
ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

SCALING LAWS AND EFFICIENT INFERENCE FOR
TERNARY LANGUAGE MODELS

Tejas Vaidhya1,2,3∗ , Ayush Kaushal1∗ , Vineet Jain2,4, Francis Couture-Harpin5,
Prashant Shishodia6, Majid Behbahani7, Irina Rish1,2,3, Yuriy Nevmyvaka7

1Nolano AI 2Mila- Quebec AI institute 3Université de Montréal 4McGill University
5École de technologie supérieure, Université du Québec 6Google, India 7Morgan Stanley

ABSTRACT

Large language models (LLMs) are increasingly deployed across research and
industry applications, yet their high inference cost poses a major challenge. In this
work, we investigate ternary language models (TriLMs) that employ quantization-
aware training to significantly reduce memory requirements as a potential solution.
We present three key contributions: (1) a comprehensive scaling law analysis
showing these models benefit more from scaling training data compared to their
floating point counterparts; (2) the introduction of TriTera, an open-source family
of state-of-the-art TriLMs trained on up to 1.2 trillion tokens, demonstrating
competitive performance with Llama-1 7B; and (3) ternary kernels for efficient
inference, utilizing novel 1.6-bit and 2-bit packing schemes. Notably, our GPU
kernel using 2-bit packing, called TriRun, achieves up to an 8× speedup over
float16 baselines, enabling efficient inference in memory-constrained environments.
We will be releasing the TriTera models along with optimized inference kernels to
encourage further research on TriLM models.

1 INTRODUCTION

Large language models (LLMs) (Radford et al., 2019; Zhang et al., 2022; Touvron et al., 2023)
have become increasingly pivotal in both research and industry. Beyond their broad utility, their
capabilities during inference with additional compute demonstrate the potential to enable novel
advancements in reasoning and agentic tasks (Sardana et al., 2024; Singh et al., 2024; Wei et al.,
2023). As the demand for efficient and scalable inference grows (Zhou et al., 2024), significant efforts
have been directed toward minimizing their computational overhead, with a particular emphasis on
reducing inference costs and latency (Dettmers et al., 2022b; Frantar et al., 2023; Sheng et al., 2023).

∗Equal contribution, listed in alphabetical order.

1021 1022 1023 1024

Training FLOPs (log scale)

3 × 101

4 × 101

6 × 101

M
M

LU
 A

ve
ra

ge
 S

co
re

 (l
og

 sc
al

e)

GPT-3 175B

Gopher 280B

Chinchilla 70B

PaLM 8B

PaLM 62B

PaLM 540B

LLaMA 7B

LLaMA 13B

LLaMA 33B

LLaMA 65B

TriTera 1B

TriTera 2B

TriTera 3B

Olmo-2 7B

Olmo-2 13B

OLMo-7B

Amber-7BSpectra 99M

Spectra 390M

Spectra 830M
Spectra 1.1B

Spectra 1.5B

Spectra 2.4B

Spectra 3.9B
GPT-NeoX 20B

Model Performance vs. Training FLOPs (Bubble Size ~ log(Model Parameters in Billions)

Model Families
GPT-3
Gopher
Chinchilla
PaLM
LLaMA
TriTera
Olmo-2
OLMo-7B
Amber-7B
Spectra
GPT-NeoX
Spectra Fit
TriTera Fit

7B 13B 34B 70B
Model Size

0

1

2

3

4

5

6

Sp
ee

du
p

ov
er

 P
yT

or
ch

 b
as

el
in

e

PyTorch: 1 GPU
TriRun: 1 GPU

1.5x

PyTorch: 1 GPU
TriRun: 1 GPU

2.0x

PyTorch: 2 GPU
TriRun: 1 GPU

3.3x

PyTorch: 4 GPU
TriRun: 1 GPU

4.9x

 End-to-End Generation Speedup on NVIDIA L40S.

Figure 1: Model performance (MMLU average accuracy) versus training FLOPs, with the bubble size propor-
tional to the logarithm of model parameters in billions (left); and end-to-end generation time speedup achieved
by TriRun kernels over the FP16 PyTorch baseline on the NVIDIA L40S (right).

1

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

While advancements in GPU computational power have been rapid, improvements in memory
capacity and bandwidth have lagged behind (Gholami et al., 2024). This disparity has made memory-
related bottlenecks a predominant challenge in LLM inference, as memory usage and bandwidth,
driven by model size in bits, increasingly outweigh computational (FLOP) limitations. A widely
adopted approach involves post-training quantization combined with custom kernels, however, it is
typically restricted to 4-bits with significant performance degradation beyond this point (Dettmers &
Zettlemoyer, 2023).

Recent quantization-aware training methods (Kaushal et al., 2024; Ma et al., 2024) seem to be
promising alternatives, demonstrating that large language models with ternary weights can achieve
performance comparable to their floating-point counterparts. Despite this progress, the question of
scalability i.e. how TriLM model performance is affected by training on much larger datasets or with
many more parameters remains unanswered. Furthermore, there is potential to minimize memory
bottlenecks through extreme low-precision compression of network weights, with most existing
research constrained to 4-bit quantization (Frantar et al., 2023; Dettmers et al., 2022b; Frantar et al.,
2024; He et al., 2024). In this paper, we address these challenges with the following contributions:

• We systematically study the scaling properties of TriLMs with respect to both the number of
parameters and the volume of training data.

• We scale the pre-training of TriLM models to 1.2 trillion tokens, which we refer to as the TriTera
family of models, and show that TriLMs remains effective even at higher training token-to-
parameter ratios.

• We propose efficient 1.6-bit and 2-bit packing schemes, accompanied by theoretical analysis and
rigorous benchmarking of CPU kernels. Building on these schemes, we develop GPU kernels
for NVIDIA GPUs optimized for high-batch settings, which we call TriRun, achieving a 7–8×
speedup compared to PyTorch float16 kernels.

2 SCALING TERNARY MODELS TO 1T TOKENS

Scaling Laws for TriLMs. For this study, we train TriLM models on the SlimPajama dataset
(Shen et al., 2024) detailed in Table 1 across parameter sizes ∈ [99M, 190M, 390M, 560M, 1100M]
(excluding embeddings) and dataset sizes ∈ [20, 40, 75, 150] billion tokens. Other implementation
details are provided in Appendix B. We derive the scaling law for ternary LLMs following the general
form introduced in Hoffmann et al. (2022). In particular, we assume the following functional form
for the validation loss as a function of model size N (number of parameters, in millions) and training
data D (number of tokens, in billions) and fit the parameters {E,A, α,B, β} based on validation
losses,

L̂(N,D) ≜ E +
A

Nα
+

B

Dβ

curve-fit−−−−→ L̂(N,D) ≈ 2.19 +
4.73

N0.32
+

5.18

D0.81
, (1)

Figure 2 plots the final validation loss for different models against the number of parameters and
training tokens along with our scaling law fit. Based on Equation (1) we can see that locally,
increasing the number of tokens lowers the validation loss more effectively than increasing the
number of parameters. Motivated by these observations, we primarily focus on increasing the number
of tokens to train our new family of models. We discuss the implications of this law in more detail
and compare with 16-bit models in Appendix C.

Effect of scaling training tokens. To understand the effect of scaling training tokens on downstream
performance, we pre-train three TriLM models with 1.5B, 2.5B, and 3.6B parameters on a 1.2 trillion-
token dataset, which we refer to as TriTera suite. Pretraining details are given in Appendix B.
We compare benchmark scores with Spectra-1 models of comparable parameter sizes, which were

99 190 390 560 1100
Number of Parameters (N, in millions)

2.8

3.0

3.2

3.4

3.6

3.8

Va
lid

at
io

n
Lo

ss
 (L

)

Validation Loss (L) vs. Number of Parameters (N) for TriLMs
D: 20 B, L = 2.65 + 4.73 N 0.32

D: 40 B, L = 2.46 + 4.73 N 0.32

D: 75 B, L = 2.35 + 4.73 N 0.32

D: 150 B, L = 2.28 + 4.73 N 0.32

20 40 75 1503 × 101 6 × 101

Number of Tokens (D, in billions)

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Lo

ss
 (L

)

Validation Loss (L) vs. Number of Tokens (D) for TriLMs
N: 99 M, L = 2.73 + 5.18 D 0.81

N: 190 M, L = 2.63 + 5.18 D 0.81

N: 390 M, L = 2.54 + 5.18 D 0.81

N: 560 M, L = 2.51 + 5.18 D 0.81

N: 1100 M, L = 2.45 + 5.18 D 0.81

1B 2B 3B
Model Size (Billion Parameters)

28

30

32

34

36

38

Pe
rfo

rm
an

ce
 (M

M
LU

)

Performance of TriLM Models on MMLU

300B Tokens
1T Tokens
Llama-1 7B

Figure 2: Effect of scaling parameters (left) and training tokens (center) on final validation loss for TriLMs,
with the dotted lines showing the power law from Equation (1). (Right) Average accuracy on MMLU benchmark
for TriTera and Spectra-1 models, with the dotted line showing the performance of Llama-1 7B.

2

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

trained on 300B tokens. Figure 2 plots the average accuracy on MMLU benchmark for both families
of models, showing consistently better performance across different parameter sizes. In addition,
we evaluate commonsense and reasoning abilities, general knowledge, and mathematical problem-
solving; see Table 4 for full results.

3 EFFICIENT PACKING OF TERNARY WEIGHTS

In this section, we propose weight-packing strategies and kernel implementations to enable the
efficient deployment of ternary LLMs.

3.1 PACKING STRATEGY WITH EFFECTIVE 2 BITS

Packing/Encoding. The packing process transforms each ternary value di ∈ {−1, 0, 1} into a digit
d′i by the mapping d′i = di + 1 so that d′i ∈ {0, 1, 2}. These digits are then grouped into blocks of
up to k values. Each block is encoded as a single integer using bitwise shifts. The packing function
P (D) = {b′0, b′1, . . . , b′m−1} (with m = ⌈n/k⌉ for an original sequence D = {d0, d1, . . . , dn−1}) is

defined as b′i =
∑k−1

j=0

(
d′ki+j · 22j

)
, where each d′ki+j = dki+j + 1. If a block is not completely

filled (i.e. when n is not a multiple of k), the remaining positions are padded with 0, which map to 1
after the shift. Since each d′i is in {0, 1, 2} and fits within 2 bits, each block uses 2k bits, giving an
effective 2 bits per weight.

Unpacking/Decoding. The unpacking process U(P (D)) = {d0, d1, . . . , dn−1} recovers the orig-
inal ternary values from the packed representation. For each block, the decoding is defined as
dki+j = d′ki+j − 1 where d′ki+j =

(
(b′i ≫ 2j)& 0x03

)
, for i ≥ 0 and 0 ≤ j < k. Here, ≫ denotes

the bitwise right shift operation and & denotes the bitwise AND operation (with 0x03 serving as a
mask to extract 2 bits). This procedure ensures that each original ternary value di ∈ {−1, 0, 1} is
accurately reconstructed from its packed form. Although each d′i is constrained to three possible
states, the packing allocates a total of 2k bits per block. However, the actual information content per
block is only log2(3

k) = k log2(3) ≈ 1.585k bits < 2k,.

3.2 PACKING STRATEGY WITH 1.6 EFFECTIVE BITS

Packing/Encoding: The packing process transforms each ternary value di ∈ {−1, 0, 1} into a
base-3 digit (or trit) d′i = di + 1, then groups the digits into blocks of up to k. Each block is encoded
as a base-3 integer and normalized to fit within [0, 2p − 1]. The packing P (D) = {b′1, b′2, . . . , b′k} is
defined as,

b′i =

(∑k−1

j=0 (d
′
ki+j · 3k−1−j)

)
· 2p + (3k − 1)

3k

 , where d′i = di + 1, di ∈ {−1, 0, 1}.

Here, k is the number of digits in each block (which may be less than k for the last block). The final
packed byte array B is then constructed from the b′i values.

Unpacking/decoding: The unpacking process U(P (D)) = {d1, d2, . . . , dn} is defined as:

dki+j = d′ki+j − 1,where d′ki+j =
(⌊ xi

3k−1−j

⌋)
mod 3, xi =

⌊
bi × 3k −

(
3k − 1

)
+

(
2p − 1

)
2p

⌋
Here, k represents the number of digits in each block, typically equal to 5 for full blocks, though it

may be fewer for the final block. For practical purposes, we recommend setting p = 8 and k = 5 , as
this configuration results in an effective packing of 1.6 bits — very close to the theoretical optimum
for ternary data.

560M 1.1B 1.5B 2.4B 3.9B
Model Size

0

100

200

300

400

500

600

700

To
ke

ns
/S

ec
on

d

Total Tokens/Second (256 Prompt + 64 Output Tokens)
F16
Q4_K
TQ2_0
TQ1_0

560M 1.1B 1.5B 2.4B 3.9B
Model Size

0

50

100

150

200

250

To
ke

ns
/S

ec
on

d

Output Tokens/Second vs. Model Size (256 Output Tokens)
F16
Q4_K
TQ2_0
TQ1_0

560M 1.1B 1.5B 2.4B 3.9B

Model Size (Parameters)

0

1

2

3

4

5

6

7

8

M
em

or
y

Co
ns

um
pt

io
n

(G
B)

0.
35 0.

56 0.
67 0.

91

1.
36

0.
37 0.

60 0.
74 1.

02

1.
54

1.
14

2.
30

3.
03

4.
92

7.
98

Memory Requirements by Model Size (in GB)
Bit Precision

1.6 bits
2 bits
16 bits

Figure 3: Comparison of output tokens for different model sizes running on a Mac M4 CPU laptop: (Left)
Output tokens (for a 256 prompt with 64 output tokens). (Center) Output tokens per second versus model size.
(Right) Memory requirements by model size (in GB) with different Packing Strategies

3

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Theorem 1 (Correctness). For a sequence D = {d1, d2, . . . , dn} of ternary digits di ∈ {−1, 0, 1},
grouped into blocks of size k and packed into p-bit integers with 2p ≥ 3k, the P and U operations
are exact inverses, ensuring U(P (D)) = D. Proof: See appendix E.1.

Near-Optimal Bits per Trit. From an information-theoretic perspective, each trit (with values in
{−1, 0, 1}) requires log2(3) ≈ 1.58496 bits of entropy. To encode k trits without collision, we need
a p-bit container with 2p ≥ 3k =⇒ p ≥ k log2(3). Consequently, the bits-per-trit ratio is bounded
below by p

k ≥ log2(3). When p = ⌈k log2(3)⌉, this is effectively the smallest integer p that still
allows all 3k trit patterns to be stored with no collisions. As k → ∞, the ratio p

k → log2(3), making
the scheme asymptotically optimal in terms of bits used per trit.

Results. Implementation of our CPU kernels is described in Appendix G. Figure 3 compares token
generation speeds for parameter sizes ranging from 560M to 3.9B on a Mac M2 CPU (both total
and output tokens per second). TQ2 (which uses 2-bit per weight packing) outperforms both 4-bit
quantization (as implemented in GGML1) and TQ1 (1.6 bits per weight). TQ1 requires additional
fixed-point multiplication operations leading to slower inference compared to TQ2, however, it has
smaller memory footprint, making it especially beneficial in low-resource settings.

4 TRIRUN: GPU KERNELS FOR HIGH-BATCH SETTINGS

Modern GPUs can perform floating-point operations much faster than they can read data from
memory. For example, an A10 GPU has a FLOPs-to-Bytes ratio of about 200 (Frantar et al., 2024),
meaning it can execute 50 FLOPs in the time required to load a single 2-bit weight. As a result,
memory loading is the bottleneck when the input batch size is below a critical value of around 25.

Optimized Mixed-Precision Multiplication. We implement an FP16×INT2 matrix multiplication
routine (Frantar et al., 2024) based on the packing described in Section 3, where each 32-bit integer
encodes 16 distinct 2-bit values. For implementation details, please refer to Appendix F.

2 4 8 16 32 64 128
Batch (log scale)

2

3

4

5

6

7

8

Sp
ee

du
p

L40

Models
3B
8B
13B
34B
70B
123B
405B

7B 13B 34B 70B
Model Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

TT
FT

 (s
)

1.6x

2.1x

3.4x

4.7x
TTFT vs Model Size (64 Token Input + 1 Token Decoding)

Pytorch
Trirun

7B 13B 34B 70B
Model Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

TP
OT

 (s
)

1.5x

2.0x

3.3x

4.9x
TPOT vs Model Size (64 Input Tokens, 64 Output Tokens)

Pytorch
Trirun

Figure 4: Comparison of TriRun kernels with the FP16 PyTorch baseline on NVIDIA L40 (see Appendix F.7
for more details). (a) Left: A single ternary LLM layer on NVIDIA L40S compared with PyTorch FP16 as the
batch size increases, (b) Center: Time to first token, and (c) Right: Time per output token

Performance of TriRun. In Figure 4(a), we benchmark TriRun against PyTorch FP16 for L40
NVIDIA GPU for model sizes ranging from 3B to 405B, where TriRun kernel delivers an 8× speedup
for large models (405B) with batch sizes of 16–32. However, as the batch size increases, the problem
becomes compute-bound, reducing the speedup. Figure 4(b) and (c) further highlight that TriRun
accelerates inference on the L40, achieving up to 4.7× speedup in time-to-first-token (64 input tokens)
and 4.9× in decoding (64 input, 64 output tokens). These improvements are more significant on
newer consumer GPUs with higher FLOPs/byte ratios, particularly for larger models (see Figure 7).
For instance, the 70B model achieves a 4.9× speedup, outperforming PyTorch FP16 while requiring
only a one GPU compared to PyTorch’s 4 GPUs. We benchmark across different NVIDIA GPUs in
Appendix F.

5 CONCLUSION AND FUTURE WORK

In this work, we study ternary language models (TriLMs) and propose efficient kernels implementation
to address memory bottlenecks for LLM inference. We show through scaling law analysis and
extensive benchmarking that TriLMs effectively scale with training data making them competitive

1https://github.com/ggerganov/llama.cpp

4

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

with floating point counterparts. To improve inference efficiency, we introduced novel ternary weight
packing schemes and developed optimized kernels for CPU and GPU kernels, achieving up to 8×
speedup over float16 baselines in high-batch inference settings. By releasing the TriTera models and
optimized inference kernels, we aim to encourage further research on extreme low-bitwidth models
and their deployment.

REFERENCES

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms, 2024. URL https://arxiv.org/abs/2404.00456.

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, Thomas Wolf, and Leandro von Werra.
Cosmopedia, 2024. URL https://huggingface.co/datasets/HuggingFaceTB/
cosmopedia.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation, 2013. URL https://arxiv.org/abs/
1308.3432.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning about
physical commonsense in natural language. In AAAI Conference on Artificial Intelligence, 2019.
URL https://api.semanticscholar.org/CorpusID:208290939.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill
Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL
https://aclanthology.org/N19-1300.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
2018. URL https://api.semanticscholar.org/CorpusID:3922816.

Colin B. Clement, Matthew Bierbaum, Kevin P. O’Keeffe, and Alexander A. Alemi. On the use of
arxiv as a dataset, 2019.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws, 2023.
URL https://arxiv.org/abs/2212.09720.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix
multiplication for transformers at scale, 2022a. URL https://arxiv.org/abs/2208.
07339.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8(): 8-bit matrix
multiplication for transformers at scale, 2022b. URL https://arxiv.org/abs/2208.
07339.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers, 2023. URL https://arxiv.org/abs/
2210.17323.

Elias Frantar, Roberto L. Castro, Jiale Chen, Torsten Hoefler, and Dan Alistarh. Marlin: Mixed-
precision auto-regressive parallel inference on large language models, 2024. URL https:
//arxiv.org/abs/2408.11743.

Amir Gholami, Zhewei Yao, Sehoon Kim, Coleman Hooper, Michael W. Mahoney, and Kurt Keutzer.
Ai and memory wall, 2024. URL https://arxiv.org/abs/2403.14123.

5

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2404.00456
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://arxiv.org/abs/1308.3432
https://arxiv.org/abs/1308.3432
https://api.semanticscholar.org/CorpusID:208290939
https://aclanthology.org/N19-1300
https://api.semanticscholar.org/CorpusID:3922816
https://arxiv.org/abs/2212.09720
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2208.07339
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2210.17323
https://arxiv.org/abs/2408.11743
https://arxiv.org/abs/2408.11743
https://arxiv.org/abs/2403.14123

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Dirk Groeneveld, Iz Beltagy, Pete Walsh, Akshita Bhagia, Rodney Kinney, Oyvind Tafjord,
Ananya Harsh Jha, Hamish Ivison, Ian Magnusson, Yizhong Wang, Shane Arora, David Atkinson,
Russell Authur, Khyathi Raghavi Chandu, Arman Cohan, Jennifer Dumas, Yanai Elazar, Yuling Gu,
Jack Hessel, Tushar Khot, William Merrill, Jacob Morrison, Niklas Muennighoff, Aakanksha Naik,
Crystal Nam, Matthew E. Peters, Valentina Pyatkin, Abhilasha Ravichander, Dustin Schwenk,
Saurabh Shah, Will Smith, Emma Strubell, Nishant Subramani, Mitchell Wortsman, Pradeep
Dasigi, Nathan Lambert, Kyle Richardson, Luke Zettlemoyer, Jesse Dodge, Kyle Lo, Luca Sol-
daini, Noah A. Smith, and Hannaneh Hajishirzi. Olmo: Accelerating the science of language
models, 2024. URL https://arxiv.org/abs/2402.00838.

Pujiang He, Shan Zhou, Wenhuan Huang, Changqing Li, Duyi Wang, Bin Guo, Chen Meng, Sheng
Gui, Weifei Yu, and Yi Xie. Inference performance optimization for large language models on
cpus, 2024. URL https://arxiv.org/abs/2407.07304.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.15556.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly su-
pervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan (eds.),
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 1601–1611, Vancouver, Canada, July 2017. Association for Computational
Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/P17-1147.

Dhiraj Kalamkar, Dheevatsa Mudigere, Naveen Mellempudi, Dipankar Das, Kunal Banerjee,
Sasikanth Avancha, Dharma Teja Vooturi, Nataraj Jammalamadaka, Jianyu Huang, Hector Yuen,
Jiyan Yang, Jongsoo Park, Alexander Heinecke, Evangelos Georganas, Sudarshan Srinivasan,
Abhisek Kundu, Misha Smelyanskiy, Bharat Kaul, and Pradeep Dubey. A study of bfloat16 for
deep learning training, 2019. URL https://arxiv.org/abs/1905.12322.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models,
2020. URL https://arxiv.org/abs/2001.08361.

Ayush Kaushal, Tejas Vaidhya, Arnab Kumar Mondal, Tejas Pandey, Aaryan Bhagat, and Irina Rish.
Spectra: Surprising effectiveness of pretraining ternary language models at scale, 2024. URL
https://arxiv.org/abs/2407.12327.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
llm compression and acceleration, 2024. URL https://arxiv.org/abs/2306.00978.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: a
challenge dataset for machine reading comprehension with logical reasoning. In Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI’20, 2021. ISBN
9780999241165.

6

https://arxiv.org/abs/2402.00838
https://arxiv.org/abs/2407.07304
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2401.04088
https://aclanthology.org/P17-1147
https://arxiv.org/abs/1905.12322
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2407.12327
https://arxiv.org/abs/2306.00978

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kinney, and Daniel Weld. S2ORC: The semantic
scholar open research corpus. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault
(eds.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics,
pp. 4969–4983, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/
2020.acl-main.447. URL https://aclanthology.org/2020.acl-main.447/.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Anton Lozhkov, Loubna Ben Allal, Leandro von Werra, and Thomas Wolf. Fineweb-edu: the finest
collection of educational content, 2024. URL https://huggingface.co/datasets/
HuggingFaceFW/fineweb-edu.

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits, 2024. URL https://arxiv.org/abs/2402.17764.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training, 2018. URL https://arxiv.org/abs/1710.03740.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset:
Word prediction requiring a broad discourse context. In Katrin Erk and Noah A. Smith (eds.),
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 1525–1534, Berlin, Germany, August 2016. Association for Computational
Linguistics. doi: 10.18653/v1/P16-1144. URL https://aclanthology.org/P16-1144.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019. URL https://api.semanticscholar.
org/CorpusID:160025533.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: an ad-
versarial winograd schema challenge at scale. Commun. ACM, 64(9):99–106, aug 2021. ISSN
0001-0782. doi: 10.1145/3474381. URL https://doi.org/10.1145/3474381.

Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal:
Accounting for inference in language model scaling laws, 2024. URL https://arxiv.org/
abs/2401.00448.

Noam Shazeer. Glu variants improve transformer, 2020. URL https://arxiv.org/abs/
2002.05202.

Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie Neiswanger, Zhengzhong Liu, Hongyi Wang, Bowen
Tan, Joel Hestness, Natalia Vassilieva, Daria Soboleva, and Eric Xing. Slimpajama-dc: Under-
standing data combinations for llm training, 2024. URL https://arxiv.org/abs/2309.
10818.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Daniel Y. Fu, Zhiqiang
Xie, Beidi Chen, Clark Barrett, Joseph E. Gonzalez, Percy Liang, Christopher Ré, Ion Stoica, and
Ce Zhang. Flexgen: High-throughput generative inference of large language models with a single
gpu, 2023. URL https://arxiv.org/abs/2303.06865.

Avi Singh, John D. Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J.
Liu, James Harrison, Jaehoon Lee, Kelvin Xu, Aaron Parisi, Abhishek Kumar, Alex Alemi,
Alex Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet, Gamaleldin Elsayed, Hanie Sedghi,
Igor Mordatch, Isabelle Simpson, Izzeddin Gur, Jasper Snoek, Jeffrey Pennington, Jiri Hron,
Kathleen Kenealy, Kevin Swersky, Kshiteej Mahajan, Laura Culp, Lechao Xiao, Maxwell L.
Bileschi, Noah Constant, Roman Novak, Rosanne Liu, Tris Warkentin, Yundi Qian, Yamini
Bansal, Ethan Dyer, Behnam Neyshabur, Jascha Sohl-Dickstein, and Noah Fiedel. Beyond human
data: Scaling self-training for problem-solving with language models, 2024. URL https:
//arxiv.org/abs/2312.06585.

7

https://aclanthology.org/2020.acl-main.447/
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://arxiv.org/abs/2402.17764
https://arxiv.org/abs/1710.03740
https://aclanthology.org/P16-1144
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://doi.org/10.1145/3474381
https://arxiv.org/abs/2401.00448
https://arxiv.org/abs/2401.00448
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2309.10818
https://arxiv.org/abs/2309.10818
https://arxiv.org/abs/2303.06865
https://arxiv.org/abs/2312.06585
https://arxiv.org/abs/2312.06585

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Luca Soldaini and Kyle Lo. peS2o (Pretraining Efficiently on S2ORC) Dataset. Technical report,
Allen Institute for AI, 2023. ODC-By, https://github.com/allenai/pes2o.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding, 2023. URL https://arxiv.org/abs/2104.
09864.

Yury Tokpanov, Beren Millidge, Paolo Glorioso, Jonathan Pilault, Adam Ibrahim, James Whittington,
and Quentin Anthony. Zyda: A 1.3t dataset for open language modeling, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models, 2023. URL https://arxiv.org/abs/2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.org/
abs/1706.03762.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.
URL https://arxiv.org/abs/2201.11903.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
ArXiv, abs/1707.06209, 2017. URL https://api.semanticscholar.org/CorpusID:
1553193.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models, 2024. URL https:
//arxiv.org/abs/2211.10438.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluís Màrquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi:
10.18653/v1/P19-1472. URL https://aclanthology.org/P19-1472.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models, 2022. URL https://arxiv.org/abs/2210.03493.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao Dai, Xiao-Ping Zhang, Yuhan Dong,
and Yu Wang. A survey on efficient inference for large language models, 2024. URL https:
//arxiv.org/abs/2404.14294.

8

https://github.com/allenai/pes2o
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2201.11903
https://api.semanticscholar.org/CorpusID:1553193
https://api.semanticscholar.org/CorpusID:1553193
https://arxiv.org/abs/2211.10438
https://arxiv.org/abs/2211.10438
https://aclanthology.org/P19-1472
https://arxiv.org/abs/2210.03493
https://arxiv.org/abs/2404.14294
https://arxiv.org/abs/2404.14294

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

A RELATED WORK

Training LLMs in low precision Large language models such as GPT (Radford et al., 2019),
OLMo (Groeneveld et al., 2024), and the LLaMA family (Touvron et al., 2023) have traditionally
relied on mixed precision (FP32/FP16 or FP32/BF16) (Micikevicius et al., 2018) and half-precision
(FP16/BF16) (Kalamkar et al., 2019) to optimize computational efficiency. More recent advancements
in extreme quantization have introduced ternary and binary network paradigms (Kaushal et al., 2024;
Ma et al., 2024), which leverage quantization-aware training (QAT) for efficient low-bitwidth model
representations. These models maintain higher-precision latent (or master) weights, such as FP16, to
stabilize training while dynamically binarizing or ternarizing weights during inference. The straight-
through estimator (STE) (Bengio et al., 2013) is commonly employed to facilitate gradient-based
updates. The Spectra suite Kaushal et al. (2024) provides a comprehensive study of ternary, quantized,
and FP16 language models, offering insights into the performance and scaling trends of low-bitwidth
models.

Advancements in Post-Training Quantization Post-training quantization (PTQ) remains a cru-
cial approach for reducing LLM memory and compute requirements without requiring retraining.
Techniques such as SmoothQuant (Xiao et al., 2024) and QuaRot (Ashkboos et al., 2024) address
challenges associated with activation quantization, particularly mitigating large activation outliers
(Dettmers et al., 2022a). While these methods improve compression, they often rely on 8-bit quantiza-
tion to preserve numerical stability. Continued research into activation-aware quantization techniques
is vital for further enhancing LLM deployment in resource-constrained environments.

Optimizing Inference Efficiency To improve LLM deployment efficiency, frameworks like MAR-
LIN (Frantar et al., 2024) initially implemented GPTQ-based quantization, enabling accelerated
inference.MARLIN kernels combine various techniques, ranging from advanced task scheduling,
partitioning, and pipeplining techniques to quantization-specific layout and compute optimizations.
More recently, MARLIN has been extended to incorporate Activation-Weight Quantization (AWQ)
(Lin et al., 2024), a technique that jointly quantizes both weights and activations to mitigate accuracy
degradation in low-bitwidth settings.

B PRETRAINING DETAILS

B.1 QUANTIZED LINEAR LAYER: FORWARD, BACKWARD, AND INFERENCE STAGES

We now present the mathematical formulation for a linear layer employing the TriLM quantization
scheme Kaushal et al. (2024), outlining the processes for the forward pass, backward pass, and
inference stages.

Forward Pass. In the forward pass, we begin by calculating the scaling factor γ to normalize the
weight matrix W . The scaling factor is given by:

γ = ϵ+
1

nm

n∑
i=1

m∑
j=1

|Wij |

where n and m denote the dimensions of the weight matrix W , and ϵ is a small constant added for
numerical stability.

Subsequently, the weight matrix W is quantized by rounding its entries to the nearest value in the set
{−1, 0, 1}, scaled by γ:

Ŵij = round
(
min

(
max

(
Wij

γ
,−1

)
, 1

))

The quantized weight matrix W̃ is then obtained by scaling the rounded weights: W̃ij = γŴij

9

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Finally, the output Y is computed as the product of the input X and the transposed quantized weight
matrix: Y = XW̃T

Backward Pass. During the backward pass, the gradients of the loss function L with respect to the
input X and the weight matrix W are computed. These gradients are given by:

∂L

∂X
=

∂L

∂Y
W̃

∂L

∂W
=

∂L

∂Y

T

X

Inference. For inference, the quantized weight matrix Ŵ and the scaling factor γ are precomputed
and cached to reduce computation during prediction. The steps are as follows:

1. Compute Ŵ and γ once and store them.

2. Use the precomputed values to calculate the quantized weight matrix: W̃ij = γŴij

3. Finally, the output Y is computed as: Y = XW̃T

By caching the scaling factor and the quantized weights, the inference process is significantly
accelerated, as it eliminates the need for redundant recalculations.

B.2 DATASET

Our training corpus comprises a diverse mix of data from publicly available sources. To scale TriLMs,
we trained on approximately 1.2 trillion tokens, up-sampling the most factual sources to enhance the
model’s knowledge while reducing hallucinations. The details of the datasets used are summarized in
Table 1. Each dataset was preprocessed and tokenized using llama2 tokenizer (AI@Meta, 2024).

• ArXiv Clement et al. (2019): The dataset comprises 1.5 million arXiv preprint articles from
fields such as Physics, Mathematics, and Computer Science, encompassing text, figures,
authors, citations, and metadata.

• Cosmopedia-v2 Ben Allal et al. (2024): A synthetic dataset of over 30 million documents
and 25 billion tokens. The dataset was generated using the Mixtral-8x7B-Instruct-v0.1
model, a multi-expert language model introduced in (Jiang et al., 2024), designed for
high-quality content generation. It is one of the largest publicly available synthetic datasets.

• PeS2o Soldaini & Lo (2023): It comprises 40 million open-access academic papers that have
been cleaned, filtered, and formatted specifically for the pre-training of language models. It
is derived from the Semantic Scholar Open Research Corpus (Lo et al., 2020).

Dataset Name Number of Tokens (Billion) Percentage

ArXiv Clement et al. (2019) 3.67 0.31%
Cosmopedia-v2 Ben Allal et al. (2024) 22.36 1.86%
PeS2o Soldaini & Lo (2023) 42.70 3.56%
FineWeb-Edu Lozhkov et al. (2024) 960.42 80.04%
Zyda - StarCoder Tokpanov et al. (2024) 170.85 14.24%

Total 1200.00 100.00%

Table 1: Pretraining datasets and token counts for TriTera models.

• Zyda-StarCoder Git-Commits Tokpanov et al. (2024): For our models, we exclusively
utilize the GitHub-Issues and Jupyter-Structured subsets of the Zyda-Starcoder dataset.

10

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Feature TriTera
Biases None
Activation SwiGLU
RoPE (θ) 5 · 105
QKV Normalization QK-Norm
Layer Norm RMSNorm
Layer Norm Applied to Outputs
Z-Loss Weight 10−5

Weight Decay on Embeddings No

Table 2: Configuration Details for TriTera

• Zyda-StarCoder-Languages: A dataset encompassing multiple programming languages,
enabling the model to perform well across diverse coding tasks.

• FineWeb-Edu Lozhkov et al. (2024): A subset of high quality dataset consists of 1.3T
tokens of educational web pages filtered from FineWeb dataset.

B.3 ARCHITECTURE AND HYPERPARAMETERS

Architecture. We adopt a decoder-only transformer architecture based on Vaswani et al. (2023),
closely aligned with the first iteration of TriLM (Kaushal et al., 2024), except for using parameterless
RMSNorm for normalization. TriLM influenced by LLaMA (Touvron et al., 2023), incorporating
key components such as SwiGLU gated MLPs (Shazeer, 2020), Rotary Position Embedding (RoPE)
(Su et al., 2023), multi-head attention, and the omission of bias terms. The model’s distinguishing
feature lies in its representation of linear layers, which utilize ternary states (-1, 0, 1) in conjunction
with a shared floating-point scale value. During the training phase, we maintain floating-point latent
weights to accumulate updates, while implementing on-the-fly ternarization in the forward pass. The
scale value is computed as the absolute mean of these weights. For gradient computation, we employ
a straight-through estimator, as proposed by (Bengio et al., 2013). Although this approach introduces
minor artifacts in model-parallel configurations. All hyperparameters are provided in Table 3.

Hyperparameters. All the models are randomly initialized from a truncated normal distribution
with a mean of 0 and a standard deviation of 0.02. We trained using the AdamW optimizer (Loshchilov
& Hutter, 2019), with β1 = 0.9, β2 = 0.95, and ϵ = 10−5. The weight decay was applied with a
value of 0.1. A cosine learning rate schedule was employed, with a warmup of 2000 steps, followed
by a decay of the final learning rate to 10% of the peak learning rate. We used gradient clipping with
a threshold of 1.0. Metrics were logged every 10 steps. For simplicity during training, we adopt a
single learning rate with a warmup followed by a cosine decay schedule, replacing the dual learning
rate approach used in Spectra 1. Additionally, we eliminate the use of weight decay, consistent with
the modifications. Table 3 summarizes the hyperparameters for our largest models.

We adopt a single learning rate with a warmup followed by a cosine decay schedule, replacing the
dual learning rate approach used in TriLMs (Kaushal et al., 2024). Additionally, we eliminate the use
of weight decay, consistent with the modifications.

B.4 KNOWN IMPLEMENTATION ARTIFACTS

Similar to Spectra (TriLMs) (Kaushal et al., 2024), our models exhibit artifacts due to model
parallelism, particularly during scale computation across sharded weight matrices. To mitigate this,
we compute scales locally on each device, minimizing communication overhead. This modification
has a negligible impact on bits per parameter (less than 10−5) even with high model parallelism.

11

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Parameter TriTera 1B TriTera 2B Spectra- 1.1 3B
Number of Parameters 1.526B 2.5547B 3.6680B

Hidden Size 2048 2560 3072

Number of Layers 24 26 28

Attention Heads 16 20 24

MLP Hidden Size 8192 10240 11264

Number of KV Heads 4 5 6

Embedding Size 32768 32768 32768

Max Sequence Length 2048 2048 2048

Activation Function SiLU SiLU SiLU

Optimizer AdamW AdamW AdamW

Learning Rate 0.0015 0.0015 0.0015

Weight Decay 0.1 0.1 0.1

Gradient Clipping 1.0 1.0 1.0

Table 3: Architecture summary for TriTera 1B, 2B, and 3B models configurations.

C SCALING LAWS

C.1 SCALING LAWS OF TRILMS AND FLOATLMS

In Section 2, we derived the scaling law for TriLMs as a function of the number of parameters (N)
and the number of training tokens used (D) by assuming the parametric form defined in Kaplan et al.
(2020); Hoffmann et al. (2022). We apply the same procedure to derive the scaling law for FloatLMs
which use 16-bit precision to facilitate direct comparison and understand the effect of compute on
performance.

Figure 5: Effect of scaling number of parameters (left) and number of training tokens (right) on final validation
loss for FloatLMs. The dotted lines show the power law derived in Equation (2).

In addition to the ternary LLMs described in Section 2, we train corresponding 16-bit models
which we refer to as FloatLMs across parameters sizes ∈ [990M, 1900M, 3900M, 5600M, 11000M]
(excluding embeddings) and dataset sizes ∈ [20B, 40B, 75B, 150B] tokens. We follow the same
procedure as for TriLMs and obtain the following power law for FloatLMs,

L̂(N,D) ≈ 2.17 +
7.86

N0.56
+

3.42

D0.53
. (2)

Comparing this with Equation (1), we make two interesting observations. First, the constant term and
the coefficients are markedly different for ternary and float LMs, indicating that these terms might

12

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

be dependent on the level of quantization. Second, the terms involving N and D have almost the
same exponents for FloatLMs, which means that increasing either parameters and training tokens
has a similar effect on improving LLM performance. This is in contrast to TriLMs, where the term
involving training tokens decays much more rapidly than term involving number of parameters.

Figure 5 shows the final validation loss for different FloatLM models against the number of parameters
and the number of training tokens, along with the scaling law fit.

Figure 6: Predicted versus actual values of the final validation loss based on the parametric fit of the scaling law
for TriLMs (left) and FloatLMs (right).

C.2 PARAMETRIC FIT FOR SCALING LAW

We obtain the coefficients for the parametric scaling law in Equation (1) by finding the least squares
fit on the the final validation losses of the suite of models trained across different parameter and
training token values.

To evaluate our fit, we calculate the coefficient of determination, or R2, which is a statistical measure
that indicates how well a model fits a set of data, with R2 = 1.0 indicating a perfect fit. Our fitted
power laws have R2 = 0.9921 for TriLMs and R2 = 0.9958 for FloatLMs. Figure 6 plots the
predicted validation loss following our derived scaling law versus the actual empirical values.

D BENCHMARK DETAILS

We benchmark TriLM across knowledge, commonsense, and reasoning benchmarks. We average our
scores across three different ’seeds’.

D.1 COMMONSENSE AND REASONING

We report commonsense and reasoning benchmark scores across 6 benchmarks in Table 4. Each is
considered in a zero-shot setting. Following are the details of each of the benchmarks considered:

• ARC Challenge and Easy: (Clark et al., 2018) The ARC dataset consists of 7,787 multiple-
choice science questions, split into two categories: Challenge and Easy. We compute both
the accuracy and normalized accuracy for these two sets.

• BoolQ: (Clark et al., 2019) BoolQ is a reading comprehension dataset featuring naturally
occurring yes/no questions. We evaluate the model’s performance by calculating its accuracy
on this task.

• HellaSwag: (Zellers et al., 2019) HellaSwag is a dataset for testing grounded commonsense
through multiple-choice questions. Incorrect answer choices are generated using Adversarial
Filtering (AF), designed to deceive machines but not humans. Accuracy and normalized
accuracy are reported for this dataset.

13

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

• WinoGrande: (Sakaguchi et al., 2021) WinoGrande is a dataset of 44,000 questions
designed to assess commonsense reasoning via a fill-in-the-blank task with binary options.
We report the model’s accuracy on this dataset.

• PIQA: (Bisk et al., 2019) The Physical Interaction Question Answering (PIQA) dataset
evaluates physical commonsense reasoning. We compute accuracy and normalized accuracy
for this task.

• LAMBADA OpenAI: (Paperno et al., 2016) LAMBADA is a dataset used to test text un-
derstanding through next-word prediction, containing narrative passages from BooksCorpus.
To perform well on LAMBADA, models must leverage broad discourse information rather
than just local context. We report both perplexity and accuracy for this dataset.

• LogiQA: (Liu et al., 2021) LogiQA focuses on testing human-like logical reasoning across
multiple types of deductive reasoning tasks. We measure both accuracy and normalized
accuracy for this dataset.

D.2 KNOWLEDGE

We report performance on SciQ, TriviaQA in Tables 4. Each is considered in a zero-shot setting.
Following are the details of each of the benchmarks considered:

The knowledge-based evaluation included the following tasks:

• SciQ: (Welbl et al., 2017) The SciQ dataset contains multiple-choice questions with 4 answer
options from crowd-sourced science exams. The questions range from Physics, Chemistry
and Biology and several other fields. We calculate the accuracy and length normalized
accuracy on this task.

• TriviaQA: (Joshi et al., 2017) TriviaQA is a reading comprehension dataset containing
question-answer-evidence triples. We calculate the exact match accuracy on this task.

• MMLU (Hendrycks et al., 2021): The benchmark aims to assess the knowledge gained
during pretraining by evaluating models solely in zero-shot and few-shot scenarios. It spans
57 subjects, including STEM fields, humanities, social sciences, and more.

D.3 SERVING BENCHMARK FOR INFERENCE

We report the following serving benchmark for our TriRun kernels.

• Time to First Token. The time taken from the start of the inference process until the model
generates its first token. This metric is used to measure the latency before the model begins
producing outputs.

• Time per Output Token. The average time taken by the model to generate each subsequent
token after the first. This metric reflects the efficiency of the model in producing tokens
once the inference process has started.

• Total Tokens per Second. The overall rate at which the model generates tokens, includ-
ing both the initial and subsequent tokens. This metric accounts for the entire sequence
generation process and provides an aggregate measure of inference speed.

• Output Tokens per Second. The rate at which the model generates tokens after the first
token has been produced. This metric focuses on sustained generation speed, reflecting the
model’s efficiency once the decoding process has started.

14

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Dataset Metric TriTera 1.59B TriTera 2.64B TriTera 3.77B Llama-1 7B

Arc Challenge
acc 33.45±1.38 37.29±1.41 40.61±1.44 41.81±1.44

acc_norm 36.43±1.41 39.69±1.43 42.58±1.44 44.80±1.45

Arc Easy
acc 69.82±0.94 72.60±0.92 75.97±0.88 75.25±0.89

acc_norm 62.54±0.99 67.42±0.96 71.93±0.92 72.81±0.91

BoolQ acc 62.57±0.85 56.70±0.87 66.15±0.83 75.11±0.76

HellaSwag
acc 43.20±0.49 46.44±0.50 49.65±0.50 56.95±0.49

acc_norm 56.61±0.49 61.37±0.49 66.28±0.47 76.21±0.42

LAMBADA (OpenAI) acc 47.31±0.70 48.85±0.70 54.22±0.89 73.53±0.61

LAMBADA (Standard) acc 34.81±0.66 38.58±0.68 47.04±0.70 67.82±0.65

LogiQA
acc 22.12±1.63 22.27±1.63 22.00±1.66 22.73±1.64

acc_norm 27.04±1.75 29.65±1.79 30.57±1.81 30.11±1.80

OpenBookQA
acc 28.60±2.02 30.00±2.05 32.20±2.09 34.20±2.12

acc_norm 38.80±2.18 41.00±2.20 41.80±2.21 44.40±2.22

PIQA
acc 71.98±1.05 73.67±1.03 76.01±1.00 78.67±0.96

acc_norm 72.47±1.04 75.41±1.00 76.33±0.99 79.16±0.95

WinoGrande acc 58.09±1.39 58.56±1.38 62.43±1.36 69.93±1.29

SciQ
acc 89.60±0.97 90.80±0.91 92.80±0.82 94.60±0.72

acc_norm 84.10±1.16 87.00±1.06 88.40±1.01 93.00±0.81

MMLU (cont.): Humanities acc 29.16±0.65 30.33±0.66 30.90±0.65 33.28±0.67

MMLU (cont.): Other acc 38.46±0.86 40.42±0.86 49.39±0.87 46.31±0.86

MMLU (cont.): Social Sciences acc 35.81±0.86 38.97±0.87 40.92±0.87 42.44±0.88

MMLU (cont.): STEM acc 27.62±0.79 30.23±0.80 32.06±0.82 33.43±0.83

MMLU (cont.) Avg. acc 32.34±0.39 34.43±0.39 36.12±0.39 38.21±0.40

GSM8K exact_match 2.05±0.39 2.12±0.40 3.03±0.47 9.70±0.82

MathQA
acc 23.22±0.77 24.22±0.78 24.69±0.79 27.07±0.81

acc_norm 23.12±0.77 24.52±0.79 24.63±0.79 26.50±0.81

Table 4: Model performance across various datasets.

E FORMAL PROOFS

E.1 NOTATIONS AND THEOREM

Theorem 1 (Correctness). For a sequence D = {d1, d2, . . . , dn} of ternary digits di ∈ {−1, 0, 1},
grouped into blocks of size k and packed into p-bit integers with 2p ≥ 3k, the P and U operations are
exact inverses, ensuring U(P(D)) = D.

Let
D = {d1, d2, . . . , dn}, di ∈ {−1, 0, 1},

be a sequence of balanced ternary digits. We partition D into blocks of k digits (with the last block
possibly shorter). For a given block, define the shifted digits by

d′j = dj + 1, j = 0, 1, . . . , k − 1,

so that d′j ∈ {0, 1, 2}. Then define the integer

N =

k−1∑
j=0

d′j · 3 k−1−j .

Since each d′j is in {0, 1, 2}, we have

0 ≤ N ≤ 3k − 1.

15

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Assume we choose an integer p such that

2p ≥ 3k.

The packing function is defined by

b =

⌊
N · 2p + (3k − 1)

3k

⌋
.

This mapping is one-to-one on the set {0, 1, . . . , 3k−1} and yields an integer b in the range [0, 2p−1].

The unpacking function recovers a number x via

x =

⌊
b · 3k − (3k − 1) + (2p − 1)

2p

⌋
.

The recovery of the shifted digits is given by:

d′j =
(⌊ x

3 k−1−j

⌋)
mod 3, j = 0, 1, . . . , k − 1.

E.2 PROOF OF THEOREM 1 (CORRECTNESS).

We first show that x = N , and then we recover the original digits.

Step 1. Expressing the Packing Equation via the Division Algorithm. By the division algorithm,
there exists a unique remainder integer r with 0 ≤ r ≤ 3k − 1 such that

N · 2p + (3k − 1) = b · 3k + r.

Rearranging, we obtain
N · 2p = b · 3k − (3k − 1) + r.

Dividing both sides by 2p yields

N =
b · 3k − (3k − 1)

2p
+

r

2p
.

Since 0 ≤ r ≤ 3k − 1 and 2p ≥ 3k, we have

0 ≤ r

2p
< 1.

Thus, N is expressed as the sum of an exact rational number and a fractional part strictly less than 1.

Step 2. Recovery of N via the Decoding Operation. Examine the decoding formula:

x =

⌊
b · 3k − (3k − 1) + (2p − 1)

2p

⌋
.

We rewrite the expression inside the floor as

b · 3k − (3k − 1) + (2p − 1)

2p
=

b · 3k − (3k − 1)

2p
+

2p − 1

2p

= N − r

2p
+

2p − 1

2p

= N +
(2p − 1)− r

2p
.

Since 0 ≤ r ≤ 3k − 1 and 3k ≤ 2p, the correction term
(2p − 1)− r

2p

satisfies

0 ≤ (2p − 1)− r

2p
< 1.

Thus,

N ≤ N +
(2p − 1)− r

2p
< N + 1.

Taking the floor gives
x = N.

16

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

STEP 3. RECOVERY OF THE ORIGINAL TERNARY DIGITS

Since N represents the base-3 number with shifted digits d′j ∈ {0, 1, 2}, we recover each d′j by
writing N in base 3. It is important to note that if N has a “short” base-3 representation (i.e., fewer
than k digits), we must pad the representation on the left with zeros so that it has exactly k digits. In
other words, we interpret the expansion of x as

x =

k−1∑
j=0

d′j · 3k−1−j ,

where the digits d′j include leading zeros as needed. Then, for each j = 0, 1, . . . , k − 1, we have

d′j =
(⌊ x

3k−1−j

⌋)
mod 3.

Finally, reversing the initial shift,

dj = d′j − 1, j = 0, 1, . . . , k − 1,

retrieves the original balanced ternary digits.

CONCLUSION

The decoding operation precisely recovers N , and therefore the original sequence of digits. In other
words,

U(P (D)) = D.

This completes the corrected proof that the packing and unpacking functions are exact inverses.

□

F TRIRUN KERNEL DESIGN FOR ACCELERATED MATRIX MULTIPLICATION

This section presents the design of the TriRun kernel, which accelerates matrix multiplication
A×B → C, where A is stored in half-precision (16-bit floating point), B is quantized to 2 bits per
element, and C is accumulated in single-precision (32-bit floating point) before optional conversion
to half-precision. The kernel optimizes memory efficiency and computational throughput through
specialized data layouts, dequantization strategies, and tensor-core utilization. Key components
include:

F.1 DATA ORGANIZATION AND QUANTIZATION

2-Bit Weight Matrix (B Storage) The 2-bit quantized elements of B are packed into 64-bit int2
vectors, where each 32-bit integer contains 16 quantized weights. During loading, 64-bit global
memory transactions retrieve 32 weights per int2, minimizing memory bandwidth. To align with
tensor-core requirements, these packed values are asynchronously copied to shared memory via
cp.async instructions, then unpacked into 16-bit fragments for computation.

Half-Precision Matrix (A Access) Matrix A is stored in half-precision and loaded via 128-bit
int4 vectors, fetching eight elements per transaction. This aligns with the 16-byte memory alignment
optimal for GPU global memory accesses. Subsequent stages repack these into 16×16 submatrices
compatible with tensor-core operations.

F.2 DEQUANTIZATION AND TENSOR-CORE COMPUTATION

The dequant function performs dequantization of 2-bit integer values into half-precision floating-
point representations, employing hardware-optimized bitwise operations and fused arithmetic to

17

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

enable efficient tensor core execution. Rather than relying on conventional shift-and-mask techniques,
the implementation decomposes each 32-bit word—which encodes sixteen 2-bit weights—using
a specialized bitwise operation that leverages a tailored mask to both isolate the individual weight
segments and embed a predetermined FP16 exponent. Following this, an integrated arithmetic fusion
stage applies a zero-point adjustment, effectively adding 1.0 to the extracted values, and performs
dynamic range scaling through a fused multiply-add operation. This approach diverges from the
traditional scale·(w−zero_point) formulation by consolidating multiple arithmetic steps into a single,
hardware-specific sequence. Subsequently, per-group FP16 scales are applied to the dequantized
values, which are then stored in register-based fragments (FragB) to minimize shared memory
contention. Later, the kernel employs ldmatrix.sync.aligned.m8n8.x4 to load A and B
fragments into tensor-core registers. Each mma.sync.aligned.m16n8k16 operation computes
a 16×8×16 submatrix product, accumulating results into 32-bit floating-point fragments (FragC)
for numerical stability. By unrolling across submatrix tiles, the kernel fully utilizes tensor-core
throughput while maintaining warp-level synchronization.

F.3 FLEXIBLE IMPLEMENTATION AND DATA MOVEMENT

Furthermore, the implementation is to allow flexible configuration of thread block dimensions,
pipeline stages, and grouping parameters, ensuring adaptability to various problem sizes and hardware
configurations. Data movement from global to shared memory is managed through a double-buffering
strategy, with synchronization achieved via asynchronous copy fences and explicit barrier instructions.
Partial results accumulated across warps or thread blocks are reduced using a hierarchical reduction
scheme that first operates within shared memory and then, if necessary, synchronizes globally across
thread blocks. Finally, the computed results are reorganized into the appropriate layout and written
back to global memory in FP16 format. This approach—characterized by efficient data packing,
effective asynchronous memory operations, and the exploitation of tensor core acceleration—yields
a highly optimized FP16×INT2 matrix multiplication routine that is well-suited for deep learning
applications where memory bandwidth and computational efficiency are paramount.

F.4 MEMORY LATENCY HIDING VIA ASYNCHRONOUS PIPELINES

To overlap computation with memory transfers, the kernel implements a four-stage software pipeline
with double buffering. Key mechanisms include:

• Asynchronous Data Copies: cp.async instructions prefetch A and B tiles into shared
memory without stalling computation threads.

• Double Buffering: Two shared memory buffers alternate between data ingestion (from
global memory) and consumption (by tensor cores), ensuring continuous utilization of
memory and compute units.

• cp.async Synchronization: Warps issue cp.async.commit_group to batch memory
transactions and cp.async.wait_group to enforce dependencies, preventing read-
after-write hazards.

F.5 PRECISION-PRESERVING ACCUMULATION

Intra-Warp Reduction Partial sums within a thread block are reduced across warps using shared
memory. A tree-based summation merges per-warp FragC outputs, minimizing shared memory
bank conflicts through staggered access patterns.

Global Memory Atomic Reduction For outputs spanning multiple thread blocks, atomic 32-
bit floating-point additions ensure correct inter-block accumulation. Final results are converted
to half-precision (if specified) using round-to-nearest-even mode, balancing precision and storage
efficiency.

F.6 PERFORMANCE CONFIGURATION

Thread blocks (256 threads) balance register pressure (128/thread) and occupancy (8 warps/block).
Tile dimensions adapt to problem size: 128×128 tiles for small batches (m ≤ 16) and 64×256 tiles

18

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

for larger workloads. The 96 KB shared memory budget supports four concurrent pipeline stages,
sustaining 98% tensor core utilization across varied workloads. This implementation demonstrates
that 2-bit quantized inference can achieve near-FP16 throughput while maintaining numerical fidelity,
providing a practical solution for deploying compressed deep learning models on modern GPUs.

2020-10
2021-01

2021-04
2021-07

2021-10
2022-01

2022-04
2022-07

2022-10
2023-01

2023-04

Device Release Date

3

4

5

6

7

8

Sp
ee

du
p

ov
er

 P
yT

or
ch

 F
P1

6
Ke

rn
el

s

A100_PCIe
A100_SXM

L40

4090

L40S

3090

L4

A30

Speedup Across Hardware
Linear Regression Fit

Figure 7: Speedup Across Hardware

19

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

F.7 TRIRUN PERFORMANCE BENCHMARK ACROSS VARIOUS NVIDIA HARDWARE.

2 4 8 16 32 64 128
Batch (log scale)

1

2

3

4

5

Sp
ee

du
p

A100_PCIe

2 4 8 16 32 64 128
Batch (log scale)

1

2

3

4

Sp
ee

du
p

A100_SXM

2 4 8 16 32 64 128
Batch (log scale)

2

4

6

8

Sp
ee

du
p

L40

2 4 8 16 32 64 128
Batch (log scale)

2

4

6

8

Sp
ee

du
p

4090

2 4 8 16 32 64 128
Batch (log scale)

2

4

6

8
Sp

ee
du

p

L40S

2 4 8 16 32 64 128
Batch (log scale)

1

2

3

4

5

Sp
ee

du
p

3090

2 4 8 16 32 64 128
Batch (log scale)

2

4

6

Sp
ee

du
p

A40

2 4 8 16 32 64 128
Batch (log scale)

2

4

6

Sp
ee

du
p

L4

2 4 8 16 32 64 128
Batch (log scale)

1

2

3

4

Sp
ee

du
p

A30

Models
3B 8B 13B 34B 70B 123B 405B

Figure 8: We evaluate peak performance for a ternary LLM layer, showing near-optimal speedup
over PyTorch FP16 on different NVIDIA GPUs using CUTLASS.

20

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

7B 13B 34B 70B
Model Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

TT
FT

 (s
)

1.6x

2.1x

3.4x

4.7x

TTFT vs Model Size (64 Tokens Encoding + 1 Token Decoding)
Pytorch
Trirun

7B 13B 34B 70B
Model Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

TP
OT

 (s
)

1.5x

2.0x

3.3x

4.9x
TPOT vs Model Size (64 Input Tokens, 64 Output Tokens)

Pytorch
Trirun

7B 13B 34B 70B
Model Size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

TT
FT

 (s
)

1.7x

2.4x

3.2x

4.3x

TTFT vs Model Size (64 Tokens Encoding + 1 Token Decoding)
Pytorch
Trirun

7B 13B 34B 70B
Model Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

TP
OT

 (s
)

1.6x

2.2x

3.4x

5.3x
TPOT vs Model Size (64 Input Tokens, 64 Output Tokens)

Pytorch
Trirun

7B 13B 34B 70B
Model Size

0.0

0.2

0.4

0.6

0.8

TT
FT

 (s
)

1.6x

2.0x

3.1x

4.1x

TTFT vs Model Size (64 Tokens Encoding + 1 Token Decoding)
Pytorch
Trirun

7B 13B 34B 70B
Model Size

0.0

0.1

0.2

0.3

0.4

0.5

TP
OT

 (s
)

1.5x

2.1x

3.2x

4.3x

TPOT vs Model Size (64 Input Tokens, 64 Output Tokens)
Pytorch
Trirun

7B 13B 34B 70B
Model Size

0.0

0.1

0.2

0.3

0.4

0.5

TT
FT

 (s
)

1.8x

2.5x

3.3x

3.8x

TTFT vs Model Size (64 Tokens Encoding + 1 Token Decoding)
Pytorch
Trirun

7B 13B 34B 70B
Model Size

0.00

0.05

0.10

0.15

0.20

0.25

0.30

TP
OT

 (s
)

1.8x

2.8x

4.3x

5.3x
TPOT vs Model Size (64 Input Tokens, 64 Output Tokens)

Pytorch
Trirun

Figure 9: Comparison of TriRun kernels with the FP16 pytorch baseline on NVIDIA L40S, L40, A40 and 4090
(top to bottom). (a) Left: Time to first token, (b) Right: Time per output token.

21

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

G INFERENCE IMPLEMENTATION ON CPUS AND BENCHMARKING ACROSS
HARDWARE.

G.1 CPU INFERENCE WITH EFFICIENT PACKING

To assess the effectiveness of our packings, we implemented both packing methods in ggml.cpp2,
a framework optimized for running large language models (LLMs) on CPUs. While additional
optimizations are possible, our primary focus is on reducing a model’s memory footprint and
accelerating memory-bound workloads. This is achieved by statically compressing pretrained weights
and decompressing them on-the-fly during inference. We begin by demonstrating the efficiency of the
CPU implementations for the 1.6-bit packing, referred to as TQ1, and the 2-bit packing, referred to
as TQ2. Subsequently, we explore the extension of these methods to high-batch GPU environments.

TQ2: Implementing effective 2 bit for TriLMs. The quantization and dequantization scheme
begins with partitioning the input tensor into contiguous, non-overlapping blocks, each containing
256 elements. For each block, a scaling factor (floating-point numbers associated with TriLMs) di is
calculated as the maximum absolute value of the elements within the block, i.e., di = max(|bij |),
where bij denotes the j-th element in the i-th block. The inverse scaling factor d̂i is then defined
as d̂i = 1

di
. Each element bij in the block is quantized to a ternary value by multiplying it by

the inverse scaling factor and rounding the result:qij = round(bij · d̂i). To enable unsigned integer
packing, the quantized values are shifted, resulting in qij ∈ {0, 1, 2}. The quantized elements are then
packed into a single byte, where every four quantized values are represented using base-4 positional
encoding. As a result, each block of 256 elements is stored in 64 bytes, with the scaling factor di
stored in 2 bytes in float16 format, yielding a total of 66 bytes per block. The dequantization process
begins by extracting the scaling factor di from its 16-bit floating-point representation, restoring it
to full precision. Each packed byte is unpacked by reversing the base-4 encoding to recover the
four ternary elements (see G.2). The elements are then adjusted back to their signed values by
subtracting 1, resulting in qij ∈ {−1, 0, 1}. Finally, the original block is reconstructed by multiplying
each quantized value by the corresponding scaling factor: b̂ij = di · qij , where b̂ij denotes the
dequantized approximation of bij . This quantization scheme achieves significant memory efficiency
by compressing 256 floating-point values (1024 bytes at 32-bit precision) into just 66 bytes.

TQ1: Implementing effective 1.6 bit for TriLMs. In our implementation, we encode k = 5 ternary
digits (trits) into p = 8 bits, achieving an effective bit rate of 1.6 bits per trit. A key challenge arises
in efficiently decoding these packed trits for SIMD-optimized operations, as traditional decoding
methods rely on division and modulo operations, which are computationally expensive and ill-suited
for vectorization. The conventional approach to decoding a packed byte b involves computing a

base-3 integer x using the formula: x =
⌊b·35−(35−1)

28 , where 35 = 243 and 28 = 256. Each trit
di ∈ {−1, 0, 1} is then extracted through the operation: di+1 =

⌊
x

34−i

⌋
mod 3 for i = 0, . . . , 4.

This method incurs high computational costs due to the repeated divisions and modulo operations,
which hinder SIMD parallelism. To address these inefficiencies, we exploit the near-equivalence
35 ≈ 28, enabling a multiplication-based scheme that iteratively extracts trits without explicit
division or modulo operations. (See Appendix G.3 for the detailed iterative procedure and its SIMD
advantages.)

G.2 ADDITIONAL IMPLEMENTATION DETAILS OF TQ-2

For quantization, the packed value calculation and detailed encoding steps are as follows:

• Packing: qpacked = q0 + 4q1 + 16q2 + 64q3.

• Storage: 64 bytes for quantized elements + 2 bytes for the float16 scaling factor di, totaling
66 bytes per block.

2https://github.com/ggerganov/llama.cpp

22

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

For dequantization, the explicit unpacking procedure involves:

q0 = qpacked mod 4, q1 =
⌊qpacked

4

⌋
mod 4, q2 =

⌊qpacked

16

⌋
mod 4, q3 =

⌊qpacked

64

⌋
mod 4.

The ternary storage method uses only 2 bits per element, with minimal overhead from the float16
scale per block. The process relies on hardware-friendly bitwise operations for fast packing and
unpacking, making it suitable for large-scale deployments in memory-constrained environments
while maintaining a balance between numerical fidelity and storage efficiency.

G.3 ADDITIONAL IMPLEMENTATION DETAILS OF TQ-1.

In this optimized decoding approach, for each packed byte b, the procedure begins by setting b0 = b.
The trits are then extracted iteratively by multiplying bi by 3, yielding a 9-bit intermediate value. The
high byte of this value is then extracted to obtain d′i =

⌊
bi·3
28

⌋
, which corresponds to a ternary digit

from the set {0, 1, 2}. The remainder is then updated for the next iteration with the operation:

bi+1 = (bi · 3)&0xFF.

Finally, the values d′i are normalized by subtracting 1, mapping {0, 1, 2} to {−1, 0, 1}. This iterative
decoding method offers significant advantages for SIMD implementation. It replaces non-vectorizable
division and modulo operations with fixed-point arithmetic and bitwise masking, both of which are
highly SIMD-friendly. The iterative structure minimizes data dependencies, enabling the parallel
extraction of trits across multiple packed bytes. By leveraging the numerical proximity of 35 and 28,
this method achieves efficient decoding of ternary values with a computational complexity linear in k.
The avoidance of costly arithmetic operations and compatibility with SIMD architectures make this
approach particularly well-suited for high-performance applications involving ternary arithmetic.

G.4 BENCHMARKING ACROSS VARIOUS HARDWARE

Configuration Model Size

Tokens Kernel Bits 560M 1.1B 1.5B 2.4B 3.9B

Prompt Tokens/Second

32

F16 16 729.97 ± 6.48 417.6 ± 17.3 295.92 ± 2.38 152.43 ± 0.24 91.2 ± 0.69
Q4_K 4 490.44 ± 3.17 270.03 ± 1.61 195.22 ± 0.89 106.15 ± 0.55 61.81 ± 0.27
TQ2_0 2 543.04 ± 3.51 305.1 ± 1.09 221.87 ± 0.60 118.25 ± 0.91 68.62 ± 0.28
TQ1_0 1.6 617.94 ± 2.78 362.67 ± 2.48 276.51 ± 5.73 145.49 ± 1.36 84.03 ± 0.05

64

F16 16 1223.75 ± 21.71 640.8 ± 2.06 440.41 ± 0.84 247.14 ± 0.48 144.75 ± 0.45
Q4_K 4 886.14 ± 7.08 450.96 ± 1.26 320.72 ± 0.47 180.05 ± 1.09 105.52 ± 0.41
TQ2_0 2 951.09 ± 10.60 501.71 ± 1.09 362.98 ± 1.18 198.74 ± 0.35 116.17 ± 0.26
TQ1_0 1.6 1104.45 ± 11.50 578.31 ± 9.17 435.69 ± 0.40 235.16 ± 0.73 136.06 ± 0.42

Output Tokens/Second

8

F16 16 170.86 ± 0.82 92.65 ± 0.06 71.51 ± 0.03 44.48 ± 0.04 28.09 ± 0.03
Q4_K 4 237.84 ± 0.27 134.82 ± 0.26 107.23 ± 0.32 64.79 ± 0.58 43.27 ± 0.68
TQ2_0 2 278.69 ± 0.59 167.45 ± 0.13 134.02 ± 0.17 86.60 ± 0.03 57.65 ± 0.07
TQ1_0 1.6 228.83 ± 0.53 125.68 ± 0.08 99.60 ± 0.13 62.31 ± 0.11 39.99 ± 0.05

Total Tokens/Second

256/8

F16 16 1142.38 ± 7.01 628.91 ± 1.37 489.93 ± 1.45 296.44 ± 0.68 194.58 ± 0.26
Q4_K 4 1165.63 ± 2.60 620.84 ± 2.17 481.84 ± 1.40 288.85 ± 0.53 186.65 ± 0.92
TQ2_0 2 1234.71 ± 0.91 668.92 ± 1.26 513.46 ± 1.13 308.62 ± 0.28 202.10 ± 0.52
TQ1_0 1.6 1241.55 ± 4.71 665.48 ± 4.89 517.62 ± 1.16 311.72 ± 0.51 205.35 ± 0.25

Table 5: Tokens per Second for Different Model Sizes and Quantization Kernels M4 Max (14CPU
Coresz). Values represent mean ± standard deviation.

23

ICLR 2025 Workshop on Sparsity in LLMs (SLLM)

Size Kernel #GPU 1 2 4 8 16 32 64

7B Pytorch 1 0.0210 0.0218 0.0219 0.0221 0.0225 0.0237 0.0244
7B Trirun 1 0.0135 0.0146 0.0146 0.0145 0.0146 0.0146 0.0146
7B Speedup - 1.5556 1.4932 1.5000 1.5241 1.5411 1.6233 1.6712

13B Pytorch 1 0.0380 0.0401 0.0402 0.0405 0.0411 0.0431 0.0461
13B Trirun 1 0.0184 0.0195 0.0193 0.0194 0.0207 0.0195 0.0195
13B Speedup - 2.0652 2.0564 2.0829 2.0876 1.9855 2.2103 2.3641

34B Pytorch 2 0.0986 0.1025 0.1027 0.1036 0.1051 0.1126 0.1213
34B Trirun 1 0.0277 0.0292 0.0288 0.0287 0.0288 0.0288 0.0339
34B Speedup - 3.5596 3.5103 3.5660 3.6098 3.6493 3.9097 3.5782

70B Pytorch 4 0.1952 0.2062 0.2066 0.2076 0.2093 0.2300 0.2352
70B Trirun 1 0.0381 0.0399 0.0397 0.0396 0.0397 0.0403 0.0544
70B Speedup - 5.1234 5.1679 5.2040 5.2424 5.2720 5.7072 4.3235

123B Trirun 1 0.0544 0.0556 0.0557 0.0559 0.0566 0.0617 0.0850

Table 6: End-2-end inference speedup (Encoding) across varying number of tokens on L40S with our
Kernels over Pytorch’s Fp16

Size Kernel #GPU 1 2 4 8 16 32 64

7B Pytorch 1 0.0229 0.0449 0.0889 0.1768 0.3529 0.7047 1.4133
7B Trirun 1 0.0152 0.0299 0.0596 0.1193 0.2374 0.4748 0.9463
7B Speedup - 1.5066 1.5017 1.4916 1.4820 1.4865 1.4842 1.4935

13B Pytorch 1 0.0399 0.0791 0.1573 0.3132 0.6250 1.2494 2.5005
13B Trirun 1 0.0196 0.0388 0.0777 0.1555 0.3114 0.6219 1.2411
13B Speedup - 2.0357 2.0387 2.0245 2.0141 2.0071 2.0090 2.0147

34B Pytorch 2 0.1009 0.2009 0.4011 0.8014 1.6022 3.2050 6.4134
34B Trirun 1 0.0300 0.0603 0.1203 0.2408 0.4815 0.9632 1.9272
34B Speedup - 3.3633 3.3317 3.3342 3.3281 3.3275 3.3275 3.3278

70B Pytorch 4 0.1975 0.3941 0.7877 1.5746 3.1491 6.2989 12.6034
70B Trirun 1 0.0400 0.0808 0.1615 0.3244 0.6501 1.3005 2.6025
70B Speedup - 4.9375 4.8775 4.8774 4.8539 4.8440 4.8434 4.8428

123B Trirun 1 0.0566 0.1126 0.2246 0.4488 0.8976 1.7936 3.5924

Table 7: End-2-end inference speedup (Decoding) across varying number of tokens on L40S with our
Kernels over Pytorch’s Fp16

24

	Introduction
	Scaling ternary models to 1T tokens
	Efficient packing of ternary weights
	Packing Strategy with effective 2 bits
	Packing Strategy with 1.6 effective bits

	TriRun: GPU Kernels for High-Batch Settings
	Conclusion and Future Work
	Related Work
	Pretraining Details
	Quantized Linear Layer: Forward, Backward, and Inference Stages
	Dataset
	Architecture and Hyperparameters
	Known Implementation Artifacts

	Scaling Laws
	Scaling Laws of TriLMs and FloatLMs
	Parametric Fit for Scaling Law

	Benchmark Details
	Commonsense and Reasoning
	Knowledge
	Serving benchmark for inference

	Formal Proofs
	Notations and Theorem
	Proof of Theorem 1 (Correctness).

	TriRun Kernel Design for Accelerated Matrix Multiplication
	Data Organization and Quantization
	Dequantization and Tensor-Core Computation
	Flexible Implementation and Data Movement
	Memory Latency Hiding via Asynchronous Pipelines
	Precision-Preserving Accumulation
	Performance Configuration
	TriRun performance benchmark across various Nvidia hardware.

	Inference implementation on CPUs and benchmarking across hardware.
	CPU Inference with efficient packing
	Additional Implementation details of TQ-2
	Additional Implementation details of TQ-1.
	Benchmarking across various hardware

