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Abstract

Recent advances in multimodal large language
models (MLLMSs) and diffusion models (DMs)
have opened new possibilities for Al-generated
content. Yet, personalized cover image genera-
tion remains underexplored, despite its critical
role in boosting user engagement on digital
platforms. We propose ICG, a novel frame-
work that integrates MLLM-based prompting
with personalized preference alignment to gen-
erate high-quality, contextually relevant covers.
ICG extracts semantic features from item ti-
tles and reference images via meta tokens, re-
fines them with user embeddings, and injects
the resulting personalized context into the dif-
fusion model. To address the lack of labeled
supervision, we adopt a multi-reward learning
strategy that combines public aesthetic and rel-
evance rewards with a personalized preference
model trained from user behavior. Unlike prior
pipelines relying on handcrafted prompts and
disjointed modules, ICG employs an adapter
to bridge MLLMs and diffusion models for
end-to-end training. Experiments demonstrate
that ICG significantly improves image quality,
personalization, user appeal, and downstream
recommendation accuracy, providing a scalable
solution for real-world content platforms.

1 Introduction

Large language models (LLMs) and diffusion mod-
els (DMs) have driven the rise of Al-generated
content (AIGC) in applications such as personal as-
sistants, chatbots, digital art, and cover image gen-
eration (Omneky, 2024; Jarsky et al., 2024; Yang
et al., 2024). In recommender systems—especially
news feeds—blurry, mismatched, or unappealing
covers are common, undermining user engagement.
Thus, improving cover image generation is critical
to enhancing recommendation quality.
Text-to-image models such as Stable Diffu-
sion (Rombach et al., 2022), Midjourney (mid,
2022), and DALLE-3 (Betker et al., 2023) are
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Figure 1: The overall pipeline for cover image genera-
tion.

widely used by designers and publishers for ban-
ner and cover image generation. However, they
rely heavily on manually crafted prompts and care-
ful prompt engineering, which limits scalability
for platforms handling millions of items, such as
news aggregators, streaming services (e.g., Netflix,
YouTube), and social media feeds (e.g., TikTok,
Instagram). In these scenarios, visually appealing
and context-relevant cover images are critical for
capturing user attention and improving engagement.
As shown in Figure 1, a promising solution is to
use multimodal large language models (MLLMs)
to automatically extract semantics from raw item
content and generate prompts for Stable Diffusion.
Despite its simplicity, this pipeline faces several
challenges in practical adoption.

Firstly, although MLLM-based prompt genera-
tion eliminates the need to manually craft prompts
for each item, it still requires careful design of
prompt instructions for the MLLMs. Prior works
such as BeautifulPrompt (Cao et al., 2023), Promp-
tist (Hao et al., 2023), and UF-FGTG (Hei et al.)
aim to automate or refine prompts using large lan-
guage models, but they focus on improving existing
prompt text. In contrast, our task starts from raw
item content (e.g., titles), rendering these methods
inapplicable. Furthermore, the absence of golden
prompt references for cover images limits the pos-
sibility of supervised fine-tuning for MLLMs in
this setting.



Secondly, the current pipeline is disjointed and
lacks end-to-end optimization, leading to issues
such as MLLM hallucinations and misalignment
with diffusion models, which often result in low-
quality or semantically irrelevant covers. This hin-
ders error correction and model refinement. Re-
cent progress in multimodal Al has produced mod-
els like MiniGPT-5 (Zheng et al., 2023), SEED-
LLaMA (Ge et al., 2024), and Kosmos-G (Pan
et al., 2024), which integrate MLLMs with diffu-
sion decoders for unified understanding and gen-
eration. However, they still rely heavily on user-
crafted prompts. In addition, the scarcity of high-
quality cover images limits supervision when gen-
erating directly from raw item content.

Thirdly, current text-to-image generation meth-
ods lack personalization, often producing covers
that fail to reflect user preferences and reduce en-
gagement. For instance, male users may prefer
dark, professional styles, while female users may
favor pink, cute designs. Aligning covers with in-
dividual tastes can boost click-through rates and
user experience. Prior work like PMG (Shen et al.,
2024) and DiFashion (Xu et al., 2024) explores
this direction but has key limitations: (1) Both use
the next item’s image as the training target, assum-
ing high-quality covers—often untrue in practice;
(2) PMG represents preferences as discrete key-
words via LLMs, hindering end-to-end optimiza-
tion and fine-grained preference capture. Conse-
quently, these methods often fail to generate visu-
ally appealing, truly personalized outputs.

To address these challenges, we propose ICG, a
unified framework for personalized cover genera-
tion that integrates MLLMs with reward-based op-
timization. It leverages item content—comprising
a reference image and title—to retain original se-
mantics, while personalization is guided by user
interaction histories. Textual and visual inputs are
encoded by MLLMs, with meta tokens capturing
contextual features that are injected into the diffu-
sion model via an adapter for end-to-end training.
User features are fused with context to condition
generation. The model is optimized using a differ-
entiable multi-reward framework, combining pub-
lic aesthetic and relevance scores with a person-
alized reward model trained on user-item interac-
tions, enabling content-aligned and user-specific
generation.

The main contributions of this work are:

(1) We present the first framework that inte-
grates MLLMs with reward learning for person-

alized cover image generation, demonstrating its
effectiveness in recommendation scenarios.

(2) We introduce meta tokens to capture contex-
tual semantics and fuse them with user embeddings
via a plug-and-play adapter into a diffusion model.
A multi-reward learning framework enables end-
to-end training guided by aesthetics, content rel-
evance, and user preference alignment—without
requiring explicit supervision.

(3) Extensive experiments show that ICG con-
sistently outperforms prior methods in aesthetics,
semantic fidelity, and personalization, leading to
improved user engagement.

2 Related Work

2.1 Conditional Image Generation

Conditional image generation enables personalized
synthesis from inputs like text, poses, edges, seman-
tic maps, and reference images. Text-guided mod-
els such as CLIP encode semantics into latent space.
Diffusion models like Stable Diffusion (Rombach
et al., 2022) set the current standard. Methods like
ControlNet (Zhang et al., 2023) and MoMA (Song
et al., 2024) enhance generation with structured
control. For personalization, user behavior-based
conditioning has been explored. DiFashion (Xu
et al., 2024) uses interaction history but assumes
high-quality inputs; CG4CTR (Yang et al., 2024)
applies reward filtering but lacks end-to-end learn-
ing. Both focus on specific domains, whereas our
method targets general-purpose cover generation
and is thus not directly comparable.

2.2 Automated Assessment of Image
Generation

Traditional metrics like IS (Salimans et al., 2016),
FID (Heusel et al., 2017), and CLIP Score (Radford
et al., 2021) assess image quality and consistency
but overlook human preferences. Recent meth-
ods—PickScore (Kirstain et al., 2023), HPSv2 (Wu
et al., 2023), ImageReward (Xu et al., 2023), and
MPS (Zhang et al., 2024)—address this by fine-
tuning vision-language models on human-labeled
data to better reflect subjective aesthetics. However,
they focus on general appeal and text-image align-
ment, lacking user-specific preference modeling
crucial for personalized generation.

2.3 Multimodal Large Language Models

Multimodal Large Language Models
(MLLMs) (OpenAl, 2023) extend LLMs to
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Figure 2: Overview of the proposed method. The model takes a reference image, title, and meta token to generate
context embeddings via a Multimodal LLM. Combined with user embeddings, personalized features are injected
into a diffusion model through a dual-path adapter. Reward models evaluate the output and guide training via

feedback.

visual inputs via modality-specific encoders and
projection layers. Recent studies (Koh et al., 2023;
Zheng et al., 2023; Pan et al., 2023) explore three
paradigms for image generation: (1) symbolic
prompts (Xia et al., 2023), (2) continuous visual
features (Li et al.,, 2024), and (3) discrete to-
kens (Ge et al., 2024) decoded by VQ-GAN (Esser
et al., 2021) or Stable Diffusion. We adopt the
continuous approach for its semantic richness
and compatibility with diffusion models. While
models like ILLUME (Wang et al., 2024) enable
direct generation, we enhance both quality and
personalization via reward-guided training.

3 Methodology

We propose ICG (Figure 2), a framework for gen-
erating personalized cover images for short videos
and movies based on user preferences. It consists
of four key components: (1) MLLM-based con-
text prompting, which extracts features from the
reference image and title; (2) personalized prompt-
ing, which encodes user profiles and integrates
them with context features; (3) context adapta-
tion, which injects the personalized prompt into
the diffusion model; and (4) preference alignment
learning, which leverages multiple reward mod-
els—including a custom personalized reward—for
supervision.

3.1 MLLM-based Context Prompting

We propose a Multimodal Prompt Generator based
on the pre-trained MLLM Qwen2.5VL-7B (Bai

Reconstruction Loss

0---00
A girl wearing pearl earring

and Blue headscarf [‘ Linear Projection ]

LoRA
Multimodal LLM
g@ Johannes Vermeer, [@

Girl with_a Pearl Meta Token
Earring

?? MLLM Vision Encoder

Figure 3: Model designed to train meta token.

[D"'DD]

¥
CLIP Vision Encoder

Original Image

.m Transformation

Transformed Image

et al., 2025) to produce effective prompts for cover
generation. The model integrates visual cues from
areference image (I, s) and textual content (T};4c),
guided by a system instruction (7§,s) requesting:
""Please generate a drawing prompt that aligns
with the semantics of the specified reference cover
and content title."" This yields an explicit prompt:

PEIP = MLLM(ITefa Ttitlea Tsys)- (1)

The explicit prompt captures key entities from
both modalities, ensuring basic semantic alignment.
However, natural language, as a discrete represen-
tation, limits expressiveness. To address this, we
introduce a meta token block that complements
the prompt by capturing fine-grained multimodal
context features in continuous space.

To enhance domain-specific understanding, we
further design a Multimodal Generative Learn-



ing Stage (Figure 3). The MLLM receives Iy,
Tiiue, and meta tokens (Koh et al., 2023), which
are jointly attended to by text and image tokens.
The meta tokens are optimized to approximate the
CLIP-encoded embedding of I,y using a recon-
struction loss:

L = |[MLLM (Vene(I$"), Tyitte, Meta Token)
_CLIP(Iref)H%'

where V., is the MLLM vision encoder, and
Iﬁg‘}"s is a transformed version of I,.; (e.g., via
masking, blurring, or cropping) to enhance robust-
ness. Although CLIP embeddings alone provide
strong semantic signals, our reconstruction train-
ing enables the MLLM to jointly encode textual
context and transformed visual features, enriching
semantic alignment and robustness beyond CLIP’s
single-modal representation. While meta tokens
are trained with L,.., other tokens follow a stan-
dard next-token prediction objective. Once trained,
the MLLM outputs prompt-contextualized embed-
dings for personalized cover generation.

3.2 User-Profile-based Personalized
Prompting

The context representations and explicit text gener-
ated by the MLLM are generic and lack personal-
ization, limiting their ability to reflect diverse user
preferences. To address this, we introduce a User-
Profile-Based Personalized Prompt Generator,
which encodes user attributes—such as gender, age,
occupation, and preferred cover types—as person-
alized style preferences to guide visual output. For
example, a 27-year-old male teacher favoring car-
toons and children’s movies would receive prompts
adapted to cartoon-style aesthetics.

Formally, the multimodal context features (Cy. r)
are projected into N, hidden embeddings via a
linear layer. In parallel, user embeddings (Uy.),
obtained from a pretrained user encoder (e.g., a
two-tower CTR model (Covington et al., 2016)),
are projected into /V,, embeddings. The two sets
are concatenated one-to-one to form the final per-
sonalized context prompt C” :;

T

Proj = Layer Norm (Linear(x)) ,

Crep = Concat (Proj(Crey), Proj(Upre)) -
This provides a unified representation for generat-
ing covers that are both semantically aligned and
user-specific.

3.3 Personalized Context Adaptation

To inject personalized features into the pretrained
diffusion model, we adopt a dual-path cross-
attention mechanism inspired by Stable Diffu-
sion (Rombach et al., 2022) and DiT (Peebles and
Xie, 2023), where text features are integrated into
U-Net or transformer blocks via attention layers.

In each cross-attention layer, we introduce an
additional branch for the personalized context. The
outputs from both text and personalized paths are
aggregated to capture general semantics and user-
specific preferences. Given query features Z, text
features c¢;, and personalized features c,, the up-
dated output is:

7" = Attention(Q, K*, V*) 4 Attention(Q,
K?, V).

where Q = ZW,, is the query matrix. Kf, V*
and KP, VP are key-value pairs derived from c;
and ¢, respectively. While W, W, and WY are
inherited from the original model, W% and W}
are newly introduced and trained for personaliza-
tion. To preserve the pretrained model, we freeze
all original parameters and train only the newly
added projection layers. This lightweight adapta-
tion improves personalization while preserving the
generalization ability of pretrained diffusion mod-
els. As illustrated in Figure 2, user conditions are
optional: context embeddings enhance generation
quality, while user embeddings enable personaliza-
tion when available.

3.4 Personalized Preference Alignment
Learning

As real personalized covers are unavailable as
ground truth, traditional supervision (e.g., MSE)
is not applicable. Inspired by reward learning
from human feedback (RLHF), we guide training
with multiple reward models. Public reward mod-
els (Deng et al., 2024; Wallace et al., 2024) capture
general aesthetics but overlook user-specific prefer-
ences. To address this, we introduce a personalized
preference reward model that provides user-aware
feedback, enabling joint optimization through a
strategy we term Personalized Preference Align-
ment Learning.

3.4.1 Training of Personalized Preference
Reward Model.

Following prior work, we formulate user prefer-
ences as pairwise comparisons. Users with fewer



than six interactions are filtered out. For the remain-
ing users, interacted items are ranked by relevance
signals (e.g., clicks or ratings). The top k; items are
labeled as positive and the bottom ks as negative,
forming up to k; X ko training pairs.

The reward model is built on CLIP, enhanced
with transformer layers and fully connected (FC)
heads. Each input includes a title, caption (gen-
erated via CLIP-Interrogator'), user profile, and
image. These inputs are encoded and projected as
follows:

t = CLIPy(title) , ¢ = C LI Py (caption),
i = CLIP,s(image) , uw = CLI Py (user),
tr =FCi(t), ¢y = FCe(c),
if =FCi(i), up = FCyu(u),
te, i, up = Trans former(concat(ty, cy),if, uy),
p = FCper(concat(ts, iz, uz)).

where CLIP;,; and CLIP,;s are the CLIP text
and image encoders, and p is the predicted person-
alized preference score. The loss is defined as:

L:*EUND[IOg (O-(pm*pn ))] . ()

where p,, and p,, are scores for more- and less-
preferred items, respectively. To prevent overfitting,
only the last few layers of CLIP and the added
modules are trained.

3.4.2 Training with Multi-Reward Feedback.

Our goal is to generate covers that are both aes-
thetically appealing and aligned with user prefer-
ences. To achieve this, we employ three reward
models: 1) HPSv2: Evaluating color vividness
and content completeness; 2) PickScore: Measur-
ing overall visual aesthetics; 3) Personalized Re-
ward Model: Capturing user-specific preferences.
Training consists of two stages: 1) Initialization:
We align personalized features with the diffusion
model using a weak CLIP-based reconstruction
loss between generated images and their captions;
2) Reward Feedback Learning: For each sample
(title;, ref_img;, caption;), we extract personal-
ized features using the multimodal LLM and user
encoder. A latent x; is sampled from Gaussian
noise and denoised into image x( via the diffusion
model. The generated image is evaluated by all
reward models. The final training objective is a
weighted sum of reward losses:

»Ctotal = )\h»ch + )\per»cper + )\p['p + )\r»crec .

lhttps://github.com/pharmapsychotic/
clip-interrogator
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Figure 4: Qualitative comparison. Content titles, ref-
erence images and generated covers with different ap-
proaches

where Ly,, Lyer, and L, denote losses from HPSv2,
the personalized reward model, and PickScore, re-
spectively. L. ensures alignment between image
and caption. All weights X are set to 0.25. Only the
adapter and projector layers are updated, enabling
efficient optimization of both personalization and
visual quality.

4 Experiments

4.1 Datasets and Evaluation Metrics

We evaluate ICG on two public datasets represent-
ing short video and movie recommendation sce-
narios. (1) PixelRec? is a large-scale video cover
dataset; we use its 1M subset containing 0.3M cov-
ers across 22 domains, 1M user profiles, and 10M
interactions, along with metadata such as clicks,
likes, titles, and descriptions. (2) MovieLens’
includes 86K movies, 0.3M users, and 3.3M rat-
ings, with additional user demographics and movie
metadata (titles, genres, and covers). We conduct
both automatic and human evaluations. For image
quality, we report FID (Heusel et al., 2017) and
aesthetic scores using a LAION-trained predictor®.
For personalization, we compute LPIPS (Zhang
et al., 2018) and SSIM (Wang et al., 2004) between
generated and reference images. These metrics
jointly assess visual appeal, fidelity, and personal-
ization. Human evaluation further validates align-
ment with real-world user preferences.

4.2 Baselines

We compare ICG with three generative baselines:
(1) Text Inversion (Gal et al., 2022), which em-

2https://github.com/westlake-repl/PixelRec

3https://grouplens.org/datasets/movielens

4https://github.com/christophschuhmann/
improved-aesthetic-predictor
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Table 1: Quantitative comparisons. The best results are in bold and the second-best results are underlined.

Dataset PixelRec MovieLens

Metric LPIPS(})) SSIM(1) FID() Aesthetics(f) LPIPS({) SSIM(T) FID() Aesthetics(1)
Title+Image Rule-based 0.6446 0.1484 47.74 4.17 0.6512 0.1634 46.24 4.09
Text Inversion (Gal et al., 2022) 0.6282 0.1632 42.23 4.12 0.6345 0.2474 43.27 4.12
PMG (Shen et al., 2024) 0.5411 0.1624 35.18 4.21 0.4140 0.2515 33.93 4.11
I1ICG 0.5126 0.1724 33.06 4.87 0.4018 0.2695 31.23 4.77

beds user preferences into word tokens and com-
bines them with textual prompts for diffusion-based
generation; (2) PMG (Shen et al., 2024), which
transforms user-interacted and reference images
into text, then extracts preference keywords via a
pre-trained LLM to guide generation; and (3) a

Table 3: Quantitative ablation study of multimodal gen-
erative learning stage and meta tokens using the LPIPS
metric two datasets. N denotes the number of mul-
timodal tokens. The best results are in bold and the
second-best results are underlined.

N  Finetuning PixelRec MovieLens
rule-based variant of ICG, which replaces the : 04367 05991
personalized pipeline with a vanilla Stable Diffu- ) i 0‘4359 0.5482
sion model. Given only a referfence image anq title, 4 X 0.4398 0.5526
the MLLM generates a drawing prompt without 8 X 0.4495 0.5689
personalization, highlighting the benefits of end-to- ) Y 0.4194 05293
end optimization and MLLM-diffusion integration. 5 v 04163 05315
. 4 v 0.4255 0.5391
ngllsii(;l;lhe average score of generated covers in human 8 v 04231 0.5412
PiXelReC MOVieLens » z WI/O Personalization w/
""e,é @/;e’ Romance| Thriller
ICG 2.419 2.527 AONS ﬁ Mystery (%] Mysiry
Title+Image Rule-based 1.978 2.041 a g
Text Inversion 1.952 1.923 : ¢
PMG 2.152 1.994 pater

4.3 Implementation details

We use Qwen2.5VL-7B (Bai et al., 2025) as the
context prompt generator and adopt Stable Diffu-
sion V1.5 or Flux for cover image generation, with
adapters initialized from IP-Adapter-SD15 or IP-
Adapter-Flux. During multimodal finetuning, only
the adapter and projector layers are updated (meta
token length = 1, projected dimension = 1024), en-
suring compatibility across architectures. The full
model is trained for 50,000 iterations using two
32GB GPUs, with a learning rate of 1076 and a
guidance scale of 1.0. At inference, we use the
DDIM scheduler (Song et al., 2020) with 15 sam-
pling steps and a guidance scale of 7.0. The person-
alized reward model is trained separately on Pix-
elRec and MovieLens using 0.2M user-item pairs
(80%-10%-10% split), optimized with Adam (Ir
= 10%) and early stopping. It consists of frozen
CLIP encoders, two trainable transformer layers
(768 hidden size), and fully connected heads, total-
ing 20M trainable parameters.

INTERST
ELLAR

Figure 5: The effectiveness ablation of varying user
conditions.

4.4 Experimental Results
4.4.1 Qualitative comparison.

Figure 4 presents example outputs from ICG and
three baselines, alongside content titles and refer-
ence images. ICG consistently achieves superior
visual coherence and semantic alignment. In the
first example, it accurately conveys the theme and
color tone of “Dancing Practice: two dancers’ com-
bination dance,” while baselines fail to reflect the
intended meaning. The second row shows pre-
cise reconstruction of a cartoon character, whereas
PMG introduces irrelevant details and Text Inver-
sion omits key features. In the third case, it clearly



Table 4: Overall quantitative ablation study of the ICG
framework. The best results are in bold and the second-
best results are underlined.

Dataset PixelRec MovieLens

Metric LPIPS(J) FID({) LPIPS() FID()
ICG 0.5126 33.06 0.4018 31.23
w/o Meta token 0.5912 39.24 0.5854 37.02
w/o User feature 0.5203 32.67 0.4284 31.43
w/o Both 0.5893 38.45 0.5194 36.54

depicts a warm-up scene with a football and full-
body figure, effectively grounding the title, which
baselines overlook. Additional results on Movie-
Lens are discussed in later ablations.

4.4.2 Quantitative comparison.

As shown in Table 1, ICG consistently outperforms
all baselines on both PixelRec and MovieLens. It
achieves the lowest LPIPS (0.5126, 0.4018) and
FID (33.06, 31.23), and the highest SSIM (0.1724,
0.2695), indicating superior personalization, real-
ism, and structural fidelity. While PMG performs
reasonably on LPIPS and FID, it lags in aesthetics
and personalization. Text Inversion and the rule-
based baseline perform worst, with significantly
higher LPIPS and FID. ICG also attains the high-
est aesthetic scores (4.87, 4.77), benefiting from
joint supervision by public and personalized reward
models.

4.4.3 Human evaluation.

While quantitative and qualitative results confirm
the effectiveness of ICG in terms of personaliza-
tion and image quality, it remains unclear whether
the generated covers translate into improved user
engagement in real-world scenarios. To assess this,
we conducted a human evaluation comparing ICG
with three baselines. A total of 100 volunteers
rated 120 images—30 from each method—on a
1-3 scale, with higher scores indicating better qual-
ity. As shown in Table 2, ICG receives the highest
average scores, demonstrating stronger user appeal
in real-world scenarios.

4.5 Ablation and Analysis

We evaluate the impact of user feature conditions
on cover generation by measuring similarity to
users’ historical items (personalization) and dis-
tance to the reference image (fidelity). As shown
in Table 4, ICG effectively integrates user pref-
erences, with slightly reduced reference distance

CLIP+PickScore CLIP+PickScore CLIP+PickScore+
(1.5K Steps) (3K Steps) HPSv2(3K Steps)

CLIP (3K Steps)

Figure 6: The effectiveness ablation of the proposed
CLIP, PickScore and HPSv2 rewards.

Table 5: Quantitative ablation study of the reward mod-
els. The best results are in bold and the second-best
results are underlined.

Metric LPIPS(}) FID(])  Aesthetics(?)
ICG 0.5126 33.06 4.87
w/o CLIP 0.5504 35.76 4.71
w/o HPSv2+PickScore 0.5413 34.87 4.45
w/o Personalized Reward 0.5653 35.81 4.54

in movie scenes—indicating personalization en-
hances alignment with original content.

We further visualize the impact of user condi-
tions on generation. As shown in Figure 5, for
Harry Potter, the model adapts styles such as car-
toon, romance, or thriller based on user preferences;
for Interstellar, it integrates elements like astro-
nauts, aliens, and oceans. These results demon-
strate that ICG tailors cover styles to individual
tastes while preserving core semantics.

4.5.1 Meta tokens.

We evaluate the impact of the multimodal genera-
tive learning stage and the number of meta tokens
(IN) on personalization using LPIPS scores on Pix-

ICG + Esthetic
Retro Anime

ICG + Realistic ICG +
Vision V4.0 Anything V4.0

Reference

Figure 7: Generated Example Covers. Despite being
trained on the base Stable Diffusion v1.5, our model
can be seamlessly applied to a range of community
checkpoints.



elRec and MovielLens. As shown in Table 3, fine-
tuning notably improves performance, especially
on MovieLens. For non-finetuned models, larger N
improves results, while finetuned models perform
best at N = 2, with higher values degrading per-
formance—indicating that too many tokens reduce
embedding effectiveness. Table 4 further shows
that removing meta tokens significantly harms both
personalization and image quality, underscoring
their importance in capturing multimodal context.

Table 6: Personalized preference prediction accuracy
on test sets of PixelRec and MovieLens under different
setting

PixelRec  MovieLens
Personalized Reward Model 85.2 86.2
Only image 53.8 54.1
Image and title 61.3 67.1
Image and user profile 74.6 78.3
w/o transformers 70.5 72.5

4.5.2 Reward models.

As detailed in the Methodology, the personalized
reward model is essential for enabling differen-
tiable training in personalized cover generation.
We assess its effectiveness using preference accu-
racy from pairwise comparisons of user-interacted
items ranked by view counts (PixelRec) or rat-
ings (MovieLens). As shown in Table 6, models
relying solely on image features perform poorly,
while adding titles or user profiles significantly
boosts accuracy. Transformer-based fusion yields
further gains, underscoring the model’s ability to
capture multimodal preferences. We further ab-
late all reward components. Figure 6 shows that
using only CLIP similarity introduces visual dis-
tortions; adding HPSv2 improves realism but may
introduce contrast bias, which PickScore helps mit-
igate by enhancing smoothness and sharpness. As
shown in Table 5, removing CLIP or the person-
alized reward notably degrades fidelity and align-
ment, while omitting HPSv2 or PickScore harms
aesthetics. These results underscore the comple-
mentary roles of all rewards, with the personalized
module being critical for modeling user-specific
preferences in ICG.

4.5.3 Analysis of compatibility.

We show that our dual-path cross-attention adapter
is a universal module, as the diffusion model is
frozen during training. This allows ICG to gen-
eralize to custom checkpoints fine-tuned from the

Table 7: Comparison of MMGCN’s recommenda-
tion performance using different item and user image
features. Best results are highlighted in bold, and
second-best results are underlined.

Item User Recall@10 NDCG@10
w/o image X X 16.17% 0.0749
Item v X 17.94% 0.0853
Averaged-user v Average 18.99% 0.0991
Generated-user v Generated 20.21% 0.1016

same base (SD v1.5). As shown in Figure 7, it
works out of the box on community models from
HuggingFace and CivitAi (Civitai, 2024), includ-
ing Realistic Vision V4.0 (Adhik Joshi, 2024),
Anything v4 (Xyn Al, 2024), and Esthetic Retro
Anime (OneRing, 2024).

4.6 Applications in Recommendation Tasks

We evaluated the effectiveness of ICG-generated
covers in recommendation tasks through of-
fline testing on the MovieLens dataset using
MMGCN (Wei et al., 2019). Four settings were
compared: (1) w/o image: using only item IDs;
(2) Item: using original item images; (3) Averaged-
user: using averaged images from users’ past in-
teractions; and (4) Generated-user: using person-
alized images generated by ICG. As shown in Ta-
ble 7, image features consistently improve perfor-
mance, with our generated covers achieving no-
table gains in Recall and NDCG (by 2.27% and
19.1%, respectively). These results highlight the
downstream benefits of high-quality personalized
covers. Future work will explore online A/B test-
ing to directly assess their impact on click-through
rate and user engagement.

5 Conclusion

We propose ICG, a unified framework for person-
alized cover generation that integrates multimodal
large language models (MLLMs) with diffusion
models. By leveraging context and user-profile
prompts, it generates outputs aligned with both
item semantics and user preferences. A multi-
reward learning strategy enables end-to-end opti-
mization without the need for ground-truth labels.
Experiments on two datasets demonstrate consis-
tent improvements in image quality, semantic rel-
evance, and personalization. As a plug-and-play
module, ICG can be seamlessly integrated into
existing diffusion pipelines.



Limitations

Although ICG demonstrates strong performance
in generating personalized cover images, several
limitations remain. First, the current framework
focuses on image-based personalization, support-
ing only textual and visual inputs. Extending the
method to other modalities, such as audio or video,
could broaden its applicability in multimedia rec-
ommendation scenarios.

Second, the dual-path cross-attention adapter re-
lies on static user profile embeddings, limiting the
model’s responsiveness to dynamic user behaviors
or shifting preferences. Incorporating real-time
user modeling or session-based signals represents
a promising direction to further enhance personal-
ization.

Third, our personalized preference reward model
relies on offline interaction data, potentially miss-
ing nuanced or context-specific preferences. In-
deed, our experiments show slightly degraded per-
formance (accuracy drops from 85.2% to 76.3%)
on cold-start users (with <5 interactions). Future
work should explore integrating zero-shot or few-
shot personalization approaches to better handle
sparse-feedback scenarios.

Fourth, the model’s effectiveness depends heav-
ily on training data quality and diversity. Data
biases related to user attributes or item styles may
limit generalization to unseen demographics or do-
mains. Mitigating these biases and enhancing ro-
bustness across diverse user groups remain critical
challenges.

Fifth, although multi-reward learning enables
end-to-end optimization, it introduces computa-
tional overhead (approximately 20% increase in
training time). Additionally, hyper-parameter sen-
sitivity analysis (Section 4.5) indicates marginal
improvements within a narrow range of reward
weights (A = 0.2 ~ 0.3), leading us to adopt fixed
settings (A = 0.25) for stability. Future research
could explore adaptive weighting strategies and re-
ward model distillation to further optimize training
efficiency.

Finally, while our experiments demonstrate
adapter compatibility across various Stable
Diffusion-based models, its generalizability to sig-
nificantly different diffusion architectures (e.g.,
DiT, DALLE) remains untested and constitutes an
interesting future investigation. Furthermore, we
currently lack results from online A/B testing. Fu-
ture work will involve deploying ICG in real-world

recommendation systems to directly measure im-
provements in user engagement metrics (e.g., CTR,
dwell time). Computational complexity analysis in-
dicates our inference latency is approximately 1.5
seconds per image on V100 GPUs, highlighting the
necessity for optimization in real-time applications.

These limitations outline clear directions for fu-
ture research, aiming to enhance the model’s adapt-
ability, scalability, personalization effectiveness,
and practical applicability in recommendation sce-
narios.

References

2022. Midjourney. https://www.midjourney.com/
Accessed: August 3, 2023.

Adhik Joshi. 2024.
2024-03-06.

realistic vision v40. Accessed:

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wen-
bin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie
Wang, Jun Tang, et al. 2025. Qwen2. 5-vl technical
report. arXiv preprint arXiv:2502.13923.

James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jian-
feng Wang, Linjie Li, Long Ouyang, Juntang Zhuang,
Joyce Lee, Yufei Guo, et al. 2023. Improving image
generation with better captions. Computer Science.
https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8.

Tingfeng Cao, Chengyu Wang, Bingyan Liu, Ziheng
Wu, Jinhui Zhu, and Jun Huang. 2023. Beautiful-
prompt: Towards automatic prompt engineering for
text-to-image synthesis. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1-11.

Civitai. 2024. Civitai. Accessed: 2024-03-06.

Paul Covington, Jay Adams, and Emre Sargin. 2016.
Deep neural networks for youtube recommendations.
In Proceedings of the 10th ACM Conference on Rec-
ommender Systems (RecSys), pages 191-198.

Fei Deng, Qifei Wang, Wei Wei, Tingbo Hou, and
Matthias Grundmann. 2024. Prdp: Proximal re-
ward difference prediction for large-scale reward fine-
tuning of diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 7423-7433.

Patrick Esser, Robin Rombach, and Bjorn Ommer. 2021.
Taming transformers for high-resolution image syn-
thesis. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
12873-12883.

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik,
Amit H Bermano, Gal Chechik, and Daniel Cohen-
Or. 2022. An image is worth one word: Personaliz-
ing text-to-image generation using textual inversion.
arXiv preprint arXiv:2208.01618.


https://www.midjourney.com/
https://huggingface.co/stablediffusionapi/realistic-vision-v40
https://civitai.com/

Yuying Ge, Sijie Zhao, Ziyun Zeng, Yixiao Ge, Chen Li,
Xintao Wang, and Ying Shan. 2024. Making llama
SEE and draw with SEED tokenizer. In The Twelfth
International Conference on Learning Representa-
tions (ICLR).

Yaru Hao, Zewen Chi, Li Dong, and Furu Wei. 2023.
Optimizing prompts for text-to-image generation. In
Annual Conference on Neural Information Process-
ing Systems (NeurlPS).

Nailei Hei, Qianyu Guo, Zihao Wang, Yan Wang,
Haofen Wang, and Wengiang Zhang. A user-friendly
framework for generating model-preferred prompts
in text-to-image synthesis. In Thirty-Eighth AAAI
Conference on Artificial Intelligence (AAAI), pages
2139-2147.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. 2017. Gans
trained by a two time-scale update rule converge to
a local nash equilibrium. In Annual Conference on
Neural Information Processing Systems (NeurIPS),
pages 6626—-6637.

Ivan Jarsky, Valeria Efimova, Ilya Bizyaev, and Andrey
Filchenkov. 2024. Conditional vector graphics gen-
eration for music cover images. In Proceedings of
the 19th International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and
Applications (VISIGRAPP), pages 233-243.

Yuval Kirstain, Adam Polyak, Uriel Singer, Shahbuland
Matiana, Joe Penna, and Omer Levy. 2023. Pick-a-
pic: An open dataset of user preferences for text-to-
image generation. In Annual Conference on Neural
Information Processing Systems (NeurIPS).

Jing Yu Koh, Daniel Fried, and Russ Salakhutdinov.
2023. Generating images with multimodal language
models. In Annual Conference on Neural Informa-
tion Processing Systems (NeurIPS).

Dongxu Li, Junnan Li, and Steven Hoi. 2024. Blip-
diffusion: Pre-trained subject representation for con-
trollable text-to-image generation and editing. Ad-

vances in Neural Information Processing Systems,
36.

Omneky. 2024. How ai image generation is changing
the face of advertising.

OneRing. 2024. era-esthetic retro anime. Accessed:
2024-03-06.

OpenAl. 2023.
abs/2303.08774.

GPT-4 technical report. CoRR,

Xichen Pan, Li Dong, Shaohan Huang, Zhiliang Peng,
Wenhu Chen, and Furu Wei. 2023. Kosmos-g: Gen-
erating images in context with multimodal large lan-
guage models. arXiv preprint arXiv:2310.02992.

Xichen Pan, Li Dong, Shaohan Huang, Zhiliang Peng,
Wenhu Chen, and Furu Wei. 2024. Kosmos-g: Gen-
erating images in context with multimodal large lan-
guage models. In The Twelfth International Confer-
ence on Learning Representations (ICLR).

10

William Peebles and Saining Xie. 2023. Scalable diffu-
sion models with transformers. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision, pages 4195-4205.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748-8763. PMLR.

Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Bjorn Ommer. 2022. High-
resolution image synthesis with latent diffusion mod-
els. In IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 10674—
10685.

Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba,
Vicki Cheung, Alec Radford, and Xi Chen. 2016.
Improved techniques for training gans. In Annual
Conference on Neural Information Processing Sys-
tems (NeurIPS), pages 2226-2234.

Xiaoteng Shen, Rui Zhang, Xiaoyan Zhao, Jieming Zhu,
and Xi Xiao. 2024. PMG : Personalized multimodal
generation with large language models. In Proceed-
ings of the ACM on Web Conference 2024 (WWW),
pages 3833-3843.

Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502.

Kunpeng Song, Yizhe Zhu, Bingchen Liu, Qing Yan,
Ahmed Elgammal, and Xiao Yang. 2024. Moma:
Multimodal LLM adapter for fast personalized image
generation. CoRR, abs/2404.05674.

Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi
Zhou, Aaron Lou, Senthil Purushwalkam, Stefano
Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik.
2024. Diffusion model alignment using direct prefer-
ence optimization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 8228-8238.

Chunwei Wang, Guansong Lu, Junwei Yang, Run-
hui Huang, Jianhua Han, Lu Hou, Wei Zhang, and
Hang Xu. 2024. Illume: Illuminating your 1lms
to see, draw, and self-enhance. arXiv preprint
arXiv:2412.06673.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P
Simoncelli. 2004. Image quality assessment: from
error visibility to structural similarity. IEEE transac-
tions on image processing, 13(4):600-612.

Yinwei Wei, Xiang Wang, Liqgiang Nie, Xiangnan He,
Richang Hong, and Tat-Seng Chua. 2019. Mmgcn:
Multi-modal graph convolution network for person-
alized recommendation of micro-video. In Proceed-
ings of the 27th ACM international conference on
multimedia, pages 1437—-1445.


https://www.omneky.com/blog/how-ai-image-generation-is-changing-the-face-of-advertising
https://www.omneky.com/blog/how-ai-image-generation-is-changing-the-face-of-advertising
https://www.omneky.com/blog/how-ai-image-generation-is-changing-the-face-of-advertising
https://civitai.com/models/137781/era-esthetic-retro-anime

Xiaoshi Wu, Yiming Hao, Keqiang Sun, Yixiong Chen,
Feng Zhu, Rui Zhao, and Hongsheng Li. 2023. Hu-
man preference score v2: A solid benchmark for eval-
uating human preferences of text-to-image synthesis.
CoRR, abs/2306.09341.

Bin Xia, Shiyin Wang, Yingfan Tao, Yitong Wang, and
Jiaya Jia. 2023. Llmga: Multimodal large language
model based generation assistant. arXiv preprint
arXiv:2311.16500.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong,
Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong.
2023. Imagereward: Learning and evaluating human
preferences for text-to-image generation. In Annual
Conference on Neural Information Processing Sys-
tems (NeurIPS).

Yiyan Xu, Wenjie Wang, Fuli Feng, Yunshan Ma, Jizhi
Zhang, and Xiangnan He. 2024. Difashion: Towards
personalized outfit generation and recommendation.
CoRR, abs/2402.17279.

Xyn Al 2024. Anything v4.0. Accessed: 2024-03-06.

Hao Yang, Jianxin Yuan, Shuai Yang, Linhe Xu, Shuo
Yuan, and Yifan Zeng. 2024. A new creative genera-
tion pipeline for click-through rate with stable diffu-
sion model. In Companion Proceedings of the ACM
on Web Conference 2024 (WWW), pages 180-189.

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala. 2023.
Adding conditional control to text-to-image diffusion
models. In IEEE/CVF International Conference on
Computer Vision (ICCV), pages 3813-3824.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-
man, and Oliver Wang. 2018. The unreasonable ef-
fectiveness of deep features as a perceptual metric.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 586-595.

Sixian Zhang, Bohan Wang, Jungiang Wu, Yan Li,
Tingting Gao, Di Zhang, and Zhongyuan Wang. 2024.
Learning multi-dimensional human preference for
text-to-image generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 8018-8027.

Kaizhi Zheng, Xuehai He, and Xin Eric Wang. 2023.
Minigpt-5: Interleaved vision-and-language genera-
tion via generative vokens. CoRR, abs/2310.02239.

11


https://huggingface.co/xyn-ai/anything-v4.0

	Introduction
	Related Work
	Conditional Image Generation
	Automated Assessment of Image Generation
	Multimodal Large Language Models

	Methodology
	MLLM-based Context Prompting
	User-Profile-based Personalized Prompting
	Personalized Context Adaptation
	Personalized Preference Alignment Learning
	Training of Personalized Preference Reward Model.
	Training with Multi-Reward Feedback.


	Experiments
	Datasets and Evaluation Metrics
	Baselines
	Implementation details
	Experimental Results
	Qualitative comparison.
	Quantitative comparison.
	Human evaluation.

	Ablation and Analysis
	Meta tokens.
	Reward models.
	Analysis of compatibility.

	Applications in Recommendation Tasks

	Conclusion

