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ABSTRACT

Recent works have shown that neural networks with Lipschitz constraints will lead
to high adversarial robustness. In this work, we propose the first One-Lipschitz
Self-Attention (OLSA) mechanism for Transformer models. In particular, we
first orthogonalize all the linear operations in the self-attention mechanism. We
then bound the overall Lipschitz constant by aggregating the Lipschitz of each
element in the softmax with weighted sum. Based on the proposed self-attention
mechanism, we construct an OLSA Transformer to achieve model deterministic
certified robustness. We evaluate our model on multiple natural language processing
(NLP) tasks and show that it outperforms existing certification on Transformers,
especially for models with multiple layers. As an example, for 3-layer Transformers
we achieve an /5 deterministic certified robustness radius of 1.733 and 0.979 on
the word embedding space for the Yelp and SST dataset, while the existing SOTA
certification baseline of the same embedding space can only achieve 0.061 and
0.110. In addition, our certification is significantly more efficient than previous
works, since we only need the output logits and Lipschitz constant for certification.
We also fine-tune our OLSA Transformer as a downstream classifier of a pre-trained
BERT model and show that it achieves significantly higher certified robustness on
BERT embedding space compared with previous works (e.g. from 0.071 to 0.368
on the QQP dataset).

1 INTRODUCTION

Deep neural networks (DNNs) have been widely applied in different domains in recent years,
including face recognition (He et al., 2016)), machine translation (Bahdanau et al.| 2014}, and
recommendation systems (Zhang et al., 2019b). Specifically, on natural language processing (NLP)
tasks, Transformer models (Vaswani et al.l |2017) have been proposed and achieved outstanding
performance on a variety of tasks. Despite its impressive performance, people have shown that these
NLP models suffer from adversarial attacks (Zhang et al.,|2020), where an adversary can intentionally
inject unnoticeable perturbations on the inputs to fool the model to provide incorrect predictions.
Several works have been proposed to improve the empirical robustness of Transformers (Alzantot
et al., [2018)), but few have studied its certified robustness, i.e. theoretically guarantee that the model
will not be attacked under certain conditions (e.g. within some perturbation range). Recently, |Shi
et al.| (2020) proposes to rely on bound-propagation techniques to derive certified robustness for
Transformers, which leads to a relatively loose bound and cannot certify on deep models given the
looseness induced by propagating from each component in the attention.

In this work, we propose a One-Lipschitz Self-Attention (OLSA) algorithm which provides a
robustness certificate for Transformers by bounding the Lipschitz constant of the model. The
Lipschitz constant of a model is naturally related to its robustness, as both require that model’s output
should not change much when the input slightly changes. Previous works (Tsuzuku et al.| 2018
Singla and Feizi, |2021)) have investigated the 1-Lipschitz property on fully-connected and convolution
neural networks, but the study of 1-Lipschitz on Transformer remains unexplored as its complicated
non-linear self-attention mechanism are difficult to analyze and constrain. Thus, in this work, we will
propose the first 1-Lipschitz Transformer network which allows us to achieve tighter deterministic
certified robustness against adversarial attacks under different settings (e.g., training from scratch and
fine-tuning).
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In order to bound the Lipschitz of a self-attention layer, we will first enforce all the linear operations
(keys, queries, values) to be orthogonal via re-parametrization techniques (Huang et al.,|2020). Next,
we will upper bound the input norm by normalizing the word embedding layer. As a result, we will
be able to bound the overall Lipschitz by aggregating the change on each component of the softmax
weighted sum. Finally, we add scaling factors to ensure 1-Lipschitzness of the OLSA layer. In
addition, we also bound the Lipschitz of the pooling layer and aggregate the component to get the
final OLSA Transformer classification model.

We evaluate our OLSA Transformer model under both train-from-scratch and fine-tuning scenarios.
In both settings, we show that OLSA achieves significantly higher certified robustness compared with
existing bound-propagation-based methods (Shi et al.| 2020). The improvement is larger, especially
on deeper models. For example, a 3-layer Transformer OLSA Transformer achieves an average
certified radius of 1.733 on Yelp, while previous works can only achieve 0.061 under the train-from-
scratch setting. When fine-tuning over a BERT pre-trained model, OLSA Transformer achieves
a radius of 0.071 on the QQP dataset while previous works can only achieve 0.368. In addition,
we show that our certification is 10,000 faster than previous approaches, since we do not need
complicated bound propagation processes and only need one forward pass to perform the certification.
Finally, we also evaluate different methods under adversarial attacks and show that OLSA achieves
much higher empirical robustness than baselines as well. Meanwhile, we acknowledge a 1% to 2%
performance drop on the clean accuracy for OLSA, as we impose the extra 1-Lipschitz constraint
which limits the model expressiveness slightly.

Technical contributions. We summarize our contributions as follows:

* We propose the first One-Lipschitz Self-Attention mechanism (OLSA) and prove its Lips-
chitz bound with corresponding analysis.

* We evaluate the proposed OLSA Transformer model on various NLP tasks and observe that
it outperforms the state-of-the-art baselines. In particular, the performance gap is larger on
deeper models (e.g on 3-layer Transformers on Yelp, we achieve over 25 x average certified
radius than previous works).

* The OLSA model requires significantly less time to certify the robustness radius as it only
requires a forward pass to calculate the prediction gap.

2 RELATED WORK

Adversarial Robustness for NLP Models Existing works have shown that NLP models suffer
from adversarial attacks (Zhang et al.,|2019c}; |2020). Adversarial training-based approaches have
been proposed to enhance the model robustness during training (Alzantot et al.| 2018)). In particular,
Ren et al.| propose to generate adversarial examples with word saliency information. To improve the
efficiency of adversarial training, Wang et al.| propose a fast gradient projection method. Besides
these empirical robustness algorithms, different approaches have been proposed to provide certified
robustness on NLP models with smoothing techniques (Ye et al.,|2020; Wang et al.,|2021a)) or bound-
propagation techniques (Jia et al.| |2019; |Shi et al.| 2020). However, the smoothing techniques cannot
provide deterministic certification, while the bound-propagation techniques are relatively loose and
cannot certify for deep models. Recently, (Xu et al.,|2020) also proposes a bound-propagation-based
technique for NLP models. Their certification is against word substitution attacks and does not
directly apply to our scenario.

Lipschitz-constrained Models and Certified Robustness The Lipschitz-constrained models have
been studied for their smoothness and robustness; however, existing works all focus on constraining
the Lipschitz constant for fully-connected and convolutional neural networks. [Tsuzuku et al.| (2018)
first bridges the Lipschitz constant of a network with its robustness and propose a Lipschitz-related
loss to improve model robustness. In order to achieve 1-Lipschitzness, multiple works (Cisse et al.,
2017; Miyato et al) 2018; |Qian and Wegman, [2018)) propose to regularize the spectral norm of
the linear matrices for fully-connected layers so that the Lipschitz constant is smaller than 1. For
convolution neural networks, a simple approach is applied to unroll the convolution into an equivalent
linear layer, but this is shown to have a loose Lipschitz bound (Wang et al., 2020). Recent works (Li
et al.l|2019; Trockman and Kolter, 202 1;|Singla and Feizi,|2021)) have proposed to directly parametrize
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a 1-Lipschitz convolutional neural network which achieves a good certified robustness on vision tasks.
In addition, existing activation functions such as ReLLU are shown not suitable for the 1-Lipschitz
models, and better activation functions such as GroupSort (Anil et al.l 2019) and Householder (Singla
et al.,[2021])) are proposed. [Kim et al.| (2021) indeed focuses on the Lipschitz constant of Transformer
models. They propose to use /5 distance instead of multiplication in the attention mechanism and
show that the Lipschitz constant of such variant can be bounded. However, they aim to analyze
and provide a (not necessarily tight) upper bound of the Transformer model, but not to propose
construction methods for models with small Lipschitz constants.

3 BACKGROUND

3.1 1-LI1PSCHITZ NEURAL NETWORKS AND CERTIFIED ROBUSTNESS

In this work, we focus on the Lipschitz measured under ¢2-norm. We define the Lipschitz constant of
a function f : R™ — R™ as :

|1f (=) = f(@)]l2

Vo, € R™.
|z — ']

Lip(f) = sup

We can observe that the Lipschitz property of a neural network is naturally related with its ro-
bustness property — both require that the model output should not change much when the input
changes by a certain magnitude. Specifically, If we define the prediction margin of f on a cer-
tain input x by My(x) = max; f(7); — MaX;Larg max, f(x), f(¥); Where f(x); refers to the
indexing operation, then we can guarantee that f(x) will not change its output class within ra-
dius |z — 2| < My (x)/(v/2Lip(f)). Therefore, people have proposed to enforce 1-Lipschitz
for models to achieve robustness. Note that the Lipschitz of a composed function f o g satisfies
Lip(f o g) < Lip(f)Lip(g). As a result, we can upper bound the Lipschitz of a model by bounding
the Lipschitz of each layer in the neural networks.

3.2 ORTHOGONAL LINEAR LAYER IN DNNSs

Consider a linear layer y = Wx where z € R™, W € R"*" and y € R". People have proposed
a stronger constraint to ensure the 1-Lipschitz property: to require that W is orthogonal’| The
orthogonality not only guarantees that the layer is 1-Lipschitz but also ensures that the gradient norm
is preserved during the backward pass, which helps with the training stability (Anil et al.| 2019).
Several works have proposed re-parametrization techniques to achieve an orthogonal linear layer. For
instance, [Huang et al.| propose to parametrize the orthogonal matrix W with an unconstrained matrix
VeR™rby W = (VVT)*% V', where the inverse square root can be calculated by Newton’s
iteration. In practice, we observe that the following Newton’s iteration (Lin and Maji,|2017) achieves
a more stable result in calculating the inverse square root, given Yy = V'V T and Zy = I:

Yierr = =Ye(3] — ZuY3)

Zi1 = = (31 — ZuYi) Zs

N = N =

Z will converge quadratically to (VVT)~2 when ||[VVT — I||; < 1, which in practice is achieved
by scaling the parameter V' to be small.

Existing works focus on constraining the Lipschitz constant on such linear operation or convolution
operation (which is a type of linear operator in a more compact form). However, no one has studied
the Lipschitz property of the self-attention mechanism which is a non-linear function. The focus of
this paper is to construct the first 1-Lipschitz Transformer model, which we will introduce next.

IStrictly speaking, we require W to be semi-orthogonal when 7 # m, which means either WWT = T or
WTW = 1.



Under review as a conference paper at ICLR 2023

4 ONE-LIPSCHITZ SELF-ATTENTION (OLSA) TRANSFORMER

As we can see, the property of 1-Lipschitz for neural networks can improve model smoothness and
provide certified robustness. However, it is often challenging to enforce the Lipschitz constraint while
maintaining a good model capacity. In this section, we will introduce the first 1-Lipschitz Transformer
— One-Lipschitz Self-Attention (OLSA) Transformer. We will first introduce the Lipschitz property
in a self-attention layer with sequential input and output. Then we introduce how we achieve 1-
Lipschitzness for self-attention layers and pooling layers. Finally, we compose these layers and
construct the 1-Lipschitz Transformer model.

4.1 LIPSCHITZ PROPERTY IN SELF-ATTENTION PIPELINE

First, we describe the setting of the self-attention pipeline as follows. Suppose we have a sequence
of input X e [x1,22,...,2N] Where x; € R¢. The self-attention pipeline can be formalized as a

function F : RV*4 — RV*4 where the output Y £ [y, 42, - .,yn] = F(X). Under this setting,
we define the Lipschitz of the pipeline based on the overall changes in the input sequence:

Definition 4.1. Given X £ [z1,72,...,zy] and Y = [y1,92,...,yn] = F(X), we define the
Lipschitz of the function as:

Ny — |12 Yy _y!
LZp(F) = sup Mylni = sup w
wial /Y e —2f]f - xx |IX = X[|p
where || - || p denotes the Frobenius norm of a matrix.

We can see that such definition of Lipschitz considers the overall potential changes within the input
sequence. We aim to bound such Lipschitz constant of the overall model so that we can provide
certified robustness for the model against perturbations on the input sequence.

4.2  ONE-LIPSCHITZ SELF-ATTENTION (OLSA) LAYER

The standard self-attention mechanism Y = F'(X) in a Transformer with input x;’s and output y;’s
can be formalized as:

o = WOz (WHay)
ij \/&
pi; = softmax([s;1, Si2, .- ., Sin]);

i =y piy(WVa))
J

In order to achieve a tight bound of the Lipschitz constant, we will make two changes to the pipeline.
First, we use additive attention instead of dot-product attention in order to provide a tighter bound. As
shown in (Vaswani et al.|[2017), these two mechanisms do not differ a lot in performance. Second, we
add two scaling factors a;; and ap to control the Lipschitz of the model. The modified self-attention
mechanism Y = F(X) is as follows:

1 Wex; + W,

ii= —(Wg(—2 I
Sij a1( a( > )

pi; = softmax([s;1, Si2, - .., Sin]);

1
i = — ij Vi,
vi= o Ej pij(W" x5)

where o () denotes some non-linear activation function. After we consider the multi-head mechanism
with H headers, the final OLSA layer will be defined as follows:
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Definition 4.2 (OLSA layer). Given X € RV*? the OLSA layer F' : RV*? — RN*d with i
headers is calculated by:

1 Wiz + Wk,

ho_ S h i h *J
sh = E(Wh o(—h— )

pZ = softmax ([s, s%, ..., 5% ]);

1
s= S ey
J

y; = Concat([y}, ..., y!])

where {(WS5, W2 ,I;V,f JWY V2L are model parameters in which WS € R!*# and
W2 WE WY e Rir<d,

For this mechanism, we can provide the following Lipschitz bound under the assumption that the
linear transformations W ’s are orthogonal and the input norm is bounded.

Theorem 4.1 (Lipschitz bound of OLSA layer). Let W@ = Concat((Wg,..., Wg]) € Rdxd
denote the concatenated parameters of W,? 's; and WX and WV are defined similarly. Assume
1) W, WE WV are orthogonal matrices; 2) ||Wj||s = 1forall h € {1,...,H}; 3)oisa
1-Lipschitz activation function; 4) the overall input norm is bounded by || X ||r < c¢, then the Lipschitz
constant of the function is bounded by:

i(l—i-@

Lip(F) <
zp( )_Otg 4oy

).
where n is the length of the input sequence.

The main idea of the proof is to assume a perturbation § on X, and gradually bound the perturbation
from slhj’s to y;’s. The main non-linearity comes from the calculation of y? which multiplies the

calculated attention score pf] with the original input x;. This can be bounded by considering the

perturbation on both parts individually, noticing that the norm of both parts is bounded (p%- is the
output of SoftMax so it is norm-bounded; ;’s norm is bounded in the assumption). The full proof of
the theorem is shown in Appendix [A] We can observe that the Lipschitz bound of the layer is related
to the input sequence length and the input norm bound. We will discuss how we control the input
norm for each layer in Section .4}

Remark. (1) We will train the orthogonal matrices parametrized with W = (VVT)*%V with
Newton’s iteration (Huang et al.| 2020). (2) We would like to get a 1-Lipschitz layer such that the

overall Lipschitz of the model is 1, and thus we will set as = 1 + Ciélﬁ. (3) We will set i to be a
trainable parameter. Intuitively, c; will control the trade-off between self-attention expressiveness
and linearity — when «; is very large, aio will be close to 1 so that the expressiveness of the final output
is preserved, but s;; will all be close to 0, so the attention becomes a simple averaging operation;
when o is very small, the attention mechanism will work well, but the final output will be divided

by a large aw, so the expressiveness of final output is limited.

Comparison with the Lipschitz bound in (Kim et al.,2021) In (Kim et al.,[2021)), the authors
also propose a variant of the Transformer L2-MHA and upper bounded its Lipschitz constant with
o = V/N(4¢~Y(N — 1)+ 1) - J(W)PL where J(W) is some term related to the spectral norm of
W and ¢~ (V) grows slower than O(log N). Note that they only provide an upper bound of the
Lipschitz and do not constrain it to be small. We may also get a 1-Lipschitz model using their bound
by orthogonalizing their weight matrices (such that J(W) = 1) and re-scaling the output with 1/a.
Theoretically, this bound is O(v/N log N)) which is slightly favored than our bound O (N ) However,

?In (Kim et al.,[2021| Theorem 3.2), the bound has a factor of \/;/711’ but this factor comes from the fact that
they divide their output F'(X) with /d/H. For a fair comparison, we do not consider this scaling factor on the
output (which is a2 in our case).

*Our bound 1 + @ is O(N) because we view the embedding norm at each location ||z;||2 to be similar,

so the input bound ¢ = || X || is also O(vV N).
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our bound has a significantly smaller constant factors than theirs, as we can observe the factor of 4
in their bound and the factor of i in ours. As an example, under a popular case N = 20 and input
norm is bounded to ||z;||> = 1, their bound is v N (4¢~*(N — 1) 4+ 1) = 32.28, while our bound

isl+ @ = 6.0. Therefore, we can actually provide a tighter Lipschitz guarantee and robustness

certification in practice. We include the comparison of using this bound to construct 1-Lipschitz
Transformers in Appendix [D]and observe that OLSA can indeed achieve higher certified robustness
than directly adapting (Kim et al.,|2021) for certification.

4.3 LIPSCHITZ OF POOLING LAYER

In many tasks, we need a pooling layer after several self-attention mechanisms in order to get a final
embedding vector for the entire sequence: G : R"*? — R?. The popular approach in standard
self-attention layers is to add an extra output token into the sequence and use the embedding of
that token for the overall sequence. We intuitively find this approach a “waste of resource” in the
1-Lipschitz case — only one token value is used for pooling while others are dropped, while such
information is usually important to achieve a tight bound. In practice, we propose to use the average
of all the embeddings of the pooling layer, i.e. G(X) = % >, «i. We show that this approach has
good Lipschitz properties:

Theorem 4.2. For the pooling function G(X) = & 3 x;, we have:

Lip(@) < %ﬁ

See Appendix [B| for the proof. Thus, we can further multiply a factor of v/N to get a 1-Lipschitz
pooling layer and maximize the output expressiveness. The resulting pooling layer is:

1 N
G(X) = i Zx

4.4 OVERALL OLSA TRANSFORMER

Aggregating different layers we introduced above, we can construct the overall OLSA Transformer,
which consists of one word embedding layer, several OLSA layers, one pooling layer and a final
linear layer f : R? — R¢ for prediction, where c is the number of classes. However, there are still
some challenges in constructing the OLSA Transformer. The first challenge is how to bound the
input norm for each self-attention layer. Note that, the norm of the output layer of self-attention
layers will not increase, since it is a weighted average of all the processed input divided by a factor
ag > 1. Therefore, the norm of each layer can be bounded as long as the input to the first layer is
bounded. Thus, we will normalize the embedding vector for each token with norm ¢, so that the input
to each self-attention layer satisfies || X'||» < v/Nc. The second challenge is how to simulate other
components with 1-Lipschitz constraint in a standard Transformer. We will remove the LayerNorm
and Dropout layers and we use the average y = 0.5z + 0.5f(x) instead of the residual addition
connections. We use GroupSort (Anil et al.l 2019) as the activation function which is shown to work
better than ReLU in 1-Lipschitz networks.

Let T : RV*4 — R¢ denote the OLSA Transformer classification model. We can calculate the
certified radius on a given input X with T'(X) and Lip(7T). In particular, we can certify that the
model prediction will not change within || X — X'||r < r where:

max; T(X)7 — MaXj-Larg max; T(z) T(X)]

ViLipT)

Comparison with the certification in (Shi et al., 2020) As the best existing work on robustness
certification for Transformers, (Shi et al.| [2020) provides certification assuming that only one or two
words are perturbed by the adversary. In particular, in their /5 certification, they provide certificates
that the prediction will not change within || X — X'||p < r, but with the restriction that X’ differs
with X on only one or two positions of word embedding. Therefore, our work provides a more
generalized /5 certification. In addition, we explicitly impose the 1-Lipschitz constraint during



Under review as a conference paper at ICLR 2023

training, and therefore the model is optimized to have a better certification radius; by comparison,
they will directly certify on a vanilla-trained model, so their certification might not be tight, especially
for relatively deep models.

5 EVALUATION

In this section, we compare our OLSA Transformer with the state-of-the-art baseline on different
datasets under different settings. We observe that our model achieves much higher certified robustness
under both train-from-scratch and fine-tuning scenarios. In addition, OLSA is much more efficient
during the certification process. We also evaluate our model against the empirical attacks and observe
that OLSA also enhances the model empirical robustness.

5.1 EXPERIMENTAL SETUP

Dataset We consider three datasets in our evaluation: Yelp (Zhang et al.,2015), SST (Socher et al.,
2013) and QQP (Wang et al.,|2018)). Yelp consists of 560,000/38,000 examples in the training/test
set; SST consists of 67,349/872/1,821 examples in the training/development/test set; QQP consists
of 363,846/40,430 examples in the training/test set. Each example in Yelp and SST is a sentence
labelled with a binary class for its sentiment; each example in QQP consists of two quora questions
and labelled with a binary value on whether the two questions are equivalent.

Implementation Details We train and evaluate our 1-Lipschitz OLSA Transformer under both train-
from-scratch and fine-tuning scenarios. In the train-from-scratch scenario, we randomly initialize the
model and word embeddings and train it from scratch. In the fine-tuning scenario, we use a pre-trained
BERT model (Devlin et al.,[2018) and use its output for a downstream OLSA Transformer model. The
BERT model is kept unchanged and we only train the downstream model. In the train-from-scratch
setting, we use the Yelp and SST datasets which are also adopted in the baseline (Shi et al.|[2020)).
We consider N-layer models (N < 3) and normalize the word embedding and position embedding to
anorm of 2, so that the overall input norm is bounded by ||x;||2 < 4. For the fine-tuning setting, we
evaluate on Yelp, SST and QQP datasets. We normalize the output of BERT to a norm of 2 and use
our OLSA Transformer as the downstream model. For both settings, we use the number of attention
heads 8 and hidden dimension 256. We train the model with batch size 32 for 50 epochs on SST
and 10 epochs on Yelp. For QQP we use Adam optimizer with learning rate 10~ and decays by 0.1
at the 40-th epoch. We include certificate regularizer loss (Singla et al.l [2021) which adds a term

—~vReLU {T(x)y_my%"#y T(x)l} to maximize the prediction margin with a gradually increasing v

with final value v = 2.0 for the train-from-scratch case. We use v = 0.0 in the fine-tuning scenario as
the margin is already large. We will not orthogonalize the final prediction layer; instead, we calculate
its Lipschitz and include it in the final certification. For the evaluation time, we compare the time to
certify one batch evaluated on an RTX 3090 GPU.

Baselines There are few baselines on the certifiable robustness of Transformer models and (Shi
et al.,[2020) achieved state-of-the-art certification results. Their model is trained using the standard
architecture and training algorithm. We will fix the word embedding to be the same as in our
model to perform a fair comparison. To certify the robustness within the region, they propose a
bound propagation-based method that tightly bounds the cross-position dependency in the attention
mechanism. They evaluate the certification on Yelp and SST datasets on which we will make the
comparison and we will also evaluate it on the QQP dataset. Note that since the certification time of
their approach is slow, we will only evaluate on a sampled test set with 5% instances for Yelp and
QQP and. The comparison with the Lipschitz bound in |Kim et al.|(2021) is shown in Appendix
where we adapt their bound to construct the 1-Lipschitz model and observe that our bound provides a
better robustness guarantee.

Evaluation Metrics To evaluate the certified robustness, we use the certified radius as the metric
following the setting in (Shi et al., 2020). Given model 7" and input X € R¥*9 on the word
embedding space, the certified radius is defined as the maximum perturbation radius within which we
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Table 1: Certified radius of OLSA and previous state-of-the-art in the train-from-scratch scenario.
The certification time is evaluated on a batch of test data.

Dataset | Denth | Approach Vanilla  Certified Certification | Robust Accuracy under
p pp Accuracy radius Time (sec) l5-PGD@¢ = 1.0
| Shi et al. 89.1% 0.476 676.8 33.5%
OLSA 87.7% 1.995 0.060 61.2%
’ Shi et al. 90.3% 0.126 1164.2 26.0%
Yelp OLSA 88.0% 1.845 0.078 59.7%
3 Shi et al. 90.2% 0.061 1470.7 21.5%
OLSA 88.1% 1.733 0.105 60.1%
| Shi et al. 81.9% 0.923 627.8 33.1%
OLSA 80.9% 1.146 0.021 54.3%
’ Shi et al. 82.5% 0.429 1056.0 33.4%
SST OLSA 81.1% 1.053 0.036 53.1%
3 Shi et al. 82.5% 0.110 1807.7 34.9%
OLSA 81.2% 0.979 0.049 52.3%
1 Shi et al. 78.8% 0.193 1527.0 6.9%
OLSA 76.8% 2.535 0.022 51.5%
) Shi et al. 79.4% 0.083 3165.2 8.6%
QQpP OLSA 76.6% 2.383 0.037 52.6%
3 Shi et al. 79.5% 0.064 4782.1 7.1%
OLSA 77.0% 2.116 0.054 47.3%

can guarantee that the model prediction will not be changed:

Rad(T, X) =suprs.t. T(X) =T(XV||X = X'||r <7
and we calculate the average certified radius over the test dataset.

5.2 TRAINING OLSA FROM SCRATCH

We show the results of our certification on the train-from-scratch model in Table[Il We can observe
that our OLSA model indeed achieves higher certified robustness compared with Shi et al.| especially
on deeper layers. We owe it to the reason that the OLSA network is trained to achieve a tight Lipschitz
bound and therefore more robust; by comparison, [Shi et al.| verify on the vanilla model and therefore
cannot guarantee a tight bound for each layer. Note that we cannot directly use our certification
method to certify their model given that their models do not satisfy 1-Lipschitz so the bound will be
very loose. As a cost of improved certified robustness, our models suffer from a 1% to 2% vanilla
accuracy drop compared with the vanilla (no regularization) model. We think this is an inevitable
performance drop, as shown in previous works (Zhang et al., 2019a) that there exists a trade-off
between vanilla accuracy and robustness when comparing vanilla and adversarially robust models.
As for the certification time, we can observe that our certification is over 10,000 times faster than
previous works. This is because we only need one forward pass to calculate the prediction gap for
certification; by comparison, |Shi et al.|(2020) needs to do a binary search and bound-propagation on
each location of the input, which leads to a large number of forward passes.

Empirical robustness Besides the certified accuracy, we also perform /5-PGD attack (Madry et al.}
2017) against the models over the word embedding space to check their empirical robustness as
shown in Table[T] We see that OLSA indeed achieves a much higher empirical robustness compared
with vanilla models. This confirms that enforcing the 1-Lipschitz constraint indeed helps with the
model robustness.

Ablation studies - Different v The v in the certificate regularizer loss can control the tradeoff
between vanilla accuracy and certified radius — with larger -, the model is trained to have a larger
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Table 2: Ablation study of a 1-layer OLSA Transformer with different ~y in the certificate regularizer.

Dataset | Approach Vanilla  Certified Robust Accuracy under
pp v Accuracy  radius {5-PGD@e = 1.0
| IShi et al. -] 891% 0.476 33.5%
0.2 90.2% 1.009 53.4%
Yelp 0.5 89.9% 1.274 63.3%
OLSA 1.0 89.0% 1.606 68.0%
2.0 87.7% 1.995 61.2%
5.0 84.5% 2.768 50.9%

Table 3: Certified radius of 1-layer OLSA and previous state-of-the-arts in the fine-tuning scenario,
where we keep the pre-trained BERT model unchanged and only tune the downstream model.

Vanilla  Certified Robust Accuracy under

Dataset Approach Accuracy  radius {5-PGD@¢ = 1.0
Yelp (fine-uning) | Sietal 93.0% 0.169 59.2%
P & | OLSA 90.8% 0.613 84.4%
. Shi et al. 88.0% 0.367 52.5%
SST (fine-tuning) | ‘5 86.2% 0.475 76.8%
. Shi et al. 83.7% 0.071 26.2%
QQP (fine-tuning) | 5rax 81.6% 0.368 66.8%

output prediction gap and thus a larger certified radius, at a cost of vanilla accuracy. In Table [2}
we show the performance of varying the value of . From the tables, we can indeed observe the
trade-off between vanilla accuracy and certified radius. In particular, even with small v we can still
achieve a large certified radius, while larger v provides a higher certification result. We set v = 2.0
as a reasonable choice for the trade-off. Interestingly, the best empirical robustness is achieved at
some intermediate value of . This may be because empirical robustness is not always aligned with
certified radius and may be affected by the drop of vanilla accuracy.

5.3 FINE-TUNING OLSA OVER PRETRAINED BERT

We show the certified robustness in the fine-tuning scenario in Table [3] The certified robustness
is computed over the BERT output embedding space. We mainly evaluate the 1-layer case as it is
uncommon to use multi-layer Transformers on top of BERT for downstream tasks (although we
expect a larger performance gap for those models). We can see that our OLSA model again achieves
a larger certified radius on all three tasks at a small cost of vanilla accuracy. Also, OLSA achieves
higher empirical robustness compared with vanilla models. These results show that our OLSA model
can be applied in both train-from-scratch and fine-tuning scenarios to enhance model robustness.
We provide the training curve in Appendix |[F In addition, we evaluate the model robustness on
PAWS-QQP (Zhang et al., [2019c)), an adversarial dataset of QQP, and also observe that OLSA
achieves high empirical robustness, as we show in Appendix [C]

6 CONCLUSION

In this paper, we propose OLSA, the first 1-Lipschitz self-attention mechanism for sequential input.
Based on OLSA layer and 1-Lipschitz pooling, we propose the first 1-Lipschitz Transformer model
for NLP classification tasks. We show that OLSA Transformer is able to achieve the state-of-the-art
certified robustness on various tasks under both train-from-scr