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Abstract001

Recent advances in multimodal large language002
models (MLLMs) and diffusion models (DMs)003
have opened new possibilities for AI-generated004
content. Yet, personalized cover image genera-005
tion remains underexplored, despite its critical006
role in boosting user engagement on digital007
platforms. We propose ICG, a novel frame-008
work that integrates MLLM-based prompting009
with personalized preference alignment to gen-010
erate high-quality, contextually relevant covers.011
ICG extracts semantic features from item ti-012
tles and reference images via meta tokens, re-013
fines them with user embeddings, and injects014
the resulting personalized context into the dif-015
fusion model. To address the lack of labeled016
supervision, we adopt a multi-reward learning017
strategy that combines public aesthetic and rel-018
evance rewards with a personalized preference019
model trained from user behavior. Unlike prior020
pipelines relying on handcrafted prompts and021
disjointed modules, ICG employs an adapter022
to bridge MLLMs and diffusion models for023
end-to-end training. Experiments demonstrate024
that ICG significantly improves image quality,025
personalization, user appeal, and downstream026
recommendation accuracy, providing a scalable027
solution for real-world content platforms.028

1 Introduction029

Large language models (LLMs) and diffusion mod-030

els (DMs) have driven the rise of AI-generated031

content (AIGC) in applications such as personal as-032

sistants, chatbots, digital art, and cover image gen-033

eration (Omneky, 2024; Jarsky et al., 2024; Yang034

et al., 2024). In recommender systems—especially035

news feeds—blurry, mismatched, or unappealing036

covers are common, undermining user engagement.037

Thus, improving cover image generation is critical038

to enhancing recommendation quality.039

Text-to-image models such as Stable Diffu-040

sion (Rombach et al., 2022), Midjourney (mid,041

2022), and DALLE-3 (Betker et al., 2023) are042
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Figure 1: The overall pipeline for cover image genera-
tion.

widely used by designers and publishers for ban- 043

ner and cover image generation. However, they 044

rely heavily on manually crafted prompts and care- 045

ful prompt engineering, which limits scalability 046

for platforms handling millions of items, such as 047

news aggregators, streaming services (e.g., Netflix, 048

YouTube), and social media feeds (e.g., TikTok, 049

Instagram). In these scenarios, visually appealing 050

and context-relevant cover images are critical for 051

capturing user attention and improving engagement. 052

As shown in Figure 1, a promising solution is to 053

use multimodal large language models (MLLMs) 054

to automatically extract semantics from raw item 055

content and generate prompts for Stable Diffusion. 056

Despite its simplicity, this pipeline faces several 057

challenges in practical adoption. 058

Firstly, although MLLM-based prompt genera- 059

tion eliminates the need to manually craft prompts 060

for each item, it still requires careful design of 061

prompt instructions for the MLLMs. Prior works 062

such as BeautifulPrompt (Cao et al., 2023), Promp- 063

tist (Hao et al., 2023), and UF-FGTG (Hei et al.) 064

aim to automate or refine prompts using large lan- 065

guage models, but they focus on improving existing 066

prompt text. In contrast, our task starts from raw 067

item content (e.g., titles), rendering these methods 068

inapplicable. Furthermore, the absence of golden 069

prompt references for cover images limits the pos- 070

sibility of supervised fine-tuning for MLLMs in 071

this setting. 072
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Secondly, the current pipeline is disjointed and073

lacks end-to-end optimization, leading to issues074

such as MLLM hallucinations and misalignment075

with diffusion models, which often result in low-076

quality or semantically irrelevant covers. This hin-077

ders error correction and model refinement. Re-078

cent progress in multimodal AI has produced mod-079

els like MiniGPT-5 (Zheng et al., 2023), SEED-080

LLaMA (Ge et al., 2024), and Kosmos-G (Pan081

et al., 2024), which integrate MLLMs with diffu-082

sion decoders for unified understanding and gen-083

eration. However, they still rely heavily on user-084

crafted prompts. In addition, the scarcity of high-085

quality cover images limits supervision when gen-086

erating directly from raw item content.087

Thirdly, current text-to-image generation meth-088

ods lack personalization, often producing covers089

that fail to reflect user preferences and reduce en-090

gagement. For instance, male users may prefer091

dark, professional styles, while female users may092

favor pink, cute designs. Aligning covers with in-093

dividual tastes can boost click-through rates and094

user experience. Prior work like PMG (Shen et al.,095

2024) and DiFashion (Xu et al., 2024) explores096

this direction but has key limitations: (1) Both use097

the next item’s image as the training target, assum-098

ing high-quality covers—often untrue in practice;099

(2) PMG represents preferences as discrete key-100

words via LLMs, hindering end-to-end optimiza-101

tion and fine-grained preference capture. Conse-102

quently, these methods often fail to generate visu-103

ally appealing, truly personalized outputs.104

To address these challenges, we propose ICG, a105

unified framework for personalized cover genera-106

tion that integrates MLLMs with reward-based op-107

timization. It leverages item content—comprising108

a reference image and title—to retain original se-109

mantics, while personalization is guided by user110

interaction histories. Textual and visual inputs are111

encoded by MLLMs, with meta tokens capturing112

contextual features that are injected into the diffu-113

sion model via an adapter for end-to-end training.114

User features are fused with context to condition115

generation. The model is optimized using a differ-116

entiable multi-reward framework, combining pub-117

lic aesthetic and relevance scores with a person-118

alized reward model trained on user-item interac-119

tions, enabling content-aligned and user-specific120

generation.121

The main contributions of this work are:122

(1) We present the first framework that inte-123

grates MLLMs with reward learning for person-124

alized cover image generation, demonstrating its 125

effectiveness in recommendation scenarios. 126

(2) We introduce meta tokens to capture contex- 127

tual semantics and fuse them with user embeddings 128

via a plug-and-play adapter into a diffusion model. 129

A multi-reward learning framework enables end- 130

to-end training guided by aesthetics, content rel- 131

evance, and user preference alignment—without 132

requiring explicit supervision. 133

(3) Extensive experiments show that ICG con- 134

sistently outperforms prior methods in aesthetics, 135

semantic fidelity, and personalization, leading to 136

improved user engagement. 137

2 Related Work 138

2.1 Conditional Image Generation 139

Conditional image generation enables personalized 140

synthesis from inputs like text, poses, edges, seman- 141

tic maps, and reference images. Text-guided mod- 142

els such as CLIP encode semantics into latent space. 143

Diffusion models like Stable Diffusion (Rombach 144

et al., 2022) set the current standard. Methods like 145

ControlNet (Zhang et al., 2023) and MoMA (Song 146

et al., 2024) enhance generation with structured 147

control. For personalization, user behavior-based 148

conditioning has been explored. DiFashion (Xu 149

et al., 2024) uses interaction history but assumes 150

high-quality inputs; CG4CTR (Yang et al., 2024) 151

applies reward filtering but lacks end-to-end learn- 152

ing. Both focus on specific domains, whereas our 153

method targets general-purpose cover generation 154

and is thus not directly comparable. 155

2.2 Automated Assessment of Image 156

Generation 157

Traditional metrics like IS (Salimans et al., 2016), 158

FID (Heusel et al., 2017), and CLIP Score (Radford 159

et al., 2021) assess image quality and consistency 160

but overlook human preferences. Recent meth- 161

ods—PickScore (Kirstain et al., 2023), HPSv2 (Wu 162

et al., 2023), ImageReward (Xu et al., 2023), and 163

MPS (Zhang et al., 2024)—address this by fine- 164

tuning vision-language models on human-labeled 165

data to better reflect subjective aesthetics. However, 166

they focus on general appeal and text-image align- 167

ment, lacking user-specific preference modeling 168

crucial for personalized generation. 169

2.3 Multimodal Large Language Models 170

Multimodal Large Language Models 171

(MLLMs) (OpenAI, 2023) extend LLMs to 172
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Figure 2: Overview of the proposed method. The model takes a reference image, title, and meta token to generate
context embeddings via a Multimodal LLM. Combined with user embeddings, personalized features are injected
into a diffusion model through a dual-path adapter. Reward models evaluate the output and guide training via
feedback.

visual inputs via modality-specific encoders and173

projection layers. Recent studies (Koh et al., 2023;174

Zheng et al., 2023; Pan et al., 2023) explore three175

paradigms for image generation: (1) symbolic176

prompts (Xia et al., 2023), (2) continuous visual177

features (Li et al., 2024), and (3) discrete to-178

kens (Ge et al., 2024) decoded by VQ-GAN (Esser179

et al., 2021) or Stable Diffusion. We adopt the180

continuous approach for its semantic richness181

and compatibility with diffusion models. While182

models like ILLUME (Wang et al., 2024) enable183

direct generation, we enhance both quality and184

personalization via reward-guided training.185

3 Methodology186

We propose ICG (Figure 2), a framework for gen-187

erating personalized cover images for short videos188

and movies based on user preferences. It consists189

of four key components: (1) MLLM-based con-190

text prompting, which extracts features from the191

reference image and title; (2) personalized prompt-192

ing, which encodes user profiles and integrates193

them with context features; (3) context adapta-194

tion, which injects the personalized prompt into195

the diffusion model; and (4) preference alignment196

learning, which leverages multiple reward mod-197

els—including a custom personalized reward—for198

supervision.199

3.1 MLLM-based Context Prompting200

We propose a Multimodal Prompt Generator based201

on the pre-trained MLLM Qwen2.5VL-7B (Bai202
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Figure 3: Model designed to train meta token.

et al., 2025) to produce effective prompts for cover 203

generation. The model integrates visual cues from 204

a reference image (Iref ) and textual content (Ttitle), 205

guided by a system instruction (Tsys) requesting: 206

"Please generate a drawing prompt that aligns 207

with the semantics of the specified reference cover 208

and content title." This yields an explicit prompt: 209

Pexp = MLLM(Iref , Ttitle, Tsys). (1) 210

The explicit prompt captures key entities from 211

both modalities, ensuring basic semantic alignment. 212

However, natural language, as a discrete represen- 213

tation, limits expressiveness. To address this, we 214

introduce a meta token block that complements 215

the prompt by capturing fine-grained multimodal 216

context features in continuous space. 217

To enhance domain-specific understanding, we 218

further design a Multimodal Generative Learn- 219
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ing Stage (Figure 3). The MLLM receives Iref ,220

Ttitle, and meta tokens (Koh et al., 2023), which221

are jointly attended to by text and image tokens.222

The meta tokens are optimized to approximate the223

CLIP-encoded embedding of Iref using a recon-224

struction loss:225

L = ||MLLM(Venc(I
trans
ref ), Ttitle,Meta Token)

−CLIP (Iref )||22.
226

where Venc is the MLLM vision encoder, and227

Itransref is a transformed version of Iref (e.g., via228

masking, blurring, or cropping) to enhance robust-229

ness. Although CLIP embeddings alone provide230

strong semantic signals, our reconstruction train-231

ing enables the MLLM to jointly encode textual232

context and transformed visual features, enriching233

semantic alignment and robustness beyond CLIP’s234

single-modal representation. While meta tokens235

are trained with Lrec, other tokens follow a stan-236

dard next-token prediction objective. Once trained,237

the MLLM outputs prompt-contextualized embed-238

dings for personalized cover generation.239

3.2 User-Profile-based Personalized240

Prompting241

The context representations and explicit text gener-242

ated by the MLLM are generic and lack personal-243

ization, limiting their ability to reflect diverse user244

preferences. To address this, we introduce a User-245

Profile-Based Personalized Prompt Generator,246

which encodes user attributes—such as gender, age,247

occupation, and preferred cover types—as person-248

alized style preferences to guide visual output. For249

example, a 27-year-old male teacher favoring car-250

toons and children’s movies would receive prompts251

adapted to cartoon-style aesthetics.252

Formally, the multimodal context features (Cref )253

are projected into Nc hidden embeddings via a254

linear layer. In parallel, user embeddings (Upre),255

obtained from a pretrained user encoder (e.g., a256

two-tower CTR model (Covington et al., 2016)),257

are projected into Nu embeddings. The two sets258

are concatenated one-to-one to form the final per-259

sonalized context prompt Cper
ref :260

Proj = LayerNorm (Linear(∗)) ,
Cper
ref = Concat (Proj(Cref ), P roj(Upre)) .

261

This provides a unified representation for generat-262

ing covers that are both semantically aligned and263

user-specific.264

3.3 Personalized Context Adaptation 265

To inject personalized features into the pretrained 266

diffusion model, we adopt a dual-path cross- 267

attention mechanism inspired by Stable Diffu- 268

sion (Rombach et al., 2022) and DiT (Peebles and 269

Xie, 2023), where text features are integrated into 270

U-Net or transformer blocks via attention layers. 271

In each cross-attention layer, we introduce an 272

additional branch for the personalized context. The 273

outputs from both text and personalized paths are 274

aggregated to capture general semantics and user- 275

specific preferences. Given query features Z, text 276

features ct, and personalized features cp, the up- 277

dated output is: 278

Znew = Attention(Q,Kt,Vt) + Attention(Q,

Kp,Vp).
279

where Q = ZWq is the query matrix. Kt, Vt 280

and Kp, Vp are key-value pairs derived from ct 281

and cp, respectively. While Wq, Wt
k, and Wt

v are 282

inherited from the original model, Wp
k and Wp

v 283

are newly introduced and trained for personaliza- 284

tion. To preserve the pretrained model, we freeze 285

all original parameters and train only the newly 286

added projection layers. This lightweight adapta- 287

tion improves personalization while preserving the 288

generalization ability of pretrained diffusion mod- 289

els. As illustrated in Figure 2, user conditions are 290

optional: context embeddings enhance generation 291

quality, while user embeddings enable personaliza- 292

tion when available. 293

3.4 Personalized Preference Alignment 294

Learning 295

As real personalized covers are unavailable as 296

ground truth, traditional supervision (e.g., MSE) 297

is not applicable. Inspired by reward learning 298

from human feedback (RLHF), we guide training 299

with multiple reward models. Public reward mod- 300

els (Deng et al., 2024; Wallace et al., 2024) capture 301

general aesthetics but overlook user-specific prefer- 302

ences. To address this, we introduce a personalized 303

preference reward model that provides user-aware 304

feedback, enabling joint optimization through a 305

strategy we term Personalized Preference Align- 306

ment Learning. 307

3.4.1 Training of Personalized Preference 308

Reward Model. 309

Following prior work, we formulate user prefer- 310

ences as pairwise comparisons. Users with fewer 311
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than six interactions are filtered out. For the remain-312

ing users, interacted items are ranked by relevance313

signals (e.g., clicks or ratings). The top k1 items are314

labeled as positive and the bottom k2 as negative,315

forming up to k1 × k2 training pairs.316

The reward model is built on CLIP, enhanced317

with transformer layers and fully connected (FC)318

heads. Each input includes a title, caption (gen-319

erated via CLIP-Interrogator1), user profile, and320

image. These inputs are encoded and projected as321

follows:322

t = CLIPtxt(title) , c = CLIPtxt(caption),

i = CLIPvis(image) , u = CLIPtxt(user),

tf = FCt(t) , cf = FCc(c),

if = FCi(i) , uf = FCu(u),

tt, it, ut = Transformer(concat(tf , cf ), if , uf ),

p = FCper(concat(tt, it, ut)).

323

where CLIPtxt and CLIPvis are the CLIP text324

and image encoders, and p is the predicted person-325

alized preference score. The loss is defined as:326

L = − EU∼D[ log (σ( pm − pn )) ] . (2)327

where pm and pn are scores for more- and less-328

preferred items, respectively. To prevent overfitting,329

only the last few layers of CLIP and the added330

modules are trained.331

3.4.2 Training with Multi-Reward Feedback.332

Our goal is to generate covers that are both aes-333

thetically appealing and aligned with user prefer-334

ences. To achieve this, we employ three reward335

models: 1) HPSv2: Evaluating color vividness336

and content completeness; 2) PickScore: Measur-337

ing overall visual aesthetics; 3) Personalized Re-338

ward Model: Capturing user-specific preferences.339

Training consists of two stages: 1) Initialization:340

We align personalized features with the diffusion341

model using a weak CLIP-based reconstruction342

loss between generated images and their captions;343

2) Reward Feedback Learning: For each sample344

(titlei, ref_imgi, captioni), we extract personal-345

ized features using the multimodal LLM and user346

encoder. A latent xt is sampled from Gaussian347

noise and denoised into image x0 via the diffusion348

model. The generated image is evaluated by all349

reward models. The final training objective is a350

weighted sum of reward losses:351

Ltotal = λhLh + λperLper + λpLp + λrLrec .352

1https://github.com/pharmapsychotic/
clip-interrogator
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Figure 4: Qualitative comparison. Content titles, ref-
erence images and generated covers with different ap-
proaches

where Lh, Lper, and Lp denote losses from HPSv2, 353

the personalized reward model, and PickScore, re- 354

spectively. Lrec ensures alignment between image 355

and caption. All weights λ are set to 0.25. Only the 356

adapter and projector layers are updated, enabling 357

efficient optimization of both personalization and 358

visual quality. 359

4 Experiments 360

4.1 Datasets and Evaluation Metrics 361

We evaluate ICG on two public datasets represent- 362

ing short video and movie recommendation sce- 363

narios. (1) PixelRec2 is a large-scale video cover 364

dataset; we use its 1M subset containing 0.3M cov- 365

ers across 22 domains, 1M user profiles, and 10M 366

interactions, along with metadata such as clicks, 367

likes, titles, and descriptions. (2) MovieLens3 368

includes 86K movies, 0.3M users, and 3.3M rat- 369

ings, with additional user demographics and movie 370

metadata (titles, genres, and covers). We conduct 371

both automatic and human evaluations. For image 372

quality, we report FID (Heusel et al., 2017) and 373

aesthetic scores using a LAION-trained predictor4. 374

For personalization, we compute LPIPS (Zhang 375

et al., 2018) and SSIM (Wang et al., 2004) between 376

generated and reference images. These metrics 377

jointly assess visual appeal, fidelity, and personal- 378

ization. Human evaluation further validates align- 379

ment with real-world user preferences. 380

4.2 Baselines 381

We compare ICG with three generative baselines: 382

(1) Text Inversion (Gal et al., 2022), which em- 383

2https://github.com/westlake-repl/PixelRec
3https://grouplens.org/datasets/movielens
4https://github.com/christophschuhmann/

improved-aesthetic-predictor
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Table 1: Quantitative comparisons. The best results are in bold and the second-best results are underlined.

Dataset PixelRec MovieLens

Metric LPIPS(↓) SSIM(↑) FID(↓) Aesthetics(↑) LPIPS(↓) SSIM(↑) FID(↓) Aesthetics(↑)

Title+Image Rule-based 0.6446 0.1484 47.74 4.17 0.6512 0.1634 46.24 4.09
Text Inversion (Gal et al., 2022) 0.6282 0.1632 42.23 4.12 0.6345 0.2474 43.27 4.12
PMG (Shen et al., 2024) 0.5411 0.1624 35.18 4.21 0.4140 0.2515 33.93 4.11
ICG 0.5126 0.1724 33.06 4.87 0.4018 0.2695 31.23 4.77

beds user preferences into word tokens and com-384

bines them with textual prompts for diffusion-based385

generation; (2) PMG (Shen et al., 2024), which386

transforms user-interacted and reference images387

into text, then extracts preference keywords via a388

pre-trained LLM to guide generation; and (3) a389

rule-based variant of ICG, which replaces the390

personalized pipeline with a vanilla Stable Diffu-391

sion model. Given only a reference image and title,392

the MLLM generates a drawing prompt without393

personalization, highlighting the benefits of end-to-394

end optimization and MLLM-diffusion integration.395

Table 2: The average score of generated covers in human
evaluation

PixelRec MovieLens

ICG 2.419 2.527
Title+Image Rule-based 1.978 2.041
Text Inversion 1.952 1.923
PMG 2.152 1.994

4.3 Implementation details396

We use Qwen2.5VL-7B (Bai et al., 2025) as the397

context prompt generator and adopt Stable Diffu-398

sion V1.5 or Flux for cover image generation, with399

adapters initialized from IP-Adapter-SD15 or IP-400

Adapter-Flux. During multimodal finetuning, only401

the adapter and projector layers are updated (meta402

token length = 1, projected dimension = 1024), en-403

suring compatibility across architectures. The full404

model is trained for 50,000 iterations using two405

32GB GPUs, with a learning rate of 10−6 and a406

guidance scale of 1.0. At inference, we use the407

DDIM scheduler (Song et al., 2020) with 15 sam-408

pling steps and a guidance scale of 7.0. The person-409

alized reward model is trained separately on Pix-410

elRec and MovieLens using 0.2M user-item pairs411

(80%-10%-10% split), optimized with Adam (lr412

= 10−4) and early stopping. It consists of frozen413

CLIP encoders, two trainable transformer layers414

(768 hidden size), and fully connected heads, total-415

ing 20M trainable parameters.416

Table 3: Quantitative ablation study of multimodal gen-
erative learning stage and meta tokens using the LPIPS
metric two datasets. N denotes the number of mul-
timodal tokens. The best results are in bold and the
second-best results are underlined.

N Finetuning PixelRec MovieLens

1 ✗ 0.4367 0.5491
2 ✗ 0.4359 0.5482
4 ✗ 0.4398 0.5526
8 ✗ 0.4495 0.5689

1 ✓ 0.4194 0.5293
2 ✓ 0.4168 0.5315
4 ✓ 0.4255 0.5391
8 ✓ 0.4231 0.5412

W/O Personalization W/ Personalization

Harry
Potter

INTERST
ELLAR

ReferenceItem

UserHistory Romance
/Mystery

Thriller
/Mystery

Children's
/CartoonN/A

Figure 5: The effectiveness ablation of varying user
conditions.

4.4 Experimental Results 417

4.4.1 Qualitative comparison. 418

Figure 4 presents example outputs from ICG and 419

three baselines, alongside content titles and refer- 420

ence images. ICG consistently achieves superior 421

visual coherence and semantic alignment. In the 422

first example, it accurately conveys the theme and 423

color tone of “Dancing Practice: two dancers’ com- 424

bination dance,” while baselines fail to reflect the 425

intended meaning. The second row shows pre- 426

cise reconstruction of a cartoon character, whereas 427

PMG introduces irrelevant details and Text Inver- 428

sion omits key features. In the third case, it clearly 429
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Table 4: Overall quantitative ablation study of the ICG
framework. The best results are in bold and the second-
best results are underlined.

Dataset PixelRec MovieLens

Metric LPIPS(↓) FID(↓) LPIPS(↓) FID(↓)

ICG 0.5126 33.06 0.4018 31.23
w/o Meta token 0.5912 39.24 0.5854 37.02
w/o User feature 0.5203 32.67 0.4284 31.43
w/o Both 0.5893 38.45 0.5194 36.54

depicts a warm-up scene with a football and full-430

body figure, effectively grounding the title, which431

baselines overlook. Additional results on Movie-432

Lens are discussed in later ablations.433

4.4.2 Quantitative comparison.434

As shown in Table 1, ICG consistently outperforms435

all baselines on both PixelRec and MovieLens. It436

achieves the lowest LPIPS (0.5126, 0.4018) and437

FID (33.06, 31.23), and the highest SSIM (0.1724,438

0.2695), indicating superior personalization, real-439

ism, and structural fidelity. While PMG performs440

reasonably on LPIPS and FID, it lags in aesthetics441

and personalization. Text Inversion and the rule-442

based baseline perform worst, with significantly443

higher LPIPS and FID. ICG also attains the high-444

est aesthetic scores (4.87, 4.77), benefiting from445

joint supervision by public and personalized reward446

models.447

4.4.3 Human evaluation.448

While quantitative and qualitative results confirm449

the effectiveness of ICG in terms of personaliza-450

tion and image quality, it remains unclear whether451

the generated covers translate into improved user452

engagement in real-world scenarios. To assess this,453

we conducted a human evaluation comparing ICG454

with three baselines. A total of 100 volunteers455

rated 120 images—30 from each method—on a456

1–3 scale, with higher scores indicating better qual-457

ity. As shown in Table 2, ICG receives the highest458

average scores, demonstrating stronger user appeal459

in real-world scenarios.460

4.5 Ablation and Analysis461

We evaluate the impact of user feature conditions462

on cover generation by measuring similarity to463

users’ historical items (personalization) and dis-464

tance to the reference image (fidelity). As shown465

in Table 4, ICG effectively integrates user pref-466

erences, with slightly reduced reference distance467

CLIP (3K Steps) CLIP+PickScore
  (1.5K Steps)

CLIP+PickScore+
HPSv2(3K Steps)

CLIP+PickScore
   (3K Steps)

Figure 6: The effectiveness ablation of the proposed
CLIP, PickScore and HPSv2 rewards.

Table 5: Quantitative ablation study of the reward mod-
els. The best results are in bold and the second-best
results are underlined.

Metric LPIPS(↓) FID(↓) Aesthetics(↑)

ICG 0.5126 33.06 4.87
w/o CLIP 0.5504 35.76 4.71
w/o HPSv2+PickScore 0.5413 34.87 4.45
w/o Personalized Reward 0.5653 35.81 4.54

in movie scenes—indicating personalization en- 468

hances alignment with original content. 469

We further visualize the impact of user condi- 470

tions on generation. As shown in Figure 5, for 471

Harry Potter, the model adapts styles such as car- 472

toon, romance, or thriller based on user preferences; 473

for Interstellar, it integrates elements like astro- 474

nauts, aliens, and oceans. These results demon- 475

strate that ICG tailors cover styles to individual 476

tastes while preserving core semantics. 477

4.5.1 Meta tokens. 478

We evaluate the impact of the multimodal genera- 479

tive learning stage and the number of meta tokens 480

(N ) on personalization using LPIPS scores on Pix- 481

Reference    
 

  
 

   
 

ICG + Realistic
Vision V4.0

ICG + Esthetic
Anything V4.0

ICG +
Retro Anime

Figure 7: Generated Example Covers. Despite being
trained on the base Stable Diffusion v1.5, our model
can be seamlessly applied to a range of community
checkpoints.
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elRec and MovieLens. As shown in Table 3, fine-482

tuning notably improves performance, especially483

on MovieLens. For non-finetuned models, larger N484

improves results, while finetuned models perform485

best at N = 2, with higher values degrading per-486

formance—indicating that too many tokens reduce487

embedding effectiveness. Table 4 further shows488

that removing meta tokens significantly harms both489

personalization and image quality, underscoring490

their importance in capturing multimodal context.491

Table 6: Personalized preference prediction accuracy
on test sets of PixelRec and MovieLens under different
setting

PixelRec MovieLens

Personalized Reward Model 85.2 86.2
Only image 53.8 54.1
Image and title 61.3 67.1
Image and user profile 74.6 78.3
w/o transformers 70.5 72.5

4.5.2 Reward models.492

As detailed in the Methodology, the personalized493

reward model is essential for enabling differen-494

tiable training in personalized cover generation.495

We assess its effectiveness using preference accu-496

racy from pairwise comparisons of user-interacted497

items ranked by view counts (PixelRec) or rat-498

ings (MovieLens). As shown in Table 6, models499

relying solely on image features perform poorly,500

while adding titles or user profiles significantly501

boosts accuracy. Transformer-based fusion yields502

further gains, underscoring the model’s ability to503

capture multimodal preferences. We further ab-504

late all reward components. Figure 6 shows that505

using only CLIP similarity introduces visual dis-506

tortions; adding HPSv2 improves realism but may507

introduce contrast bias, which PickScore helps mit-508

igate by enhancing smoothness and sharpness. As509

shown in Table 5, removing CLIP or the person-510

alized reward notably degrades fidelity and align-511

ment, while omitting HPSv2 or PickScore harms512

aesthetics. These results underscore the comple-513

mentary roles of all rewards, with the personalized514

module being critical for modeling user-specific515

preferences in ICG.516

4.5.3 Analysis of compatibility.517

We show that our dual-path cross-attention adapter518

is a universal module, as the diffusion model is519

frozen during training. This allows ICG to gen-520

eralize to custom checkpoints fine-tuned from the521

Table 7: Comparison of MMGCN’s recommenda-
tion performance using different item and user image
features. Best results are highlighted in bold, and
second-best results are underlined.

Item User Recall@10 NDCG@10

w/o image ✗ ✗ 16.17% 0.0749
Item ✓ ✗ 17.94% 0.0853

Averaged-user ✓ Average 18.99% 0.0991
Generated-user ✓ Generated 20.21% 0.1016

same base (SD v1.5). As shown in Figure 7, it 522

works out of the box on community models from 523

HuggingFace and CivitAi (Civitai, 2024), includ- 524

ing Realistic Vision V4.0 (Adhik Joshi, 2024), 525

Anything v4 (Xyn AI, 2024), and Esthetic Retro 526

Anime (OneRing, 2024). 527

4.6 Applications in Recommendation Tasks 528

We evaluated the effectiveness of ICG-generated 529

covers in recommendation tasks through of- 530

fline testing on the MovieLens dataset using 531

MMGCN (Wei et al., 2019). Four settings were 532

compared: (1) w/o image: using only item IDs; 533

(2) Item: using original item images; (3) Averaged- 534

user: using averaged images from users’ past in- 535

teractions; and (4) Generated-user: using person- 536

alized images generated by ICG. As shown in Ta- 537

ble 7, image features consistently improve perfor- 538

mance, with our generated covers achieving no- 539

table gains in Recall and NDCG (by 2.27% and 540

19.1%, respectively). These results highlight the 541

downstream benefits of high-quality personalized 542

covers. Future work will explore online A/B test- 543

ing to directly assess their impact on click-through 544

rate and user engagement. 545

5 Conclusion 546

We propose ICG, a unified framework for person- 547

alized cover generation that integrates multimodal 548

large language models (MLLMs) with diffusion 549

models. By leveraging context and user-profile 550

prompts, it generates outputs aligned with both 551

item semantics and user preferences. A multi- 552

reward learning strategy enables end-to-end opti- 553

mization without the need for ground-truth labels. 554

Experiments on two datasets demonstrate consis- 555

tent improvements in image quality, semantic rel- 556

evance, and personalization. As a plug-and-play 557

module, ICG can be seamlessly integrated into 558

existing diffusion pipelines. 559
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Limitations560

Although ICG demonstrates strong performance561

in generating personalized cover images, several562

limitations remain. First, the current framework563

focuses on image-based personalization, support-564

ing only textual and visual inputs. Extending the565

method to other modalities, such as audio or video,566

could broaden its applicability in multimedia rec-567

ommendation scenarios.568

Second, the dual-path cross-attention adapter re-569

lies on static user profile embeddings, limiting the570

model’s responsiveness to dynamic user behaviors571

or shifting preferences. Incorporating real-time572

user modeling or session-based signals represents573

a promising direction to further enhance personal-574

ization.575

Third, our personalized preference reward model576

relies on offline interaction data, potentially miss-577

ing nuanced or context-specific preferences. In-578

deed, our experiments show slightly degraded per-579

formance (accuracy drops from 85.2% to 76.3%)580

on cold-start users (with ≤5 interactions). Future581

work should explore integrating zero-shot or few-582

shot personalization approaches to better handle583

sparse-feedback scenarios.584

Fourth, the model’s effectiveness depends heav-585

ily on training data quality and diversity. Data586

biases related to user attributes or item styles may587

limit generalization to unseen demographics or do-588

mains. Mitigating these biases and enhancing ro-589

bustness across diverse user groups remain critical590

challenges.591

Fifth, although multi-reward learning enables592

end-to-end optimization, it introduces computa-593

tional overhead (approximately 20% increase in594

training time). Additionally, hyper-parameter sen-595

sitivity analysis (Section 4.5) indicates marginal596

improvements within a narrow range of reward597

weights (λ = 0.2 ∼ 0.3), leading us to adopt fixed598

settings (λ = 0.25) for stability. Future research599

could explore adaptive weighting strategies and re-600

ward model distillation to further optimize training601

efficiency.602

Finally, while our experiments demonstrate603

adapter compatibility across various Stable604

Diffusion-based models, its generalizability to sig-605

nificantly different diffusion architectures (e.g.,606

DiT, DALLE) remains untested and constitutes an607

interesting future investigation. Furthermore, we608

currently lack results from online A/B testing. Fu-609

ture work will involve deploying ICG in real-world610

recommendation systems to directly measure im- 611

provements in user engagement metrics (e.g., CTR, 612

dwell time). Computational complexity analysis in- 613

dicates our inference latency is approximately 1.5 614

seconds per image on V100 GPUs, highlighting the 615

necessity for optimization in real-time applications. 616

These limitations outline clear directions for fu- 617

ture research, aiming to enhance the model’s adapt- 618

ability, scalability, personalization effectiveness, 619

and practical applicability in recommendation sce- 620

narios. 621
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