8 134.1 123.3 141.3 220.6	31.0 23.9 50.2 28.7 23.2 44.9 26.6				
1097 1098 1099 1100 1101 1102	$\begin{array}{c} \text{RMSE IG }(\downarrow) \\ \text{RMSE IS fur }(\downarrow) \\ \text{RMSE IS obs }(\downarrow) \\ \text{MAE tS }(\downarrow) \\ \text{MAE tS }(\downarrow) \\ \text{MAE IS obs }(\downarrow) \\ \text{mMAPE fr }(\downarrow) \\ \hline \\ $	119.5 122.5 111.3 94.6 101.5 85.1 194.2 N3-2 MLP	42.9 24.1 45.5 36.6 20.3 33.3 88.0	34.4 28.5 64.1 29.6 25.8 44.4 28.4	34.7 27.9 61.9 29.7 24.7 42.6 30.0	122.7 120.1 113.7 105.5 105.9 91.3 220.4 955 DLSTM	33.3 27.4 70.7 28.9 24.0 49.6 25.6 5.1220_1280_7: PBDLSTM	27.6 19.6 39.6 24.7 18.8 34.4 46.8 50 KAN	18.0 9.7 28.8 15.5 8.7 24.5 35.0 PBKAN	135.5 123.9 144.8 134.1 123.3 141.3 220.6	23.9 50.2 28.7 23.2 44.9 26.6				
1097 1098 1099 1100 1101 1102 1103	$ \begin{array}{c} \text{RMSE IG }(\downarrow) \\ \text{RMSE IS fur }(\downarrow) \\ \text{RMSE IS obs }(\downarrow) \\ \text{MAE tS }(\downarrow) \\ \text{MAE tS }(\downarrow) \\ \text{MAE tS obs }(\downarrow) \\ \text{MAPE fr }(\downarrow) \\ \hline \\ $	119.5 122.5 111.3 94.6 101.5 85.1 194.2 N3-2 MLP 23.8	42.9 24.1 45.5 36.6 20.3 33.3 88.0 PBMLP 17.9	34.4 28.5 64.1 29.6 25.8 44.4 28.4 LSTM 19.5	34.7 27.9 61.9 29.7 24.7 42.6 30.0 PBLSTM 19.5	122.7 120.1 113.7 105.5 105.9 91.3 220.4 955 DLSTM 17.3	33.3 27.4 70.7 28.9 24.0 49.6 25.6 5_1220_1280_7: PBDLSTM 18.1	27.6 19.6 39.6 24.7 18.8 34.4 46.8 50 KAN 14.9	18.0 9.7 28.8 15.5 8.7 24.5 35.0 PBKAN 14.5	135.5 123.9 144.8 134.1 123.3 141.3 220.6 xLSTM 16.4	23.9 50.2 28.7 23.2 44.9 26.6 PBxLSTM				
1097 1098 1099 1100 1101 1102 1103 1104	$\begin{array}{c} \text{RMSE IG }(\downarrow)\\ \text{RMSE IS fur }(\downarrow)\\ \text{RMSE IS obs }(\downarrow)\\ \text{MAE tS }(\downarrow)\\ \text{MAE tS }(\downarrow)\\ \text{MAE tS obs }(\downarrow)\\ \text{MAE tS obs }(\downarrow)\\ \text{MAPE fr }(\downarrow)\\ \hline \hline \\ \hline \\$	119.5 122.5 111.3 94.6 101.5 85.1 194.2 N3-2 MLP 23.8 11.2	42.9 24.1 45.5 36.6 20.3 33.3 88.0 PBMLP 17.9 7.8	34.4 28.5 64.1 29.6 25.8 44.4 28.4 LSTM 19.5 12.0	34.7 27.9 61.9 29.7 24.7 42.6 30.0 PBLSTM 19.5 11.2	122.7 120.1 113.7 105.5 105.9 91.3 220.4 955 DLSTM 17.3 9.6	33.3 27.4 70.7 28.9 24.0 49.6 25.6 5.1220.1280.7: PBDLSTM 18.1 10.5	27.6 19.6 39.6 24.7 18.8 34.4 46.8 50 KAN 14.9 6.8	18.0 9.7 28.8 15.5 8.7 24.5 35.0 PBKAN 14.5 7.3	135.5 123.9 144.8 134.1 123.3 141.3 220.6 xLSTM 16.4 9.4	31.0 23.9 50.2 28.7 23.2 44.9 26.6 PBxLSTM 15.9 9.2				
1097 1098 1099 1100 1101 1102 1103 1104 1105	$\begin{array}{c} RMSE tG\left(\downarrow\right)\\ RMSE tS fur\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ MAE tG\left(\downarrow\right)\\ MAE tG\left(\downarrow\right)\\ MAE tS obs\left(\downarrow\right)\\ mMAPE fr\left(\downarrow\right)\\ \hline \\ \\ RMSE tG\left(\downarrow\right)\\ RMSE tS fur\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ RMSE tG\left(\downarrow\right)\\ RMSE tG\left(\downarrow\right)\\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \end{aligned}$	119.5 122.5 111.3 94.6 101.5 85.1 194.2 N3-2 N3-2 23.8 11.2 57.6 17.0	42.9 24.1 45.5 36.6 20.3 33.3 88.0 PBMLP 17.9 7.8 41.6 11 8	34.4 28.5 64.1 29.6 25.8 44.4 28.4 LSTM 19.5 12.0 54.5 14.7	34.7 27.9 61.9 29.7 24.7 42.6 30.0 PBLSTM 19.5 11.2 52.0 14.6	122.7 120.1 113.7 105.5 105.9 91.3 220.4 955 DLSTM 17.3 9.6 61.9 13.1	33.3 27.4 70.7 28.9 24.0 49.6 25.6 5.1220.1280.7: PBDLSTM 18.1 10.5 61.6 13.7	27.6 19.6 39.6 24.7 18.8 34.4 46.8 50 KAN 14.9 6.8 26.0 12.0	18.0 9.7 28.8 15.5 8.7 24.5 35.0 PBKAN 14.5 7.3 26.7 11.7	135.5 123.9 144.8 134.1 123.3 141.3 220.6 xLSTM 16.4 9.4 33.9 14 1	31.0 23.9 50.2 28.7 23.2 44.9 26.6 PBxLSTM 15.9 9.2 34.8 13.7				
1097 1098 1099 1100 1101 1102 1103 1104 1105	$\begin{array}{c} RMSE tG\left(\downarrow\right)\\ RMSE tS fur\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ MAE tG\left(\downarrow\right)\\ MAE tS fur\left(\downarrow\right)\\ MAE tS obs\left(\downarrow\right)\\ mMAPE fr\left(\downarrow\right)\\ \hline \\ \hline \\ \hline \\ \hline \\ \mathbf{MAEtc} rdetric/Method\\ \hline \\ \\ RMSE tS fur\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ MAE tS fur\left(\downarrow\right)\\ \hline \\ \\ MAE tS fur\left(\downarrow\right)\\ \hline \\ \end{array}$	119.5 122.5 111.3 94.6 101.5 85.1 194.2 N3-2 MLP 23.8 11.2 57.6 17.0 9.6	42.9 24.1 45.5 36.6 20.3 33.3 88.0 PBMLP 17.9 7.8 41.6 11.8 6.8	34.4 28.5 64.1 29.6 25.8 44.4 28.4 LSTM 19.5 12.0 54.5 14.7 10.7	34.7 27.9 61.9 29.7 42.6 30.0 PBLSTM 19.5 11.2 52.0 14.6 9.6	122.7 120.1 113.7 105.5 105.9 91.3 220.4 955 DLSTM 17.3 9.6 61.9 13.1 8.0	33.3 27.4 70.7 28.9 24.0 49.6 25.6 5.1220.1280.7: PBDLSTM 18.1 10.5 61.6 13.7 8.6	27.6 19.6 39.6 24.7 18.8 34.4 46.8 50 KAN 14.9 6.8 26.0 12.0 6.0	18.0 9.7 28.8 15.5 8.7 24.5 35.0 PBKAN 14.5 7.3 26.7 11.7 6.6	135.5 123.9 144.8 134.1 123.3 141.3 220.6 xLSTM 16.4 9.4 33.9 14.1 8.6	23.9 50.2 28.7 23.2 44.9 26.6 PBxLSTM 15.9 9.2 34.8 13.7 8.3				
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106	RMSE tG (\downarrow) RMSE tS fur (\downarrow) RMSE tS obs (\downarrow) MAE tG (\downarrow) MAE tS obs (\downarrow) mMAPE fr (\downarrow) Dataset Metric/ Method RMSE tG (\downarrow) RMSE tS fur (\downarrow) RMSE tS obs (\downarrow) mAE tS obs (\downarrow) MAE tS fur (\downarrow) MAE tS fur (\downarrow) MAE tS fur (\downarrow) MAE tS obs (\downarrow) mAPE fr (\downarrow)	119.5 122.5 111.3 94.6 101.5 85.1 194.2 N3-2 23.8 11.2 57.6 17.0 9.6 31.5 27.5	42.9 24.1 45.5 36.6 20.3 33.3 88.0 PBMLP 17.9 7.8 41.6 11.8 6.8 20.1 41.0	34.4 28.5 64.1 29.6 25.8 44.4 28.4 19.5 12.0 54.5 14.7 10.7 27.7 25.2	34.7 27.9 61.9 29.7 42.6 30.0 PBLSTM 19.5 11.2 52.0 14.6 9.6 26.2 27.2	122.7 120.1 113.7 105.5 105.9 91.3 220.4 955 DLSTM 17.3 9.6 61.9 13.1 8.0 32.3	33.3 27.4 70.7 28.9 24.0 49.6 25.6 5.1220.1280.7: PBDLSTM 18.1 10.5 61.6 13.7 8.6 32.5 22.0	27.6 19.6 39.6 24.7 18.8 34.4 46.8 50 KAN 14.9 6.8 26.0 12.0 6.0 20.9 51.2	18.0 9.7 28.8 15.5 8.7 24.5 35.0 PBKAN 14.5 7.3 26.7 11.7 6.6 21.5 6.6	135.5 123.9 144.8 134.1 123.3 141.3 220.6 xLSTM 16.4 9.4 33.9 14.1 8.6 27.7 21.5	23.9 50.2 28.7 23.2 44.9 26.6 PBxLSTM 15.9 9.2 34.8 13.7 8.3 28.6 23.0				
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107	RMSE tG (\downarrow) RMSE tS obs (\downarrow) MAE tS obs (\downarrow) MAE tS (\downarrow) MAE tS obs (\downarrow) mMAPE fr (\downarrow) Dataset Metric/ Method RMSE tG (\downarrow) RMSE tS fur (\downarrow) RMSE tS fur (\downarrow) RMSE tS obs (\downarrow) MAE tG (\downarrow) MAE tS obs (\downarrow) MAPE tS fur (\downarrow) MAPE tS (\downarrow) MAPE fr (\downarrow) Dataset	I19.5 122.5 111.3 94.6 101.5 85.1 194.2 N3-2 MLP 23.8 11.2 57.6 17.0 9.6 31.5 37.5	42.9 24.1 45.5 36.6 20.3 33.3 88.0 PBMLP 17.9 7.8 41.6 11.8 6.8 20.1 41.9	34.4 28.5 64.1 29.6 25.8 44.4 28.4 28.4 19.5 12.0 54.5 14.7 10.7 27.7 25.2 25.2	34.7 27.9 61.9 29.7 42.6 30.0 PBLSTM 19.5 11.2 52.0 14.6 9.6 26.2 27.2	122.7 120.1 113.7 105.5 105.9 91.3 220.4 955 DLSTM 17.3 9.6 61.9 13.1 8.0 32.3 22.3	33.3 27.4 70.7 28.9 24.0 49.6 25.6 5.1220.1280.7: PBDLSTM 18.1 10.5 61.6 13.7 8.6 32.5 22.9 5 1220.1300.7	27.6 19.6 39.6 24.7 18.8 34.4 46.8 50 KAN 14.9 6.8 26.0 12.0 6.0 20.9 51.2	18.0 9.7 9.7 28.8 15.5 8.7 24.5 35.0 PBKAN 14.5 7.3 26.7 11.7 11.7 50.6	135.5 123.9 144.8 134.1 123.3 141.3 220.6 xLSTM 16.4 9.4 33.9 14.1 8.6 27.7 21.5	23.9 50.2 28.7 23.2 44.9 26.6 PBxLSTM 15.9 9.2 34.8 13.7 8.3 28.6 22.9				
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108	RMSE tG (\downarrow) RMSE tS fur (\downarrow) RMSE tS fur (\downarrow) MAE tS for (\downarrow) MAE tS for (\downarrow) MAE tS obs (\downarrow) mMAPE fr (\downarrow) Dataset RMSE tG (\downarrow) RMSE tG (\downarrow) RMSE tS fur (\downarrow) RMSE tS fur (\downarrow) MAE tG (\downarrow) MAE tS obs (\downarrow) mAPE fr (\downarrow) Dataset MATE fr (\downarrow)	119.5 122.5 111.3 94.6 101.5 85.1 194.2 N3-2 MLP 23.8 11.2 57.6 17.0 9.6 31.5 37.5 N3-3	42.9 24.1 45.5 36.6 20.3 33.3 88.0 PBMLP 17.9 7.8 41.6 11.8 6.8 20.1 41.9	34.4 28.5 64.1 29.6 25.8 44.4 28.4 LSTM 19.5 12.0 54.5 14.7 10.7 27.7 25.2	34.7 27.9 61.9 29.7 24.7 42.6 30.0 PBLSTM 19.5 11.2 52.0 14.6 9.6 26.2 27.2 PBL STM	122.7 120.1 113.7 105.5 105.9 91.3 220.4 955 DLSTM 17.3 9.6 61.9 13.1 8.0 32.3 22.1 955	33.3 27.4 70.7 28.9 24.0 49.6 25.6 5.1220.1280.7; PBDLSTM 18.1 10.5 61.6 13.7 8.6 32.5 22.9 5.1220.1300.7; 22.9 5.1220.1300.7; 23.9	27.6 19.6 39.6 24.7 18.8 34.4 46.8 50 KAN 14.9 6.8 26.0 12.0 6.0 20.9 51.2 50 KAN	18.0 9.7 28.8 15.5 8.7 24.5 35.0 PBKAN 14.5 7.3 26.7 11.7 6.6 21.5 50.6	135.5 123.9 144.8 134.1 123.3 141.3 220.6 xLSTM 16.4 9.4 33.9 14.1 8.6 27.7 21.5	23.9 50.2 28.7 23.2 44.9 26.6 PBxLSTM 15.9 9.2 34.8 13.7 8.3 28.6 22.9 PBxLSTM				
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109	$\begin{array}{r} \text{RMSE IG } (\downarrow) \\ \text{RMSE IS fur } (\downarrow) \\ \text{RMSE IS obs } (\downarrow) \\ \text{MAE tS } (\downarrow) \\ \text{MAE tS } (\downarrow) \\ \text{MAE tS obs } (\downarrow) \\ \text{MAE tS obs } (\downarrow) \\ \hline \\ $	119.5 122.5 111.3 94.6 101.5 85.1 194.2 N3-2 MLP 23.8 11.2 57.6 17.0 9.6 31.5 37.5 N3-3 MLP 18.2	42.9 24.1 45.5 36.6 20.3 33.3 88.0 PBMLP 7.8 41.6 6.8 20.1 41.9 PBMLP PBMLP	34.4 28.5 64.1 29.6 25.8 44.4 28.4 19.5 12.0 54.5 14.7 10.7 27.7 25.2 LSTM	34.7 27.9 61.9 29.7 24.7 42.6 30.0 PBLSTM 19.5 11.2 52.0 14.6 9.6 26.2 27.2 PBLSTM	122.7 120.1 113.7 105.5 991.3 220.4 955 DLSTM 17.3 9.6 61.9 13.1 8.0 32.3 22.1 955 DLSTM	33.3 27.4 70.7 28.9 24.0 49.6 25.6 5.1220.1280.7: PBDLSTM 18.1 10.5 61.6 13.7 8.6 32.5 22.9 5.1220.1300.7: PBDLSTM 15 5	27.6 19.6 39.6 24.7 18.8 34.4 46.8 50 KAN 14.9 6.8 26.0 12.0 6.0 20.9 51.2 50 KAN	18.0 9.7 9.8 15.5 8.7 24.5 35.0 35.0 PBKAN 14.5 7.3 26.7 11.7 6.6 21.5 50.6 PBKAN 10.0	135.5 123.9 144.8 134.1 123.3 141.3 220.6 xLSTM xLSTM xLSTM xLSTM	23.9 50.2 28.7 23.2 44.9 26.6 PBxLSTM 15.9 9.2 34.8 13.7 8.3 28.6 22.9 PBxLSTM				
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110	$\begin{array}{c} RMSE tG\left(\downarrow\right)\\ RMSE tS fur\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ MAE tG\left(\downarrow\right)\\ MAE tG\left(\downarrow\right)\\ MAE tS obs\left(\downarrow\right)\\ mMAPE fr\left(\downarrow\right)\\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ MSE tS fur\left(\downarrow\right)\\ RMSE tS fur\left(\downarrow\right)\\ RMSE tS fur\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ MAE tS obs\left(\downarrow\right)\\ MAE tS obs\left(\downarrow\right)\\ MAE tS obs\left(\downarrow\right)\\ mAAE tS tS tG\left(\downarrow\right)\\ RMSE tS tS fur\left(\downarrow\right)\\ RMSE tS tS fur\left(\downarrow\right)\\ RMSE tS tS fur\left(\downarrow\right)\\ \end{array} $	119.5 122.5 111.3 94.6 101.5 85.1 194.2 N3-2 MLP 23.8 11.2 57.6 17.0 9.6 31.5 37.5 N3-3 MLP 18.2 7.5	42.9 24.1 45.5 36.6 20.3 33.3 88.0 PBMLP 17.9 7.8 41.6 6.8 20.1 11.8 6.8 20.1 11.8 6.8 20.1 11.8 6.8 20.1 11.5 6.8 20.1 11.5 5.6 8.7	34.4 28.5 64.1 29.6 25.8 44.4 28.4 19.5 12.0 54.5 14.7 10.7 27.7 25.2 LSTM 15.6 7.7	34.7 27.9 61.9 29.7 24.7 42.6 30.0 PBLSTM 19.5 11.2 52.0 14.6 9.6 26.2 27.2 PBLSTM 15.5 7.0	122.7 120.1 113.7 105.5 91.3 220.4 955 DLSTM 17.3 9.6 61.9 13.1 8.0 32.3 22.1 955 DLSTM 15.6 7.6	33.3 27.4 70.7 28.9 24.0 49.6 25.6 5.1220.1280.7: PBDLSTM 18.1 10.5 61.6 13.7 8.6 32.5 22.9 5.1220.1300.7: PBDLSTM 15.5 7.7	27.6 19.6 39.6 24.7 18.8 34.4 46.8 50 KAN 14.9 6.8 26.0 12.0 6.0 20.9 51.2 50 KAN 17.5 11.2	18.0 9.7 9.7 28.8 15.5 8.7 24.5 35.0 PBKAN 14.5 7.3 2.7 11.7 6.6 21.5 50.6 50.6 PBKAN 19.0 13.7	135.5 123.9 144.8 134.1 123.3 141.3 220.6 xLSTM 16.4 9.4 33.9 14.1 8.6 27.7 21.5 5.9	23.9 50.2 28.7 23.2 44.9 26.6 PBxLSTM 15.9 9.2 34.8 13.7 8.3 28.6 22.9 PBxLSTM 11.5 6.0				
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111	$\begin{array}{c} RMSE tG\left(\downarrow\right)\\ RMSE tS fur\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ MAE tS\left(\downarrow\right)\\ MAE tS\left(\downarrow\right)\\ MAE tS\left(\downarrow\right)\\ MAE tS obs\left(\downarrow\right)\\ MAE tS obs\left(\downarrow\right)\\ RMSE tS fur\left(\downarrow\right)\\ RMSE tS fur\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ MAE tS obs\left(\downarrow\right)\\ RMSE tS fur\left(\downarrow\right)\\ Dataset\\ METC/MED tS obs\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ $	119.5 122.5 111.3 94.6 101.5 85.1 194.2 N3-2 MLP 23.8 11.2 57.6 17.0 9.6 31.5 37.5 N3-3 MLP 18.2 7.5 52.4	42.9 24.1 45.5 36.6 20.3 33.3 88.0 PBMLP 7.8 41.6 6.8 20.1 41.9 PBMLP PBMLP 15.6 8.7 41.2	34.4 28.5 64.1 29.6 25.8 44.4 28.4 19.5 12.0 54.5 14.7 10.7 25.7 25.2 LSTM 15.6 7.7 51.2 10.2	34.7 27.9 61.9 29.7 24.7 42.6 30.0 PBLSTM 19.5 11.2 52.0 14.6 9.6 26.2 27.2 PBLSTM 15.5 7.0 48.3 40.2	122.7 120.1 113.7 105.5 105.9 91.3 220.4 955 DLSTM 17.3 9.6 61.9 13.1 8.0 32.3 22.1 955 DLSTM 15.6 7.6 58.7 11.3	33.3 27.4 70.7 28.9 24.0 49.6 25.6 5.1220.1280.7: PBDLSTM 18.1 10.5 61.6 13.7 8.6 3.2.5 22.9 5.1220.1300.7: PBDLSTM 15.5 7.7 5.8 4 1.2	27.6 19.6 39.6 24.7 18.8 34.4 46.8 50 KAN 14.9 6.8 26.0 20.9 51.2 50 KAN 17.5 11.2 27.6 17.5 11.2 27.6	18.0 9.7 9.7 28.8 15.5 8.7 24.5 35.0 PBKAN 14.5 7.3 26.7 21.7 11.7 6.6 21.5 50.6 PBKAN 19.0 13.7 29.2 12	135.5 123.9 144.8 134.1 123.3 141.3 220.6 xLSTM xLSTM xLSTM 1 6.4 9.4 33.9 14.1 8.6 27.7 21.5 5.9 28.1 10.7	23.9 50.2 28.7 23.2 44.9 26.6 PBxLSTM 15.9 9.2 34.8 13.7 8.3 28.6 22.9 PBxLSTM 11.5 6.0 28.7 11.0 0				
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111	$\begin{array}{c} RMSE tG\left(\downarrow\right)\\ RMSE tS fur\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ MAE tS\left(\downarrow\right)\\ MAE tS\left(\downarrow\right)\\ MAE tS\left(\downarrow\right)\\ MAE tS\left(\downarrow\right)\\ MAE tS obs\left(\downarrow\right)\\ MAE tS\left(\downarrow\right)\\ RMSE tS\left(\downarrow\right)\\ RMSE tS\left(\downarrow\right)\\ RMSE tS\left(\downarrow\right)\\ RMSE tS\left(\downarrow\right)\\ MAE tS\left(\downarrow\right)\\ MAE tS\left(\downarrow\right)\\ MAE tS\left(\downarrow\right)\\ MAE tS\left(\downarrow\right)\\ Dataset\\ \hline \\ \begin{array}{c} Metric/Method\\ RMSE tS fur\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ MAE tS obs\left(\downarrow\right)\\ RMSE tS fur\left(\downarrow\right)\\ RMSE tS fur\left(\downarrow\right)\\ RMSE tS fur\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ RMSE tS fur\left(\downarrow\right)\\ RAE tS fur\left(\downarrow\right)\\ MAE tS fur\left(\downarrow\right)\\ ME tS tS fur\left(\downarrow\right)\\ ME tS \mathsf$	119.5 122.5 111.3 94.6 101.5 85.1 194.2 N3-2 MLP 23.8 111.2 57.6 17.0 9.6 31.5 N3-3 MLP 18.2 7.5 52.4 11.0 6.0	42.9 24.1 45.5 36.6 20.3 33.3 88.0 PBMLP 17.9 7.8 41.6 6.8 20.1 11.8 6.8 20.1 11.8 6.8 20.1 11.8 6.8 20.1 15.6 8.7 47.2 11.7 7.1	34.4 28.5 64.1 29.6 25.8 44.4 28.4 19.5 12.0 54.5 14.7 10.7 27.7 25.2 LSTM 15.6 7.7 51.2 15.6 7.7 51.2 6.0	34.7 27.9 61.9 29.7 24.7 42.6 30.0 PBLSTM 19.5 11.2 52.0 14.6 9.6 26.2 27.2 PBLSTM 15.5 7.0 48.3 10.2 5.4	122.7 120.1 113.7 105.5 105.9 91.3 220.4 955 DLSTM 17.3 9.6 61.9 13.1 8.0 32.3 9.6 61.9 13.1 8.0 32.3 22.1 955 DLSTM 15.6 7.6 58.7 11.3 6.4	33.3 27.4 70.7 28.9 24.0 49.6 25.6 5.1220.1280.7: PBDLSTM 18.1 10.5 61.6 13.7 8.6 3.2.5 22.9 5.1220.1300.7: PBDLSTM 15.5 7.7 58.4 11.2 6.4	27.6 19.6 39.6 24.7 18.8 34.4 46.8 50 KAN 14.9 6.8 26.0 20.9 51.2 50 KAN 17.5 11.2 27.6 15.2 10.6	18.0 9.7 9.7 28.8 15.5 8.7 24.5 35.0 PBKAN 14.5 7.3 25.7 11.7 6.6 21.5 50.6 50.6 PBKAN 19.0 13.7 29.2 17.1 13.0 13.0	135.5 123.9 144.8 134.1 123.3 141.3 220.6 xLSTM xLSTM xLSTM 16.4 9.4 33.9 14.1 8.6 27.7 21.5 5.9 28.1 10.7 5.4	23.9 50.2 28.7 28.7 23.2 44.9 26.6 PBxLSTM 15.9 9.2 34.8 13.7 8.3 28.6 22.9 PBxLSTM 11.5 6.0 28.7 11.5 6.0 28.7 10.0 5.3				
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111	RMSE tG (\downarrow) RMSE tS fur (\downarrow) RMSE tS fur (\downarrow) MAE tS (\downarrow) MAE tS (\downarrow) MAE tS obs (\downarrow) mMAPE fr (\downarrow) Dataset Metric/ Method RMSE tG (\downarrow) RMSE tS fur (\downarrow) RMSE tS fur (\downarrow) MAE tS fur (\downarrow) Dataset Metric/ Method RMSE tS fur (\downarrow) RMSE tS fur (\downarrow) RMSE tS fur (\downarrow) RMSE tS fur (\downarrow) MAE tS fur (\downarrow)	119.5 122.5 111.3 94.6 101.5 85.1 194.2 N3-2 MLP 23.8 11.2 57.6 17.0 9.6 31.5 57.5 17.0 9.6 31.5 37.5 N3-3 MLP 18.2 7.5 52.4 11.0 6.0 23.4 5	42.9 24.1 45.5 36.6 20.3 33.3 88.0 PBMLP 17.9 7.8 41.6 8.8 20.1 11.8 6.8 20.1 11.8 6.8 20.1 15.6 8.7 47.2 11.7 11.2 44.2	34.4 28.5 64.1 29.6 25.8 44.4 28.4 19.5 12.0 54.5 14.7 10.7 25.7 25.7 25.7 15.6 7.7 51.2 15.6 7.7 51.2 10.2 10.2 10.2	34.7 27.9 61.9 29.7 24.7 42.6 30.0 PBLSTM 19.5 11.2 52.0 14.6 9.6 26.2 27.2 PBLSTM 15.5 7.0 48.3 10.2 5.4 21.1 20.5	122.7 120.1 113.7 105.5 105.9 91.3 220.4 955 DLSTM 17.3 9.6 61.9 13.1 8.0 32.3 9.6 61.9 13.1 8.0 32.3 22.1 955 DLSTM 15.6 7.6 58.7 11.3 6.4 26.4 26.1	33.3 27.4 70.7 28.9 24.0 49.6 25.6 5.1220.1280.7: PBDLSTM 18.1 10.5 61.6 13.7 8.6 32.5 22.9 5.1220.1300.7: PBDLSTM 15.5 7.7 58.4 11.2 6.4 26.3	27.6 19.6 39.6 24.7 18.8 34.4 46.8 50 KAN 14.9 6.8 26.0 20.9 51.2 50 KAN 17.5 11.2 27.6 15.2 10.6 23.2	18.0 9.7 9.8 15.5 8.7 24.5 35.0 35.0 PBKAN 14.5 7.3 26.7 11.7 6.6 21.5 50.6 0 PBKAN 19.0 13.7 29.2 17.1 13.0 24.8 24.2 24.2	135.5 123.9 144.8 134.1 123.3 220.6 xLSTM 16.4 9.4 33.9 14.1 8.6 27.7 21.5 5.9 28.1 10.7 5.4 22.5 5.4 22.5	23.9 50.2 28.7 28.7 23.2 44.9 26.6 PBxLSTM 15.9 9.2 34.8 13.7 8.3 28.6 22.9 PBxLSTM 11.5 6.0 28.7 11.5 6.0 28.7 10.0 5.3 22.9				
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113	$\begin{array}{c} RMSE tG\left(\downarrow\right)\\ RMSE tS fur\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ MAE tS\left(\downarrow\right)\\ MAE tS\left(\downarrow\right)\\ MAE tS\left(\downarrow\right)\\ MAE tS\left(\downarrow\right)\\ MAE tS\left(\downarrow\right)\\ MAE tS\left(\downarrow\right)\\ RMSE tS\left(\downarrow\right)\\ RMSE tS\left(\downarrow\right)\\ RMSE tS\left(\downarrow\right)\\ RMSE tS\left(\downarrow\right)\\ MAE tS\left(\downarrow\right)\\ RMSE tS\left(\downarrow\right)\\ MAE tS\left(\downarrow$	119.5 1122.5 122.5 111.3 94.6 101.5 85.1 194.2 N3-2 MLP 23.8 11.2 57.6 17.0 9.6 31.5 N3-3 MLP 18.2 7.5 52.4 10.0 6.0 23.4 40.5	42.9 24.1 45.5 36.6 20.3 33.3 88.0 PBMLP 17.9 7.8 41.6 6.8 20.1 41.9 PBMLP 15.6 8.7 47.2 11.7 47.2 11.7 1.2 4.4 38.7	34.4 28.5 64.1 29.6 25.8 44.4 28.4 19.5 12.0 54.5 14.7 10.7 25.2 25.2 LSTM 15.6 7.7 51.2 0.2 10.2 6.0 22.2 27.9	34.7 27.9 61.9 29.7 24.7 42.6 30.0 PBLSTM 19.5 11.2 52.0 14.6 9.6 26.2 27.2 PBLSTM 15.5 7.0 48.3 10.2 5.4 21.1 30.5	122.7 120.1 113.7 105.5 105.9 91.3 220.4 955 DLSTM 17.3 9.6 61.9 13.1 8.0 32.3 22.1 955 DLSTM 15.6 7.6 58.7 11.3 6.4 26.1 22.9	33.3 27.4 70.7 28.9 24.0 49.6 25.6 5.1220.1280.7: PBDLSTM 18.1 10.5 61.6 13.7 8.6 3.2.5 22.9 5.1220.1300.7: PBDLSTM 15.5 7.7 58.4 11.2 6.4 26.3 24.9	27.6 19.6 39.6 24.7 18.8 34.4 46.8 50 KAN 14.9 6.8 26.0 20.9 51.2 50 KAN 17.5 11.2 27.6 15.2 10.6 23.2 60.2	BRO 9.7 28.8 15.5 8.7 24.5 35.0 PBKAN 14.5 7.3 25.0 11.7 6.6 21.5 50.6 PBKAN 19.0 13.7 29.2 17.1 13.0 24.8 62.3	135.5 123.9 144.8 134.1 123.3 141.3 220.6 xLSTM 16.4 9.4 33.9 14.1 8.6 27.7 21.5 xLSTM 12.5 5.9 28.1 10.7 5.4 22.5 21.3	23.9 50.2 28.7 28.7 23.2 44.9 26.6 PBxLSTM 15.9 9.2 34.8 13.7 8.3 28.6 22.9 PBxLSTM 11.5 6.0 28.7 10.0 5.3 22.9 24.0				
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114	$\begin{array}{c} RMSE tG\left(\downarrow\right)\\ RMSE tS fur\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ MAE tG\left(\downarrow\right)\\ MAE tS obs\left(\downarrow\right)\\ MAE tS obs\left(\downarrow\right)\\ MAE tS obs\left(\downarrow\right)\\ MAE tS obs\left(\downarrow\right)\\ RMSE tS fur\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ MAE tS obs\left(\downarrow\right)\\ RMSE tS obs\left(\downarrow\right)\\ MAE tS obs\left(\downarrow\right)\\ ME tS obs\left(\downarrow\right)\\ ME tS obs\left(\downarrow\right)\\ ME tS $	119.5 122.5 111.3 94.6 101.5 85.1 194.2 N3-2 MLP 23.8 11.2 57.6 17.0 9.6 31.5 7.5 52.4 18.2 7.5 52.4 10.0 23.4 40.5	42.9 24.1 45.5 36.6 20.3 33.3 88.0 PBMLP 17.9 7.8 41.6 6.8 20.1 17.9 7.8 41.6 8.8 20.1 17.9 7.8 41.9 PBMLP I 5.6 8.7 47.2 11.7 15.6 8.7 47.2 11.2 44.3 8.7	34.4 28.5 64.1 29.6 25.8 44.4 28.4 19.5 12.0 54.5 14.7 10.7 25.7 25.7 25.7 10.2 15.6 7.7 51.2 10.2 10.2 6.0 22.2 27.9	34.7 27.9 61.9 29.7 42.6 30.0 PBLSTM 19.5 11.2 52.0 14.6 9.6 26.2 27.2 PBLSTM 15.5 7.0 48.3 10.2 5.4 21.1 30.5	122.7 120.1 113.7 105.5 105.9 91.3 220.4 955 DLSTM 17.3 9.6 61.9 13.1 8.0 32.3 22.1 955 DLSTM 15.6 7.6 58.7 11.3 6.4 26.1 22.9	33.3 27.4 70.7 28.9 24.0 49.6 25.6 25.6 1220.1280.7 PBDLSTM 18.1 10.5 61.6 13.7 8.6 3.2.5 22.9 5.1220.1300.7 PBDLSTM 15.5 7.7 58.4 11.2 6.4 26.3 24.9	27.6 19.6 19.6 24.7 18.8 34.4 46.8 50 KAN 14.9 6.8 26.0 20.9 51.2 50 KAN 17.5 11.2 27.6 17.5 11.2 27.6 23.2 60.2	BR BR 9.7 28.8 15.5 8.7 24.5 35.0 PBKAN 14.5 7.3 26.6 21.5 50.6 PBKAN 13.7 29.2 17.1 13.0 24.8 62.3 62.3	135.5 123.9 144.8 134.1 123.3 141.3 220.6 xLSTM 16.4 9.4 33.9 14.1 8.6 27.7 21.5 xLSTM 12.5 5.9 28.1 10.7 5.4 22.5 21.3	23.9 50.2 28.7 28.7 23.2 44.9 26.6 PBxLSTM 15.9 9.2 34.8 13.7 8.3 28.6 22.9 PBxLSTM 11.5 6.0 28.7 10.0 5.3 22.9 24.0				

configurations, the underlying physics is better captured by a stronger vanilla architecture (e.g., LSTM vs. MLP). If the vanilla model is effectively learning and generalizing, the explicit regularization may yield minimal gains. However, we do not consider this a case of PB variants performing worse than vanilla methods; rather, their performance metrics are comparable.

1120 Conversely, it is important to note that PB variants generally outperform vanilla variants by significant 1121 multiplicative factors in performance metrics.

The performances of the proposed Physics-Based (PB) approaches across all the 11 datasets are also compared against the following SOTA methods: i) MLRVPST (Bao et al. (2023)) and ii) PTDL-LSTM (de Souza Lima et al. (2023)), the results of which are presented in Tables 11, 12, 13, and 14.
We notice that our proposed variants outperform the SOTA consistently in general.

1126

1128

1127 A.6 PSEUDO-CODES FOR OUR TRAINING FRAMEWORK

In Algorithm 2, we outline the key steps required in training our physics-constrained framework. The training involves a typical mini-batch based optimization, where each instance in a mini-batch contains the various entities obtained from one row/time step of the data set. The entities are present in their respective columns. The columns for the constant terms (e.g., $(\dot{Q}_{conv})_i, (\dot{Q}_{fuel,net})_i, (\dot{Q}_a)_i$, $A_i(\dot{i}, \cdot, \cdot)$ and \dot{Q}_{i-1}) will have the values magnetic entities all the second formula to the values are present of the second second

1133 $A_i(\dot{q}_{conv})_i$ and $\dot{Q}_{s,i}$) will have the values repeated across all the corresponding rows to create a dataloader.

1134			Tab	le 9: A	Il results	(Normal	l Type 4	Dataset	ts)		
1135	Dataset	N4-1				955	1220_1250	_705			
1136	Metric/ Method	MLP	PBMLP	LSTM	PBLSTM	DLSTM	PBDLST	M KAN	PBKAN	xLSTM	PBxLSTM
1137	RMSE tG (\downarrow)	117.4	39.3	110.8	34.2	29.6	31.5	27.1	17.3	93.3	92.9
1138	RMSE tS full (\downarrow) RMSE tS obs (\downarrow)	121.9	64.3	126.2	67.3	48.7	20.3 53.4	47.0	23.1	94.6	94.7
1139	MAE tG (\downarrow) MAE tS fur (\downarrow)	94.2	35.3	90.0 78.3	30.3 27.2	22.0	24.2 20.5	28.7	14.4	91.8 79.7	91.2 78.5
1140	MAE tS obs (\downarrow)	91.5	51.6	92.1	50.7	21.4	30.2	55.9	19.4	90.6	90.7
1141		123.0 N4-2	19.9	141.7	21.6	22.3	28.0	22.4	17.2	139.9	141.0
1142	Metric/ Method	MLP	PBMLP	LSTM	PBLSTM	DLSTM	PBDLST	M KAN	PBKAN	xLSTM	PBxLSTM
1143	RMSE tG (↓)	38.7	36.1	34.2	24.2	121.9	32.4	27.3	18.0	135.5	30.5
1144	RMSE tS fur (\downarrow) RMSE tS obs (\downarrow)	27.0	23.2 44.4	27.9	13.4	119.3	26.6 69.2	19.3	10.2 31.2	123.8	23.5 47.9
1145	MAE tG (\downarrow)	32.7	29.5	29.2	15.1	104.5	27.9	24.5	15.6	134.2	28.3
1146	MAE tS fur (\downarrow) MAE tS obs (\downarrow)	45.7	19.5 30.0	41.8	12.2 29.5	105.1 88.9	23.2 47.5	31.9	9.4 26.8	123.2	22.8 42.4
1147	mMAPE fr (\downarrow)	42.9	59.7	30.2	23.3	229.6	25.7	49.8	37.0	230.2	27.6
11/18	Dataset	N4-3				955	_1220_1250	0_810			
1140	Metric/ Method	MLP	PBMLP	LSTM	PBLSTM	DLSTM	PBDLST	M KAN	PBKAN	xLSTM	PBxLSTM
1149	RMSE tG (\downarrow) RMSE tS fur (\downarrow)	21.8	28.0 19.3	35.3 25.5	25.2 8.7	120.3	30.2 23.8	18.1	33.4 27.4	27.6	29.4 21.9
1150	RMSE tS obs (\downarrow) MAE tG (\downarrow)	46.1	48.0	53.2	67.5 15.4	105.7	62.8 24.7	31.7	51.8	40.6	42.1
1151	MAE to (\downarrow) MAE tS fur (\downarrow)	16.4	14.7	29.0	7.3	102.0	19.5	17.5	26.5	19.4	21.1
1152	MAE tS obs (\downarrow) mMAPE fr (\downarrow)	28.8 57.5	27.1 50.0	33.2 40.3	32.1 24.6	82.4 259.6	38.9 28.2	26.5	47.9 60.0	34.4 28.0	36.1 30.6
1153	(1)										
1154			Т	able 10	• All resu	lts (stan	dard dev	iations)		
1155	Da	taset			. 1111050	ites (stuir	STDEV	iuronoj	,		-
1156	Metric/	Method	MLP PBN	MLP LST	M PBLSTM	DLSTM	PBDLSTM	KAN PB	KAN xLST	M PBxLST	M
1157	RMSE RMSE 1	E tG (\downarrow) tS fur (\downarrow)	48.2 11 55.8 9	.6 25 .2 25	.9 8.7 .4 10.9	48.8 52.4	7.5 8.3	6.7 . 6.8 .	5.4 51.1 5.8 48.3	21.8 19.4	
1158	RMSE t MAE	S obs (\downarrow) tG (\downarrow)	31.2 8 39.3 11	.0 21 .8 21	.6 8.4 .5 9.5	27.6 43.3	7.1 7.3	8.7 8 7.0 5	8.1 47.2 5.5 51.5	2 18.8 5 21.9	
1159	MAE t	S fur (\downarrow) S obs (\downarrow)	46.4 9 30.0 10	.5 20 0.8 19	2 10.4 3 11.3	46.2 30.2	7.2 10.6	7.0 11.0	5.8 48.5 8.0 48.2	5 19.5 2 19.1	
1160	mMAF	PE fr (\downarrow)	78.3 20	0.2 34	.2 3.1	99.7	2.0	11.1 1	3.5 91.0	5 34.4	_
1161		T-1	1. 11. 4	11	14	COTA	(NI	T 1	Dataat	-)	
1162		Tat		III resu	its agains	t SOIA	(Normal	Type I	Dataset	s)	-
1163	L	ataset		VDCT	DTDI LOT		NI-I	N OTM	DDVAN	DD I CTA	-
1164	PM	SE tG (5.4	15.6			16.1	12.6	13.7	
1165	RMSI	Ξ tS fur ((\downarrow) 4	1.0	7.1	39.	3	6.3	9.7	10.6	
1166	RMSE	E tS obs	(1) 6	8.6	43.7	73.	8	52.6	21.2	22.8	
1167	MAE	$E tO (\downarrow)$ E tS fur (.	↓) 4	0.5	6.0	39.	1	5.1	9.1	10.0	
1168	MAE	tS obs (\downarrow) 6	4.2 8 4	19.5 25.6	58.	1 2	22.1	18.1 40.7	18.7 27.6	
1169		ataset	2	о. т	23.0	20.	N1-2	-3.1	т U ./	27.0	-
1170	Metri	c/ Metho	od MLR	VPST	PTDL-LST	M PBLS	TM PBI	DLSTM	PBKAN	PBxLSTM	
1171	RMS	SE tG (↓) 3	0.7	33.0	26.	7	32.4	22.6	29.3	- 1
1172	RMSE	± tS fur (E tS obs)	(\downarrow) 2 (\downarrow) 4	2.1 8.8	25.6 61.1	11. 66	7 1 5 (24.9 57.4	14.6 33.6	20.4 45.4	
1173	MA	EtG(↓)	2	8.1	27.4	16.	9	27.2	19.9	26.8	
1174	MAE	tS fur (. tS obs ($\begin{pmatrix} \downarrow \end{pmatrix} = 2 \\ \begin{pmatrix} \downarrow \end{pmatrix} = 4 \\ 4 \\ \end{pmatrix}$	1.3 3.2	21.5 39.4	9.9 31.) 1 4 4	20.1 44.4	13.8 29.3	19.5 39.8	
1175	mMA	APE fr (j) 3	1.8	29.5	23.	5 2	26.2	32.6	27.8	_
1176	D	ataset					N1-3				_
1177	Metri	c/ Metho	od MLR	VPST	PTDL-LST	M PBLS	TM PBI	DLSTM	PBKAN	PBxLSTN	Л
1178	RMS	SE tG (↓	(1) 2	7.8	39.3	39.	2	35.7	20.9	30.1	
1170	RMSE	E tS obs	(\downarrow) (\downarrow) (\downarrow) (\downarrow)	6.7	69.0	77.	4 (50.5	26.4	35.1	
1100	MA	E tG (\downarrow)	2	5.1 9.4	25.3	29.	1 2	29.4 22.4	18.4	27.9	
1100	MAE	tS obs (\downarrow) 3	1.5	36.6	46.	5 3	32.7	22.5	30.4	
100	mMA	APE fr (,	.) 3	2.3	25.8	26.	9 2	29.4	27.7	31.7	_
1182											
1183											

As observed in Algorithm 2, X_train_batch and y_train_batch correspond to $x^{(i)}$ and $y^{(i)}$ in \mathcal{X} , and are used to compute tr_loss_regtmps representing \mathcal{L}_{sup} in eq(12). tr_loss_ebv and tr_loss_ebs respectively correspond to \mathcal{L}_{ebv} and \mathcal{L}_{ebs} in eq(12). The collection of the T_g terms for being associated with the computational graph for backpropagation by virtue of use in eq(8), is done by y_train_pred[:,:n_gas_zones].

Table	12: All resu	ults against S	OTA (Nor	rmal Type 2	2 Dataset	s)
Dataset			N2-1			
Metric/ Method	MLRVPST	PTDL-LSTM	PBLSTM	PBDLSTM	PBKAN	PBxLSTM
RMSE tG (\downarrow)	35.7	36.8	37.0	28.3	18.0	33.0
RMSE tS fur (\downarrow)	27.8	29.5	28.9	18.7	8.8	24.9
RMSE tS obs (\downarrow)	55.5	65.6	63.3	51.9	27.2	51.7
MAE tG (\downarrow)	32.8	31.3	31.4	19.7	15.4	30.3
MAE tS fur (\downarrow)	50.5	20.7	23.3	10.5 21 0	22.0	24.1 46.5
mMAPE fr (\downarrow)	30.6	28.4	29.8	24.9	34.2	26.2
Dataset	<u>.</u>		N2-2			
Metric/ Method	MLRVPST	PTDL-LSTM	PBLSTM	PBDLSTM	PBKAN	PBxLSTM
RMSE (1)	33.4	34.3	34.6	33.3	18.0	31.0
RMSE tS fur (\downarrow)	26.3	28.4	27.9	27.3	9.7	23.9
RMSE tS obs (\downarrow)	53.5	64.0	61.7	70.7	29.0	50.2
MAE tG (\downarrow)	30.8	29.5	29.7	28.9	15.5	28.7
MAE tS fur (\downarrow)	25.5	25.8	24.6	23.9	8.8	23.2
MAE tS obs (\downarrow)	48.3	44.4	42.5	49.6	24.6	44.9
mMAPE fr (\downarrow)	31.6	28.4	30.0	25.6	35.0	26.7
Table	13: All rest	ults against S	OTA (Nor	rmal Type 3	3 Dataset	s)
Dataset		-	N3-1			
Metric/ Method	MLRVPST	PTDL-LSTM	PBLSTM	PBDLSTM	PBKAN	PBxLSTM
RMSE tG (↓)	33.5	34.4	34.7	33.3	18.0	31.0
RMSE tS fur (\downarrow)	26.5	28.5	27.9	27.4	9.7	23.9
RMSE tS obs (\downarrow)	53.7	64.1	61.9	70.7	28.8	50.2
MAE tG (\downarrow)	31.0	29.6	29.7	28.9	15.5	28.7
MAE tS fur (\downarrow)	25.7	25.8	24.7	24.0	8.7	23.2
MAE tS obs (\downarrow)	48.5	44.4	42.6	49.6	24.5	44.9
mMAPE fr (\downarrow)	31.4	28.4	30.0	25.6	35.0	26.6
Dataset			N3-2			
Metric/ Method	MLRVPST	PTDL-LSTM	PBLSTM	PBDLSTM	PBKAN	PBxLSTM
RMSE tG (\downarrow)	18.0	19.5	19.5	18.1	14.5	15.9
RMSE tS fur (\downarrow)	11.4	12.0	11.2	10.5	7.3	9.2
RMSE tS obs (\downarrow)	38.1	54.5	52.0	61.6	26.7	34.8
MAE tG (\downarrow)	15.7	14.7	14.6	13.7	11.7	13.7
MAE tS fur (\downarrow)	32.0	10.7	9.0	8.0 32.5	0.0 21.5	0.5 28.6
mMAPE fr (\downarrow)	27.2	25.2	27.2	22.9	50.6	23.0 22.9
Dataset			N3-3			
Metric/ Method	MLRVPST	PTDL-LSTM	PBLSTM	PBDLSTM	PBKAN	PBxLSTM
RMSE (G (1)	14.0	15.6	15.5	15.5	19.0	11.5
		77	7.0	7.7	13.7	6.0
RMSE tS fur (1)	8.2	1.1		50.4		
RMSE tS fur (\downarrow) RMSE tS obs (\downarrow)	8.2 32.5	51.2	48.3	58.4	29.2	28.7
RMSE tS (\downarrow) RMSE tS fur (\downarrow) RMSE tS obs (\downarrow) MAE tG (\bot)	8.2 32.5 11.3	51.2 10.2	48.3 10.2	58.4 11.2	29.2 17.1	28.7 10.0
RMSE tS fur (\downarrow) RMSE tS obs (\downarrow) RMSE tS obs (\downarrow) MAE tG (\downarrow) MAE tS fur (\downarrow)	8.2 32.5 11.3 7.3	51.2 10.2 6.0	48.3 10.2 5.4	58.4 11.2 6.4	29.2 17.1 13.0	28.7 10.0 5.3
RMSE tS fur (\downarrow) RMSE tS fur (\downarrow) RMSE tS obs (\downarrow) MAE tG (\downarrow) MAE tS fur (\downarrow) MAE tS obs (\downarrow)	8.2 32.5 11.3 7.3 26.3	51.2 10.2 6.0 22.2	48.3 10.2 5.4 21.1	58.4 11.2 6.4 26.3	29.2 17.1 13.0 24.8	28.7 10.0 5.3 22.9
RMSE tS (\downarrow) RMSE tS fur (\downarrow) RMSE tS obs (\downarrow) MAE tS (\downarrow) MAE tS fur (\downarrow) MAE tS obs (\downarrow) mMAPE fr (\downarrow)	8.2 32.5 11.3 7.3 26.3 28.9	51.2 10.2 6.0 22.2 27.9	48.3 10.2 5.4 21.1 30.5	58.4 11.2 6.4 26.3 24.9	29.2 17.1 13.0 24.8 62.3	28.7 10.0 5.3 22.9 24.0
RMSE tS (tr (\downarrow) RMSE tS obs (\downarrow) MAE tS (\downarrow) MAE tS fur (\downarrow) MAE tS obs (\downarrow) mMAPE fr (\downarrow)	8.2 32.5 11.3 7.3 26.3 28.9	51.2 10.2 6.0 22.2 27.9	48.3 10.2 5.4 21.1 30.5	58.4 11.2 6.4 26.3 24.9	29.2 17.1 13.0 24.8 62.3	28.7 10.0 5.3 22.9 24.0
RMSE tS (c) RMSE tS obs (\downarrow) MAE tS (\downarrow) MAE tS (\downarrow) MAE tS obs (\downarrow) MAE tS obs (\downarrow) mMAPE fr (\downarrow)	8.2 32.5 11.3 7.3 26.3 28.9	51.2 10.2 6.0 22.2 27.9	48.3 10.2 5.4 21.1 30.5	58.4 11.2 6.4 26.3 24.9	29.2 17.1 13.0 24.8 62.3	28.7 10.0 5.3 22.9 24.0

Similar role towards back-propagation via T_s terms in eq(9) is taken care of by y_train_pred[:,n_gas_zones:n_gas_zones+n_fur_surf_zones+n_obs_surf_zones].

get_pb_ebv_pred() computes v_g in eq(10) for each instance (corresponding to a time-step of 1228 zone method) present in a mini-batch of the variables obtained from the already created data set. 1229 In doing so, each of the |G| elements of v_q are computed using eq(8) and the corresponding/rel-1230 evant auxiliary variables from the data. sgarr_plus_hg_tensor_batch collects mini-batch 1231 terms using relevant terms like $s_{(g)arr}, h_g$ in eq(10) towards v_g . The relevant DFA terms are 1232 collected in tensor dfa_GG_tensor_batch. Similarly, we make use of get_pb_ebs_pred(), 1233 dfa_SS_tensor_batch, gsarr_plus_hs_tensor_batch for computing v_s in eq(10) and us-1234 ing eq(9). Having obtained the dataset, it only involves sampling mini-batches via appropriate helper 1235 functions in any Deep Learning framework (e.g., PyTorch). In Algorithms 3-4, we provide a few 1236 helper functions which can be useful to further understand the computation of some of the tensors 1237 involved in the training loop described in Algorithm 2.

1238 1239

1240

1226

1227

A.7 IN-DEPTH SENSITIVITY ANALYSIS OF PBMLP

1241 We evaluated PBMLP's sensitivity to hyperparameters (loss terms, hidden layers, batch size, activation functions) using shuffled test data from all furnace configurations. To establish an upper bound on

1242	Table 14: All results against SOTA (Normal Type 4 Datasets)											
1243	Dataset			N4-1								
1244	Metric/ Method	MLRVPST	PTDL-LSTM	PBLSTM	PBDLSTM	PBKAN	PBxLSTM					
245	RMSE tG (↓)	36.2	110.8	34.2	31.5	17.3	92.9					
	RMSE tS fur (\downarrow)	30.9	98.2	30.2	26.3	8.6	79.1					
246	RMSE tS obs (\downarrow)	62.5	126.2	67.3	53.4	23.1	94.7					
247	MAE tG (\downarrow)	33.9	90.0	30.3	24.2	14.4	91.2					
	MAE tS fur (\downarrow)	30.4	78.3	27.2	20.5	7.7	78.5					
248	MAE tS obs (\downarrow)	57.9	92.1	50.7	30.2	19.4	90.7					
249	mMAPE fr (\downarrow)	20.2	141.7	21.6	28.0	17.2	141.0					
250	Dataset N4-2											
251	Metric/ Method	MLRVPST	PTDL-LSTM	PBLSTM	PBDLSTM	PBKAN	PBxLSTM					
231	RMSE tG (\downarrow)	32.2	34.2	24.2	32.4	18.0	30.5					
252	RMSE tS fur (\downarrow)	25.0	27.9	13.4	26.6	10.2	23.5					
253	RMSE tS obs (\downarrow)	50.8	61.9	65.7	69.2	31.2	47.9					
233	MAE tG (\downarrow)	29.7	29.2	15.1	27.9	15.6	28.3					
254	MAE tS fur (\downarrow)	24.2	25.1	12.2	23.2	9.4	22.8					
055	MAE tS obs (\downarrow)	45.3	41.8	29.5	47.5	26.8	42.4					
255	mMAPE fr (\downarrow)	32.6	30.2	23.3	25.7	37.0	27.6					
256	Dataset			N4-3								
257	Metric/ Method	MLRVPST	PTDL-LSTM	PBLSTM	PBDLSTM	PBKAN	PBxLSTM					
258	RMSE tG (↓)	36.8	35.3	25.2	30.2	33.4	29.4					
250	RMSE tS fur (\downarrow)	29.4	25.5	8.7	23.8	27.4	21.9					
203	RMSE tS obs (\downarrow)	61.2	53.2	67.5	62.8	51.8	42.1					
260	MAE tG (\downarrow)	34.9	29.0	15.4	24.7	31.3	27.1					
0.01	MAE tS fur (\downarrow)	28.9	21.8	7.3	19.5	26.5	21.1					
201	MAE tS obs (\downarrow)	57.2	33.2	32.1	38.9	47.9	36.1					
262	mMAPE fr (\downarrow)	30.7	40.3	24.6	28.2	60.0	30.6					

performance, we employed teacher forcing during evaluation (providing ground truth values from previous time steps as inputs). This explains the improved metrics compared to auto-regressive real-world like inference from earlier tables.

We observed good convergence of PBMLP (Fig 4), with the default setting mentioned in Appendix A.4. Table 15 shows performance with different hidden layer configurations, with [50, 100, 200] providing competitive results. Here, |100| denotes one hidden layer with 100 neurons, |50, 100|denotes two hidden layers with 50, and 100 neurons respectively, and so on. The maximum values for each row (corresponding to a metric) are shown in bold. In Table 16, we vary the batch size in our method. We found a batch size of 64 to provide an optimal performance for our experiments. In our exploration of activation functions, ReLU, SiLU, and Mish exhibited similar performance, with ReLU proving more robust across batch sizes (Table 18).

We also examined all possible combinations of the regularizer weights λ_{ebv} and λ_{ebs} . Table 17 highlights extreme cases where one regularizer is set to zero while the other is at a higher value, i.e., keeping only the EBV term by setting $\lambda_{ebv} = 0.1$ and $\lambda_{ebs} = 0$, and only the EBS term by setting $\lambda_{ebv} = 0$ and $\lambda_{ebs} = 0.1$. We found that performance is better while using both regularizers together rather than in isolation.

However, we found that excessively high values for the regularizers can compete with the regression loss terms, a common issue noted in PINN literature. Specifically, when λ_{ebs} is set too high, it can significantly degrade performance due to the larger number of surface zones typically present in a furnace overpowering the loss function. Based on these observations and to avoid unnecessary complexity with varying values (e.g., 0.1, 0.3, etc), which resulted in minimal performance differences, we opted for a single value of λ_{ebv} and λ_{ebs} for the sensitivity analysis for both regularizers. This decision simplifies our design while ensuring optimal learning rate adjustments are considered. The results are presented in Figure 5 where we observe a stable performance across values except a drop in R-MSE tG at $\lambda_{ebs} = 10$ as mentioned.

12	A.8	Data	DETAILS:	FROM	FURNACE	TO ML	MODEL	TRAINING
----	-----	------	----------	------	---------	-------	-------	----------

AND EVALUATION

We now discuss the data set details of our benchmarking. Prior to discussing the data used for ML model training and evaluation, we provide the reader a brief flavor on the physical understanding of a real-world furnace, along with its operation.

		•	• 1	-			1									
1	###_TDAININC															
2	### IRAINING criterion = n	### n.MSEL4	oss ()													
4	optimizer = o	optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE)														
5	for e in tqdm	(range (1, EPOCHS	S+1)):												
6	for (batc)	in() hidx	sample ba	atched)	in enume	erate (train	i loader E	BVS)								
8	#samp	ole_bate	hed [0]: da	ata, san	ple_batch	ned [1]: 1a	bels, san	iple_bate	hed [2]: a	uxvars						
9	X_tra	in_bate	h = samp	le_batch	ed [0]. to	(device)										
10	y_tra auxya	in_bate.	h = samp batch =	sample	ed[1].to batched[3	(device) 21										
12	u u n v e		-outon	sumpre	outoneu [- 1										
13	dfa_GG_tensor_batch = auxvars_dict_batch ['dfa_GG_tensor'].to(device)															
14	sgarr_plus_hg_tensor_batch = auxvars_dict_batch['sgarr_plus_hg'].to(device) dfa_SS_tensor_batch = auxvars_dict_batch['dfa_SS_tensor'].to(device)															
16	gsarr	_plus_h	s_tensor_	batch =	a u x v a r s	_dict_bat	ch['gsarr	_plus_h	s'].to(de	vice)						
17	ontim	izar za	ro grad()	`												
19	optim	11201.20	10-grau ()	,												
20	y_tra	in_pred	= model ((X_train	_batch)											
21	tr_los	ss_regtn	nps = cri	iterion (y_train_p	ored, y_t	rain_batc	h)								
23	## EB	V terms														
24	pb_eb	v_pred	= get_pb_	ebv_pre	d (C to	hotel									
25 26	s	garr_pl train	us_ng_ten pred [•••1	sor_bate	nesl	G_tensor_	batch ,									
27))		F[.,]											
28	pb_eb	v_actua	l = torch	n.zeros (pb_ebv_p	red.size()).to(dev	vice)								
30	## EB	S terms														
31	pb_eb	s_pred	= get_pb.	ebs_pre	d (G (
32 33	g v	sarr_pl train	us_hs_ten pred [:.n	sor_bate	ch, dfa_S; es:n gas	S_tensor_ zones+n	batch , fur surf :	zones+n	obs surf	zones]						
2.4			r · · · , ,	-8						,						
34)								pb_ebs_actual = torch.zeros(pb_ebs_pred.size()).to(device)							
34 35 36) pb_eb	os_actua	1 = torch	n.zeros(pb_ebs_p	red.size()).to(dev	ice)								
34 35 36 37) pb_eb tr_los	os_actua ss_ebv	l = torch = criteri	n.zeros(on(pb_e	pb_ebs_pi bv_pred ,	red.size(pb_ebv_a)).to(dev actual) /	vice) y_train.	.pred . size	e (0)						
34 35 36 37 38) pb_eb tr_los tr_los	os_actua ss_ebv ss_ebs	l = torch = criteri = criteri	n.zeros(on(pb_e on(pb_e	pb_ebs_p bv_pred , bs_pred ,	red.size(pb_ebv_a pb_ebs_a)).to(dev nctual) / nctual) /	vice) y_train. y_train.	.pred . siz(.pred . siz(e (0) e (0)						
34 35 36 37 38 39 40) pb_eb tr_los tr_los batch	os_actua ss_ebv ss_ebs _loss=t	1 = torch = criteri = criteri r_loss_re;	n.zeros(on(pb_e on(pb_e gtmps+1	pb_ebs_pr bv_pred , bs_pred , ambda_eby	red.size(pb_ebv_a pb_ebs_a v*tr_loss)).to(dev actual) / actual) / _ebv+lamb	vice) y_train. y_train. oda_ebs*	.pred . siz(.pred . siz(tr_loss_el	e (0) e (0) o s						
34 35 36 37 38 39 40 41) pb_eb tr_los tr_los batch batch	os_actua ss_ebv ss_ebs _loss=t _loss.b	l = torch = criteri = criteri r_loss_re; ackward()	n.zeros(on(pb_e on(pb_e gtmps+1a)	pb_ebs_pi bv_pred , bs_pred , ambda_ebv	red.size(pb_ebv_a pb_ebs_a v*tr_loss)).to(dev nctual) / nctual) / _ebv+lamb	y_train_ y_train_ y_train_ da_ebs*	.pred . size .pred . size tr_loss_el	e (0) e (0) o s						
34 35 36 37 38 39 40 41 42) pb_eb tr_los tr_los batch batch optim	os_actua ss_ebv ss_ebs _loss=t _loss.b	l = torch = criteri = criteri r_loss_re; ackward() ep()	n.zeros(on(pb_e on(pb_e gtmps+1	pb_ebs_pr bv_pred , bs_pred , ambda_ebv	red.size(pb_ebv_a pb_ebs_a v*tr_loss)).to(dev actual) / actual) / _ebv+lamb	vice) y_train. y_train. oda_ebs*	.pred . siza .pred . siza tr_loss_el	e (0) e (0) os						
34 35 36 37 38 39 40 41 42) pb_eb tr_los tr_los batch batch optim	os_actua ss_ebv ss_ebs _loss=t _loss.b izer.st	l = torch = criteri = criteri r_loss_re; ackward() ep()	n.zeros(on(pb_e on(pb_e gtmps+1:	pb_ebs_pr bv_pred , bs_pred , ambda_ebv	red.size(pb_ebv_a pb_ebs_a v*tr_loss)).to(dev nctual) / nctual) / _ebv+lamb	vice) y_train, y_train, oda_ebs*	.pred . siz .pred . siz tr_loss_el	e (0) e (0) 25						
34 35 36 37 38 39 40 41 42) pb_eb tr_los tr-los batch batch optim	os_actua ss_ebv ss_ebs _loss=t _loss.b izer.st	<pre>l = torch = criteri = criteri r_loss_re; ackward() ep()</pre>	n.zeros(on(pb_e on(pb_e gtmps+l;	pb_ebs_pr bv_pred , bs_pred , ambda_ebv	red.size(pb_ebv_a pb_ebs_a v*tr_loss)).to(dev nctual) / nctual) / _ebv+lamt Table 16:	vice) y_train. y_train. oda_ebs* Perform	pred.size pred.size tr_loss_el	e (0) e (0) os	PBMI					
34 35 36 37 38 39 40 41 42) pb_eb tr_los tr_los batch batch optim Table 15: Perfo method against	os_actua ss_ebv ss_ebs _loss=t _loss.b iizer.st	<pre>l = torch = criteri = criteri r_loss_re; ackward() ep() of PBMLLI bidden la</pre>	n. zeros (on (pb_e on (pb_e gtmps+1:) P (ReLU ver confi	pb_ebs_pr bv_pred , bs_pred , ambda_ebv) variant co gurations	red . size (pb_ebv_a pb_ebs_a v*tr_loss of our)).to(dev actual) / actual) / _ebv+lamt Table 16: variant us	y_train. y_train. oda_ebs* Perform sing diffe	pred . size pred . size tr_loss_el ance of the rent batch	e (0) e (0) os e proposed sizes .	PBMI					
34 35 36 37 38 39 40 41 42) pb_eb tr_los tr_los batch batch optim Table 15: Perfo method against	os_actua ss_ebv ss_ebs _loss=t _loss.b izer.st ormance varying	<pre>l = torch = criteri = criteri r_loss_re; ackward() ep() of PBMLD hidden la</pre>	on (pb_e on (pb_e gtmps+l:) P (ReLU yer confi	pb_ebs_pr bv_pred , bs_pred , ambda_ebv) variant c gurations	red . size (pb_ebv_a pb_ebs_a v*tr_loss of our)).to(dev netual) / netual) / .ebv+lamt Table 16: <u>variant us</u>	vice) y_train. y_train. oda_ebs* Perform sing diffe	pred . siz pred . siz tr_loss_el ance of the rent batch PBMLP	e (0) e (0) os e proposed sizes . PBMLP	PBMI					
34 35 36 37 38 39 40 41 42) pb_eb tr_los tr_los batch batch optim Table 15: Perfo method against Metric/ Hidden layer	os_actua ss_ebv ss_ebs _loss=t _loss_b izer.st ormance varying	<pre>l = torch = criteri = criteri r_loss_re; ackward() ep() of PBMLLi hidden la [50,100]</pre>	n.zeros(on(pb_e on(pb_e gtmps+1.) P(ReLU yer confi [50,100,	pb_ebs_pr bv_pred , bs_pred , ambda_ebv) variant c gurations [50,100,	red . size (pb_ebv_a pb_ebs_a v*tr_loss of our [50,100, 200,200,)).to(dev netual) / netual) / .ebv+lamt Table 16: <u>variant us</u> Metr	vice) y_train. y_train. da_ebs* Perform sing diffe	pred . siz, pred . siz, tr_loss_el ance of the rent batch PBMLP ReLU	e (0) e (0) os e proposed sizes . PBMLP ReLU	PBMI PBMI ReLU					
34 35 36 37 38 39 40 41 42) pb_eb tr_los tr_los batch batch optim Table 15: Perfo method against Metric/ Hidden layer configuration	ss_ebv ss_ebv ss_ebs _loss=t _loss_b izer.st prmance varying	<pre>l = torch = criteri = criteri r_loss_re; ackward() ep() of PBMLI hidden la [50,100]</pre>	n . zeros (on (pb.e on (pb.e gtmps+1.) P (ReLU yer confi [50,100, 200]	pb_ebs_pr bv_pred , bs_pred , ambda_ebv) variant co gurations [50,100, 200,200]	red . size (pb_ebv_a pb_ebs_a v*tr_loss of our [50,100, 200,200, 205,205])).to(dev netual) / netual) / _ebv+lamb Table 16: <u>variant us</u> Metr	vice) y_train. y_train. oda_ebs* Perform sing diffe	pred . siz, pred . siz, tr_loss_el ance of the rent batch PBMLP ReLU bsz=32	e (0) e (0) os e proposed sizes . PBMLP ReLU bsz=64	PBMI PBMI ReLU bsz=1					
34 35 36 37 38 39 40 41 42) pb_eb tr_los tr_los batch batch optim Table 15: Perfo method against Metric/ Hidden layer configuration RMSE tG (4)	ss_ebv ss_ebv ss_ebs _loss=t _loss_b izer.st rmance varying [100] [100]	<pre>l = torch = criteri = criteri r_loss_re; ackward() ep() of PBMLI hidden la [50,100] 17.25</pre>	n . zeros (on (pb.e on (pb.e gtmps+l.) P (ReLU yer confi [50,100, 200] 10.04	pb_ebs_pr bv_pred , bs_pred , ambda_ebv) variant c gurations [50,100, 200,200] 10.84	red . size (pb_ebv_a pb_ebs_a v*tr_loss of our [50,100, 200,200, 205,205] 14.27)).to(dev netual) / netual) / _ebv+lamb Table 16: <u>variant us</u> Metr 	rice) y_train. y_train. oda_ebs* Perform sing diffe ic G (↓)	pred . siz, pred . siz, tr_loss_el ance of the rent batch PBMLP ReLU bsz=32 12.70	e (0) e (0) os e proposed sizes . PBMLP ReLU bsz=64 10.04	PBMI PBMI ReLU bsz=1 10.7					
34 35 36 37 38 39 40 41 42) pb_eb tr_los tr_los batch batch batch optim Table 15: Perfo method against Metric/ Hidden layer configuration RMSE tG (\$\$) RMSE tS fur (\$\$) RMSE tS fur (\$\$)	ss_ebv ss_ebv ss_ebs _loss=t _loss_b izer.st rmance varying [100] 11.64 10.05	<pre>l = torch = criteri = criteri r_loss_re; ackward() ep() of PBMLI hidden la [50,100] 17.25 15.23 27.62</pre>	n. zeros (on (pb.e on (pb.e gtmps+l:) P (ReLU yer confi [50,100, 200] 10.04 7.95	pb_ebs_pr bv_pred , bs_pred , ambda_ebv) variant co gurations [50,100, 200,200] 10.84 7.83 2257	red . size (pb_ebv_a pb_ebs_a v*tr_loss of our [50,100, 200,200, 205,205] 14.27 12.46 26 42)).to(dev netual) / netual) / _ebv+lamb Table 16: <u>variant us</u> Metr RMSE t RMSE tS	rice) y_train. y_train. oda_ebs* Perform sing diffe ic G (↓) fur (↓)	pred . siz, pred . siz, tr_loss_el ance of the rent batch PBMLP ReLU bsz=32 12.70 9.14	e (0) e (0) os e proposed sizes . PBMLP ReLU bsz=64 10.04 7.95	PBMI PBMI ReLU bsz=1 10.7 9,69					
34 35 36 37 38 39 40 41 42) pb_eb tr_los tr_los batch batch batch optim Table 15: Perfo method against Metric/ Hidden layer configuration RMSE tG (\$\$) RMSE tS (\$\$) RMSE tS obs (\$\$) mMAPE fr (1)	ss_ebv ss_ebv ss_ebs _loss=t _loss_b izer.st rmance varying [100] 11.64 10.05 34.82 8.76	<pre>l = torch = criteri = criteri r_loss_re; ackward() ep() of PBMLI hidden la [50,100] 17.25 15.23 37.62 9.15</pre>	n. zeros (on (pb.e on (pb.e gtmps+l:) P (ReLU yer confi [50,100, 200] 10.04 7.95 31.64 6.84	pb_ebs_pr bv_pred , bs_pred , ambda_ebv) variant or gurations [50,100, 200,200] 10.84 7.83 33.57 8.06	red . size (pb_ebv_a pb_ebs_a v*tr_loss of our [50,100, 200,200, 205,205] 14.27 12.46 36.42 7.51)).to(dev netual) / netual) / netual) / network Table 16: variant us Metr RMSE ts RMSE ts RMSE ts RMSE ts	vice) y_train. y_train. oda_ebs* Perform sing diffe ic G (↓) fur (↓) obs (↓) f = f (↓)	ance of the rent batch PBMLP ReLU bsz=32 12.70 9.14 39.75	e (0) e (0) os e proposed sizes . PBMLP ReLU bsz=64 10.04 7.95 31.64 6.84	PBMI PBMI ReLU bsz=1 10.7 9.69 31.7 °					
34 35 36 37 38 39 40 41 42) pb_eb tr_los tr_los batch batch batch optim Table 15: Perfo method against Metric/ Hidden layer configuration RMSE tG (↓) RMSE tS fur (↓) RMSE tS ur (↓)	s_actua ss_ebv ss_ebs _loss=t _loss.b izer.st rmance varying [100] 11.64 10.05 34.82 8.76	<pre>l = torch = criteri = criteri r_loss_re; ackward() ep() of PBMLI hidden la [50,100] 17.25 15.23 37.62 9.15</pre>	n. zeros (on (pb.e on (pb.e gtmps+l:) P (ReLU yer confi [50,100, 200] 10.04 7.95 31.64 6.84	pb_ebs_pred , bs_pred , bs_pred , ambda_ebv) variant or gurations [50,100, 200,200] 10.84 7.83 33.57 8.06	red . size (pb_ebv_a pb_ebs_a v*tr_loss of our [50,100, 200,200, 205,205] 14.27 12.46 36.42 7.51)).to(dev netual) / netual) / netual) / netual) / network Table 16: variant us Metr RMSE ts RMSE ts RMSE tS RMSAPE	rice) y_train. y_train. oda_ebs* Perform sing diffe ic G(↓) fur(↓) obs(↓) fr(↓)	pred . siz pred . siz tr_loss_el ance of the rent batch PBMLP ReLU bsz=32 12.70 9.14 39.75 5.24	e (0) e (0) os e proposed sizes . PBMLP ReLU bsz=64 10.04 7.95 31.64 6.84	PBMI PBMI ReLU bsz=1 10.7 9.69 31.7 8.29					
34 35 36 37 38 39 40 41 42) pb-eb tr_los tr_los batch batch optim Table 15: Perfo method against Metric/ Hidden layer configuration RMSE tG (↓) RMSE tS fur (↓) mMAPE fr (↓)	s_actua ss_ebv ss_ebs _loss=t _loss.b izer.st rmance varying [100] 11.64 10.05 34.82 8.76	<pre>l = torch = criteri = criteri r_loss_re; ackward() ep() of PBMLI hidden la [50,100] 17.25 15.23 37.62 9.15</pre>	n. zeros (on (pb.e on (pb.e gtmps+l:) P (ReLU yer confi [50,100, 200] 10.04 7.95 31.64 6.84	pb_ebs_pred , bs_pred , bs_pred , ambda_ebv) variant co gurations [50,100, 200,200] 10.84 7.83 33.57 8.06	red . size (pb_ebv_a pb_ebs_a v*tr_loss of our [50,100, 200,200, 205,205] 14.27 12.46 36.42 7.51)).to(dev netual) / netual) / _ebv+lamb Table 16: variant us Metr RMSE ts RMSE tS RMSE tS RMSE tS	$\begin{array}{c} \text{vice} \\ \text{y_train.} \\ \text{y_train.} \\ \text{vda_ebs*} \\ \end{array}$ $\begin{array}{c} \text{Perform} \\ \text{sing diffe} \\ \text{ic} \\ \hline \\ \text{G} (\downarrow) \\ \text{fur} (\downarrow) \\ \text{obs} (\downarrow) \\ \text{fr} (\downarrow) \\ \end{array}$	pred . siz, pred . siz, tr _loss _el ance of the rent batch PBMLP ReLU bsz=32 12.70 9.14 39.75 5.24	e (0) e (0) os e proposed sizes . PBMLP ReLU bsz=64 10.04 7.95 31.64 6.84	PBMI PBMI ReLU bsz=1 10.7 9.69 31.7 8.29					
34 35 36 37 38 39 40 41 42) pb-eb tr_los tr_los batch batch optim Table 15: Perfo method against Metric/ Hidden layer configuration RMSE tG (\downarrow) RMSE tS fur (\downarrow) RMSE tS fur (\downarrow) mMAPE fr (\downarrow) Table 17: Effe	rmance varying 1100 111.64 10.05 34.82 8.76	<pre>1 = torch = criteri = criteri r_loss_re; ackward() ep() of PBMLJ bidden la [50,100] 17.25 15.23 37.62 9.15</pre>	 regulariz 	pb_ebs_pred , bs_pred , ambda_ebv) variant co gurations [50,100, 200,200] 10.84 7.83 33.57 8.06	red . size (pb_ebv_a pb_ebs_a v*tr_loss of our [50,100, 200,200, 205,205] 14.27 12.46 36.42 7.51 18: Perfo)).to(dev netual) / netual) / netual) / netual) / netual) / netual) / netual) / netual) / Metr RMSE ts RMSE ts mMAPE rmance of	$\begin{array}{c} \text{vice} \\ \text{y_train.} \\ \text{y_train.} \\ \text{vda_ebs*} \\ \end{array}$ $\begin{array}{c} \text{Perform} \\ \text{sing diffe} \\ \text{ic} \\ \hline \\ \text{fur}(\downarrow) \\ \text{obs}(\downarrow) \\ \text{fr}(\downarrow) \\ \end{array}$ $\begin{array}{c} \text{PBMLP} \\ \text{y_train} \\ \end{array}$	pred . size pred . size tr _loss_el ance of the rent batch PBMLP ReLU bsz=32 12.70 9.14 39.75 5.24 using diff	e (0) e (0) os e proposed sizes . PBMLP ReLU bsz=64 10.04 7.95 31.64 6.84	PBMI PBMI ReLU bsz=1 10.7 9.69 31.7 8.29 ation f					
34 35 36 37 38 39 40 41 42) pb-eb trlos trlos batch batch batch optim Table 15: Perfo method against Metric/ Hidden layer configuration RMSE tG (\downarrow) RMSE tS fur (\downarrow) RMSE tS fur (\downarrow) mMAPE fr (\downarrow) Table 17: Effe terms in PBMI	rmance varying 11005 1100 111.64 10.05 34.82 8.76	<pre>1 = torch = criteri = criteri r_loss_re; ackward() ep() of PBMLJ phidden la [50,100] 17.25 15.23 37.62 9.15</pre>	n. zeros (on (pb.e on (pb.e gtmps+l:) P (ReLU yer confi [50,100, 200] 10.04 7.95 31.64 6.84 regulariz	pb_ebs_pred , bs_pred , bs_pred , ambda_eby) variant co gurations [50,100, 200,200] 10.84 7.83 33.57 8.06 xer Table tions i	red . size (pb_ebv_a pb_ebs_a v*tr_loss of our [50,100, 200,200, 205,205] 14.27 12.46 36.42 7.51 18: Perfo in the und)).to(dev netual) / netual) / _ebv+lamb Table 16: variant us Metr RMSE ts RMSE tS RMSE tS RMSE tS mMAPE rmance of erlying net	vice) y_train. y_train. vda_ebs* Perform sing diffe ic $G(\downarrow)$ fur (\downarrow) obs (\downarrow) fr (\downarrow) PBMLP work.	pred . siz, pred . siz, tr _loss_el ance of the rent batch PBMLP ReLU bsz=32 12.70 9.14 39.75 5.24 using diff	e (0) e (0) os e proposed sizes . PBMLP ReLU bsz=64 10.04 7.95 31.64 6.84 erent activ	PBMI PBMI ReL0 bsz=1 10.7 9.69 31.7 8.29 ation f					
34 35 36 37 38 39 40 41 42) pb-eb tr_los tr_los batch batch optim Table 15: Perfo method against Metric/ Hidden layer configuration RMSE tS (4) RMSE tS fur (4) RMSE tS obs (4) mMAPE fr (4) Table 17: Effet terms in PBML Metric	s_actua ss_ebv ss_ebs _loss=t loss.b izer.st rmance varying [100] [11.64 10.05 34.82 8.76 ect of in P. EBV on	<pre>1 = torch = criteri = criteri ackward() ep() of PBMLD [50,100] 17.25 15.23 37.62 9.15 ndividual = </pre>	 regulariz n . zeros (on (pb.e on (pb.e gtmps+h.e P (ReLU yer confi [50,100, 200] 10.04 7.95 31.64 6.84	pb_ebs_pred , bs_pred , ambda_ebv) variant co gurations [50,100, 200,200] 10.84 7.83 33.57 8.06 ter Table tions i	red . size (pb_ebv_a pb_ebs_a v*tr_loss of our [50,100, 200,200, 205,205] 14.27 12.46 36.42 7.51 18: Perfo in the und Aetric)).to(dev netual) / netual) / netual) / netual) / netual) / netual) / netual) / netual) / metr RMSE ts RMSE ts RMSE ts RMSE ts mMAPE rmance of erlying net	$\begin{array}{c} \text{vice} \\ \text{y_train.} \\ \text{y_train.} \\ \text{y_train.} \\ \text{vda_ebs*} \\$	ance of the rent batch PBMLP ReLU bsz=32 12.70 9.14 39.75 5.24 using diff	e (0) e (0) os e proposed sizes . PBMLP ReLU bsz=64 10.04 7.95 31.64 6.84 erent activ PBMLP	PBMI PBMI ReLU bsz=1 10.7 9.69 31.7 8.29 ation f					
34 35 36 37 38 39 40 41 42) pb-eb tr-los tr-los batch batch optim Table 15: Perfo method against Metric/ Hidden layer configuration RMSE tS fur (4) RMSE tS obs (4) mMAPE fr (4) Table 17: Effet terms in PBML Metric RMSE tG (1)	rmance varying [100] [100] [100] [11.64 10.05 34.82 8.76 [EBV on [11.85]	<pre>1 = torch = criteri = criteri r_loss_re; ackward() ep() of PBMLJ phidden la [50,100] 17.25 15.23 37.62 9.15 ndividual = ly EBS on 11.66</pre>	regulariz	pb_ebs_pr bv_pred , bs_pred , ambda_eby) variant of gurations [50,100, 200,200] 10.84 7.83 33.57 8.06 tions in LP M	red . size (pb_ebv_a pb_ebs_a v*tr_loss of our [50,100, 200,200, 205,205] 14.27 12.46 36.42 7.51 18: Perfo in the und Aetric)).to(dev netual) / netual) / netual) / netual) / netual) / Table 16: variant us Metr RMSE ts RMSE ts RMSE ts RMSE ts mMAPE rmance of erlying net	rice) y_train. y_train. vda_ebs* Perform sing diffe ic G (↓) fur (↓) obs (↓) fr (↓) PBMLP work. PBMLP BGLU	ance of the rent batch PBMLP ReLU bsz=32 12.70 9.14 39.75 5.24 using diff PBMLP BMLP SiLU	e (0) e (0) Ds e proposed sizes . PBMLP ReLU bsz=64 10.04 7.95 31.64 6.84 erent activ PBMLP Hardswis	PBMI PBMI ReLU bsz=1 10.77 9.69 31.77 8.29 ation f PBI h M					
34 35 36 37 38 39 40 41 42) pb-eb tr-los tr-los batch batch optim Table 15: Perfo method against Metric/ Hidden layer configuration RMSE tS fur (4) RMSE tS fur (4) mMAPE fr (4) Table 17: Effet terms in PBML Metric RMSE tG (4) RMSE tG (4) RMSE tS	s_actua ss_ebv ss_ebs _loss=t loss .b izer . st rmance varying [100] 11.64 10.05 34.82 8.76 ect of in .P. EBV on 11.85 10.36	<pre>1 = torch = criteri = criteri r_loss_re; ackward() ep() of PBMLJ (ep() 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</pre>	regulariz n. zeros (on (pb.e on (pb.e gtmps+l.) P (ReLU yer confi [50,100, 200] 10.04 7.95 31.64 6.84 regulariz	pb_ebs_pr bv_pred , bs_pred , ambda_ebv) variant co gurations [50,100, 200,200] 10.84 7.83 33.57 8.06 tions f LP M RMS5	red . size (pb_ebv_a pb_ebs_a v*tr_loss of our [50,100, 200,200, 205,205] 14.27 12.46 36.42 7.51 18: Perfo in the und Metric SE tG (4) 245 for (1))).to(dev netual) / netual) / netual) / netual) / netual) / netual) / Table 16: variant us Metr RMSE ts RMSE ts RMSE ts RMSE ts RMSE ts RMSE ts rmance of erlying net PBMLP ReLU	rice) y_train. y_train. vda_ebs* Perform sing diffe ic G (↓) fur (↓) obs (↓) fr (↓) PBMLP GeLU 13.57 8.92	ance of the rent batch PBMLP ReLU bsz=32 12.70 9.14 39.75 5.24 using diff PBMLP SiLU 10.07 802	e (0) e (0) >>s e proposed sizes . PBMLP ReLU bsz=64 10.04 7.95 31.64 6.84 erent activ PBMLP Hardswisi 15.26	PBMI ReLU bsz=1 10.7 9.65 31.7 8.29 ation f PB h M					
34 35 36 37 38 39 40 41 42) pb-eb tr-los tr-los batch batch optim Table 15: Perfo method against Metric/ Hidden layer configuration RMSE tS fur (4) RMSE tS fur (4) RMSE tS obs (4) mMAPE fr (4) Table 17: Effet terms in PBML Metric RMSE tS (4) RMSE tS fur (4) RMSE tS for (4) RMSE tS	ss_actua ss_ebv ss_ebs _loss=t _loss_bizer.st rmance varying [100] 11.64 10.05 34.82 8.76 ect of ir .P. EBV on 11.85 10.36 32.46	<pre>1 = torch = criteri = criteri ackward() ep() of PBMLJ hidden la [50,100] 17.25 15.23 37.62 9.15 ndividual = ly EBS on 11.66 11.07 32.04</pre>	regulariz	pb_ebs_pr bv_pred , bs_pred , ambda_eby) variant co gurations [50,100, 200,200] 10.84 7.83 33.57 8.06 tions f LP M RMSE 4 RMSE	red . size (pb_ebv_a pb_ebs_a v*tr_loss of our [50,100, 200,200, 205,205] 14.27 12.46 36.42 7.51 18: Perfo in the und Metric SE tG (4) E tS fur (4))).to(dev netual) / netual) / netual) / netual) / netual) / netual) / netual) / netual) / netual) RMSE ts mMAPE rmance of erlying netual PBMLP ReLU 10.04 7.95 31.64	rice) y_train. y_train. vda_ebs* Perform sing diffe ic G (↓) fur (↓) obs (↓) fr (↓) PBMLP GeLU 13.57 8.86 39.65	ance of the rent batch PBMLP ReLU bsz=32 12.70 9.14 39.75 5.24 using diff PBMLP SiLU 10.07 8.02 31.64	e (0) e (0) >>s e proposed sizes . PBMLP ReLU bsz=64 10.04 7.95 31.64 6.84 erent activ PBMLP Hardswisi 15.26 14.02 36.23	PBMI ReLU bsz=1 10.7 9.65 31.7 8.29 ation f PB h M 10 7 3					
34 35 36 37 38 39 40 41 42) pb-eb tr_los tr_los batch batch batch batch configuration RMSE tS fur (4) RMSE tS fur (4) RMSE tS obs (4) mMAPE fr (4) Table 17: Effetterms in PBML Metric RMSE tS fur (4) RMSE tS fur (4) RMSE tS fur (4) RMSE tS obs (4) mMAPE fr (4)	ss_actua ss_ebv ss_ebs _loss=t _loss_b izer.st rmance varying [100] 11.64 10.05 34.82 8.76 ect of ir P. EBV on 11.85 10.36 32.46 6.42	<pre>l = torch = criteri = criteri ackward() ep() of PBMLU [50,100] 17.25 15.23 37.62 9.15 ndividual = ly EBS on 11.66 11.07 32.04 7.53</pre>	n . zeros (on (pb.e on (pb.e gtmps+l.) P (ReLU yer confi [50,100, 200] 10.04 7.95 31.64 6.84 regulariz ly PBM 0 10.0 7.99 31.6 6.84	pb_ebs_pr bv_pred , bs_pred , ambda_eby) variant of gurations [50,100, 200,200] 10.84 7.83 33.57 8.06 ter Table tions i LP M 4 RMSE 4 RMSE 4 RMSE	red . size (pb_ebv_a pb_ebs_a v*tr_loss of our [50,100, 200,200, 205,205] 14.27 12.46 36.42 7.51 18: Perfo in the und Metric SE tG (4) 2 tS fur (4) XPE fr (4))).to(dev netual) / netual) / netual	rice) y_train. y_train. da_ebs* Perform ing diffe ic G (↓) fr (↓) PBMLP GeLU 13.57 8.86 39.65 5.88	ance of the rent batch PBMLP ReLU bsz=32 12.70 9.14 39.75 5.24 using diff PBMLP SiLU 10.07 8.02 31.64 6.23	e (0) e (0) >>s e proposed sizes . PBMLP ReLU bsz=64 10.04 7.95 31.64 6.84 erent activ PBMLP Hardswisi 15.26 14.02 36.23 7.03	PBMI PBMI ReL1 bsz=1 10.7 9.65 31.7 8.29 ation f PB h M 10 7 31 6					
34 35 36 37 38 39 40 41 42) pb-eb tr_los tr_los batch batch batch batch configuration RMSE tS fur (4) RMSE tS fur (4) RMSE tS obs (4) mMAPE fr (4) Table 17: Effet terms in PBML Metric RMSE tS fur (4) RMSE tS fur (4) RMSE tS obs (4) mMAPE fr (4)	ect of ir P. EBV on 11.85 10.85 10.85 10.85 10.85 10.05 34.82 8.76 11.85 10.36 32.46 6.42	<pre>1 = torch = criteri = criteri ackward() ep() of PBMLU hidden la [50,100] 17.25 15.23 37.62 9.15 ndividual = ly EBS on 11.66 11.07 32.04 7.53</pre>	n . zeros (on (pb.e on (pb.e gtmps+l.) P (ReLU yer confi [50,100, 200] 10.04 7.95 31.64 6.84 regulariz uly PBM 0 10.0 7.99 31.6. 6.84	pb_ebs_pr bv_pred , bs_pred , ambda_eby) variant of gurations [50,100, 200,200] 10.84 7.83 33.57 8.06 ter Table tions i LP M 4 RMSE 4 RMSE 4 RMSE	red . size (pb_ebv_a pb_ebs_a v*tr_loss of our [50,100, 200,200, 205,205] 14.27 12.46 36.42 7.51 18: Perfo in the und Metric SE tG (4) E tS fur (4) CS of (4) E tS fur (4))). to (dev netual) / netual) / netual) / netual) / netual) / netual) / netual) model rmance of erlying netual PBMLP ReLU 10.04 7.95 31.64 6.84	rice) y_train. y_train. da_ebs* Perform ing diffe ic G (↓) fr (↓) PBMLP GeLU 13.57 8.86 39.65 5.88	pred . siz, pred . siz, tr_loss_el ance of the rent batch PBMLP ReLU bsz=32 12.70 9.14 39.75 5.24 using diff PBMLP SiLU 10.07 8.02 31.64 6.23	e (0) e (0) > s e proposed sizes . PBMLP ReLU bsz=64 10.04 7.95 31.64 6.84 erent activ PBMLP Hardswisi 15.26 14.02 36.23 7.03	PBMI PBMI ReLU bsz=1 10.7 9.65 31.7 8.29 ation f PB h M 10 7 31 6					
34 35 36 37 38 39 40 41 42) pb_eb tr_los tr_los batch batch batch batch configuration RMSE t5 (4) RMSE t5 fur (4) RMSE t5 fur (4) RMSE t5 fur (4) RMSE t5 (4) RMSE t5 fur (ect of ir P. EBV on 11.85 10.85 10.85 10.85 10.85 10.05 34.82 8.76 11.85 10.36 32.46 6.42	<pre>l = torch = criteri = criteri ackward() ep() of PBMLU hidden la [50,100] 17.25 15.23 37.62 9.15 ndividual = ly EBS on 11.66 11.07 32.04 7.53</pre>	n . zeros (on (pb.e on (pb.e gtmps+1.) P (ReLU yer confi [50,100, 200] 10.04 7.95 31.64 6.84 regulariz ly PBM 10.00 7.99 31.66 6.84	pb_ebs_pr bv_pred , bs_pred , ambda_ebv) variant of gurations [50,100, 200,200] 10.84 7.83 33.57 8.06 [50,100, 200,200] 10.84 7.83 33.57 8.06 [50,100, 200,200] 10.84 7.83 33.57 8.06	red . size (pb_ebv_a pb_ebs_a v*tr_loss of our [50,100, 200,200, 205,205] 14.27 12.46 36.42 7.51 18: Perfo in the und Metric SE tG (↓) 2tS obs (↓) APE fr (↓))).to(dev netual) / netual) / netual) / netual) / netual) / netual) / netual) / netual) model rmance of erlying netual PBMLP ReLU 10.04 7.95 31.64 6.84	rice) y_train. y_train. da_ebs* Perform ring diffe ic G (↓) fr (↓) PBMLP work. PBMLP Work. PBMLP Kalone Salar Sa	pred . siz, pred . siz, tr_loss_el ance of the rent batch PBMLP ReLU bsz=32 12.70 9.14 39.75 5.24 using diff PBMLP SiLU 10.07 8.02 31.64 6.23	e (0) e (0) > s e proposed sizes . PBMLP ReLU bsz=64 10.04 7.95 31.64 6.84 erent activ PBMLP Hardswisi 15.26 14.02 36.23 7.03	PBM1 PBM1 ReL bsz=1 10.7 9.69 31.7 8.29 ation f PB h M 10 7 31 6					
34 35 36 37 38 39 40 41 42) pb-eb tr-los tr-los tr-los batch batch batch batch configuration RMSE t5 (4) RMSE t5 fur (4) RMSE t5 obs (4) mMAPE fr (4) Table 17: Effetterms in PBML Metric RMSE t5 (4) RMSE t5 fur (4) RMSE t5 obs (4) mMAPE fr (4) RMSE t5 obs (4) RMSE t5	ss_actua ss_ebv ss_ebs _loss=t _loss_b izer.st rmance varying [100] [11.64 10.05 34.82 8.76 ect of ir P. EBV on 11.85 10.36 32.46 6.42	<pre>1 = torch = criteri = criteri ackward() ep() of PBMLI hidden la [50,100] 17.25 15.23 37.62 9.15 ndividual = ly EBS on 11.66 11.07 32.04 7.53</pre>	n. zeros (on (pb.e on (pb.e gtmps+1.) P (ReLU yer confi [50,100, 200] 10.04 7.95 31.64 6.84 regulariz ly PBM 10.0 7.99 31.6 6.84	pb_ebs_pr bv_pred , bs_pred , ambda_ebv) variant co gurations [50,100, 200,200] 10.84 7.83 33.57 8.06 tions i LP M 4 RMSE 4 RMSE 4 RMSE 4 RMSE 4 RMSE 4 RMSE 4 RMSE 4 RMSE 4 RMSE	red . size (pb_ebv_a pb_ebs_a v*tr_loss of our [50,100, 200,200, 205,205] 14.27 12.46 36.42 7.51 18: Perfo in the und Aetric SE tG (↓) 2tS obs (↓) APE fr (↓))). to (dev netual) / netual) / netual) / netual) / netual) / netual) / netual RMSE to RMSE to	rice) y_train. y_train. da_ebs* Perform ing diffe ic G (↓) fr (↓) PBMLP work. PBMLP Work. PBMLP 055 (↓) fr (↓) 13.57 8.86 39.65 5.88	pred . size pred . size tr_loss_el ance of the rent batch PBMLP ReLU bsz=32 12.70 9.14 39.75 5.24 using diff PBMLP SiLU 10.07 8.02 31.64 6.23	e (0) e (0) > s e proposed sizes . PBMLP ReLU bsz=64 10.04 7.95 31.64 6.84 erent activ PBMLP Hardswisi 15.26 14.02 36.23 7.03	PBM PBM ReL bsz=1 10.7 9.66 31.7 8.29 ation f PB h M 10 7 31 6					

Swerea MEFOS), Sweden, which has been studied by Hu et al. (2019). Figure 6 illustrates
the furnace, which can be conceptually subdivided into several zones along both its length and height, such as dark, control, and soaking, which represent regions with distinct temperatures. It has varying

Figure 6: Illustration of the real-world furnace in Swerim, Sweden, and its subdivision as different zones Hu et al. (2019). Figure is best viewed in color. The temperature increases towards the discharge end (at the right), as indicated by a darker shade. The slabs are heated while moving from the left to the right.

heights for different zones but is of fixed length and width. It has a target heating temperature of 1250
 °C and its production capacity is 3 tonne/hr. Reheating furnaces are used to heat intermediate steel products usually known as stock (e.g., blooms, billets, slabs).

```
1404
        Algorithm 4 PyTorch-styled pseudo-code for additional helper functions in our framework
1405
1406
        ### HELPER FUNCTIONS (set 2) ###
1407
        def inverse_transform_Vectorized_pt(scaledtensor, range, min_along_dims, dist):
1408
             range_min , range_max=rang
1409
             origtensor = min_along_dims+dist*(scaledtensor-range_min)/(range_max - range_min)
1410
             return origtensor
1411
      9
        def get_an_mat_tensor(tB_singlerow_tensor):
1412
     10
             tMat_tensor=torch.tile(tB_singlerow_tensor, (Ng, 1))
             coef_b_mat_T = coef_b_mat.T
     11
1413
             for ii in range(coef_b_mat_T.shape[1]):# Taylor series loop
     12
                 bn=coef_b_mat_T [:,[ii]]
1414
     13
                 bn_tensor=torch.from_numpy(bn).float().to(device)
     14
1415
                 if ii ==0:
1416
     16
                     an_mat_tensor=torch.mul(torch.tile(
                         bn_tensor, (1, tMat_tensor.size(1))),tMat_tensor**ii)
1417
     18
                 else:
1418
     19
                     an_mat_tensor+=torch.mul(torch.tile(
                         bn_tensor, (1, tMat_tensor.size(1))),tMat_tensor**ii)
     20
1419
             return an_mat_tensor
1420
     23 def get_pb_ebv_pred_instance(sgarr_plus_hg_tensor, dfa_GG_tensor, tG_single_pred):
1421
     24
             startid_col, endid_col=0, n_gas_zones
1422
     25
             tG_current_tensor = inverse_transform_Vectorized_pt(
     26
1423
     27
                 tG\_single\_pred \ , (0 \ , 1) \ , ytr\_min\_along\_dims \ [[0] \ , startid\_col : endid\_col \ ]. \ to (device) \ ,
                 vtr_dist[[0].startid_col:endid_col].to(device))
1424
     28
      29
1425
            ggarr_tensor=torch.sum(torch.mul( dfa_GG_tensor , sbcons*torch.tile(
tG_current_tensor**4, (dfa_GG_tensor.size(0), 1))),1, keepdim=True).T
      30
1426
     31
1427
     33
             an_mat_G_tensor=get_an_mat_tensor(tG_current_tensor)
1428
     34
             tmpmat2=sbcons*torch.mul( torch.tile(
     35
1429
      36
                 Vi_current_tensor ,(an_mat_G_tensor.size(0),1) )
     37
                 torch.tile(tG\_current\_tensor**4, (an\_mat\_G\_tensor.size(0), 1)))
1430
            38
1431
     39
1432
     40
             gleave_tensor=torch.sum(torch.mul(tmpmat1,tmpmat2),0,keepdim=True)
     41
1433
     42
             pb_ebv_pred_instance = torch.abs(ggarr_tensor+sgarr_plus_hg_tensor -4*gleave_tensor)
1434
     43
             pb_ebv_pred_instance/= pb_ebv_pred_instance.max(dim=1, keepdim=True)[0]
     44
1435
     45
         return pb_ebv_pred_instance
1436
     46
1437
1438
1439
        Through a series of discrete pushes, the transport of slabs occurs within a furnace. As shown in
1440
        Figure 6, a first slab at an ambient temperature is pushed from the charging end at the left side of
1441
        furnace (lower temperature, shown in a lighter shade). At each push, all slabs move forward towards
1442
        the discharge end at the right (higher temperature, shown in a darker shade). For a few specific
        regions in the furnace, the process operator pre-defines a few set point temperatures, which indicate
1443
        the temperatures to which the slabs must be heated. The slabs once heated to the required set point
1444
        temperatures, are collected at the discharge end. The movement of the slabs is controlled by the
1445
        walk-interval (walk rate), depending on the desired throughput.
1446
1447
        The internal combustion is controlled via firing rates of a few burners located in specific regions. In
1448
        Figure 6, we can see that there are six burners: 2 in each of control zones 1, 2, and 3. In this particular
1449
        furnace, the pair of burners in a control zone share the same firing rate values. Note that these firing
        rates are normalized in [0, 1].
1450
1451
        Describing the behavior of a furnace state involves combustion models, control loops, set point
1452
        calculations, and fuel flux control in zones. It also involves linearization and model order reduction
1453
        for state estimation and state-space control. The inherent complexity makes the modeling a nonlinear
1454
        dynamic system. We provide set point temperatures, walk interval, firing rates and initial state of the
```

furnace (indicated by temperatures of various gas and surface regions/zones in it) as inputs to this system. These inputs, along with the overall movement of the slabs within the furnace, influence the mass and energy flow throughout the furnace system. This, in turn, results in a new furnace state, characterized by a new set of temperatures.

Figure 7: Illustration of flow of the data generation algorithm. The figure is best viewed in color. Dashed lines denote feedback from past time step. Blue/red/gray lines correspond for $t_G/t_S/fr$, respectively. Block Abbreviations are, FR: Firing Rate, FP: Flow-pattern, ENTH: Enthalpy, TRAN: Heat-transfer, COND: Conduction analysis, EBV/S: Energy-Balance Volume/Surface, and DFA: Directed Flux Area. Details of components present in the text.

1476 The ideal scenario involves a computational model that can predict the next set of temperatures 1477 based on the provided inputs. This predicted state can then be compared to the desired set point temperatures. Deviations from the set points trigger adjustments in the firing rates. If a region's 1478 predicted temperature falls short of the set point, the firing rate for the corresponding burner increases. 1479 Conversely, if the predicted temperature exceeds the desired value, the firing rate is lowered. A 1480 Proportional-Integral-Derivative (PID) controller is employed to manage these adjustments in practice. 1481 This controller factors in the walk interval to ensure smooth and controlled changes in the firing rates, 1482 ultimately leading to a furnace state that aligns with the set point temperatures. 1483

1484

1475

1485 A.8.2 PROPOSED DATA GENERATION METHODOLOGY FOR TEMPERATURE PREDICTION USING ML 1487 ML

As shown in Figure 6, it is possible to conceptually divide the furnace into 1, 2, and 12 sections across its width, height, and length respectively. This results in a total of 24 **volume/gas zones**, where gaseous material could reside. These zones can be visualized using the dashed vertical and horizontal lines in the figure.

Additionally, at a time step, there can be 17 slabs inside the furnace, each of which has 6 surfaces, thus, resulting in 102 slab surfaces. With prior knowledge of the 3D structure of our furnace, we computed a total of 76 furnace walls, which could be called furnace surfaces. We can respectively call the 102 slab surfaces as obstacle/ slab surface zones, and the 76 furnace walls as furnace surface zones. Collectively, the obstacle/ slab surface zones and furnace surface zones result in a total of 178 **surface zones**, which in addition to the volume zones form the basis of utilization of the Hottel's zone method.

1499 The flow of combustion products within the furnace results in heat release. This causes radiation 1500 interchange among all possible pairs of zones: gas to gas, surface to surface, and surface to gas (and 1501 vice-versa). The dominating heat transfer mechanism in such processes is Radiative Heat Transfer 1502 (RHT), which naturally occurs among the other heat transfer mechanisms: conduction and convection. 1503 For each pair of zones, there would be an **energy balance**, i.e., the amount of energy entering a zone would equal the amount leaving it. To model the RHT, the zone method subdivides an enclosure into 1504 a finite number of isothermal <u>volume</u> and <u>surface</u> **zones**, and applies energy balance to each of them. 1505 In our case, for example, we have a total of 202 zones (178 for surfaces and 24 for volumes). 1506

We can model the radiative exchange among any two zones by leveraging underlying governing physical equations, and *energy balances*. The zone method also employs pre-computed exchange areas (which are general forms of <u>view factors</u>). The main objective is to then compute unknown parameters such as temperatures (of volumes and surfaces), and heat fluxes. This could be done by solving a set of simultaneous equations. We direct the interested reader to Yuen & Takara (1997); Hu et al. (2016; 2019), for a better perspective of the zone method.

We shall design the data framework in such a way that it can easily plug in any standard ML (or DL) model for regression. For this, notice that although the various entities within the computational method depend on the geometry of the furnace, we can make a learnable model agnostic of the geometry, if we can train it by simply using data in the form of input-output pairs, and (optional) auxiliary/ intermediate variables (say, for regularization).

One simple way is to collect all relevant values from across zones corresponding to an entity in the form of a vector. For example, we could collect all gas zone temperatures within a vector, and likewise, for other entities such as surface zones, enthalpies, heat fluxes, node temperatures, etc, we could form individual vectors. This gives us the freedom to ignore the 3D structure during training as we can simply deal with vectors and their mappings, say within a neural network, or any other ML technique. Post-inference analysis or fine-grained process control could later be performed via our knowledge of which zone an attribute of the vector maps to.

In Figure 7, we present our proposed algorithmic flow mimicking the Hottel's zone method Hottel & Cohen (1958); Hottel & Saforim (1967); Yuen & Takara (1997) based computational model of Hu et al. Hu et al. (2016), for data generation aimed at training regression-based ML models. In this, notice how we represent all the relevant entities as vectors. While we shall discuss all relevant terms of the zone method in detail, during the explanation of the modeling part, we now briefly give an overview of the various stages of the zone method. Here, let Φ represents a particular block/ stage, and θ represents the applicable parameters for the underlying function (abbreviated name shown in the subscript). Following are the stages in the generation method (represented by a block in Figure 7):

- 1. Firing Rates updation block $(\Phi_{\theta_{fr}})$: Using the predicted gas (t_G) and surface (t_S) zone temperatures from a previous time step, a calibration against the setpoint temperatures provided in **sp** is performed to update the firing rates **fr** for the current time step (also denoted as f). In Figure 7 we use slightly abused notations of **fr** and **sp** to represent firing rates and setpoints for avoiding confusion with other notations such as *surface*.
- The TEAs are denoted as: $GS \in \mathbb{R}^{|G| \times |S| \times N_g}$, $SS \in \mathbb{R}^{|S| \times |S| \times N_g}$, $GG \in \mathbb{R}^{|G| \times |G| \times N_g}$, and $SG \in \mathbb{R}^{|S| \times |G| \times N_g}$ (we can drop the third dimension for the sake of brevity). Here, GS, SS, GG, and SG contain the pre-computed gas-surface, surface-surface, gas-gas, and surface-gas exchange areas. $GS \in \mathbb{R}^{|G| \times |S|}$, $SS \in \mathbb{R}^{|S| \times |S|}$, $GG \in \mathbb{R}^{|G| \times |G|}$, and $SG \in \mathbb{R}^{|S| \times |G|}$ are the corresponding DFA terms for GS, SS, GG, and SG respectively (indicates the direction of flow). Here, N_g denotes the number of gases used for representing a real gas medium.

Initially, we assume that a steady-state has been reached, and hence assign ambient temperature values to t_S , t_G . The parameters θ_{dfa} represent fixed correlation coefficients (as discussed in the methodology section).

- 3. Flow pattern $(\Phi_{\theta_{fp}})$ and enthalpy blocks $(\Phi_{\theta_{enth}})$: Given initial firing rates in $f \in \mathbb{R}^{|B|}$ $(|B| \text{ is a function of the number of burners}), the block representing the function <math>\Phi_{\theta_{fp}}$ obtains the flow pattern flat(F), which is further used by the block representing the function $\Phi_{\theta_{enth}}$ to obtain the enthalpy vector q.
- Note that, the flow of combustion gases within an enclosure causes mass flow into (+ve) and out (-ve) of a zone, for each inter-zone boundary plane. This flow could be pre-computed in a CPU instantly using a polynomial fitted through isothermal CFD simulations that define a range of experimental points, derived with Box–Behnken designs Ferreira et al. (2007). The flow pattern resulted is by nature a matrix $F \in \mathbb{R}^{|G| \times 12}$, but the spatial dependency among the matrix elements can be discarded for simplicity, and we can rather represent an equivalent flattened vector $flat(F) \in \mathbb{R}^{12|G|}$ obtained in row-major fashion. Note that, as already mentioned, we subdivide an enclosure into several cubes/ boxes (zones in our

1: 2: 3:		e Data gene	ration argo			ce comig	urution		
3:	Initialize a	steady-state furnac	e configuration	via set points an	d walk interval				
	Initialize t	${}^{(0)}_{G}, {\boldsymbol{t}}^{(0)}_{S}$ with stead	dy-state ambien). t temperatures, a	nd $\boldsymbol{f}^{(0)}$.				
1: 1	for t=1 to $f(t)$	\tilde{T} do		(t-1)	(t-1)				⊳t: tim
	$f^{(v)} \leftarrow a^{(t)} \leftarrow$	$-\Phi_{\theta_{fr}}(f^{(\circ -1)},$	set point tempe $(\mathbf{f}^{(t)})$	ratures, $t_G^{(i)}$ z_{i} ,	$t_S^{(z-z)}$				
	$\tilde{G}G^{(t)}$	$G \mathbf{S}^{(t)} \mathbf{S}^{(t)} \mathbf{S}^{(t)} \mathbf{S}^{(t)}$	$(\mathbf{J}^{(t)})$	$(t_{\alpha}^{(t-1)}, t_{\alpha}^{(t-1)})$	$^{t-1)}$ GG G	S. SG. S	S)		
	$t_{C}^{(t)} \leftarrow$	Φ_{θ} , $(\boldsymbol{q}^{(t)}, \boldsymbol{G})$	$\overline{G}^{(t)}, \overline{GS}^{(t)})$	dfa (°G , °	, , , , , , , , ,	,,,,,,,,,,,,,,,,,,,,,,,			
:	$w^{(t)}$ ($-\Phi_{ heta_{tran}}(\boldsymbol{t}_{G}^{(t)}, \boldsymbol{t}_{G}^{(t)})$	$t_S^{(t-1)}, ar{m{s}m{s}}^{(t)}$	$, \overleftarrow{sG}^{(t)})$					
0:	$oldsymbol{t}_{S}^{(t)}$ ($-\Phi_{ebs}(\boldsymbol{n}^{(t)}), \mathbf{w}$	here $\boldsymbol{n}^{(t)} \leftarrow \boldsymbol{q}^{(t)}$	$\Phi_{\theta_{con}}(\boldsymbol{w}^{(t)})$					
11: 12:	$\mathcal{X}_t \leftarrow \mathcal{X} \leftarrow$	$\{m{f}^{(t)},m{F}^{(t)},m{q}^{(t)},m{q}^{(t)}\}$	$t^{\prime}, t^{(c)}_S, t^{(c)}_G, t^$	$w^{(i)}, n^{(i)}$					
$13:_{14}$	end for return \mathcal{X}	- 0							
	Teturii A								
	ca	ase). Since ar	ny cube has	6 surfaces,	and for ea	ach surfa	ce we hay	ve two di	rections of
	(+ di	-ve and -ve),	this results f	in 12 flows	for each v	volume z	one, and	thus, the	12 arises in
		line isonality	volume zo	ne <i>i</i> wewo	uld requir	e an enth	alny tran	snort terr	$\mathbf{n}(\dot{O}, u)$
	in	troduce an er	thalpy vec	tor $\boldsymbol{a} \in \mathbb{R}^{ G }$	to compa	ctly repr	esent the	se terms.	$($ $($ $enth$ $)i$ \cdot
	4. E	nergy Balan	ce Volum	e (EBV) bl	ock ($\Phi_{\theta_{eh}}$): We in	ntroduce	a block	to compute
	vo	olume zone te	mperatures	t_G using the	e enthalpy	vector q	and the	DFA term	is $\stackrel{-}{GG}$ and
	5. H	eat transfer	block ($\Phi_{\theta_{ti}}$): Togeth	er with the	volume z	zone temp	peratures a	t_G , the obta
	D	FAs (SS , S (G), and the	previously	obtained (o	or initializ	zed) surfa	ice zone t	emperature
	W 6 C	e obtain the h	neat transf	er/flux to the total tot	ne surfaces	s as a vari	table w .	zona saru	ac ac a boun
		ondition for n	erforming	a conduction $(\Psi_{\theta_{con}})$:	n analysis	to com	bute the f	ransient h	es as a bound
	th	rough each s	urface. The	e conduction	1 process 1	esults in	the node	temperat	tures, which
	re	present as a v	variable n .		-			-	
	7. E	nergy Balan	ce Surface	e (EBS) blo	ck ($\Phi_{\theta_{ebs}}$)	: The co	mputatio	on of heat	t transfer/
	ai H	aving comput	ted the heat	transfer and	l pied toget	ner as the	duction a	analysis, f	the surface z
		mperatures in	n t_S can be	updated us	ng the noc	le temper	atures n	. This is a	fixed funct
	te			ents the sten	s involved	in the da	ta genera	tion meth	nod. We ass
Th tha the var ent	te e Algor t for a st form: <i>a</i> iables a halpy, a	ithm: Algori teady-state function $\mathcal{X} = \{\mathcal{X}_t\}_{t=1}^T$ is described in and node temp	thm 5 press rnace confi , where, λ n Figure 7 peratures ca	guration (wi $\mathcal{L}_t = \{ \boldsymbol{f}^{(t)},, for a times an be treated by the step of the s$	th fixed set $F^{(t)}, q^{(t)},$ step t. No	t points as $\boldsymbol{t}_{S}^{(t)}, \boldsymbol{t}_{G}^{(t)},$ but that the ently from	nd walk i $\boldsymbol{w}^{(t)}, \boldsymbol{n}^{(t)}$ he compund the ene	nterval), or ⁽²⁾ } is the utations of argy balan	our data set set of obser of flow patte ace equation
The tha the var ent	te e Algor t for a st form: <i>A</i> iables a halpy, a	ithm: Algori teady-state fur $\mathcal{X} = \{\mathcal{X}_t\}_{t=1}^T$ is described i nd node temp	thm 5 press rnace confi , where, A n Figure 7 peratures ca	guration (wi $C_t = \{f^{(t)},, for a time-an be treated$	th fixed set $F^{(t)}, q^{(t)},$ step t. No independent independe	t points as $t_S^{(t)}, t_G^{(t)},$ be that the ently from $t_{G_{gaszone}}$	nd walk i $w^{(t)}, n^{(t)}$ the computed in the energy ts_furnace	ts_obstacle	bur data set set of obser of flow patte ace equation
Fh e ha he var ent	te e Algor t for a st form: <i>A</i> iables a halpy, a	ithm: Algori iteady-state function $\mathcal{X} = \{\mathcal{X}_t\}_{t=1}^T$ is described in nd node temp firing_rates_walk [0.162, 0.9,	thm 5 preservation of the second seco	guration (wi $\mathcal{L}_t = \{ f^{(t)},, for a time- an be treated points flowpatte g_{05,0}, 0.00037, 0$	th fixed set $F^{(t)}, q^{(t)},$ step t. No independer (325971.875, 0. 6805.781, 1. 6805.781,	t points at $t_S^{(t)}, t_G^{(t)},$ bete that the ently from tG_gaszone [1238.396, 658.989, 669.693.	and walk i $w^{(t)}, n^{(t)}$ the computed by the energy of the energ	nterval), c (t)) is the itations c ergy balan ts_obstacle [282.33, 198.022, 230.603.	bur data set set of obser of flow patte ice equation w_flux_furnace [1227.219, 61.728, 44.997, 77.785
Th tha the var ent	te e Algor t for a st form: <i>A</i> iables a halpy, a	ithm: Algori teady-state fu: $\mathcal{X} = \{\mathcal{X}_t\}_{t=1}^T$ is described i nd node temp firing_rates walk [0.162, 0.9, 0.6699]	thm 5 preservation of the second seco	$\begin{aligned} & \text{guration (wi} \\ & \mathcal{L}_t = \{ \boldsymbol{f}^{(t)}, \\ & \text{, for a time-} \\ & \text{n be treated} \\ \\ & \text{goints flowpatte} \\ \\ & \text{goints flowpatte} \\ & go$	th fixed set $F^{(t)}, q^{(t)},$ step t . Not independent independent (325971.875, 6005.781, 16632.312, 2074.8559, 22	t points at $t_{S}^{(t)}, t_{G}^{(t)}, t_{G}^{(t)},$ but that the ently from tegaszone [1238.396, 655.898, 669.693, 720.935, 7200.935, 72000000000000000000000000000000000000	the generation $w^{(t)}, n^{(t)}$ the computed by the energy of the en	nterval), (c)) is the itations c orgy balan (122.33, 198.022, 230.603, 267.441, 244.599, 2	bur data set set of obser of flow patte w_flux_furnace [1227.219, 61.728, 44.997, 77.785, 123.674, 26
Th tha the var ent	te e Algor t for a st form: <i>A</i> iables a halpy, a	ithm: Algori iteady-state fu: $\mathcal{X} = \{\mathcal{X}_t\}_{t=:}^T$ is described i nd node temp firing_rates walk [0.162, 0.9, 0.689]	thm 5 preservation of the second seco	$\begin{aligned} f_{t} &= \{ f^{(t)}, \\ f_{t} &= \{ f^{(t)}, \\ f_{t} &= \{ f^{(t)}, \\ f_{t}, \\ f_{t} &= \{ f^{(t)}, \\ f_{t}, \\ f_{t} &= \{ f^{(t)}, \\ $	th fixed set $F^{(t)}, q^{(t)},$ step t . Not independent (325971.875, 6805.781, 16632.312, 2074.0859, (331067.125, 9, [331067.125]	t points a: $t_{S}^{(t)}, t_{G}^{(t)},$ bet that the ently from teggaszone [1238.396, 655.898, 669.693, 720.935, 783.621,	the generation $w^{(t)}$, $n^{(t)}$ me compute the energy of the energy	nterval), (c) } is the itations c rgy balan ts_obstacle [282.33, 198.022, 230.603, 267.441, 244.599, 2 [291.843, 201.604,	bur data set set of obser of flow patte nce equation w_flux_furnace [1227.219, 61.728, 44.997, 77.785, 123.674, 26 [1470.822.
Th tha the var ent	te e Algor t for a st form: <i>A</i> iables a halpy, a timestep f 1000035	ithm: Algori iteady-state function $\mathcal{X} = \{\mathcal{X}_t\}_{t=1}^T$ is described ind node temp firing_rates_walk_ [0.162, 0.9, 0.689]	thm 5 preservation of the second seco	$\begin{aligned} & \text{guration (wi} \\ & \text{guration (wi} \\ & \text{f} = \{ f^{(t)}, \\ , \text{ for a time-} \\ & \text{an be treated} \end{aligned}$	th fixed set $F^{(t)}, q^{(t)},$ step t . Not independent (325971.875, 6805.781, (315971.875, 6805.781, (313067.125, 6830.078, (31067.125, 6830.078, (31067.125, 6830.078, (31067.125, 6830.078, (31067.125, 6830.078, (31067.125, 6830.078, (31067.125, 6830.078, (31067.125, 6830.078, (31067.125	t points at $t_{S}^{(t)}, t_{G}^{(t)}, t_{G}^{(t)},$ bet that the ently from to gaszone [1238.396, 655.898, 669, 720.935, 783.621,] [1245.547, 657.297, 677.983, 729.346]	ts_furnace $ts_furnace$ ts	nterval), (c nterval), (c) is the itations c rgy balan ts_obstacle [282.33, 198.022, 230.603, 267.441, 244.599,2 [291.843, 205.389, 239.773, 277.644	Dur data set set of obser of flow patte ice equation w_flux_furnace [1227.219, 61.728, 44.997, 77.785, 123.674, 26 [1470.822, 138.764, 84.222, 138.764, 84.222, 138.764, 84.222,
Th tha the var ent	te e Algor t for a st form: <i>A</i> iables a halpy, a 1000035	ithm: Algori iteady-state fu: $\mathcal{X} = \{\mathcal{X}_t\}_{t=1}^T$ is described i nd node temp firing_rates walk [0.162, 0.9, 0.689] [0.176, 0.9, 0.697]	thm 5 preservation of the second seco	$\begin{aligned} & \text{guration (wi} \\ & \mathcal{L}_t = \{ \boldsymbol{f}^{(t)}, \\ , \text{ for a time-an be treated} \\ & \text{goints flowpatte} \\ & goints flowpa$	th fixed set $F^{(t)}, q^{(t)},$ step $t.$ Not independe (325971.875, 6805.781, (335971.875, 6830.782, (331067.125, 6830.078, 10603.453, 20947.594, 2	t points a: $t_{S}^{(t)}, t_{G}^{(t)},$ be that the ently from tegaszone [1238.396, 655.898, 783.621, [1245.547, 657.297, 677.297, 677.298, 772.349, 785.105,	the generation $w_{1}^{(t)}, n^{(t)}$ the computed in the energy of th	nterval), (c) is the itations co orgy balan ts_obstacle [282.33, 198.022, 230.603, 267.441, 244.599,2 [291.843, 205.389, 239.773, 277.841, 253.712,	bur data set set of obser of flow patter ace equation <u>w_flux_furnace</u> [1227.219, 61.728, 44.997, 77.785, 123.674, 26 [1470.822, 138.764, 84.222, 138.764, 84.222, 121.113, 176.747,
Th tha the var ent	te e Algor t for a st form: <i>A</i> iables a halpy, a 1000035	ithm: Algori teady-state fu: $\mathcal{X} = \{\mathcal{X}_t\}_{t=1}^T$ is described i nd node temp firing_rates_walk [0.162, 0.9, 0.689] [0.176, 0.9, 0.697]	thm 5 preservation of the second seco	$\begin{aligned} f_{t} &= \{ f^{(t)}, \\ g_{00037, 0} \\$	th fixed set $F^{(t)}, q^{(t)},$ step t . Note independed independed (325971.875, 6805.781, 16532.312, 20740.859, (331067.125, 6830.078, 16632.432, 20947.594, (355621.75, 649.9553, 649.9553, 1659.9552, 1649.9553, 1659.9553, 1649.9553, 1	t points a: $t_{S}^{(t)}, t_{G}^{(t)},$ bet that the ently from tegaszone [1238.396, 655.898, 669.693, 720.935, 783.621, [1245.547, 67.297, 670.983, 722.349, 785.105, [1252.052, 656.657, 1252.052, 656.657, 1252.052, 656.657, 1252.052, 656.657, 1252.052, 656.657, 1252.052, 656.657, 1252.052, 656.657, 1252.052, 656.657, 1252.052, 1252.	the generation $w^{(t)}$, $n^{(t)}$ me compute the energy of the computed for the energy of the ene	nterval), (c nterval), (c) } is the itations (c irgy balant ts_obstacle [282.33, 198.022, 230.603, 267.441, 244.599, 2 [291.843, 205.389, 239.773, 277.841, 253.712, [301.287, 212.751,	bur data set set of obser of flow patte nce equation [1227.219, 61.728, 44.997, 77.785, 123.674, 26 [1470.822, 138.764, 84.222, 121.113, 176.747,
Th tha the var ent 0	te e Algor t for a st form: A iables a halpy, a timestep f 1000055	ithm: Algori ithm: Algori teady-state fur $\mathcal{X} = \{\mathcal{X}_t\}_{t=:}^T$ is described i nd node temp firing_rates walk [0.162, 0.9, 0.689] [0.176, 0.9, 0.697] [0.188, 0.9, 0.705]	thm 5 preservation of the second seco	$\begin{aligned} & \text{guration (wi} \\ & \mathcal{L}_t = \{ \boldsymbol{f}^{(t)}, \ \text{ for a time-an be treated} \\ & \text{softed for a time-an be treated} \\ & softed for a time-softed for a time-s$	th fixed set $F^{(t)}, q^{(t)},$ step t . Not independent (1) independent (1) indepe	t points a: $t_{S}^{(t)}, t_{G}^{(t)}, t_{$	ta general u and walk i $w^{(t)}, n^{(t)}$ and walk i $w^{(t)}, n^{(t)}$ and compute the energy of the energy o	nterval), (c nterval), (c) } is the itations C rgy balant t5_obstacle [282.33, 198.022, 203.0603, 267.441, 244.599,2 [291.843, 205.389, 239.773,1 277.841, 253.712, [301.287, 212.751, 248.861, 248.861, 248.861, 248.8102, 288.102	Dur data set set of obser of flow patte ice equation [1227.219, 61.728, 44.997, 77.785, 123.674, 26 [1470.822, 138.764, 84.222, 138.764, 84.222, 121.113, 176.747, [1680.182, 211.778, 121.823, 162.165, 226.299
Th ha he var ent 0	te e Algor t for a st form: A iables a halpy, a 1000035 1000055	ithm: Algori iteady-state fu: $\mathcal{X} = \{\mathcal{X}_t\}_{t=1}^T$ is described i nd node temp firing_rates walk [0.162, 0.9, 0.689] [0.176, 0.9, 0.697] [0.188, 0.9, 0.705] Figure 8: Sa	thm 5 preservation of the second seco	guration (wi $\mathcal{L}_t = \{ f^{(t)},, for a time- in be treated points flowpatte 905.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 220.0, 0.00037, 0 905.0, 10.2737 905.0, 220.0, 0.00037, 0 905.0, 220.0, 0.00037, 0 905.0, 220.0, 0.00037, 0 905.0, 220.0, 0.00037, 0 905.0, 220.0, 0.00037, 0 905.0, 0.00037, 0 $	th fixed set $F^{(t)}, q^{(t)},$ step t . No l independe (1 indepe	t points a: $t_{S}^{(t)}, t_{G}^{(t)}, t_{$	the generation of the energy	nterval), (c nterval), (c stations c rgy balan ts_obstacle [282.33, 198.022, 230.603, 267.441, 244.599, 2 [291.843, 205.389, 239.773, 277.841, 253.712, [301.287, 212.751, 248.861, 288.102, 262.75, 2 configurati	bur data set set of obset of flow patte ace equation w_flux_furnace [1227.219, 61.728, 44.997, 77.785, 123.674, 26 [1470.822, 138.764, 84.222, 138.764, 84.222, 121.113, 176.747, [1680.182, 211.778, 121.823, 162.165, 226.299, OII.
Th ha he var ent	te e Algor t for a st form: A iables a halpy, a 1000035 1000055	ithm: Algori iteady-state fu: $\mathcal{X} = \{\mathcal{X}_t\}_{t=1}^T$ is described i nd node temp [0.162, 0.9, 0.689] [0.176, 0.9, 0.697] [0.188, 0.9, 0.705] Figure 8: Sa	thm 5 preservation of the formation of t	$\begin{aligned} f_{t} &= \{f^{(t)}, \\ f_{t}$	th fixed set $F^{(t)}, q^{(t)},$ step $t.$ Note independent (325971875, 6805.781, (4, [325971875, 6805.781, 20740.859, 20740.859, (331067.125, 6830.078, 16803.453, 20947.594, (35619.459, 6849.953, 1699.9	t points a: $t_{S}^{(t)}, t_{G}^{(t)},$ bet that the ently from tegaszone [1238.396, 655.898, 696.933, 720.935, 783.621, [1245.547, 677.983, 722.349, 785.105, [1252.052, 656.657, 672.232, 722.349, 785.105, [1252.052, 656.553, 1252.052, 722.323, 723.621, 1252.052, 656.553, 1252.052, 722.323, 723.722, 786.523, 1252.052, 723.722, 786.523, 1252.052, 723.722, 786.523, 1252.052, 723.722, 786.523, 1252.052, 783.621, 1252.052, 783.621, 1252.052, 783.621, 1252.052, 783.621, 1252.052, 783.621, 1252.052, 783.621, 1252.052, 783.621, 1252.052, 783.621, 1252.052, 783.621, 1252.052, 783.621, 1252.052, 783.621, 1252.052, 783.621, 1252.052, 783.621, 1252.052, 783.621, 1252.052, 783.621, 1252.052, 783.621, 1252.052, 783.621, 1252.052, 783.622, 1252.052, 783.623, 1252.052, 783.623, 1252.052, 783.623, 1252.052, 783.722, 1252.052, 7252.05	the generation of the energy	nterval), (c) is the itations (c) irgy balant ts_obstacle [282.33, 198.022, 230.603, 267.441, 244.599, 2 [291.843, 205.389, 239.773, 277.841, 253.712, [301.287, 212.751, 248.8102, 262.75, 2 configurati	Dur data set set of obser of flow patte nce equation [1227.219, 61.728, 44.997, 77.785, 123.674, 26 [1470.822, 138.764, 84.222, 121.113, 176.747, [1680.182, 211.776, 121.823, 162.165, 226.299, On.
Th tha the var ent	te e Algor t for a su form: <i>A</i> iables a halpy, a timestep f 1000055 1000055	ithm: Algori iteady-state fur $\mathcal{X} = \{\mathcal{X}_t\}_{t=:}^T$ is described i nd node temp firing_rates walk [0.162, 0.9, 0.689] [0.176, 0.9, 0.697] [0.188, 0.9, 0.705] Figure 8: Sa lustrates a fer	thm 5 preservation of the formation of t	$\begin{aligned} f_{t} &= \{ f^{(t)}, \\ f_{t} &= \{ f^{(t)}$	th fixed set $F^{(t)}, q^{(t)},$ step t . Not independed (1) independed (1) independed	t points a: $t_{S}^{(t)}, t_{G}^{(t)}, t_{$	the generation $w^{(t)}$, $n^{(t)}$, $n^{(t)}$ the computed in the energy of the ene	nterval), (c nterval), (c is the itations c rgy balant t5_obstacle [282.33, 198.022, 230.603, 267.441, 244.599,2 [291.843, 205.389, 239.773, 277.841, 253.712, [301.287, 212.751,2 configurati ing entiti	bur data set set of obsen of flow patte ace equation [1227.219, 61.728, 44.997, 77.785, 123.674, 26 [1470.822, 138.764, 84.222, 121.113, 176.747, [1680.182, 211.778, 121.823, 162.165, 226.299, on. es (in colur

1620 'w_flux_obstacle', 'nodetmp_1d_furnace', 'nodetmp_2d_obstacle'. The names 1621 of the entities are self-explanatory (e.g., 'nodetmp_ld_furnace' refers to 1D node temperatures 1622 for furnace surfaces, 'nodetmp_2d_obstacle' refers to 2D node temperatures for obstacle sur-1623 faces), where G as usual, denotes gas zone and S denotes surface zone, the latter, is further divided into furnace and obstacle. 1624

1627		tG_gaszone_prev	tS_furnace_prev	tS_obstacle_prev	firing_rates	tG_gaszone	tS_furnace	tS_obstacle	firing_rates_next
1628 1629 1630	0	[1230.741, 654.484, 668.378, 719.49, 782.103,	[898.918, 696.524, 676.938, 707.417, 759.248,	[272.753, 190.658, 221.352, 256.904, 235.417,	[0.162, 0.9, 0.689]	[1238.396, 655.898, 669.693, 720.935, 783.621,	[899.66, 696.459, 676.871, 707.375, 759.241, 8	[282.33, 198.022, 230.603, 267.441, 244.599, 2	[0.176, 0.9, 0.697]
1631 1632 1633	1	[1238.396, 655.898, 669.693, 720.935, 783.621,	[899.66, 696.459, 676.871, 707.375, 759.241, 8	[282.33, 198.022, 230.603, 267.441, 244.599, 2	[0.176, 0.9, 0.697]	[1245.547, 657.297, 670.983, 722.349, 785.105,	[900.576, 696.454, 676.84, 707.373, 759.285, 8	[291.843, 205.389, 239.773, 277.841, 253.712, 	[0.188, 0.9, 0.705]
1634 1635 1636	2	[1245.547, 657.297, 670.983, 722.349, 785.105,	[900.576, 696.454, 676.84, 707.373, 759.285, 8	[291.843, 205.389, 239.773, 277.841, 253.712,	[0.188, 0.9, 0.705]	[1252.052, 658.657, 672.223, 723.702, 786.523,	[901.643, 696.504, 676.845, 707.41, 759.375, 8	[301.287, 212.751, 248.861, 288.102, 262.75, 2	[0.197, 0.9, 0.712]
1637 1638 1639	3	[1252.052, 658.657, 672.223, 723.702, 786.523,	[901.643, 696.504, 676.845, 707.41, 759.375, 8	[301.287, 212.751, 248.861, 288.102, 262.75, 2	[0.197, 0.9, 0.712]	[1257.793, 659.953, 673.385, 724.964, 787.842,	[902.832, 696.606, 676.883, 707.482, 759.508,	[310.652, 220.1, 257.862, 298.222, 271.709, 27	[0.209, 0.9, 0.718]
1640 1641 1642	4	[1257.793, 659.953, 673.385, 724.964, 787.842,	[902.832, 696.606, 676.883, 707.482, 759.508,	[310.652, 220.1, 257.862, 298.222, 271.709, 27	[0.209, 0.9, 0.718]	[1263.848, 661.255, 674.595, 726.284, 789.244,	[904.15, 696.761, 676.954, 707.59, 759.686, 82	[319.959, 227.441, 266.784, 308.212, 280.599, 	[0.218, 0.9, 0.727]

Figure 9: Rearranged training data instances (selected columns).

Assuming that the original data is stored in a Pandas DataFrame (using a Python syntax), for each 1646 time step we also need the following entities: 'firing_rates_next', 'tG_gaszone_prev', 1647 'tS_furnace_prev', and 'tS_obstacle_prev'. This is because, for computing the entities 1648 in a time step, we make use of the temperatures in the previous time step. At the same time, for 1649 experimental purposes, we also try to directly predict the next firing rate via ML. Thus, using Python 1650 syntax, we could perform the following: 1651

```
a) df['firing_rates_next'] = df['firing_rates'].shift(-1)
1652
      followed by df = df.drop(df.tail(1).index).
```

```
b) df['tG_gaszone_prev']=df['tG_gaszone'].shift(1),
```

```
1654
      df['tS_furnace_prev'] = df['tS_furnace'].shift(1),
```

```
df['tS_obstacle_prev'] = df['tS_obstacle'].shift(1)
1655
```

```
followed by df = df.drop(df.head(1).index).
1656
```

1625 1626

1643 1644 1645

1657 The rearranged data can be visualized as in Figure 9 (we only showcase relevant entities here, 1658 owing to limited space). Essentially, we add a new column 'firing_rates_next' by shifting 1659 the original firing rates column a step back and then dropping the last row. Likewise, we add new columns for *prev* temperatures by shifting the original temperature columns a step forward 1661 and then dropping the first row. Please note that some additional auxiliary variables are used by the computational method of Hu et al. Hu et al. (2016), which are mostly constants, and 1662 could thus be repeated/ copied for each time step. They are: 'corrcoeff_b', 'Qconvi', 1663 'extinctioncoeff_k', 'gasvolumes_Vi', 'QfuelQa_sum', 'surfareas_Ai', 1664 'emissivity_epsi', 'convection_flux_qconvi'. We later leverage them in training our 1665 PCNN, with the help of regularizers. 1666

Now we can form any data set containing N samples: $\mathcal{X} = \{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)})\}_{i=1}^{N}$ to train an off-the-shelf, 1668 standard ML/ DL model $f_{\theta}(.)$ with learnable parameters θ , which expects an input instance $x^{(i)}$ as 1669 vector and predicts an output vector $y^{(i)}$, i.e., $y^{(i)} = f_{\theta}(x^{(i)})$. Here, $x^{(i)}$ and $y^{(i)}$ can be formed using entities from desired columns obtained from the rearranged data as shown in Figure 9. Notice how the above proposed ML training framework via our data generation in the form of simple input-1671 output pairs lets any generic regression model learn freely without requiring 3D geometry-specific 1672 knowledge during the training. This makes our proposed framework geometry-agnostic, and hence 1673 flexible by nature to accommodate any ML method.

1674 A.8.3 BENCHMARKING DATA SET DETAILS FOR ML MODEL DEVELOPMENT AND EVALUATION 1675

1676 Algorithm 5 outlines data generation for a fixed furnace configuration (defined by set points and walk interval). Set points are desired temperatures for certain zones. We represent a configuration as: 1677 SP1_SP2_SP3_WI, where SP1, SP2, SP3 and WI respectively denote the set point 1, set point 2, 1678 set point 3, and walk interval. Under normal conditions naturally occurring in practice, following 1679 will hold true: SP1<SP2<SP3. For robustness, we consider 50 configurations (based on the furnace 1680 in Fig 6) and generate corresponding *configuration datasets*, including abnormal configurations with arbitrary set points. Since each dataset has a unique configuration, their inherent data distributions 1682 differ. 1683

From the 50 distinct datasets, we combine configurations (e.g., first, fourth, seventh) to form a consol-1684 idated training split. Similar combinations create validation and test splits with no overlap between 1685 them. This creates a test bed to evaluate model generalization across different data distributions, 1686 crucial for real-world deployment where inference data might differ from training data. Table 19 1687 details these configurations, indicating their membership in training, validation, or test splits, within 1688 parentheses. Test datasets (e.g., N1-2, N1-3) are named based on their set point characteristics and 1689 are also shown in bold. 1690

It should be noted that the default SP1, SP2, SP3, WI setting is kept: 955_1220_1250_750. With this, we vary each of SP1, SP2, SP3, and WI with certain step-size. This leads to four groups/types of configurations within the Normal Behaviour Configurations shown in Table 19. The nomenclature 1693 of the test data sets is done to indicate their grouping, e.g., prefixes N1-, N2-, N3- and N4- denote 1694 whether the configuration belongs to the group with varying SP1, SP2, SP3, and WI respectively. 1695 Thus, Ni-j indicates the j-th configuration of the group i, and is used to represent a test configuration *data set.* As it can be seen, there are **11 normal test data sets** where we evaluate the ML models. 1697

1698	Table 19: Benchmark data details.								
1699	Normal Behaviour Configurations (SP1 <sp2<sp3)< th=""></sp2<sp3)<>								
1700	Type 1 (Varying SP1 only)	Type 2 (Varying SP2 only)	Type 3 (Varying SP3 only)	Type 4 (Varying WI only)					
1701 1702 1703 1704 1705 1706 1707	905.1220.1250.750 (Training) 915.1220.1250.750 (Val) 925.1220.1250.750 (N1-1) 935.1220.1250.750 (N1-1) 945.1220.1250.750 (Val) 965.1220.1250.750 (N1-2) 975.1220.1250.750 (Training) 985.1220.1250.750 (Val) 995_1220.1250.750 (N1-3)	955_1170_1250_750 (Training) 955_1180_1250_750 (Val) 955_1190_1250_750 (N2-1) 955_1200_1250_750 (N2-1) 955_1210_1250_750 (Val) 955_1230_1250_750 (N2-2) 955_1240_1250_750 (Training)	955_1220_1230_750 (Training) 955_1220_1240_750 (Val) 955_1220_1250_750 (N3-1) 955_1220_1260_750 (Training) 955_1220_1270_750 (Val) 955_1220_1280_750 (N3-2) 955_1220_1290_750 (Training) 955_1220_1300_750 (N3-3)	955_1220_1250_675 (Training) 955_1220_1250_690 (Val) 955_1220_1250_705 (N4-1) 955_1220_1250_702 (Training) 955_1220_1250_705 (N4-2) 955_1220_1250_765 (N4-2) 955_1220_1250_705 (Val) 955_1220_1250_810 (N4-3) 955_1220_1250_825 (Training)					

Table 20: Benchmark data details (abnormal configurations).

2.4.4									
11		Abnormal Behaviour Configurations/ Arbitrary SPs							
/12	Type 1 (start@955-incr-dec/const)	Type 2 (start@1220-incr-dec)	Type 3 (start@1220-dec-inc)	Type 4 (start@1250-dec-inc)	Type 5 (start@1250-dec-inc)				
713	955_1220_1200_750.csv (Training) 955_1220_1210_750.csv (Val)								
714	955_1220_1220_750.csv 955_1250_1220_750.csv (Training)	1220_1250_955_750.csv (Training)	1220_955_1250_750.csv (Training)	1250_955_1220_750.csv (Training)	1250_1220_955_750.csv (Training)				
715	955_1250_1220_765.csv (Val) 955_1250_1250_750.csv	1220_1250_955_795.csv	1220_955_1250_780.csv	1250_955_1220_825.csv	1250_1220_955_810.csv				
716	955_1260_1250_750.csv (Training) 955_1270_1250_750.csv								

1717

1708 1709 1710

1718 Table 20 details the remaining 16 configurations representing abnormal conditions (arbitrary set points). These are split for training and validation to make the model robust during training (similar 1719 to adversarial learning). We set aside 7 configurations apart from training/validation. A well-trained 1720 physics-aware model should perform poorly on these, rendering them unnecessary for testing. 1721

1722 For training a DL model, we aggregate the configuration datasets belonging to training splits as 1723 shown in Table 19. Prior to collecting, each of the datasets are reformatted to obtain time-shifted 1724 input-output pairs as discussed in the data generation methodology. After that rows of these training 1725 datasets are shuffled and stacked together to train the model. Each configuration is stored by a .csv file containing 1500 time steps sampled with a 15s delay, to account for conduction analysis. Thus, 1726 each configuration accounts for 6.25h worth data. Considering all 50 datasets, our generated data sets 1727 consists of 312.5h (or roughly, 13 days) of furnace data. We observed diminishing returns on model

performance with further data size increases, justifying our decision to focus on this efficient data volume.

During time-shifted input-output pairs formation from a configuration dataset, we drop the first and last rows resulting in 1498 rows, to account for the shift operations. Thus, by consolidating the 20 training datasets, we get a total of 29960 train rows. These can be packed within a standard DataLoader in a framework like PyTorch, and train an off-the-shelf DL model. We can similarly obtain 17976 val rows, and also 26964 test rows (from across normal and abnormal configurations, if desired). We have reported results on the 11 datasets individually, where a model trained is used for auto-regressive, sequential prediction of subsequent time steps.

The discussed data sets, along with necessary data pre-processing, model training/evaluation scripts are provided in the following github repository https://github.com/, which shall be updated periodically to reflect the latest changes as available (while adhering to FAIR guidelines (Wilkinson et al., 2016)). As a highlight, we provide the *configuration datasets* as separate .csv files. We also provide the consolidated stacked data as a .npz file. Furthermore, we also provide the TEA data as individual files, which are used during model training.

- 1743
- 1744 1745

A.9 POTENTIAL REAL-LIFE APPLICATIONS OF THE WORK AND ITS IMPACT

We now discuss how our method for furnace temperature profiling can be applied in various industriesand contribute to energy efficiency and reduced emissions.

Steel and Metal Manufacturing: Our model can be directly applied to improve the efficiency of reheating furnaces used in steel and metal manufacturing processes. By providing accurate real-time temperature predictions, operators can optimize fuel consumption and reduce energy waste, leading to significant cost savings and lower carbon footprint. The ability to precisely control temperature profiles can also enhance product quality and consistency.

Glass and Ceramic Production: In the glass and ceramic industries, furnaces are crucial for melting, annealing, and tempering processes. Our model can be adapted to these furnace types, enabling tighter temperature control, reduced energy usage, and minimized defects. This can translate to higher productivity, lower operational costs, and a greener manufacturing process.

Cement and Lime Production: High-temperature furnaces are essential in cement and lime manufacturing for calcination and clinker production. Our physics-aware deep learning approach can be leveraged to optimize these processes, reducing fuel consumption and emissions while maintaining product quality. This can contribute to the sustainability efforts of cement and lime producers.

Petrochemical Refining: Furnaces are widely used in petrochemical refineries for various processes
 such as crude oil distillation, catalytic cracking, and reforming. By implementing our model, refineries
 can enhance energy efficiency, minimize fuel wastage, and lower greenhouse gas emissions. This can
 help refineries meet stringent environmental regulations while maintaining profitability.

- 1765 1766
- A.10 LIMITATIONS AND FUTURE WORK

Incorporation of Geometry-Specific Regularization: Future research should investigate the integration of geometry-specific regularization terms into our model. This could involve developing customized regularization strategies that account for the unique thermal characteristics of various furnace designs. By tailoring the model to specific configurations, we can potentially enhance its predictive accuracy and applicability across different industrial scenarios. This is beyond the scope of our work, which could be treated as a starting point in this direction.

Exploration of Foundational Models: Our approach could serve as a foundation for developing models that can be adapted for other related use cases. We envision leveraging techniques such as few-shot learning, continual learning, or transfer learning to enable our model to learn from limited data in new contexts. This would allow for rapid adaptation to different operational conditions and requirements, making our model more versatile and applicable across various industries.

Engineering aspects of Integration with Real-Time Monitoring Systems: Extensive study of challenges involved during engineering integration in a monitoring system could itself be another future direction of study, especially for a varied set of industries and furnace configurations.