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ABSTRACT

This paper investigates a novel approach to improve the temperature profile pre-
diction of furnaces in foundation industries, crucial for sustainable manufacturing.
While existing methods like the Hottel Zone model are accurate, they lack real-time
inference capabilities. Deep learning methods excel in speed and prediction but
require careful generalization for real-world applications. We propose a regulariza-
tion technique that leverages the Hottel Zone method to make deep neural networks
physics-aware, improving prediction accuracy for furnace temperature profiles.
Our approach demonstrates effectiveness on various neural network architectures,
including Multi-Layer Perceptrons (MLP), Long Short-Term Memory (LSTM),
Extended LSTM (xLSTM) and Kolmogorov-Arnold Networks (KANs). We also
discussion the data generation involved.

1 INTRODUCTION

Majority of economically relevant industries (automobiles, machinery, construction, household
appliances, chemicals, etc) are dependent on the Foundation Industries (FIs) that provide crucial and
foundational materials like glass, metals, cement, ceramics, bulk chemicals, paper, steel, etc. FIs are
heavy revenue and employment drivers, for instance, FIs in the United Kingdom (UK) economy are
worth £52B (EPSRC report), employ 0.25 million people, and comprise over 7000 businesses (IOM3
report). However, despite their economic significance, the FIs leverage energy-intensive methods
within their furnaces. This makes FIs major industrial polluters and the largest consumers of natural
resources across the globe. For example, in the UK, they produce 28 million tonnes of materials per
year, and generate 10% of the entire UK’s CO2 emissions (EPSRC report; IOM3 report). Similarly,
in China, the steel industry accounted for 15% of the total energy consumption, and 15.4% of the
total CO2 emissions (Zhang et al., 2018; Liang et al., 2020). These numbers put a challenge for the
FIs in meeting our commitment to reduce net Green-House Gas (GHG) emissions, globally.

With a closer look at any process industry (e.g., steel industry), one can observe that at the core, lies
the process of conversion of materials (e.g., iron) into final products. This is done using a series of
unit processes (Yu et al., 2007) involving steps such as dressing, sintering, smelting, casting, rolling,
etc (see Qin et al. (2022) for an illustration). The equipment in such process industries operates
in high-intensity environments (e.g., high temperature), and has bottleneck components such as
reheating furnaces, which require complex restart processes post-failure. This causes additional labor
costs and energy consumption. Thus, for sustainable manufacturing, it is important to monitor the
temperature profile, and thus, the operating status of the furnaces. (Hu et al., 2019) have shown
promise in achieving notable fuel consumption reduction by reducing the overall heating time.

Yuen & Takara (1997) in their study, have proved the elegance and superiority of the Hottel Zone
method over counterparts to model the physical phenomenon of Radiative Heat Transfer (RHT) in
high-temperature processes. Hu et al. (2016) proposed a computational model workflow based on the
Hottel Zone method, and showed superiority over surrogate computational alternatives in terms of
predictive performance. However, none of these approaches are suitable for real-time inference in
modeling a furnace temperature profile. Deep Learning (DL) based neural network methods excel in
achieving superior predictive performance and speed. Nonetheless, their generalization capabilities
require special attention, particularly in critical real-world applications.

In our work, we propose to revisit the Hottel Zone method and devise a novel regularization technique
that could be used as a plug-and-play module to make a neural network physics-constrained (or
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physics-aware) with regard to the underlying phenomena of high-temperature processes in furnaces.
We show that for a time-step in a furnace, given a certain set of input entities, we could predict
the desired output temperature entities more accurately (in terms of regression metrics) using our
regularization technique, as opposed to using a vanilla neural network. We demonstrate the prowess
of our proposal on different types of neural network architectures: Multi-Layer Perceptron (MLP)
or feed-forward networks, sequential models such as Long Short-Term Memory (LSTM) based
Recurrent Neural Networks (RNNs), as well as recently proposed Kolmogorov-Arnold Networks
(KANs) and Extended LSTM (xLSTM).

This work makes two key contributions: Tensor-based Reformulation and Physics-Aware Neural
Networks: We reformulate the Hottel Zone Method’s Directed Flux Areas (DFAs) and Energy Bal-
ance (EB) equations in tensor format, enabling neural network training. We further introduce a novel
regularization technique that imbues the network with physics-awareness. Extensive Experimental
Validation: We comprehensively validate the proposed approach using various neural network archi-
tectures. To this end, we suggest a dataset and benchmarking protocol (details provided in Section
A.8). A github repository is maintained at https://github.com/ to facilitate real-time updates
to the same as and when made.

Numerous real-world applications, including chemical reactors (Feng & Han, 2012), solar energy
(Muhich et al., 2016; Marti et al., 2015), and 3D printing (Tran & Lo, 2018; Zhou et al., 2009),
involve high-temperature processes exceeding 700◦C. These processes rely heavily on Radiative
Heat Transfer (RHT) as a dominant mechanism alongside conduction and convection. Notably,
RHT remains crucial for thermal transport even in vacuum conditions encountered in astronomical
applications. We envision that our learnings could perhaps be extended to those applications with
bespoke approaches.

Due to space constraints, we have limited the length of the introduction section. Please refer to
Section A.1 for a more detailed discussion, particularly regarding the motivation behind our research.

2 RELATED WORK

In Section A.2, we provide a detailed discussion of related works. Due to space limitations, we will
focus here on how our approach significantly differs from existing methods.

1. View factor methods: Existing methods Ebrahimi et al. (2013); Melot et al. (2011); Hu
et al. (2018); Li (2005) simplify the modeling area and are geometry-specific. We propose
a generic, geometry-agnostic model encompassing all exchange areas (radiation transfer
interfaces).

2. Neural network methods: Existing methods Yuen (2009); Tausendschön & Radl (2021);
Garcı́a-Esteban et al. (2021); Zhai & Zhou (2020); Zhai et al. (2023); Halme Ståhlberg
(2021); de Souza Lima et al. (2023); Liao et al. (2009); Hwang et al. (2019); Chen et al.
(2022); Bao et al. (2023) often use simple MLPs, which lack generalization due to limited
physics understanding. We introduce a Physics-constrained Neural Network (PCNN)
framework that outperforms MLP and can be applied to other architectures like LSTM,
KAN, xLSTM.

3. Furnace temperature profiling: Existing methods Kim & Huh (2000); Kim (2007); Jang
et al. (2010); Tang et al. (2017); Nguyen et al. (2014); Hu et al. (2017); Ban et al. (2023);
Li et al. (2023); Zanoli et al. (2023); Yu et al. (2022) focus on specific regions, while our
method targets complete furnace temperature profiling, including gas zones, furnace walls,
and slab surfaces. Our utilized data is more holistic. Existing neural methods in this category
also lack physics awareness.

4. PINNs: Compared to the existing body of Physics-Informed Neural Network (PINN)
literature Raissi et al. (2019); Karniadakis et al. (2021); Drgoňa et al. (2021); Shen et al.
(2023); Cai et al. (2021); Kim et al. (2022); Zhao et al. (2020); He et al. (2021); Boca de
Giuli (2023); Han et al. (2023); Bünning et al. (2022); Park (2022); Wang et al. (2023);
Lahariya et al. (2022); Jing et al. (2023), we propose a novel variant specifically designed
for zone method based modeling in reheating furnaces. Our approach is the first to utilize
physics-constrained regularizers based on the zone method for temperature prediction. It
requires minimal data (input-output pairs) and makes no geometry assumptions. Our data
creation method is holistic and unique, encompassing all exchange areas. Our method, as we
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will see later, is based on a set of simultaneous equations to incorporate physics-awareness,
and directly does not involve a differential equation. Thus, we call it a physics-constrained
method, though PINN could be also used philosophically.

3 PROPOSED METHOD

3.1 BACKGROUND

The Hottel Zone method subdivides a furnace into zones (volumes and surfaces) to predict Radiative
Heat Transfer (RHT). Volume and Gas (G) zone is used interchangeably. Surface (S) zones are
of two types, SF: furnace and SO: obstacle (e.g., slabs that are heated). Each zone has a uniform
temperature. Sets of Energy-Balance (EB) equations govern radiation exchange between zones,
considering incoming and outgoing radiation fluxes. These equations are iteratively updated to obtain
the entire furnace’s temperature profile. Following are the key concepts:

1. Total Exchange Areas (TEAs): Pre-computed values representing the total area for radiation
exchange between zone pairs (SS: surface-surface, SG/GS: surface-gas, GG: gas-gas).

2. Directed Flux Areas (DFAs): Derived from TEAs and used to calculate radiant exchange
between zone pairs at each step of the zone method.

3. Weighted Sum of Grey Gases (WSGG) model: Handles non-grey gases by representing
them as a mixture of grey gases and a clear gas.

3.2 EXCHANGE AREA CALCULATION

The first step in the Zone method involves computation of Exchange Factors (Yuen & Takara, 1997).
The exchange factor among a pair of volume zones Vi and Vj is expressed as:

gigj =

∫
Vi

∫
Vj

kikje
−τdVidVj

πr2
(1)

Physically, it represents the energy radiated from Vi and absorbed/ scattered by Vj . Here, k denotes
the respective extinction coefficient, τ is the optical thickness among differential volume elements
dVi and dVj , and r =

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2. Now, let ni and nj respectively be

unit normal vectors of dAi and dAj (corresponding to two surface zones Ai and Aj). Then, the
exchange factors gisj (between volume zone Vi and surface zone Aj) and sisj (between surface zone
Ai and surface zone Aj), can be expressed as:

gisj =

∫
Vi

∫
Aj

ki|nj .r|e−τdVidAj

πr3
; sisj =

∫
Ai

∫
Aj

|ni.r||nj .r|e−τdAidAj

πr4
(2)

Numerical evaluation of the above equations being complex, has led to analytical approximations,
by considering an enclosure as a cube-square system, i.e, by representing a volume as a cube, and a
surface as a square. This facilitates the tabulation of a “generic” set of exchange factors, which are
applicable for most practical industrial geometries, using an updated Monte-Carlo based Ray-Tracing
(MCRT) algorithm (Matthew et al., 2014). To this end, such pre-computed generic values are refered
to as Total Exchange Areas (TEA), and we denote them by: GiSj , SiSj , GiGj and SiGj . Here,
SiGj = GiSj . Note that throughout the text, G(or g) and S(or s) shall indicate terms corresponding
to Gas/Volume, and Surface respectively.

3.3 INTRODUCING TENSOR NOTATIONS FOR HOTTEL ZONE METHOD BASED NEURAL
NETWORK

To account for our formulation of a neural network based approach, we first introduce the following
four tensors to collectively represent the above TEAs: GS ∈ R|G|×|S|×|Ng|, SS ∈ R|S|×|S|×|Ng|,
GG ∈ R|G|×|G|×|Ng|, SG ∈ R|S|×|G|×|Ng|. Here, |G|, |S| respectively denote the number of gas/
volume zones, and number of surface zones. In practice, |Ng| gases representing real gas medium
are used, and hence, a third dimension has also been used in the above tensors. As discussed above,
TEAs are pre-computed constants, used as inputs to our model. Slightly abusing notations, we can
refer to a TEA by considering only the first two dimensions (for a pair of zones).
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t1  …     ts   …   t|S|

tS
T

{ b. , 1}

{ b. , n }

{ b. , Ng}

a11  …   a1s    …  a1|S|

an1  …   ans    …  an|S|...

...

aNg1  …   aNgs    …  aNg|S|

...

...

a11  …   a1s    …  a1|S|

a11  …   a1s    …  a1|S|

a11  …   a1s    …  a1|S|

aNg1  …   aNgs    …  aNg|S|

aNg1  …   aNgs    …  aNg|S|

aNg1  …   aNgs    …  aNg|S|

.  .    .

broadcast( aNg
T )

broadcast( a1
T )a1

T

aNg
T 

.  .    .
.  .    .

TEA(GS)

|G|

|S|

|Ng| .  .    .
.  .    .

Element-wise product

Channel-wise 
sum

DFA(GS)

|S|

|G|

|G|

|G|☉

☉

Figure 1: Derivation of matrix forms of the DFA terms (using GS as reference).

The next step is to compute the Radiation Exchange factors, or the Directed Flux Areas (DFA),
considering radiating gas medium through a Weighted Sum of the mixed Grey Gases (WSGG) model
(Hu et al., 2016):

↼

GiGj =

Ng∑
n=1

ag,n(Tg,j)(GiGj)k=kn ;
↼

SiSj =

Ng∑
n=1

as,n(Ts,j)(SiSj)k=kn (3)

↼

GiSj =

Ng∑
n=1

as,n(Ts,j)(GiSj)k=kn
;

↼

SiGj =

Ng∑
n=1

ag,n(Tg,j)(SiGj)k=kn
(4)

Here, ↼ indicates the direction of flow. Tg,j and Ts,j denote the temperatures for the jth volume and
surface zones respectively, and are the values we want our model to predict (at each time step). Note
that the collective representation of the DFAs can be expressed as:

↼

GS ∈ R|G|×|S|,
↼

SS ∈ R|S|×|S|,
↼

GG ∈ R|G|×|G|,
↼

SG ∈ R|S|×|G|. In Eq (3)-(4), the TEA terms correspond to a particular grey gas
being used, for example, (GiGj)k=kn represents the TEA GiGj with the nth gas.

WSGG is a method used to represent the absorptivity/ emissivity of real combustion products with a
mixture of a couple of grey gases plus a clear gas, i.e, the number of grey gases is equal to Ng − 1.

For each gas indexed by n, we have a set of pre-computed correlation coefficients {bi+1,n}
Ng

i=0 for
both gas and surface related coefficients, and an absorption coefficient kg,n. Then, the weighting
coefficient ag,n(Tg,j) (for gas-zone temperatures) and the weighting coefficient as,n(Ts,j) (for
surface-zone temperatures) can be expressed as a N th

g order polynomial in Tg,j (or Ts,j):

ag,n(Tg,j) =

Ng∑
i=0

bi+1,nT
i
g,j ; as,n(Ts,j) =

Ng∑
i=0

bi+1,nT
i
s,j (5)

Using (3), (4, (5), and with GS as a reference, we make use of Figure 1 to illustrate the derivation
of a compact matrix form for computing a DFA term efficiently for getting training samples of a
neural network. Let, (GS)n be the nth slice of GS along the third dimension, and an = b̃n(tS).
broadcast(a⊤n ) reshapes a⊤n to the same dimension as (GS)n, i.e., R|G|×|S|. tS ∈ R|S| is a vector
containing all the surface zone temperatures (in a time step), such that its jth entry tS(j) = Ts,j .
The jth entry an(j) of an ∈ R|S| is computed using the function b̃n with the correlation coefficients
{bi+1,n}

Ng

i=0 as the parameters, and by following eq (5). We can also assume similar vector containing
all gas zone temperatures (in a time step) tG ∈ R|G|, with jth entry tG(j) = Tg,j .
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|G|

|G| ☉ σ

Row-sum

...

...
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|G|
 DFA(GiGj ) σ Tg,j

4g(g)arr

t1  …     tj   …   t|S|
tS

T

t1
4  …    tj

4
   … t|S|

4

t1
4  …    tj

4
   … t|S|

4

...

DFA(GS)

|S|

|G| ☉ σ

Row-sum

...

...
∑ j

|S|
 DFA(GiSj ) σ Ts,j

4s(g)arr

t1  …     tj   …   t|G|
tG

T

V1t1
4     …   V|G|t|G|

4

V1t1
4      …    V|G|t|G|

4

...☉ σ

Column-sum, 
Transpose

...

...
∑ n

Ng
 ag,n(Tg,i)kg,n σ ViTg,i

4gleave

a11kg1       …      a1|G|kg1

aNg1kgNg    …   aNg|G|kgNg

...

Figure 2: Derviation of the matrix forms of the EBV equations for physics based regularizers.

Then, the DFA terms related to gas-zone temperatures can be expressed as:

↼

GS =

Ng∑
n=1

(GS)n ⊙ broadcast(a⊤n );
↼

GG =

Ng∑
n=1

(GG)n ⊙ broadcast(b̃n(tG)⊤). (6)

and, the DFA terms related to surface-zone temperatures can be expressed as:

↼

SS =

Ng∑
n=1

(SS)n ⊙ broadcast(b̃n(tS)⊤);
↼

SG =

Ng∑
n=1

(SG)n ⊙ broadcast(b̃n(tG)⊤). (7)

3.4 ENERGY-BALANCE BASED PHYSICS-REGULARIZATION

With the above DFA terms at our disposal, we can compute the gas/volume and surface zone
temperatures at each time step of furnace operation by respectively using Energy-Balance Volume
(EBV) and Energy-Balance Surface (EBS) equations. EBV and EBS are a set of simulataneous
equations to capture the governing physics of RHT Hu et al. (2016). Figure 2 visually illustrates
computation of the terms g(g)arr, s(g)arr and gleave involved in the EBV equation to compute the
gas zone temperatures of a time step.

Let, g(g)arr ∈ R|G| be a vector whose ith entry represents the amount of radiation arriving at the
ith gas zone from all the other gas zones, s(g)arr ∈ R|G|, a vector whose ith entry represents the
amount of radiation arriving at the ith gas zone from all the other surface zones, gleave ∈ R|G|, a
vector whose ith entry represents the amount of radiation leaving the ith gas zone, and hg ∈ R|G| a
heat term. Also, let Tg,j (or Tg) and Ts,j (or Ts) denote the jth gas and surface zone temperatures
respectively. Then, following EBV equations, the ith entries of g(g)arr, s(g)arr, gleave and hg can
be computed as:

g(g)arr(i) =

|G|∑
j

↼

GiGjσT
4
g,j ; s(g)arr(i) =

|S|∑
j

↼

GiSjσT
4
s,j

gleave(i) =

|Ng|∑
n

ag,n(Tg,i)kg,nσViT
4
g,i hg(i) = −(Q̇conv)i + (Q̇fuel,net)i + (Q̇a)i + qi

(8)

Here, the constants (known apriori) (Q̇conv)i, (Q̇fuel,net)i, and (Q̇a)i respectively denote the con-
vection heat transfer, heat release due to input fuel, and thermal input from air/ oxygen. An enthalpy
vector q ∈ R|G| is computed using the flow-pattern obtained via polynomial curve fitting during
simulation. σ is the Stefan-Boltzmann constant, Vi is volume of ith gas zone.

Let, s(s)arr ∈ R|S|, be a vector whose ith entry represents the amount of radiation arriving at the ith

surface zone from all the other surface zones, g(s)arr ∈ R|S|, a vector whose ith entry represents

5
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the amount of radiation arriving at the ith surface zone from all the other gas zones, sleave ∈ R|S|, a
vector whose ith entry represents the amount of radiation leaving the ith surface zone, and hs ∈ R|S|
a heat term. Then, following EBS equations, the ith entries of s(s)arr, g(s)arr, sleave and hs can be
computed as:

s(s)arr(i) =

|S|∑
j

↼

SiSjσT
4
s,j ; g(s)arr(i) =

|G|∑
j

↼

SiGjσT
4
g,j

sleave(i) = AiϵiσT
4
s,i; hs(i) = Ai(q̇conv)i − Q̇s,i

(9)

For a surface zone i, the constants (known apriori) Ai(q̇conv)i and Q̇s,i respectively denote the heat
flux to the surface by convection and heat transfer from it to the other surfaces. Here, Ai is the area,
and ϵi is the emissivity of the ith surface zone.

The calculated terms in the Energy-Balance (EB) equations represent the heat entering and leaving
each zone. In simpler terms, these equations ensure an energy balance by placing all incoming heat
terms on the left-hand side (LHS) and outgoing terms on the right-hand side (RHS). Leveraging these
terms in an optimization framework allows us to minimize the difference between LHS and RHS. To
achieve this, we introduce the following terms:

vg = (g(g)arr + s(g)arr − 4gleave + hg) ∈ R|G|

vs = (s(s)arr + g(s)arr − sleave + hs) ∈ R|S|
(10)

Here, |G|/|S| denotes the number of Gas/ Surface zones. Intuitively, vg and vs are vector represen-
tatives corresponding to EBV and EBS. Let, λebv, λebs > 0 are hyper-parameters corresponding to
Lebv and Lebs, such that Lebv=||normalize(vg)||22 is our proposed regularizer term corresponding
to the EBV. Similarly, Lebs=||normalize(vs)||22 is our proposed regularizer term corresponding to
the EBS. We use: normalize(v) = v/max(v), where max(v) is the maximum value from among all
components in v.

The core idea is to leverage the Energy Balance (EB) equations, which represent well-established
physical laws governing heat transfer in the furnace. These equations enforce a balance between
incoming and outgoing heat for each zone. The vectors vg and vs capture the residuals between the
incoming and outgoing heat terms in the EB equations for gas (g) and surface (s) zones, respectively.
By minimizing the L2 norm of these residuals (after normalization), we are essentially penalizing
the network for deviating significantly from the physical constraints imposed by the EB equations.
This encourages the network to learn temperature profiles that adhere to these well-defined energy
balances.

Minimizing the L2 norm encourages the network to drive all components of the residual vectors
towards zero. The normalization step ensures all zones contribute equally to the penalty, regardless
of their absolute temperature values. This prevents zones with naturally higher temperatures from
dominating the regularization term.

3.5 PUTTING TOGETHER THE NEURAL NETWORK OBJECTIVE

We now discuss the design of our final neural network. We formulate the objective in such a way that
we can plug the above proposed regularizers in a standalone neural network architecture trained to
regress output temperatures given a set of easily available input entities at each time step of a furnace
operation. While starting the furnace operation, ambient temperatures are readily available (depicting
the initial state of the furnace), along with walk interval, desired target set point temperatures. Then,
based on the firing rates chosen for the burners of the furnace, there would be a resulting flow pattern
in the furnace. This is a result of heat flow, and mass flow within the furnace (mass flow happens
because of the slab movements, which need to be heated). This flow pattern would cause a change
in the overall enthalpy, leading to a new temperature profile (new state) of the furnace, which can
be measured by the resulting new gas and surface zone temperatures. These temperatures in turn
could serve as input temperatures for the next step’s prediction. For a more intuitive understanding of
furnace operation, please refer Section A.8.

In a practical setup, a neural network deployed could expect to consume the previous step temperatures,
firing rates, walk interval, and set point temperatures as inputs. The output could then be the new
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temperatures, and the next firing rates as well. With input-output data X={(x(i),y(i))}Ni=1 acquired
in this manner, we can estimate parameters θ of a neural network fθ(.) by training it to predict y(i)

given x(i), for all time step i, as:
θ∗ ← argmin

θ
Lsup (11)

Here, Lsup = E(x(i),y(i))∈X [||y(i) − fθ(x
(i))||22] is a standard supervised term for regression. To

make such a network physics-aware, all we need to do is include the above proposed terms Lebv

and Lebs into the final objective. It should be noted that, in doing so, we do not need to make any
architectural changes to the network in terms of inputs and outputs. Also, all auxiliary variables used
in computation of (8) and (9) are only used during training of a physics-aware network, and are not
required in the inference.

The regularization terms are computed using additional vectors as described earlier, influence the
learning because they have the temperature terms in them. For example, in (10), vg depends on
gas zone temperatures Tg,j via g(g)arr, gleave in (8). While computing Lebv we obtain the Tg,j

terms using the network output, which are associated with the computational graph and thus help
the updates during back-propagation. On the other hand, s(g)arr is associated with Ts,j which are
detached for back-propagation while updating gas zone temperatures.

Similarly, in (10), vs depends on surface zone temperatures Ts,j via s(s)arr, sleave in (9). While
computing Lebs we obtain the Ts,j terms using the network output, which are associated with
the computational graph and thus help the updates during back-propagation. On the other hand,
g(s)arr is associated with Tg,j which are detached for back-propagation while updating surface zone
temperatures.

The overall physics-aware loss is formulated as:

Ltotal = Lsup + λebvLebv + λebsLebs (12)

When calculating the physics-aware loss terms we detach certain temperature terms associated
with one zone type (e.g., surface zone temperatures) during updates of the other zone type (e.g.,
gas zone temperatures). This prevents the network from altering these relationships unnaturally
during backpropagation. As analogy, we can refer to a Teacher-Student Learning setup: Imagine the
network learning from a teacher (the EB equations) that provides the correct temperature relationships.
Detaching specific terms allows the network to focus on learning the mapping between furnace inputs
and its own predicted zone temperatures, while still adhering to the guidance provided by the teacher
(the EB equations) through the physics-aware loss terms. Algorithm 1 provides detailed steps of our
proposed approach.

Algorithm 1 Algorithm of the proposed method

1: Input: X={(x(i),y(i))}Ni=1, furnace configuration (set points and walk interval). maxeps > 0.
2: Initialize θ, TEAs, λebv, λebs > 0.
3: Initialize tG ∈ R|G|, tS ∈ R|S| with ambient temperatures, and firing rates.
4: for EN=1 to maxeps do ▷ EN: Epoch No.
5: for i=1 to N do ▷ i: time step
6: Compute DFAs

↼

GG(t),
↼

GS(t),
↼

SG(t),
↼

SS(t) using (6) and (7).
7: Compute Lebv using (8) and (10).
8: Compute Lebs using (9) and (10).
9: Compute Lsup using X .

10: θ(i) ← θ(i−1) − η∇θLtotal ▷ Using (12)
11: end for
12: end for
13: θ∗ ← θN.maxeps

14: return θ∗

4 EXPERIMENTS

In this section we report results on 11 datasets obtained using different configurations of a real-world
furnace based on Hu et al. (2019) (details in Section A.8.3). Major objective of the experiments is
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Table 1: Comparison of proposed methods on the N1-2 Dataset
Dataset N1-2 965 1220 1250 750

Metric/ Method MLP PBMLP LSTM PBLSTM DLSTM PBDLSTM KAN PBKAN xLSTM PBxLSTM

RMSE tG (↓) 113.4 35.6 33.0 26.7 117.1 32.4 24.3 22.6 130.6 29.3
RMSE tS fur (↓) 116.4 22.4 25.6 11.7 114.4 24.9 15.2 14.6 119.1 20.4
RMSE tS obs (↓) 106.9 43.4 61.1 66.5 109.3 67.4 35.1 33.6 139.8 45.4

MAE tG (↓) 89.5 28.2 27.4 16.9 100.9 27.2 21.4 19.9 129.1 26.8
MAE tS fur (↓) 96.2 17.8 21.5 9.9 101.1 20.1 14.3 13.8 118.6 19.5
MAE tS obs (↓) 79.9 29.6 39.4 31.4 86.9 44.4 29.8 29.3 136.3 39.8
mMAPE fr (↓) 176.6 58.5 29.5 23.5 201.0 26.2 44.2 32.6 200.8 27.8

Table 2: Comparison of proposed methods on the N2-1 Dataset
Dataset N2-1 955 1190 1250 750

Metric/ Method MLP PBMLP LSTM PBLSTM DLSTM PBDLSTM KAN PBKAN xLSTM PBxLSTM

RMSE tG (↓) 121.1 45.4 36.8 37.0 123.4 28.3 29.5 18.0 95.5 33.0
RMSE tS fur (↓) 123.8 27.6 29.5 28.9 120.5 18.7 20.7 8.8 80.6 24.9
RMSE tS obs (↓) 113.1 52.4 65.6 63.3 114.5 51.9 41.0 27.2 90.7 51.7

MAE tG (↓) 96.9 38.8 31.3 31.4 106.9 19.7 26.2 15.4 93.5 30.3
MAE tS fur (↓) 103.6 24.8 26.7 25.5 106.4 16.5 19.8 7.7 80.1 24.1
MAE tS obs (↓) 87.4 39.9 46.2 44.2 92.2 21.9 35.9 22.9 86.6 46.5
mMAPE fr (↓) 187.6 67.8 28.4 29.8 210.6 24.9 43.7 34.2 212.3 26.2

to consider different neural network architectures with and without our proposed regularizers (and
keeping everything else constant). Any gains reported could be attributed to our proposed regularizers
that seek to enhance the physics-awareness of a network. Results across all the 11 datasets are
reported in Tables 6, 7, 8, 9.

For neural network architectures, we study following variants: MLP, LSTM, a stacked/deep LSTM
(DLSTM) and recently proposed KAN and xLSTM. We use commonly used regression performance
metrics such as RMSE and MAE for the temperature prediction. We also report MAPE additionally
for predicting the next firing rates (MAPE is more suitable due to the range of values that firing rates
take). A metric against each of the different entities has been reported. For example, RMSE tS fur
denotes the average RMSE for all the furnace surface zone predictions, RMSE tS obs denotes the
average RMSE for all the obstacle surface zone predictions, RMSE tG denotes the average RMSE for
all the gas zone predictions. mMAPE fr indicates the performance on the firing rate predictions. For
all metrics, a lower value indicates a better performance. All metrics are reported along the rows of
a table, and the columns represent the different methods. For each row, the best performing metric
corresponding to a method is shown in bold.

In Table 1 we report the performance of the architectures MLP, LSTM, DLSTM, KAN and xLSTM
on the N1-2 dataset. We also report performances of PBMLP, PBLSTM, PBDLSTM, PBKAN
and PBxLSTM, which are the Physics-Based (PB) variants of MLP, LSTM, DLSTM, KAN and
PBxLSTM respectively. The green colored cells indicate that a PB variant has obtained a better
performance than a vanilla variant without our proposed regularizers. Compared to the simpler MLP,
we could see massive gains by the PBMLP.

The DLSTM (and xLSTM) variant possibly tends to overfit due to stacking of more LSTM layers, and
performs worse compared to a vanilla LSTM model. Stacking LSTMs offered no advantage likely
due to the data’s inherent structure. Unlike language tasks that benefit from complex LSTM modeling
with longer windows/time steps, zone-based method only requires capturing the relationship between
the current state (s(i)) and the next (s(i+1)). Our data generation (details in Appendix) captures the
relationship between current state (s(i)) and next state (s(i+1)), making complex LSTM architectures
unnecessary. Initial experiments confirmed this, showing no significant improvement with longer
windows compared to the simpler s(i), s(i+1) pairs. This aligns with Occam’s razor - favoring simpler
models with comparable performance.

However, when equipped with our regularizers, the PBDLSTM (and PBxLSTM) method obtains
much better performance than the DLSTM (and xLSTM). The vanilla LSTM which performs better
than the MLP and DLSTM, also obtains improvements after using the physics based regularizers, as
indicated by the performance of PBLSTM. We also notice KAN to perform better than the base MLP
(as observed in recent literature). In fact, the PBKAN variant performs the best among all methods at
times.

In Table 2 we report performances of the same approaches on the N2-1 dataset. We observed similar
conclusions: the PB variants were outperforming their vanilla variants (as shown by green), thus
depicting the benefit of the proposed regularizers. In this case, we observed that the PBKAN method
obtains the best performance among all.
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Table 3: Comparison of proposed methods on average across the datasets.
Dataset Average

Metric/ Method MLP PBMLP LSTM PBLSTM DLSTM PBDLSTM KAN PBKAN xLSTM PBxLSTM

RMSE tG (↓) 79.2 35.1 37.2 30.4 83.5 27.9 26.1 19.3 85.2 31.7
RMSE tS fur (↓) 75.6 23.1 27.1 20.2 78.1 20.5 18.5 12.4 75.5 24.2
RMSE tS obs (↓) 86.8 49.5 64.9 64.1 89.9 61.7 37.0 29.8 95.3 45.8

MAE tG (↓) 62.2 29.1 29.7 23.8 70.9 22.4 23.8 16.8 83.4 29.5
MAE tS fur (↓) 62.6 20.3 23.1 18.1 68.9 17.3 18.0 11.6 74.9 23.5
MAE tS obs (↓) 62.5 33.9 40.7 38.6 65.3 36.0 33.4 25.7 90.9 40.5
mMAPE fr (↓) 119.3 53.6 39.2 26.7 141.8 25.9 46.4 39.3 131.4 37.5

(a) (b)
Figure 3: Plot of actual (blue) and predicted (red) temperatures (in ◦C) across all obstacle surface zones using
PBMLP. In (a) we omit previous furnace temperatures from the neural network input to show that performance
degrades.

Difference in the datasets N1-2 and N2-1 comes by varying setpoint temperatures of the first and
second control zones of the furnace. This shows that depending on the furnace configuration of
the same geometry, the performance of a deep learning model may vary as the data distribution
changes due to the difference in underlying physical entities. However, if equipped with physics
based regularizers, we could make the network adhere to the governing laws, and get a reasonable
predictive performance.

We further report on how the different methods perform across varying configurations or datasets
on average, in Table 3. We observed similar performances, where the PB variants led to better
performance. In Tables 6, 7, 8, 9 we report the performances of the compared approaches across all
the 11 datasets. We noticed that not only the PB variants obtain a better performance throughout,
they are also more stable across different datasets as indicated by their standard deviations.

In Figure 4 we plot the convergence of our PBMLP method. Losses with respect to all the individual
terms converge well. In Figure 3 we report visual plots of actual and predicted temperatures for
PBMLP. We also show that omitting previous temperatures from the neural network inputs leads to
an worse performance, thus, highlighting the impact of a furnace state on the model performance. We
conducted a sensitivity analysis of λebv and λebs in Figure 5, observing stable performance across
values.

4.1 FINAL NOTE ON IMPACT OF ENERGY-BALANCE REGULARIZATION

Throughout the text, for all baseline methods in a column, the counterpart with the PB- prefix
(eg, PBMLP, PBLSTM, PBDLSTM, PBKAN, PBxLSTM) indicates the usage of energy-balance
regularization terms, and the green colored metrics all denote the consistent performance boost, as
compared to the vanilla variants (eg, MLP, LSTM, DLSTM, KAN, xLSTM).

4.2 COMPARISON AGAINST RECENT STATE-OF-THE-ART (SOTA)

While we acknowledge the importance of contextualizing our work, we recognize that making direct
comparisons is challenging due to the unique characteristics of our framework. Most existing methods
in the literature focus on limited exchange areas in furnace temperature modeling. In contrast, our
robust data generation framework encompasses the entire set of exchange areas, which is essential
for accurate temperature profiling.

To facilitate meaningful comparisons, we relate our results to established baselines recognized
as State-Of-The-Art (SOTA) techniques in settings similar to ours. Specifically, we evaluate the
impact of our research by comparing our proposed Physics-Based (PB) variants against the following
methods: i) MLRVPST (Bao et al. (2023)) and ii) PTDL-LSTM (de Souza Lima et al. (2023)), the

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 4: Comparison of proposed methods on average across the datasets against recent SOTA.
Dataset Average

Metric/ Method MLRVPST
(Bao et al. (2023))

PTDL-LSTM
(de Souza Lima et al. (2023)) PBLSTM PBDLSTM PBKAN PBxLSTM

RMSE tG (↓) 31.2 37.2 30.4 27.9 19.3 31.7
RMSE tS fur (↓) 24.5 27.1 20.2 20.5 12.4 24.2
RMSE tS obs (↓) 51.1 64.9 64.1 61.7 29.8 45.8

MAE tG (↓) 28.8 29.7 23.8 22.4 16.8 29.5
MAE tS fur (↓) 23.7 23.1 18.1 17.3 11.6 23.5
MAE tS obs (↓) 45.9 40.7 38.6 36.0 25.7 40.5
mMAPE fr (↓) 29.6 39.2 26.7 25.9 39.3 37.5

latter of which is comparable to our LSTM implementation. The results of the comparisons are
presented in Table 4. We observed that our proposed variants outperform the SOTA in general. The
full set of results are presented in Tables 11, 12, 13, and 14.

5 CONCLUSIONS

This work proposes a novel regularization technique that leverages the Hottel Zone method to
make deep neural networks physics-aware for improved furnace temperature profile prediction. Our
approach is effective across various network architectures, including Multi-Layer Perceptrons (MLPs),
Long Short-Term Memory (LSTM) networks, Kolmogorov-Arnold Networks (KANs) and Extended
LSTM (xLSTM), as evidenced on datasets based on real-world furnace configurations with varying
set points. In Sections A.9 and A.10, we respectively discuss further real-life applications of our
work, along with limitations of our work and future research directions.
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A APPENDIX

(a) (b) (c)
Figure 4: Convergence of PBMLP in training, considering: a) Supervised, b) EBV, and c) EBS terms.

A.1 MOTIVATION OF OUR WORK

Yuen & Takara (1997) in their study, have proved the elegance and superiority of the zone method over
contemporary counterparts to model the physical phenomenon in high-temperature processes. In our
work, we use the zone method towards a real-world application for the Foundation Industries (FIs),
applied to reheating furnaces, due to the close and natural association/ relation of the zone-method
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Figure 5: Performance metrics against varying λebv = λebs = λ in PBMLP.

with the latter. Foundation Industries (FIs) constitute glass, metals, cement, ceramics, bulk chemicals,
paper, steel, etc. and provide crucial, foundational materials for a diverse set of economically relevant
industries: automobiles, machinery, construction, household appliances, chemicals, etc. FIs are
heavy revenue and employment drivers, for instance, FIs in the United Kingdom (UK) economy are
worth £52B (EPSRC report), employ 0.25 million people, and comprise over 7000 businesses (IOM3
report). The rapid acceleration in urbanization and industrialization over the decades has also led to
improved building design and construction techniques. Great emphasis has been gradually placed on
efficient heat generation, distribution, reduction, and optimized material usage.

However, despite their economic significance, as depicted by the above statistics, the FIs leverage
energy-intensive methods. This makes FIs major industrial polluters and the largest consumers of
natural resources across the globe. For example, in the UK, they produce 28 million tonnes of
materials per year, and generate 10% of the entire UK’s CO2 emissions (EPSRC report; IOM3
report). Similarly, in China, the steel industry accounted for 15% of the total energy consumption,
and 15.4% of the total CO2 emissions (Zhang et al., 2018; Liang et al., 2020). These numbers put a
challenge for the FIs in meeting our commitment to reduce net Green-House Gas (GHG) emissions,
globally.

Various approaches have been relied upon to achieve the Net-Zero trajectory in FIs (Net Zero by
2050): switching of grids to low carbon alternatives via green electricity, sustainable bio-fuel, and
hydrogen sources, Carbon Capture and Storage (CCS), material reuse and recycling, etc. However,
among all transformation enablers, a more proactive way to address the current challenges would be
to tackle the core issue of process efficiency, via digitization, computer-integrated manufacturing,
and control systems. Areas of impact by digitization could be reducing plant downtime, material and
energy savings, resource efficiency, and industrial symbiosis, to name a few. Various computer-aided
studies have already been conducted in notable industrial scenarios. The NSG Group’s Pilkington
UK Limited explored a sensor-driven Machine Learning (ML) model for product quality variation
prediction (up to 72h), to reduce CO2 emission by 30% till 2030 (IOM3 report). Similar studies on
service-oriented enterprise solutions for the steel industry have also been done recently in China (Qin
et al., 2022).

In this work, we tackle the key challenge of accurate and real-time temperature prediction in reheating
furnaces, which are the energy-intensive bottlenecks common across the FIs. To give a perspective to
the reader on why this is important, considering any process industry, such as the steel industry, one
can observe that at the core, lies the process of conversion of materials (e.g., iron) into final products.
This is done using a series of unit processes (Yu et al., 2007). The production process involves key
steps such as dressing, sintering, smelting, casting, rolling, etc. A nice illustration of the different
stages and processes in the steel industry can be found in Qin et al. (2022). The equipment in such
process industries operates in high-intensity environments (e.g., high temperature), and has bottleneck
components such as reheating furnaces, which require complex restart processes post-failure. This
causes additional labor costs and energy consumption. Thus, for sustainable manufacturing, it is
important to monitor the operating status of the furnaces via the furnace temperature profile.

A few studies (Hu et al., 2019) have shown promise in achieving notable fuel consumption reduction
by reducing the overall heating time by even as less as 13 minutes while employing alternate
combustion fuels. A key area of improvement for furnace operating status monitoring lies in
leveraging efficient computational temperature control mechanisms within them. This is because
energy consumption per kilogram of CO2 could be reduced by a reduction in overall heating time.

As existing computational surrogate models have predictive capability bottlenecks, DL approaches
can be used as suitable alternatives for real-time prediction. However, as only a handful of sensors/
thermo-couples could be physically placed within real-world furnaces (and that too at specific furnace
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walls), the challenge of obtaining good-quality real-world data at scale to train DL models in such
scenarios remains infeasible. To alleviate this, we identify the classical Hottel’s zone method (Hottel
& Cohen, 1958; Hottel & Saforim, 1967) which provides an elegant, iterative way to computationally
model the temperature profile within a furnace, requiring only a few initial entities which are easily
measurable. However, straightforward utilization of the same is not suitable for real-time deployment
and prediction, due to computational expensiveness. For this reason, we propose that we generate
an offline data set using the zone method, consisting of input-output pairs to train and evaluate ML
models. We will provide a detailed description of the data generation methodology using the zone
method.

A.1.1 COMPUTATIONAL MODELS

Available computational surrogate models based on Computational Fluid Dynamics (CFD) (Wehinger,
2019; De Beer et al., 2017), Discrete Element Method (DEM) (Emady et al., 2016), CFD-DEM
hybrids (Oschmann & Kruggel-Emden, 2018), Two Fluid Models (TFM) (Marti et al., 2015), etc.
incur expensive and time-consuming data acquisition, design, optimization, and high inference times.
To break through the predictive capability bottlenecks of these surrogate models, DL approaches can
be suitable candidates for real-time prediction, owing to their accuracy and inherently faster inference
times (often only in the order of milliseconds).

A.1.2 DISCUSSION ON COMPUTATIONAL ASPECTS

In general, PINNs/ PCNNs and accurate simulators (e.g., CFD models) are two different approaches
to solving a physical problem. In terms of computational efficiency, they cannot be compared at the
same level. While PCNNs could take milliseconds for inference, accurate simulators have difficulty
even achieving real-time simulation. Thus, PCNNs have the potential to be integrated directly into a
control system for real-time control. This is because PCNNs are a type of approaches that encode the
governing equations of the problem into the network training, whereas, accurate simulators are based
on numerical methods that discretize the problem domain and solve the equations on a mesh, which
can be time-consuming, and challenging to generate for complex geometries or moving boundaries
(such as the furnace studied in our work).

Generally speaking, the zone method is faster and simpler to implement than the CFD method. For
example, even with a consumer-level PC, to simulate a 341-min real reheating process, the zone
model only takes 5 mins, but CFD models often take several days, if not weeks, to provide useful
results (Hu et al., 2016). Therefore, in this study, we utilize the zone model to generate training data
for PCNNs. In future studies, the trained PCNNs will be integrated directly into furnace control
systems. For our study, typically, generating 1500 timesteps of data for a single furnace using the
zone method took about 2 hours, including the time for setting different configurations.

However, talking about the absolute time of a CFD case simulation itself depends on many factors,
such as mesh density, sub-model selection, step size settings, and computer hardware configuration.
Specific to our case, using the same configuration of PC, CFD simulation of the steady-state operating
conditions of each setting takes about 5 hours. So the total time taken is 5 hours multiplied by the
number of simulated working conditions. For the simulation of unsteady operating conditions, CFD
is currently very difficult to implement, and some simplifications must be made. The specific time
consumption depends on the duration of the simulated unsteady process. For the real process of 341
min for the case we studied, CFD would take at least 5 days (vs, 5 min of the zone method). As for
the neural-network based implementations, for ML-based inference on a Apple M2 Max 32GB, our
PCNN takes roughly 0.5s for inferring the entire furnace profile for a single time step instance, given
the input variables as discussed.

A.1.3 COMPUTATIONAL EFFICIENCY (TRAINING AND TESTING TIME) BETWEEN METHODS
WITH AND WITHOUT ENERGY-BALANCE BASED PHYSICS-REGULARIZATION

The training time per mini-batch/iteration increases by up to 10x for smaller batch sizes when
compared to the vanilla variant without Energy-Balance (EB) regularization. This increase is
primarily due to the various matrix multiplications involving the DFA/TEA terms with higher-order
matrices, particularly from the surface zones that comprise the regularization terms. However, when
considering absolute run times, the increase is minimal; for example, the runtime per mini-batch is
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approximately 76.11 seconds/iteration. We could reduce this further by using larger batch sizes to
fully leverage GPU capabilities, although the performance gains would be marginal. In contrast, the
simpler vanilla variants have a runtime of about 7.48 seconds/iteration.

During inference, the time remains the same for both variants, as the regularization terms are only
required during training for the Physics-Based (PB) variants, with no changes in the architectures.

A.2 DETAILS OF RELATED WORK

While the research conducted in this work is at nascent stage, we believe it could pave way for further
developments from an ML perspective, to solve a real-world application problem with value in terms
of environmental sustainability. Our work, for an applied physical sciences reader, could inspire how
ML and DL could be used to address a niche domain scenario. At the same time, for an ML audience,
we believe that our work showcases a novel way to integrate physics based constraints into a neural
network, especially using the zone method. Arguably, there exists a plethora of works related to
PINNs, however, using PINNs to incorporate the zone method based regularizers as in our work, is a
novel contribution to the community. The motivation to leverage the zone method also comes from
the fact that it provides an elegant (and superior) way, as studied by Yuen & Takara (1997), to model
the physical phenomenon in high-temperature processes inside reheating furnaces.

In this section, we exhaustively present a set of relevant approaches with which our work can be
loosely associated with. Specifically, we categorize them into two major classes: i) nonlinear dynamic
systems, radiative heat transfer and view factor modeling, and, ii) modeling in reheating furnaces.
We also talk about PINNs, and how our method is unique with respect to the existing literature.

(Category 1) Nonlinear dynamic systems, radiative heat transfer and view factor modeling:
Our work at its heart is based on the zone method, which in turn relies on notions of radiative heat
transfer and view factor modeling (or interchangeably, exchange area calculation). Describing the
behavior of a furnace state involves combustion models, control loops, set point calculations, and
fuel flux control in zones. It also involves linearization and model order reduction for state estimation
and state-space control. The inherent complexity makes the modeling a nonlinear dynamic system.

While there is no exact similarity, our work shares some common philosophies with few earlier
works. For instance, Ebrahimi et al. (2013) discuss the modeling of radiative heat transfer using
simplified exchange area calculation. Radiative heat transfer in high-temperature thermal plasmas has
been studied by Melot et al. (2011) while comparing two models. A nonlinear dynamic simulation
and control based method has been studied by Hu et al. (2018). A classical work based on genetic
algorithm for nonlinear dynamic systems (Li, 2005) is also present, which, instead of a data-driven
approach, leverages a pre-defined set of mathematical functions.

Within this category, some approaches have also employed neural networks. In Yuen (2009), a network
was trained for simulating non-gray radiative heat transfer effect in 3D gas-particle mixtures. Some
approaches have used networks for view factor modeling with DEM-based simulations (Tausendschön
& Radl, 2021), and some have addressed the near-field heat transfer or close regime (Garcı́a-Esteban
et al., 2021).

(Category 2) Modeling in reheating furnaces: We now discuss methods dealing with some form of
prediction or optimization in reheating furnaces. Classically, Kim & Huh (2000) discussed a method
to predict transient slab temperatures in a walking-beam furnace for rolling of steel slabs. Kim (2007)
proposed a model for analyzing transient slab heating in a direct-fired walking beam furnace. Jang
et al. (2010) investigated the slab heating characteristics with the formation and growth of scale. Tang
et al. (2017) studied slab heating for process optimization. A distributed model predictive control
approach was proposed in Nguyen et al. (2014). Few multi-objective optimization methods were
discussed in Hu et al. (2017); Ban et al. (2023). A fuel supplies scheme based approach was proposed
in Li et al. (2023). Other related works involved multi-mode model predictive control approach for
steel billets (Zanoli et al., 2023), and a hybrid model for billet tapping temperature prediction (Yu
et al., 2022).

Some neural network based approaches in this category studied transfer learning (Zhai & Zhou,
2020; Zhai et al., 2023), digital twin modeling (Halme Ståhlberg, 2021), and steel slab temperature
prediction (de Souza Lima et al., 2023). Liao et al. (2009) discussed an integrated hybrid-PSO
and fuzzy-NN decoupling based solution. Other works have studied aspects related to time-series
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modeling (Hwang et al., 2019; Chen et al., 2022), and multivariate linear-regression in steel rolling
(Bao et al., 2023).

PINNs: The methods mentioned above discuss alternatives aimed at modeling either exchange
factors with radiative heat transfer, or specific slab temperature predictions in reheating furnaces.
However, they do not explicitly address physics-based prior incorporation within their optimization
frameworks, especially for the neural network variants. To this end, we now discuss a few relevant
works in the body of literature on PINNs. For a detailed review on PINNs in general, we refer the
interested reader to the papers by Raissi et al. (2019); Karniadakis et al. (2021). It should be noted
that PINNs are a broad category of approaches, and the literature is vast. Here, we discuss those
methods which relate to certain aspects of thermal modeling.

Drgoňa et al. (2021) proposed a physics-constrained method to model multi-zone building thermal
dynamics. A multi-loss consistency optimization PINN (Shen et al., 2023) was proposed for large-
scale aluminium alloy workpieces. Other approaches focus on prototype heat transfer problems and
power electronics applications Cai et al. (2021), minimum film boiling temperature (Kim et al., 2022),
critical heat flux (Zhao et al., 2020), solving direct and inverse heat conduction problems of materials
(He et al., 2021), lifelong learning in district heating systems (Boca de Giuli, 2023), PINN and point
clouds for flat plate solar collector (Han et al., 2023), residential building MPC (Bünning et al., 2022),
hybrid ML and PINN for Process Control and Optimization (Park, 2022), reinforcement learning
for data center cooling control (Wang et al., 2023), flexibility identification in evaporative cooling
(Lahariya et al., 2022), and fast full-field temperature prediction of indoor environment (Jing et al.,
2023).

Uniqueness of our work within existing literature: While we have observed a number of loosely
related methods as discussed above, upon a clear look at them, we can conclude the following:

1. Comparison with category 1 methods: Among the approaches focusing on view factor
modeling with radiative transfer, the area of interest is often simplified. The modeling
covers select few exchange areas. The methods are also geometry-specific. Our approach
on the other hand seeks a generic, geometry-agnostic modeling that covers the entire set
of exchange areas. The exchange areas can be intuitively perceived as those interfaces
from where radiation can transfer, between a pair of zones (surface/gas). A background on
exchange areas is provided in the proposed work section.
The ones involving neural networks, often employ feed-forward Multi-Layer Perceptron
(MLP) models with few hidden layers. As showcased in our experiments, a simple MLP
trained to regress the outputs given certain inputs may not generalize well to unseen distribu-
tions, due to lack of explicit understanding of the underlying physics. On the other hand, we
empirically showcase that our proposed PCNN performs better than such a baseline MLP.
Within a single PCNN framework, our method can also cover other architectures such as
LSTMs, KANs, xLSTMs etc.

2. Comparison with category 2 methods: Both non-neural and neural-network based
methods presented in this category, as observed, focus on predicting temperatures only in
certain regions of a furnace, often, the slab temperature profiling. Our work, on the other
hand aims at achieving a complete furnace temperature profiling, ranging from the gas
zones, to both types of surface zones: furnace walls as well as the slab/obstacle surfaces.
Our training data set is obtained based on the iterative zone method, and is more holistic in
nature as compared to the discussed methods. This makes an apple-to-apple comparison
difficult with other methods as they deal with different problem setups. Furthermore, the
neural methods in this category are not trained to be physics aware.

3. Comparison with PINNs: It should be noted that any PINN approach is driven by the
priors corresponding to the underlying physical phenomenon. As we did not find PINN
methods addressing zone method based modeling, we could claim our PCNN variant to be
novel in nature, especially, in this studied problem setup. Essentially, casting the temperature
prediction task in reheating furnaces as in our work, and modeling via explicit physics-
constrained regularizers (based on zone method) as done in our work, is a first of its kind.
It is a simple paradigm, and could be used to build further sophisticated developments. At
the same time, it simply requires input-output pairs (as shown later) to train the underlying
ML/PCNN model, and makes no geometry-specific assumptions of the furnace. The data
creation method discussed in our method is holistic, covers all possible exchange areas, and
thus, is unique in nature itself.
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A.3 PERFORMANCE METRICS

For a data set containing N samples: X = {(x(i),y(i))}Ni=1, we make use of the following standard
regression performance evaluation metrics:

1. Root Mean Squared Error (RMSE), defined as:

RMSE =

√∑N
i=1(y

(i) − fθ(x(i)))2

N
(13)

2. Mean Absolute Error (MAE), defined as:

MAE =

∑N
i=1

∣∣y(i) − fθ(x
(i))

∣∣
N

(14)

Mean Absolute Percentage Error (MAPE) is unsuitable for firing rate prediction due to potential
division by zero. We use a modified MAPE (mMAPE) with a small epsilon (ϵ = 0.05) added to the
denominator:

mMAPE =
1

N

N∑
t=1

∣∣∣∣∣ft − f̂t
ft + ϵ

∣∣∣∣∣ (15)

Here, ft is the actual firing rate, and f̂t is the predicted value.

We evaluate model performance for each entity (gas zone temperatures, tG; furnace surface tempera-
tures, tS fur; obstacle surface temperatures, tS obs; firing rates, fr) separately as: RMSE tG, RMSE
tS fur, RMSE tS obs, MAE tG, MAE tS fur, MAE tS obs, and mMAPE fr. Performance metrics
(RMSE, MAE, mMAPE) are computed using corresponding predictions from the model (fθ(x(i)))
and ground truth values from the data (y(i)). Results are presented for the test split (standard practice).
mMAPE is evaluated only for the firing rates. RMSE, MAE and mMAPE range in [0,∞] with lower
values indicating better performance (↓) as shown in the tables.

A.4 TRAINING DETAILS AND MODEL ARCHITECTURES

We train our PBMLP for 10 epochs using PyTorch (early stopping to avoid over-fitting), and report
results with the final checkpoint. For the EB equations, we perform the same normalization for
enthalpy, flux, and temperatures, as in the final neural network output as discussed earlier. We found
a learning rate of 0.001 with Adam optimizer and batch size of 64 to be optimal, along with ReLU
non-linearity.

We pick the [50,100,200] configuration for hidden layers, i.e., 3 hidden layers, with 50, 100, and
200 neurons respectively. We use λebv = λebs = 0.1. In general, a value lesser than 1 is observed
to be better, otherwise, the model focuses less on the regression task. Following are values of other
variables: |G| = 24, |S| = 178 (76 furnace surface zones and 102 obstacle surface zones), Ng = 6,
and Stefan-Boltzmann constant=5.6687e-08. Unless otherwise stated, this is the setting we use to
report any results for our method, for example, while comparing with other methods. Please note that
the MLP baseline has exactly the same training configuration as the PBMLP except that it does not
use the physics regularizers.

We provide details about the LSTM variants used. The LSTM variant has a single LSTM layer with
50 hidden nodes, followed by FC layer-1 with 50 input nodes and 100 output nodes, FC layer-2 with
100 input nodes and 200 output nodes. Both FC layer-1 and FC layer-2 have ReLU non-linearity.
Lastly, there is a final FC layer with sigmoid nonlinearity that maps to the number of output features
as in the data set. The DLSTM variant has three stacked LSTM layers, each with 100 hidden nodes,
followed by a final FC layer with sigmoid nonlinearity. As we can see, we have kept the total number
of layers in LSTM and DSLTM comparable to that of the baseline MLP.

For the xLSTM implementation, we follow a similar architeture as the DLSTM model. Similar to the
DLSTM we place a LSTM layer that maps the input to 100 hidden nodes. However, after that, instead
of stacking two more LSTM layers, we place a single xLSTM block stack (as mentioned in the official
repository https://github.com/NX-AI/xlstm). After the xLSTM block, the remaining
layers are similar to that of the DLSTM. Within the xLSTM block stack, the sLSTM block has 4 heads,
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conv1d kernel size=4, and, the mLSTM block has conv1d kernel size=4, qkv proj blocksize=4, and
4 heads. Overall, xLSTM block has context length of 1, 7 blocks, and embedding dimension of 100.

For KAN, we follow the implementation suggestions as in https://github.com/
KindXiaoming/pykan and use a single hidden layer with one neuron. Interestingly, the KAN
despite being simpler than the MLP baseline, is not only easier to train, but also outperforms the MLP,
as evidenced in many contemporary works. Broadly speaking, the training specific hyperparameters
across all the compared models are the same (e.g., number of epochs, optimizer, batch size, learning
rate, etc). The only difference comes from their respective architectures. For a similar architec-
ture, the additional difference for the physics based variants lie in terms of usage of the additional
regularization terms. Table 5 summarizes the details.

Table 5: Architectural and training details across different studied models
Model Architecture Layer-specific information

MLP 3 hidden layers (50, 100, 200 neurons)+
Final FC layer (no. of outputs) -

LSTM
1 LSTM layer (50 hidden nodes) +

2 FC layers (FC-1 and FC-2) +
Final FC layer (no. of outputs)

FC-1: 50-100, FC-2: 100-200

DLSTM 3 stacked LSTM layers (100 hidden nodes each)
+ Final FC layer (no. of outputs) -

xLSTM 1 LSTM layer (100 hidden nodes) +
1 xLSTM block + Final FC layer (no. of outputs)

xLSTM block: context length = 1, #blocks =7, embedding dim = 100
sLSTM block:#heads=4, conv1d kernel size=4

mLSTM block: #heads=4,
conv1d kernel size=4, qkv proj blocksize=4

KAN 1 hidden layer (1 neuron)+
Final FC layer (no. of outputs) -

PB-variants Same as corresponding base architecture, but additionally use physics-based regularizers
with λebv = λebs = 0.1

Common Hyperparameters: 10 epochs, Adam optimizer, lr=0.001, batch size=64

Table 6: All results (Normal Type 1 Datasets)
Dataset N1-1 925 1220 1250 750

Metric/ Method MLP PBMLP LSTM PBLSTM DLSTM PBDLSTM KAN PBKAN xLSTM PBxLSTM

RMSE tG (↓) 136.4 55.3 15.6 43.3 28.4 16.1 40.7 12.6 39.6 13.7
RMSE tS fur (↓) 139.2 39.8 7.1 39.3 13.8 6.3 34.4 9.7 38.3 10.6
RMSE tS obs (↓) 124.8 64.9 43.7 73.8 54.2 52.6 54.2 21.2 63.9 22.8

MAE tG (↓) 108.6 51.0 11.1 39.5 20.7 10.9 38.8 10.2 37.5 11.7
MAE tS fur (↓) 115.7 39.2 6.0 38.1 12.2 5.1 34.1 9.1 37.8 10.0
MAE tS obs (↓) 100.2 54.8 19.5 58.1 32.1 22.1 50.1 18.1 59.3 18.7
mMAPE fr (↓) 232.9 70.7 25.6 26.5 21.9 23.7 51.1 40.7 22.1 27.6

Dataset N1-2 965 1220 1250 750

Metric/ Method MLP PBMLP LSTM PBLSTM DLSTM PBDLSTM KAN PBKAN xLSTM PBxLSTM

RMSE tG (↓) 113.4 35.6 33.0 26.7 117.1 32.4 24.3 22.6 130.6 29.3
RMSE tS fur (↓) 116.4 22.4 25.6 11.7 114.4 24.9 15.2 14.6 119.1 20.4
RMSE tS obs (↓) 106.9 43.4 61.1 66.5 109.3 67.4 35.1 33.6 139.8 45.4

MAE tG (↓) 89.5 28.2 27.4 16.9 100.9 27.2 21.4 19.9 129.1 26.8
MAE tS fur (↓) 96.2 17.8 21.5 9.9 101.1 20.1 14.3 13.8 118.6 19.5
MAE tS obs (↓) 79.9 29.6 39.4 31.4 86.9 44.4 29.8 29.3 136.3 39.8
mMAPE fr (↓) 176.6 58.5 29.5 23.5 201.0 26.2 44.2 32.6 200.8 27.8

Dataset N1-3 995 1220 1250 750

Metric/ Method MLP PBMLP LSTM PBLSTM DLSTM PBDLSTM KAN PBKAN xLSTM PBxLSTM

RMSE tG (↓) 31.1 30.5 39.3 39.2 100.0 35.7 23.1 20.9 114.9 30.1
RMSE tS fur (↓) 22.1 24.3 8.0 16.5 97.0 25.8 18.4 17.1 104.3 23.1
RMSE tS obs (↓) 54.4 47.8 69.0 77.4 97.2 60.5 27.7 26.4 124.2 35.1

MAE tG (↓) 23.0 23.8 25.3 29.1 87.0 29.4 20.9 18.4 113.6 27.9
MAE tS fur (↓) 16.8 20.8 6.4 14.6 85.8 22.4 17.7 16.4 104.1 22.4
MAE tS obs (↓) 31.4 29.4 36.6 46.5 73.1 32.7 24.0 22.5 120.7 30.4
mMAPE fr (↓) 32.0 28.1 25.8 26.9 128.7 29.4 33.0 27.7 127.7 31.7

A.5 FULL SET OF RESULTS ON THE 11 DATASETS

In Tables 6, 7, 8, 9 we report the performances of the compared approaches across all the 11 datasets.
We noticed that not only the PB variants obtain a better performance throughout, they are also more
stable across different datasets as indicated by their standard deviations (Table 10). On the other hand,
the performances of the vanilla networks were not stable across different datasets.

However, we also noted that Physics-Based (PB) variants perform slightly worse than the vanilla
methods in certain datasets. This because we did not tune hyperparameters for each configuration, but
rather aimed to obtain average performance across configurations. While there may be potential for
further improvements at the configuration level, our primary goal was to assess the generalizability
of our approach. In real-world scenarios, variability is to be expected. It is possible that, for certain
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Table 7: All results (Normal Type 2 Datasets)
Dataset N2-1 955 1190 1250 750

Metric/ Method MLP PBMLP LSTM PBLSTM DLSTM PBDLSTM KAN PBKAN xLSTM PBxLSTM

RMSE tG (↓) 121.1 45.4 36.8 37.0 123.4 28.3 29.5 18.0 95.5 33.0
RMSE tS fur (↓) 123.8 27.6 29.5 28.9 120.5 18.7 20.7 8.8 80.6 24.9
RMSE tS obs (↓) 113.1 52.4 65.6 63.3 114.5 51.9 41.0 27.2 90.7 51.7

MAE tG (↓) 96.9 38.8 31.3 31.4 106.9 19.7 26.2 15.4 93.5 30.3
MAE tS fur (↓) 103.6 24.8 26.7 25.5 106.4 16.5 19.8 7.7 80.1 24.1
MAE tS obs (↓) 87.4 39.9 46.2 44.2 92.2 21.9 35.9 22.9 86.6 46.5
mMAPE fr (↓) 187.6 67.8 28.4 29.8 210.6 24.9 43.7 34.2 212.3 26.2

Dataset N2-2 955 1230 1250 750

Metric/ Method MLP PBMLP LSTM PBLSTM DLSTM PBDLSTM KAN PBKAN xLSTM PBxLSTM

RMSE tG (↓) 116.1 39.2 34.3 34.6 122.5 33.3 27.6 18.0 135.5 31.0
RMSE tS fur (↓) 118.6 24.3 28.4 27.9 119.9 27.3 19.6 9.7 123.9 23.9
RMSE tS obs (↓) 108.7 45.2 64.0 61.7 113.6 70.7 39.6 29.0 144.8 50.2

MAE tG (↓) 91.1 32.9 29.5 29.7 105.4 28.9 24.7 15.5 134.0 28.7
MAE tS fur (↓) 96.7 20.8 25.8 24.6 105.8 23.9 18.8 8.8 123.3 23.2
MAE tS obs (↓) 82.8 32.5 44.4 42.5 91.2 49.6 34.4 24.6 141.3 44.9
mMAPE fr (↓) 187.1 66.7 28.4 30.0 220.4 25.6 46.8 35.0 220.6 26.7

Table 8: All results (Normal Type 3 Datasets)
Dataset N3-1 955 1220 1250 750

Metric/ Method MLP PBMLP LSTM PBLSTM DLSTM PBDLSTM KAN PBKAN xLSTM PBxLSTM

RMSE tG (↓) 119.5 42.9 34.4 34.7 122.7 33.3 27.6 18.0 135.5 31.0
RMSE tS fur (↓) 122.5 24.1 28.5 27.9 120.1 27.4 19.6 9.7 123.9 23.9
RMSE tS obs (↓) 111.3 45.5 64.1 61.9 113.7 70.7 39.6 28.8 144.8 50.2

MAE tG (↓) 94.6 36.6 29.6 29.7 105.5 28.9 24.7 15.5 134.1 28.7
MAE tS fur (↓) 101.5 20.3 25.8 24.7 105.9 24.0 18.8 8.7 123.3 23.2
MAE tS obs (↓) 85.1 33.3 44.4 42.6 91.3 49.6 34.4 24.5 141.3 44.9
mMAPE fr (↓) 194.2 88.0 28.4 30.0 220.4 25.6 46.8 35.0 220.6 26.6

Dataset N3-2 955 1220 1280 750

Metric/ Method MLP PBMLP LSTM PBLSTM DLSTM PBDLSTM KAN PBKAN xLSTM PBxLSTM

RMSE tG (↓) 23.8 17.9 19.5 19.5 17.3 18.1 14.9 14.5 16.4 15.9
RMSE tS fur (↓) 11.2 7.8 12.0 11.2 9.6 10.5 6.8 7.3 9.4 9.2
RMSE tS obs (↓) 57.6 41.6 54.5 52.0 61.9 61.6 26.0 26.7 33.9 34.8

MAE tG (↓) 17.0 11.8 14.7 14.6 13.1 13.7 12.0 11.7 14.1 13.7
MAE tS fur (↓) 9.6 6.8 10.7 9.6 8.0 8.6 6.0 6.6 8.6 8.3
MAE tS obs (↓) 31.5 20.1 27.7 26.2 32.3 32.5 20.9 21.5 27.7 28.6
mMAPE fr (↓) 37.5 41.9 25.2 27.2 22.1 22.9 51.2 50.6 21.5 22.9

Dataset N3-3 955 1220 1300 750

Metric/ Method MLP PBMLP LSTM PBLSTM DLSTM PBDLSTM KAN PBKAN xLSTM PBxLSTM

RMSE tG (↓) 18.2 15.6 15.6 15.5 15.6 15.5 17.5 19.0 12.5 11.5
RMSE tS fur (↓) 7.5 8.7 7.7 7.0 7.6 7.7 11.2 13.7 5.9 6.0
RMSE tS obs (↓) 52.4 47.2 51.2 48.3 58.7 58.4 27.6 29.2 28.1 28.7

MAE tG (↓) 11.0 11.7 10.2 10.2 11.3 11.2 15.2 17.1 10.7 10.0
MAE tS fur (↓) 6.0 7.1 6.0 5.4 6.4 6.4 10.6 13.0 5.4 5.3
MAE tS obs (↓) 23.4 24.4 22.2 21.1 26.1 26.3 23.2 24.8 22.5 22.9
mMAPE fr (↓) 40.5 38.7 27.9 30.5 22.9 24.9 60.2 62.3 21.3 24.0

configurations, the underlying physics is better captured by a stronger vanilla architecture (e.g., LSTM
vs. MLP). If the vanilla model is effectively learning and generalizing, the explicit regularization may
yield minimal gains. However, we do not consider this a case of PB variants performing worse than
vanilla methods; rather, their performance metrics are comparable.

Conversely, it is important to note that PB variants generally outperform vanilla variants by significant
multiplicative factors in performance metrics.

The performances of the proposed Physics-Based (PB) approaches across all the 11 datasets are also
compared against the following SOTA methods: i) MLRVPST (Bao et al. (2023)) and ii) PTDL-
LSTM (de Souza Lima et al. (2023)), the results of which are presented in Tables 11, 12, 13, and 14.
We notice that our proposed variants outperform the SOTA consistently in general.

A.6 PSEUDO-CODES FOR OUR TRAINING FRAMEWORK

In Algorithm 2, we outline the key steps required in training our physics-constrained framework.
The training involves a typical mini-batch based optimization, where each instance in a mini-batch
contains the various entities obtained from one row/time step of the data set. The entities are present
in their respective columns. The columns for the constant terms (e.g., (Q̇conv)i, (Q̇fuel,net)i, (Q̇a)i,
Ai(q̇conv)i and Q̇s,i) will have the values repeated across all the corresponding rows to create a
dataloader.
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Table 9: All results (Normal Type 4 Datasets)
Dataset N4-1 955 1220 1250 705

Metric/ Method MLP PBMLP LSTM PBLSTM DLSTM PBDLSTM KAN PBKAN xLSTM PBxLSTM

RMSE tG (↓) 117.4 39.3 110.8 34.2 29.6 31.5 27.1 17.3 93.3 92.9
RMSE tS fur (↓) 121.9 32.9 98.2 30.2 19.7 26.3 20.6 8.6 80.1 79.1
RMSE tS obs (↓) 115.7 64.3 126.2 67.3 48.7 53.4 47.0 23.1 94.6 94.7

MAE tG (↓) 94.2 35.3 90.0 30.3 22.0 24.2 28.7 14.4 91.8 91.2
MAE tS fur (↓) 102.0 31.6 78.3 27.2 17.9 20.5 22.0 7.7 79.7 78.5
MAE tS obs (↓) 91.5 51.6 92.1 50.7 21.4 30.2 55.9 19.4 90.6 90.7
mMAPE fr (↓) 123.0 19.9 141.7 21.6 22.3 28.0 22.4 17.2 139.9 141.0

Dataset N4-2 955 1220 1250 765

Metric/ Method MLP PBMLP LSTM PBLSTM DLSTM PBDLSTM KAN PBKAN xLSTM PBxLSTM

RMSE tG (↓) 38.7 36.1 34.2 24.2 121.9 32.4 27.3 18.0 135.5 30.5
RMSE tS fur (↓) 27.0 23.2 27.9 13.4 119.3 26.6 19.3 10.2 123.8 23.5
RMSE tS obs (↓) 63.9 44.4 61.9 65.7 111.4 69.2 37.3 31.2 142.6 47.9

MAE tG (↓) 32.7 29.5 29.2 15.1 104.5 27.9 24.5 15.6 134.2 28.3
MAE tS fur (↓) 24.3 19.5 25.1 12.2 105.1 23.2 18.5 9.4 123.2 22.8
MAE tS obs (↓) 45.7 30.0 41.8 29.5 88.9 47.5 31.9 26.8 139.2 42.4
mMAPE fr (↓) 42.9 59.7 30.2 23.3 229.6 25.7 49.8 37.0 230.2 27.6

Dataset N4-3 955 1220 1250 810

Metric/ Method MLP PBMLP LSTM PBLSTM DLSTM PBDLSTM KAN PBKAN xLSTM PBxLSTM

RMSE tG (↓) 35.5 28.0 35.3 25.2 120.3 30.2 27.0 33.4 27.6 29.4
RMSE tS fur (↓) 21.8 19.3 25.5 8.7 117.1 23.8 18.1 27.4 20.9 21.9
RMSE tS obs (↓) 46.1 48.0 53.2 67.5 105.7 62.8 31.7 51.8 40.6 42.1

MAE tG (↓) 25.5 20.3 29.0 15.4 102.6 24.7 24.4 31.3 24.7 27.1
MAE tS fur (↓) 16.4 14.7 21.8 7.3 103.0 19.5 17.5 26.5 19.4 21.1
MAE tS obs (↓) 28.8 27.1 33.2 32.1 82.4 38.9 26.5 47.9 34.4 36.1
mMAPE fr (↓) 57.5 50.0 40.3 24.6 259.6 28.2 61.0 60.0 28.0 30.6

Table 10: All results (standard deviations)
Dataset STDEV

Metric/ Method MLP PBMLP LSTM PBLSTM DLSTM PBDLSTM KAN PBKAN xLSTM PBxLSTM

RMSE tG (↓) 48.2 11.6 25.9 8.7 48.8 7.5 6.7 5.4 51.1 21.8
RMSE tS fur (↓) 55.8 9.2 25.4 10.9 52.4 8.3 6.8 5.8 48.3 19.4
RMSE tS obs (↓) 31.2 8.0 21.6 8.4 27.6 7.1 8.7 8.1 47.2 18.8

MAE tG (↓) 39.3 11.8 21.5 9.5 43.3 7.3 7.0 5.5 51.5 21.9
MAE tS fur (↓) 46.4 9.5 20.2 10.4 46.2 7.2 7.0 5.8 48.5 19.5
MAE tS obs (↓) 30.0 10.8 19.3 11.3 30.2 10.6 11.0 8.0 48.2 19.1
mMAPE fr (↓) 78.3 20.2 34.2 3.1 99.7 2.0 11.1 13.5 91.6 34.4

Table 11: All results against SOTA (Normal Type 1 Datasets)
Dataset N1-1

Metric/ Method MLRVPST PTDL-LSTM PBLSTM PBDLSTM PBKAN PBxLSTM

RMSE tG (↓) 45.4 15.6 43.3 16.1 12.6 13.7
RMSE tS fur (↓) 41.0 7.1 39.3 6.3 9.7 10.6
RMSE tS obs (↓) 68.6 43.7 73.8 52.6 21.2 22.8

MAE tG (↓) 43.2 11.1 39.5 10.9 10.2 11.7
MAE tS fur (↓) 40.5 6.0 38.1 5.1 9.1 10.0
MAE tS obs (↓) 64.2 19.5 58.1 22.1 18.1 18.7
mMAPE fr (↓) 28.4 25.6 26.5 23.7 40.7 27.6

Dataset N1-2

Metric/ Method MLRVPST PTDL-LSTM PBLSTM PBDLSTM PBKAN PBxLSTM

RMSE tG (↓) 30.7 33.0 26.7 32.4 22.6 29.3
RMSE tS fur (↓) 22.1 25.6 11.7 24.9 14.6 20.4
RMSE tS obs (↓) 48.8 61.1 66.5 67.4 33.6 45.4

MAE tG (↓) 28.1 27.4 16.9 27.2 19.9 26.8
MAE tS fur (↓) 21.3 21.5 9.9 20.1 13.8 19.5
MAE tS obs (↓) 43.2 39.4 31.4 44.4 29.3 39.8
mMAPE fr (↓) 31.8 29.5 23.5 26.2 32.6 27.8

Dataset N1-3

Metric/ Method MLRVPST PTDL-LSTM PBLSTM PBDLSTM PBKAN PBxLSTM

RMSE tG (↓) 27.8 39.3 39.2 35.7 20.9 30.1
RMSE tS fur (↓) 20.6 8.0 16.5 25.8 17.1 23.1
RMSE tS obs (↓) 36.7 69.0 77.4 60.5 26.4 35.1

MAE tG (↓) 25.1 25.3 29.1 29.4 18.4 27.9
MAE tS fur (↓) 19.4 6.4 14.6 22.4 16.4 22.4
MAE tS obs (↓) 31.5 36.6 46.5 32.7 22.5 30.4
mMAPE fr (↓) 32.3 25.8 26.9 29.4 27.7 31.7

As observed in Algorithm 2, X train batch and y train batch correspond to x(i)

and y(i) in X , and are used to compute tr loss regtmps representing Lsup in eq(12).
tr loss ebv and tr loss ebs respectively correspond to Lebv and Lebs in eq(12). The
collection of the Tg terms for being associated with the computational graph for back-
propagation by virtue of use in eq(8), is done by y train pred[:,:n gas zones].
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Table 12: All results against SOTA (Normal Type 2 Datasets)
Dataset N2-1

Metric/ Method MLRVPST PTDL-LSTM PBLSTM PBDLSTM PBKAN PBxLSTM

RMSE tG (↓) 35.7 36.8 37.0 28.3 18.0 33.0
RMSE tS fur (↓) 27.8 29.5 28.9 18.7 8.8 24.9
RMSE tS obs (↓) 55.5 65.6 63.3 51.9 27.2 51.7

MAE tG (↓) 32.8 31.3 31.4 19.7 15.4 30.3
MAE tS fur (↓) 27.0 26.7 25.5 16.5 7.7 24.1
MAE tS obs (↓) 50.5 46.2 44.2 21.9 22.9 46.5
mMAPE fr (↓) 30.6 28.4 29.8 24.9 34.2 26.2

Dataset N2-2

Metric/ Method MLRVPST PTDL-LSTM PBLSTM PBDLSTM PBKAN PBxLSTM

RMSE tG (↓) 33.4 34.3 34.6 33.3 18.0 31.0
RMSE tS fur (↓) 26.3 28.4 27.9 27.3 9.7 23.9
RMSE tS obs (↓) 53.5 64.0 61.7 70.7 29.0 50.2

MAE tG (↓) 30.8 29.5 29.7 28.9 15.5 28.7
MAE tS fur (↓) 25.5 25.8 24.6 23.9 8.8 23.2
MAE tS obs (↓) 48.3 44.4 42.5 49.6 24.6 44.9
mMAPE fr (↓) 31.6 28.4 30.0 25.6 35.0 26.7

Table 13: All results against SOTA (Normal Type 3 Datasets)
Dataset N3-1

Metric/ Method MLRVPST PTDL-LSTM PBLSTM PBDLSTM PBKAN PBxLSTM

RMSE tG (↓) 33.5 34.4 34.7 33.3 18.0 31.0
RMSE tS fur (↓) 26.5 28.5 27.9 27.4 9.7 23.9
RMSE tS obs (↓) 53.7 64.1 61.9 70.7 28.8 50.2

MAE tG (↓) 31.0 29.6 29.7 28.9 15.5 28.7
MAE tS fur (↓) 25.7 25.8 24.7 24.0 8.7 23.2
MAE tS obs (↓) 48.5 44.4 42.6 49.6 24.5 44.9
mMAPE fr (↓) 31.4 28.4 30.0 25.6 35.0 26.6

Dataset N3-2

Metric/ Method MLRVPST PTDL-LSTM PBLSTM PBDLSTM PBKAN PBxLSTM

RMSE tG (↓) 18.0 19.5 19.5 18.1 14.5 15.9
RMSE tS fur (↓) 11.4 12.0 11.2 10.5 7.3 9.2
RMSE tS obs (↓) 38.1 54.5 52.0 61.6 26.7 34.8

MAE tG (↓) 15.7 14.7 14.6 13.7 11.7 13.7
MAE tS fur (↓) 10.7 10.7 9.6 8.6 6.6 8.3
MAE tS obs (↓) 32.0 27.7 26.2 32.5 21.5 28.6
mMAPE fr (↓) 27.2 25.2 27.2 22.9 50.6 22.9

Dataset N3-3

Metric/ Method MLRVPST PTDL-LSTM PBLSTM PBDLSTM PBKAN PBxLSTM

RMSE tG (↓) 14.0 15.6 15.5 15.5 19.0 11.5
RMSE tS fur (↓) 8.2 7.7 7.0 7.7 13.7 6.0
RMSE tS obs (↓) 32.5 51.2 48.3 58.4 29.2 28.7

MAE tG (↓) 11.3 10.2 10.2 11.2 17.1 10.0
MAE tS fur (↓) 7.3 6.0 5.4 6.4 13.0 5.3
MAE tS obs (↓) 26.3 22.2 21.1 26.3 24.8 22.9
mMAPE fr (↓) 28.9 27.9 30.5 24.9 62.3 24.0

Similar role towards back-propagation via Ts terms in eq(9) is taken care of by
y train pred[:,n gas zones:n gas zones+n fur surf zones+n obs surf zones].

get pb ebv pred() computes vg in eq(10) for each instance (corresponding to a time-step of
zone method) present in a mini-batch of the variables obtained from the already created data set.
In doing so, each of the |G| elements of vg are computed using eq(8) and the corresponding/rel-
evant auxiliary variables from the data. sgarr plus hg tensor batch collects mini-batch
terms using relevant terms like s(g)arr,hg in eq(10) towards vg. The relevant DFA terms are
collected in tensor dfa GG tensor batch. Similarly, we make use of get pb ebs pred(),
dfa SS tensor batch, gsarr plus hs tensor batch for computing vs in eq(10) and us-
ing eq(9). Having obtained the dataset, it only involves sampling mini-batches via appropriate helper
functions in any Deep Learning framework (e.g., PyTorch). In Algorithms 3-4, we provide a few
helper functions which can be useful to further understand the computation of some of the tensors
involved in the training loop described in Algorithm 2.

A.7 IN-DEPTH SENSITIVITY ANALYSIS OF PBMLP

We evaluated PBMLP’s sensitivity to hyperparameters (loss terms, hidden layers, batch size, activation
functions) using shuffled test data from all furnace configurations. To establish an upper bound on
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Table 14: All results against SOTA (Normal Type 4 Datasets)
Dataset N4-1

Metric/ Method MLRVPST PTDL-LSTM PBLSTM PBDLSTM PBKAN PBxLSTM

RMSE tG (↓) 36.2 110.8 34.2 31.5 17.3 92.9
RMSE tS fur (↓) 30.9 98.2 30.2 26.3 8.6 79.1
RMSE tS obs (↓) 62.5 126.2 67.3 53.4 23.1 94.7

MAE tG (↓) 33.9 90.0 30.3 24.2 14.4 91.2
MAE tS fur (↓) 30.4 78.3 27.2 20.5 7.7 78.5
MAE tS obs (↓) 57.9 92.1 50.7 30.2 19.4 90.7
mMAPE fr (↓) 20.2 141.7 21.6 28.0 17.2 141.0

Dataset N4-2

Metric/ Method MLRVPST PTDL-LSTM PBLSTM PBDLSTM PBKAN PBxLSTM

RMSE tG (↓) 32.2 34.2 24.2 32.4 18.0 30.5
RMSE tS fur (↓) 25.0 27.9 13.4 26.6 10.2 23.5
RMSE tS obs (↓) 50.8 61.9 65.7 69.2 31.2 47.9

MAE tG (↓) 29.7 29.2 15.1 27.9 15.6 28.3
MAE tS fur (↓) 24.2 25.1 12.2 23.2 9.4 22.8
MAE tS obs (↓) 45.3 41.8 29.5 47.5 26.8 42.4
mMAPE fr (↓) 32.6 30.2 23.3 25.7 37.0 27.6

Dataset N4-3

Metric/ Method MLRVPST PTDL-LSTM PBLSTM PBDLSTM PBKAN PBxLSTM

RMSE tG (↓) 36.8 35.3 25.2 30.2 33.4 29.4
RMSE tS fur (↓) 29.4 25.5 8.7 23.8 27.4 21.9
RMSE tS obs (↓) 61.2 53.2 67.5 62.8 51.8 42.1

MAE tG (↓) 34.9 29.0 15.4 24.7 31.3 27.1
MAE tS fur (↓) 28.9 21.8 7.3 19.5 26.5 21.1
MAE tS obs (↓) 57.2 33.2 32.1 38.9 47.9 36.1
mMAPE fr (↓) 30.7 40.3 24.6 28.2 60.0 30.6

performance, we employed teacher forcing during evaluation (providing ground truth values from
previous time steps as inputs). This explains the improved metrics compared to auto-regressive
real-world like inference from earlier tables.

We observed good convergence of PBMLP (Fig 4), with the default setting mentioned in Appendix
A.4. Table 15 shows performance with different hidden layer configurations, with [50, 100, 200]
providing competitive results. Here, [100] denotes one hidden layer with 100 neurons, [50, 100]
denotes two hidden layers with 50, and 100 neurons respectively, and so on. The maximum values
for each row (corresponding to a metric) are shown in bold. In Table 16, we vary the batch size in
our method. We found a batch size of 64 to provide an optimal performance for our experiments. In
our exploration of activation functions, ReLU, SiLU, and Mish exhibited similar performance, with
ReLU proving more robust across batch sizes (Table 18).

We also examined all possible combinations of the regularizer weights λebv and λebs. Table 17
highlights extreme cases where one regularizer is set to zero while the other is at a higher value, i.e.,
keeping only the EBV term by setting λebv = 0.1 and λebs = 0, and only the EBS term by setting
λebv = 0 and λebs = 0.1. We found that performance is better while using both regularizers together
rather than in isolation.

However, we found that excessively high values for the regularizers can compete with the regression
loss terms, a common issue noted in PINN literature. Specifically, when λebs is set too high, it can
significantly degrade performance due to the larger number of surface zones typically present in
a furnace overpowering the loss function. Based on these observations and to avoid unnecessary
complexity with varying values (e.g., 0.1, 0.3, etc), which resulted in minimal performance differences,
we opted for a single value of λebv and λebs for the sensitivity analysis for both regularizers. This
decision simplifies our design while ensuring optimal learning rate adjustments are considered. The
results are presented in Figure 5 where we observe a stable performance across values except a drop
in R-MSE tG at λebs = 10 as mentioned.

A.8 DATA DETAILS: FROM FURNACE TO ML MODEL TRAINING AND EVALUATION

We now discuss the data set details of our benchmarking. Prior to discussing the data used for ML
model training and evaluation, we provide the reader a brief flavor on the physical understanding of a
real-world furnace, along with its operation.
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Algorithm 2 PyTorch-styled pseudo-code for training loop of our framework

1
2 ### TRAINING ###
3 c r i t e r i o n = nn . MSELoss ( )
4 o p t i m i z e r = opt im . Adam( model . p a r a m e t e r s ( ) , l r =LEARNING RATE)
5 f o r e i n tqdm ( r a n g e ( 1 , EPOCHS+1) ) :
6 model . t r a i n ( )
7 f o r ( b a t c h i d x , s a m p l e b a t c h e d ) i n enumera t e ( t r a i n l o a d e r E B V S ) :
8 # s a m p l e b a t c h e d [ 0 ] : da t a , s a m p l e b a t c h e d [ 1 ] : l a b e l s , s a m p l e b a t c h e d [ 2 ] : a u x v a r s
9 X t r a i n b a t c h = s a m p l e b a t c h e d [ 0 ] . t o ( d e v i c e )

10 y t r a i n b a t c h = s a m p l e b a t c h e d [ 1 ] . t o ( d e v i c e )
11 a u x v a r s d i c t b a t c h = s a m p l e b a t c h e d [ 2 ]
12
13 d f a G G t e n s o r b a t c h = a u x v a r s d i c t b a t c h [ ’ d f a G G t e n s o r ’ ] . t o ( d e v i c e )
14 s g a r r p l u s h g t e n s o r b a t c h = a u x v a r s d i c t b a t c h [ ’ s g a r r p l u s h g ’ ] . t o ( d e v i c e )
15 d f a S S t e n s o r b a t c h = a u x v a r s d i c t b a t c h [ ’ d f a S S t e n s o r ’ ] . t o ( d e v i c e )
16 g s a r r p l u s h s t e n s o r b a t c h = a u x v a r s d i c t b a t c h [ ’ g s a r r p l u s h s ’ ] . t o ( d e v i c e )
17
18 o p t i m i z e r . z e r o g r a d ( )
19
20 y t r a i n p r e d = model ( X t r a i n b a t c h )
21 t r l o s s r e g t m p s = c r i t e r i o n ( y t r a i n p r e d , y t r a i n b a t c h )
22
23 ## EBV t e r m s
24 p b e b v p r e d = g e t p b e b v p r e d (
25 s g a r r p l u s h g t e n s o r b a t c h , d f a G G t e n s o r b a t c h ,
26 y t r a i n p r e d [ : , : n g a s z o n e s ]
27 )
28 p b e b v a c t u a l = t o r c h . z e r o s ( p b e b v p r e d . s i z e ( ) ) . t o ( d e v i c e )
29
30 ## EBS t e r m s
31 p b e b s p r e d = g e t p b e b s p r e d (
32 g s a r r p l u s h s t e n s o r b a t c h , d f a S S t e n s o r b a t c h ,
33 y t r a i n p r e d [ : , n g a s z o n e s : n g a s z o n e s + n f u r s u r f z o n e s + n o b s s u r f z o n e s ]
34 )
35 p b e b s a c t u a l = t o r c h . z e r o s ( p b e b s p r e d . s i z e ( ) ) . t o ( d e v i c e )
36
37 t r l o s s e b v = c r i t e r i o n ( p b e b v p r e d , p b e b v a c t u a l ) / y t r a i n p r e d . s i z e ( 0 )
38 t r l o s s e b s = c r i t e r i o n ( p b e b s p r e d , p b e b s a c t u a l ) / y t r a i n p r e d . s i z e ( 0 )
39
40 b a t c h l o s s = t r l o s s r e g t m p s + lambda ebv * t r l o s s e b v + lambda ebs * t r l o s s e b s
41 b a t c h l o s s . backward ( )
42 o p t i m i z e r . s t e p ( )

Table 15: Performance of PBMLP (ReLU) variant of our
method against varying hidden layer configurations .

Metric/
Hidden layer
configuration

[100] [50,100] [50,100,
200]

[50,100,
200,200]

[50,100,
200,200,
205,205]

RMSE tG (↓) 11.64 17.25 10.04 10.84 14.27
RMSE tS fur (↓) 10.05 15.23 7.95 7.83 12.46
RMSE tS obs (↓) 34.82 37.62 31.64 33.57 36.42
mMAPE fr (↓) 8.76 9.15 6.84 8.06 7.51

Table 16: Performance of the proposed PBMLP
variant using different batch sizes .

Metric
PBMLP
ReLU
bsz=32

PBMLP
ReLU
bsz=64

PBMLP
ReLU

bsz=128

RMSE tG (↓) 12.70 10.04 10.73
RMSE tS fur (↓) 9.14 7.95 9.69
RMSE tS obs (↓) 39.75 31.64 31.79
mMAPE fr (↓) 5.24 6.84 8.29

Table 17: Effect of individual regularizer
terms in PBMLP .

Metric EBV only EBS only PBMLP

RMSE tG (↓) 11.85 11.66 10.04
RMSE tS fur (↓) 10.36 11.07 7.95
RMSE tS obs (↓) 32.46 32.04 31.64
mMAPE fr (↓) 6.42 7.53 6.84

Table 18: Performance of PBMLP using different activation func-
tions in the underlying network.

Metric PBMLP
ReLU

PBMLP
GeLU

PBMLP
SiLU

PBMLP
Hardswish

PBMLP
Mish

RMSE tG (↓) 10.04 13.57 10.07 15.26 10.16
RMSE tS fur (↓) 7.95 8.86 8.02 14.02 7.71
RMSE tS obs (↓) 31.64 39.65 31.64 36.23 31.63
mMAPE fr (↓) 6.84 5.88 6.23 7.03 6.33

A.8.1 BACKGROUND ON FURNACE OPERATION

For experimentation, we consider a real-world, walking beam top-fired furnace in Swerim (former
Swerea MEFOS), Sweden, which has been studied by Hu et al. Hu et al. (2019). Figure 6 illustrates
the furnace, which can be conceptually subdivided into several zones along both its length and height,
such as dark, control, and soaking, which represent regions with distinct temperatures. It has varying
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Algorithm 3 PyTorch-styled pseudo-code for helper functions in our framework

1
2 ### HELPER FUNCTIONS ###
3
4 # For EBV
5 d f a G G t e n s o r a l l = g e t d f a A B t e n s o r a l l (
6 tea GG , g e t t o r c h f l o a t ( X t G g a s z o n e p r e v ) . t o ( d e v i c e )
7 )
8 s g a r r p l u s h g a l l = g e t s g a r r p l u s h g a l l (
9 g e t t o r c h f l o a t ( X hg ) . t o ( d e v i c e ) , tea GS ,

10 t o r c h . h s t a c k ( ( g e t t o r c h f l o a t ( X t S f u r n a c e p r e v ) ,
11 g e t t o r c h f l o a t ( X t S o b s t a c l e p r e v ) ) ) . t o ( d e v i c e )
12 )
13
14 d e f g e t p b e b v p r e d i n s t a n c e ( s g a r r p l u s h g t e n s o r , d f a G G t e n s o r , t G s i n g l e p r e d ) :
15 ## computes \mathbf{v} g v e c t o r f o r one t ime s t e p
16
17 d e f g e t p b e b v p r e d ( s g a r r p l u s h g t e n s o r b a t c h , d f a G G t e n s o r b a t c h , y t r a i n p r e d o n l y t G ) :
18 ## c a l l s g e t p b e b v p r e d i n s t a n c e f o r a l l i n s t a n c e s i n t h e b a t c h
19
20 # For EBS
21 d f a S S t e n s o r a l l = g e t d f a A B t e n s o r a l l (
22 t e a SS , g e t t o r c h f l o a t ( np . h s t a c k (
23 [ X t S f u r n a c e p r e v , X t S o b s t a c l e p r e v ]
24 ) ) . t o ( d e v i c e ) )
25 g s a r r p l u s h s a l l = g e t g s a r r p l u s h s a l l (
26 g e t t o r c h f l o a t ( X hs ) . t o ( d e v i c e ) , tea SG ,
27 g e t t o r c h f l o a t ( X t G g a s z o n e p r e v ) . t o ( d e v i c e )
28 )
29
30 d e f g e t p b e b s p r e d i n s t a n c e ( g s a r r p l u s h s t e n s o r , d f a S S t e n s o r , t S s i n g l e p r e d ) :
31 ## computes \mathbf{v} s v e c t o r f o r one t ime s t e p
32
33 d e f g e t p b e b s p r e d ( g s a r r p l u s h s t e n s o r b a t c h , d f a S S t e n s o r b a t c h , y t r a i n p r e d o n l y t S ) :
34 ## c a l l s g e t p b e b s p r e d i n s t a n c e f o r a l l i n s t a n c e s i n t h e b a t c h

Figure 6: Illustration of the real-world furnace in Swerim, Sweden, and its subdivision as different zones Hu
et al. (2019). Figure is best viewed in color. The temperature increases towards the discharge end (at the right),
as indicated by a darker shade. The slabs are heated while moving from the left to the right.

heights for different zones but is of fixed length and width. It has a target heating temperature of 1250
◦C and its production capacity is 3 tonne/hr. Reheating furnaces are used to heat intermediate steel
products usually known as stock (e.g., blooms, billets, slabs).
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Algorithm 4 PyTorch-styled pseudo-code for additional helper functions in our framework

1
2 ### HELPER FUNCTIONS ( s e t 2 ) ###
3
4 d e f i n v e r s e t r a n s f o r m V e c t o r i z e d p t ( s c a l e d t e n s o r , range , min a long d ims , d i s t ) :
5 range min , range max = r a n g e
6 o r i g t e n s o r = m i n a l o n g d i m s + d i s t * ( s c a l e d t e n s o r − r a n g e m i n ) / ( range max − r a n g e m i n )
7 r e t u r n o r i g t e n s o r
8
9 d e f g e t a n m a t t e n s o r ( t B s i n g l e r o w t e n s o r ) :

10 t M a t t e n s o r = t o r c h . t i l e ( t B s i n g l e r o w t e n s o r , ( Ng , 1 ) )
11 c o e f b m a t T = c o e f b m a t . T
12 f o r i i i n r a n g e ( c o e f b m a t T . shape [ 1 ] ) : # T a y l o r s e r i e s l oop
13 bn= c o e f b m a t T [ : , [ i i ] ]
14 b n t e n s o r = t o r c h . from numpy ( bn ) . f l o a t ( ) . t o ( d e v i c e )
15 i f i i ==0:
16 a n m a t t e n s o r = t o r c h . mul ( t o r c h . t i l e (
17 b n t e n s o r , ( 1 , t M a t t e n s o r . s i z e ( 1 ) ) ) , t M a t t e n s o r ** i i )
18 e l s e :
19 a n m a t t e n s o r += t o r c h . mul ( t o r c h . t i l e (
20 b n t e n s o r , ( 1 , t M a t t e n s o r . s i z e ( 1 ) ) ) , t M a t t e n s o r ** i i )
21 r e t u r n a n m a t t e n s o r
22
23 d e f g e t p b e b v p r e d i n s t a n c e ( s g a r r p l u s h g t e n s o r , d f a G G t e n s o r , t G s i n g l e p r e d ) :
24 s t a r t i d c o l , e n d i d c o l =0 , n g a s z o n e s
25
26 t G c u r r e n t t e n s o r = i n v e r s e t r a n s f o r m V e c t o r i z e d p t (
27 t G s i n g l e p r e d , ( 0 , 1 ) , y t r m i n a l o n g d i m s [ [ 0 ] , s t a r t i d c o l : e n d i d c o l ] . t o ( d e v i c e ) ,
28 y t r d i s t [ [ 0 ] , s t a r t i d c o l : e n d i d c o l ] . t o ( d e v i c e ) )
29
30 g g a r r t e n s o r = t o r c h . sum ( t o r c h . mul ( d f a G G t e n s o r , s bc ons * t o r c h . t i l e (
31 t G c u r r e n t t e n s o r **4 , ( d f a G G t e n s o r . s i z e ( 0 ) , 1 ) ) ) , 1 , keepdim=True ) . T
32
33 a n m a t G t e n s o r = g e t a n m a t t e n s o r ( t G c u r r e n t t e n s o r )
34
35 tmpmat2= sb co ns * t o r c h . mul ( t o r c h . t i l e (
36 V i c u r r e n t t e n s o r , ( a n m a t G t e n s o r . s i z e ( 0 ) , 1 ) ) ,
37 t o r c h . t i l e ( t G c u r r e n t t e n s o r **4 , ( a n m a t G t e n s o r . s i z e ( 0 ) , 1 ) ) )
38 tmpmat1= t o r c h . mul ( a n m a t G t e n s o r , t o r c h . t i l e (
39 c o e f k m a t T t e n s o r , ( 1 , a n m a t G t e n s o r . s i z e ( 1 ) ) ) )
40 g l e a v e t e n s o r = t o r c h . sum ( t o r c h . mul ( tmpmat1 , tmpmat2 ) , 0 , keepdim=True )
41
42 p b e b v p r e d i n s t a n c e = t o r c h . abs ( g g a r r t e n s o r + s g a r r p l u s h g t e n s o r −4* g l e a v e t e n s o r )
43 p b e b v p r e d i n s t a n c e /= p b e b v p r e d i n s t a n c e . max ( dim =1 , keepdim=True ) [ 0 ]
44
45
46 r e t u r n p b e b v p r e d i n s t a n c e

Through a series of discrete pushes, the transport of slabs occurs within a furnace. As shown in
Figure 6, a first slab at an ambient temperature is pushed from the charging end at the left side of
furnace (lower temperature, shown in a lighter shade). At each push, all slabs move forward towards
the discharge end at the right (higher temperature, shown in a darker shade). For a few specific
regions in the furnace, the process operator pre-defines a few set point temperatures, which indicate
the temperatures to which the slabs must be heated. The slabs once heated to the required set point
temperatures, are collected at the discharge end. The movement of the slabs is controlled by the
walk-interval (walk rate), depending on the desired throughput.

The internal combustion is controlled via firing rates of a few burners located in specific regions. In
Figure 6, we can see that there are six burners: 2 in each of control zones 1, 2, and 3. In this particular
furnace, the pair of burners in a control zone share the same firing rate values. Note that these firing
rates are normalized in [0, 1].

Describing the behavior of a furnace state involves combustion models, control loops, set point
calculations, and fuel flux control in zones. It also involves linearization and model order reduction
for state estimation and state-space control. The inherent complexity makes the modeling a nonlinear
dynamic system. We provide set point temperatures, walk interval, firing rates and initial state of the
furnace (indicated by temperatures of various gas and surface regions/zones in it) as inputs to this
system. These inputs, along with the overall movement of the slabs within the furnace, influence the
mass and energy flow throughout the furnace system. This, in turn, results in a new furnace state,
characterized by a new set of temperatures.
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Figure 7: Illustration of flow of the data generation algorithm. The figure is best viewed in color. Dashed lines
denote feedback from past time step. Blue/red/gray lines correspond for tG/tS/fr, respectively. Block Abbre-
viations are, FR: Firing Rate, FP: Flow-pattern, ENTH: Enthalpy, TRAN: Heat-transfer, COND: Conduction
analysis, EBV/S: Energy-Balance Volume/Surface, and DFA: Directed Flux Area. Details of components present
in the text.

The ideal scenario involves a computational model that can predict the next set of temperatures
based on the provided inputs. This predicted state can then be compared to the desired set point
temperatures. Deviations from the set points trigger adjustments in the firing rates. If a region’s
predicted temperature falls short of the set point, the firing rate for the corresponding burner increases.
Conversely, if the predicted temperature exceeds the desired value, the firing rate is lowered. A
Proportional-Integral-Derivative (PID) controller is employed to manage these adjustments in practice.
This controller factors in the walk interval to ensure smooth and controlled changes in the firing rates,
ultimately leading to a furnace state that aligns with the set point temperatures.

A.8.2 PROPOSED DATA GENERATION METHODOLOGY FOR TEMPERATURE PREDICTION USING
ML

As shown in Figure 6, it is possible to conceptually divide the furnace into 1, 2, and 12 sections
across its width, height, and length respectively. This results in a total of 24 volume/gas zones, where
gaseous material could reside. These zones can be visualized using the dashed vertical and horizontal
lines in the figure.

Additionally, at a time step, there can be 17 slabs inside the furnace, each of which has 6 surfaces,
thus, resulting in 102 slab surfaces. With prior knowledge of the 3D structure of our furnace, we
computed a total of 76 furnace walls, which could be called furnace surfaces. We can respectively
call the 102 slab surfaces as obstacle/ slab surface zones, and the 76 furnace walls as furnace surface
zones. Collectively, the obstacle/ slab surface zones and furnace surface zones result in a total of 178
surface zones, which in addition to the volume zones form the basis of utilization of the Hottel’s
zone method.

The flow of combustion products within the furnace results in heat release. This causes radiation
interchange among all possible pairs of zones: gas to gas, surface to surface, and surface to gas (and
vice-versa). The dominating heat transfer mechanism in such processes is Radiative Heat Transfer
(RHT), which naturally occurs among the other heat transfer mechanisms: conduction and convection.
For each pair of zones, there would be an energy balance, i.e., the amount of energy entering a zone
would equal the amount leaving it. To model the RHT, the zone method subdivides an enclosure into
a finite number of isothermal volume and surface zones, and applies energy balance to each of them.
In our case, for example, we have a total of 202 zones (178 for surfaces and 24 for volumes).

We can model the radiative exchange among any two zones by leveraging underlying governing phys-
ical equations, and energy balances. The zone method also employs pre-computed exchange areas
(which are general forms of view factors). The main objective is to then compute unknown parameters
such as temperatures (of volumes and surfaces), and heat fluxes. This could be done by solving a set
of simultaneous equations. We direct the interested reader to Yuen & Takara (1997); Hu et al. (2016;
2019), for a better perspective of the zone method.
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We shall design the data framework in such a way that it can easily plug in any standard ML (or
DL) model for regression. For this, notice that although the various entities within the computational
method depend on the geometry of the furnace, we can make a learnable model agnostic of the
geometry, if we can train it by simply using data in the form of input-output pairs, and (optional)
auxiliary/ intermediate variables (say, for regularization).

One simple way is to collect all relevant values from across zones corresponding to an entity in
the form of a vector. For example, we could collect all gas zone temperatures within a vector, and
likewise, for other entities such as surface zones, enthalpies, heat fluxes, node temperatures, etc, we
could form individual vectors. This gives us the freedom to ignore the 3D structure during training as
we can simply deal with vectors and their mappings, say within a neural network, or any other ML
technique. Post-inference analysis or fine-grained process control could later be performed via our
knowledge of which zone an attribute of the vector maps to.

In Figure 7, we present our proposed algorithmic flow mimicking the Hottel’s zone method Hottel &
Cohen (1958); Hottel & Saforim (1967); Yuen & Takara (1997) based computational model of Hu
et al. Hu et al. (2016), for data generation aimed at training regression-based ML models. In this,
notice how we represent all the relevant entities as vectors. While we shall discuss all relevant terms
of the zone method in detail, during the explanation of the modeling part, we now briefly give an
overview of the various stages of the zone method. Here, let Φ represents a particular block/ stage,
and θ represents the applicable parameters for the underlying function (abbreviated name shown in
the subscript). Following are the stages in the generation method (represented by a block in Figure 7):

1. Firing Rates updation block (Φθfr
): Using the predicted gas (tG) and surface (tS) zone

temperatures from a previous time step, a calibration against the setpoint temperatures
provided in sp is performed to update the firing rates fr for the current time step (also
denoted as f ). In Figure 7 we use slightly abused notations of fr and sp to represent firing
rates and setpoints for avoiding confusion with other notations such as surface.

2. DFA block (Φθdfa
): Notice that for a time step, the inputs tS , tG are obtained from the

corresponding values obtained as outputs in the previous time step, shown respectively by
dashed red and blue backward arrows. Here, |S| and |G| denote the total number of surface
and gas zones, and, tS ∈ R|S|, tG ∈ R|G| are vectors collecting all the surface zone and
gas/volume zone temperatures respectively. Hu et al Hu et al. (2016), using an updated
Monte-Carlo based Ray-Tracing (MCRT) algorithm Matthew et al. (2014), provide fixed,
pre-computed Total Exchange Areas (TEAs) (forms of view factors Yuen & Takara (1997))
as inputs along with tS , tG, for computing the Radiation Exchange factors, or the Directed
Flux Area (DFA) terms.
The TEAs are denoted as: GS ∈ R|G|×|S|×Ng , SS ∈ R|S|×|S|×Ng , GG ∈ R|G|×|G|×Ng ,
and SG ∈ R|S|×|G|×Ng (we can drop the third dimension for the sake of brevity). Here,
GS, SS, GG, and SG contain the pre-computed gas-surface, surface-surface, gas-gas, and
surface-gas exchange areas.

↼

GS ∈ R|G|×|S|,
↼

SS ∈ R|S|×|S|,
↼

GG ∈ R|G|×|G|, and
↼

SG ∈
R|S|×|G| are the corresponding DFA terms for GS, SS, GG, and SG respectively (↼
indicates the direction of flow). Here, Ng denotes the number of gases used for representing
a real gas medium.
Initially, we assume that a steady-state has been reached, and hence assign ambient tem-
perature values to tS , tG. The parameters θdfa represent fixed correlation coefficients (as
discussed in the methodology section).

3. Flow pattern (Φθfp
) and enthalpy blocks (Φθenth

): Given initial firing rates in f ∈ R|B|
(|B| is a function of the number of burners), the block representing the function Φθfp

obtains
the flow pattern flat(F ), which is further used by the block representing the function Φθenth

to obtain the enthalpy vector q.
Note that, the flow of combustion gases within an enclosure causes mass flow into (+ve) and
out (-ve) of a zone, for each inter-zone boundary plane. This flow could be pre-computed in
a CPU instantly using a polynomial fitted through isothermal CFD simulations that define
a range of experimental points, derived with Box–Behnken designs Ferreira et al. (2007).
The flow pattern resulted is by nature a matrix F ∈ R|G|×12, but the spatial dependency
among the matrix elements can be discarded for simplicity, and we can rather represent
an equivalent flattened vector flat(F ) ∈ R12|G| obtained in row-major fashion. Note that,
as already mentioned, we subdivide an enclosure into several cubes/ boxes (zones in our
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Algorithm 5 Data generation algorithm for a fixed furnace configuration
1: Initialize a steady-state furnace configuration via set points and walk interval.
2: Initialize X = {}, T > 0 (max no. of steps).
3: Initialize t

(0)
G , t

(0)
S with steady-state ambient temperatures, and f(0).

4: for t=1 to T do ▷ t: time-step
5: f(t) ← Φθfr

(f(t−1), set point temperatures, t(t−1)
G , t

(t−1)
S )

6: q(t) ← Φθenth
(Φθfp

(f(t)))

7:
↼

GG(t),
↼
GS(t),

↼
SG(t),

↼
SS(t) ← Φθdfa

(t
(t−1)
G , t

(t−1)
S ,GG,GS,SG,SS)

8: t
(t)
G ← Φθebv

(q(t),
↼

GG(t),
↼
GS(t))

9: w(t) ← Φθtran (t
(t)
G , t

(t−1)
S ,

↼
SS(t),

↼
SG(t))

10: t
(t)
S ← Φebs(n

(t)), where n(t) ← Φθcon (w(t))

11: Xt ← {f(t),F (t), q(t), t
(t)
S , t

(t)
G ,w(t),n(t)}

12: X ← X ∪ Xt

13: end for
14: return X

case). Since any cube has 6 surfaces, and for each surface we have two directions of flow
(+ve and -ve), this results in 12 flows for each volume zone, and thus, the 12 arises in the
dimensionality of F .
Also, for each volume zone i, we would require an enthalpy transport term (Q̇enth)i. We
introduce an enthalpy vector q ∈ R|G| to compactly represent these terms.

4. Energy Balance Volume (EBV) block (Φθebv ): We introduce a block to compute the
volume zone temperatures tG using the enthalpy vector q and the DFA terms

↼

GG and
↼

GS.
5. Heat transfer block (Φθtran ): Together with the volume zone temperatures tG, the obtained

DFAs (
↼

SS,
↼

SG), and the previously obtained (or initialized) surface zone temperatures tS ,
we obtain the heat transfer/ flux to the surfaces as a variable w.

6. Conduction analysis block (Φθcon ): The heat flux on each surface zone serves as a boundary
condition for performing a conduction analysis, to compute the transient heat conduction
through each surface. The conduction process results in the node temperatures, which we
represent as a variable n.

7. Energy Balance Surface (EBS) block (Φθebs): The computation of heat transfer/ flux
and surface zone temperatures are coupled together as the surface energy balance equations.
Having computed the heat transfer and performing the conduction analysis, the surface zone
temperatures in tS can be updated using the node temperatures n. This is a fixed function.

The Algorithm: Algorithm 5 presents the steps involved in the data generation method. We assume
that for a steady-state furnace configuration (with fixed set points and walk interval), our data set is in
the form: X = {Xt}Tt=1, where, Xt = {f (t),F (t), q(t), t

(t)
S , t

(t)
G ,w(t),n(t)} is the set of observed

variables as described in Figure 7, for a time-step t. Note that the computations of flow patterns,
enthalpy, and node temperatures can be treated independently from the energy balance equations.

Figure 8: Sample training data instances for each time step within a configuration.

Figure 8 illustrates a few sample time steps (in rows), and the corresponding entities (in columns)
generated by using Algorithm 5. The full list of entities that we generate for a time step is:
’timestep’, ’firing rates’, ’walk interval’, ’setpoints’, ’flowpattern’,
’q enthalpy’, ’tG gaszone’, ’tS furnace’, ’tS obstacle’, ’w flux furnace’,
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’w flux obstacle’, ’nodetmp 1d furnace’, ’nodetmp 2d obstacle’. The names
of the entities are self-explanatory (e.g., ’nodetmp 1d furnace’ refers to 1D node temperatures
for furnace surfaces, ’nodetmp 2d obstacle’ refers to 2D node temperatures for obstacle sur-
faces), where G as usual, denotes gas zone and S denotes surface zone, the latter, is further divided
into furnace and obstacle.

Figure 9: Rearranged training data instances (selected columns).

Assuming that the original data is stored in a Pandas DataFrame (using a Python syntax), for each
time step we also need the following entities: ’firing rates next’, ’tG gaszone prev’,
’tS furnace prev’, and ’tS obstacle prev’. This is because, for computing the entities
in a time step, we make use of the temperatures in the previous time step. At the same time, for
experimental purposes, we also try to directly predict the next firing rate via ML. Thus, using Python
syntax, we could perform the following:
a) df[’firing rates next’] = df[’firing rates’].shift(-1)
followed by df = df.drop(df.tail(1).index).
b) df[’tG gaszone prev’]=df[’tG gaszone’].shift(1),
df[’tS furnace prev’] = df[’tS furnace’].shift(1),
df[’tS obstacle prev’] = df[’tS obstacle’].shift(1)
followed by df = df.drop(df.head(1).index).

The rearranged data can be visualized as in Figure 9 (we only showcase relevant entities here,
owing to limited space). Essentially, we add a new column ’firing rates next’ by shifting
the original firing rates column a step back and then dropping the last row. Likewise, we add
new columns for prev temperatures by shifting the original temperature columns a step forward
and then dropping the first row. Please note that some additional auxiliary variables are used
by the computational method of Hu et al. Hu et al. (2016), which are mostly constants, and
could thus be repeated/ copied for each time step. They are: ’corrcoeff b’, ’Qconvi’,
’extinctioncoeff k’, ’gasvolumes Vi’, ’QfuelQa sum’, ’surfareas Ai’,
’emissivity epsi’, ’convection flux qconvi’. We later leverage them in training our
PCNN, with the help of regularizers.

Now we can form any data set containing N samples: X = {(x(i),y(i))}Ni=1 to train an off-the-shelf,
standard ML/ DL model fθ(.) with learnable parameters θ, which expects an input instance x(i) as
vector and predicts an output vector y(i), i.e., y(i) = fθ(x

(i)). Here, x(i) and y(i) can be formed
using entities from desired columns obtained from the rearranged data as shown in Figure 9. Notice
how the above proposed ML training framework via our data generation in the form of simple input-
output pairs lets any generic regression model learn freely without requiring 3D geometry-specific
knowledge during the training. This makes our proposed framework geometry-agnostic, and hence
flexible by nature to accommodate any ML method.
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A.8.3 BENCHMARKING DATA SET DETAILS FOR ML MODEL DEVELOPMENT AND EVALUATION

Algorithm 5 outlines data generation for a fixed furnace configuration (defined by set points and
walk interval). Set points are desired temperatures for certain zones. We represent a configuration as:
SP1 SP2 SP3 WI, where SP1, SP2, SP3 and WI respectively denote the set point 1, set point 2,
set point 3, and walk interval. Under normal conditions naturally occurring in practice, following
will hold true: SP1<SP2<SP3. For robustness, we consider 50 configurations (based on the furnace
in Fig 6) and generate corresponding configuration datasets, including abnormal configurations with
arbitrary set points. Since each dataset has a unique configuration, their inherent data distributions
differ.

From the 50 distinct datasets, we combine configurations (e.g., first, fourth, seventh) to form a consol-
idated training split. Similar combinations create validation and test splits with no overlap between
them. This creates a test bed to evaluate model generalization across different data distributions,
crucial for real-world deployment where inference data might differ from training data. Table 19
details these configurations, indicating their membership in training, validation, or test splits, within
parentheses. Test datasets (e.g., N1-2, N1-3) are named based on their set point characteristics and
are also shown in bold.

It should be noted that the default SP1,SP2,SP3,WI setting is kept: 955 1220 1250 750. With
this, we vary each of SP1, SP2, SP3, and WI with certain step-size. This leads to four groups/types of
configurations within the Normal Behaviour Configurations shown in Table 19. The nomenclature
of the test data sets is done to indicate their grouping, e.g., prefixes N1-, N2-, N3- and N4- denote
whether the configuration belongs to the group with varying SP1, SP2, SP3, and WI respectively.
Thus, Ni-j indicates the j-th configuration of the group i, and is used to represent a test configuration
data set. As it can be seen, there are 11 normal test data sets where we evaluate the ML models.

Table 19: Benchmark data details.
Normal Behaviour Configurations (SP1<SP2<SP3)

Type 1 (Varying SP1 only) Type 2 (Varying SP2 only) Type 3 (Varying SP3 only) Type 4 (Varying WI only)

905 1220 1250 750 (Training)
915 1220 1250 750 (Val)

925 1220 1250 750 (N1-1)
935 1220 1250 750 (Training)

945 1220 1250 750 (Val)
965 1220 1250 750 (N1-2)

975 1220 1250 750 (Training)
985 1220 1250 750 (Val)

995 1220 1250 750 (N1-3)

955 1170 1250 750 (Training)
955 1180 1250 750 (Val)

955 1190 1250 750 (N2-1)
955 1200 1250 750 (Training)

955 1210 1250 750 (Val)
955 1230 1250 750 (N2-2)

955 1240 1250 750 (Training)

955 1220 1230 750 (Training)
955 1220 1240 750 (Val)

955 1220 1250 750 (N3-1)
955 1220 1260 750 (Training)

955 1220 1270 750 (Val)
955 1220 1280 750 (N3-2)

955 1220 1290 750 (Training)
955 1220 1300 750 (N3-3)

955 1220 1250 675 (Training)
955 1220 1250 690 (Val)

955 1220 1250 705 (N4-1)
955 1220 1250 720 (Training)

955 1220 1250 735 (Val)
955 1220 1250 765 (N4-2)

955 1220 1250 780 (Training)
955 1220 1250 795 (Val)

955 1220 1250 810 (N4-3)
955 1220 1250 825 (Training)

Table 20: Benchmark data details (abnormal configurations).
Abnormal Behaviour Configurations/ Arbitrary SPs

Type 1 (start@955-incr-dec/const) Type 2 (start@1220-incr-dec) Type 3 (start@1220-dec-inc) Type 4 (start@1250-dec-inc) Type 5 (start@1250-dec-inc)
955 1220 1200 750.csv (Training)

955 1220 1210 750.csv (Val)
955 1220 1220 750.csv

955 1250 1220 750.csv (Training)
955 1250 1220 765.csv (Val)

955 1250 1250 750.csv
955 1260 1250 750.csv (Training)

955 1270 1250 750.csv

1220 1250 955 750.csv (Training)
1220 1250 955 795.csv

1220 955 1250 750.csv (Training)
1220 955 1250 780.csv

1250 955 1220 750.csv (Training)
1250 955 1220 825.csv

1250 1220 955 750.csv (Training)
1250 1220 955 810.csv

Table 20 details the remaining 16 configurations representing abnormal conditions (arbitrary set
points). These are split for training and validation to make the model robust during training (similar
to adversarial learning). We set aside 7 configurations apart from training/validation. A well-trained
physics-aware model should perform poorly on these, rendering them unnecessary for testing.

For training a DL model, we aggregate the configuration datasets belonging to training splits as
shown in Table 19. Prior to collecting, each of the datasets are reformatted to obtain time-shifted
input-output pairs as discussed in the data generation methodology. After that rows of these training
datasets are shuffled and stacked together to train the model. Each configuration is stored by a .csv
file containing 1500 time steps sampled with a 15s delay, to account for conduction analysis. Thus,
each configuration accounts for 6.25h worth data. Considering all 50 datasets, our generated data sets
consists of 312.5h (or roughly, 13 days) of furnace data. We observed diminishing returns on model
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performance with further data size increases, justifying our decision to focus on this efficient data
volume.

During time-shifted input-output pairs formation from a configuration dataset, we drop the first and
last rows resulting in 1498 rows, to account for the shift operations. Thus, by consolidating the
20 training datasets, we get a total of 29960 train rows. These can be packed within a standard
DataLoader in a framework like PyTorch, and train an off-the-shelf DL model. We can similarly
obtain 17976 val rows, and also 26964 test rows (from across normal and abnormal configurations, if
desired). We have reported results on the 11 datasets individually, where a model trained is used for
auto-regressive, sequential prediction of subsequent time steps.

The discussed data sets, along with necessary data pre-processing, model training/evaluation scripts
are provided in the following github repository https://github.com/, which shall be updated
periodically to reflect the latest changes as available (while adhering to FAIR guidelines (Wilkinson
et al., 2016)). As a highlight, we provide the configuration datasets as separate .csv files. We also
provide the consolidated stacked data as a .npz file. Furthermore, we also provide the TEA data as
individual files, which are used during model training.

A.9 POTENTIAL REAL-LIFE APPLICATIONS OF THE WORK AND ITS IMPACT

We now discuss how our method for furnace temperature profiling can be applied in various industries
and contribute to energy efficiency and reduced emissions.

Steel and Metal Manufacturing: Our model can be directly applied to improve the efficiency of
reheating furnaces used in steel and metal manufacturing processes. By providing accurate real-time
temperature predictions, operators can optimize fuel consumption and reduce energy waste, leading
to significant cost savings and lower carbon footprint. The ability to precisely control temperature
profiles can also enhance product quality and consistency.

Glass and Ceramic Production: In the glass and ceramic industries, furnaces are crucial for melting,
annealing, and tempering processes. Our model can be adapted to these furnace types, enabling
tighter temperature control, reduced energy usage, and minimized defects. This can translate to
higher productivity, lower operational costs, and a greener manufacturing process.

Cement and Lime Production: High-temperature furnaces are essential in cement and lime manu-
facturing for calcination and clinker production. Our physics-aware deep learning approach can be
leveraged to optimize these processes, reducing fuel consumption and emissions while maintaining
product quality. This can contribute to the sustainability efforts of cement and lime producers.

Petrochemical Refining: Furnaces are widely used in petrochemical refineries for various processes
such as crude oil distillation, catalytic cracking, and reforming. By implementing our model, refineries
can enhance energy efficiency, minimize fuel wastage, and lower greenhouse gas emissions. This can
help refineries meet stringent environmental regulations while maintaining profitability.

A.10 LIMITATIONS AND FUTURE WORK

Incorporation of Geometry-Specific Regularization: Future research should investigate the in-
tegration of geometry-specific regularization terms into our model. This could involve developing
customized regularization strategies that account for the unique thermal characteristics of various
furnace designs. By tailoring the model to specific configurations, we can potentially enhance its
predictive accuracy and applicability across different industrial scenarios. This is beyond the scope
of our work, which could be treated as a starting point in this direction.

Exploration of Foundational Models: Our approach could serve as a foundation for developing
models that can be adapted for other related use cases. We envision leveraging techniques such as
few-shot learning, continual learning, or transfer learning to enable our model to learn from limited
data in new contexts. This would allow for rapid adaptation to different operational conditions and
requirements, making our model more versatile and applicable across various industries.

Engineering aspects of Integration with Real-Time Monitoring Systems: Extensive study of
challenges involved during engineering integration in a monitoring system could itself be another
future direction of study, especially for a varied set of industries and furnace configurations.
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