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Abstract

Interactive decision making, encompassing bandits, contextual bandits, and reinforce-
ment learning, has recently been of interest to theoretical studies of experimentation design
and recommender system algorithm research. Recently, it has been shown that the well-
known Graves-Lai constant being zero is a necessary and sufficient condition for achieving
bounded (or constant) regret in interactive decision making. As this condition may be a
strong requirement for many applications, the practical usefulness of pursuing bounded
regret has been questioned. In this paper, we show that the condition of the Graves-Lai
constant being zero is also necessary to achieve delay model robustness when reward delays
are unknown (i.e., when feedbacks are anonymous). Here, model robustness is measured in
terms of ϵ-robustness, one of the most widely used and one of the least adversarial robust-
ness concepts in the robust statistics literature. In particular, we show that ϵ-robustness
cannot be achieved for a consistent (i.e., uniformly sub-polynomial regret) algorithm how-
ever small the nonzero ϵ value is when the Grave-Lai constant is not zero. While this
is a strongly negative result, we also provide a positive result for linear rewards models
(Linear contextual bandits, Reinforcement learning with linear MDP) that the Grave-Lai
constant being zero is also sufficient for achieving bounded regret without any knowledge
of delay models, i.e., the best of both the efficiency world and the delay robustness world.

Keywords: Bandits, Reinforcement learning, Bounded regret, Delay robustness

1 Introduction

We consider the cost of addressing stochastic and unknown reward delays in Decision-
Making with Structured Observations (DMSO) (Wagenmaker and Foster, 2023; Dong and
Ma, 2023), which generalizes interactive decision-making problems such as structured ban-
dit, contextual bandit, and reinforcement learning (see Section 2.1 and Appendix A). In
many real-life applications of interactive decision-making problems, stochastic and un-
known delays in reward makes it hard to attribute the sequence of observed outcomes to
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Figure 1: Examples of misspecification of the reward delay model of decisions (π1, π2, π3)

the sequence of our decisions. In medical treatments, for example, a doctor cannot easily
be sure whether a medical outcome is due to the effect of current treatment or due to some
other previously taken treatment’s delayed effect. This type of reward delays in decisions
is called an ‘unknown reward delays’ (Li et al., 2019) or ‘delayed anonymous feedback’
(Pike-Burke et al., 2018; Cesa-Bianchi et al., 2018)1.

Knowledge of the probabilistic distribution of each decision’s reward delay, combined
with the careful design of algorithms, may help to resolve this reward attribution problem
under stochastic and anonymous reward delays (Pike-Burke et al., 2018). However, those
delay models themselves may be misspecified (Wang et al., 2021). Therefore, whether we
can design an algorithm that is robust to model misspecification becomes a main concern
in the problems with stochastic, delayed, and anonymous rewards.

One of the most widely used concepts of model misspecification in the robust statistics
literature is ϵ-robustness (Huber, 2004). Given a parameter ϵ > 0 and true distribution D,
a model distribution D̂ is called an ϵ-(general) contamination of D if dTV (D, D̂) ≤ ϵ, where
dTV denotes the total variation distance function2. Figure 1 illustrates some examples of
ϵ-contamination of the delay models. As ϵ-robustness is also one of the weakest (i.e., least
adversarial), most elementary notion of robustness (Diakonikolas and Kane, 2023), the
first question on an algorithm’s delay robustness will be “up to which ϵ the algorithm’s
properties are robust to ϵ-contamination of delay model misspecification?”.

In this paper, we prove that no consistent (i.e., uniformly sub-polynomial regret) algo-
rithm for DMSO can be designed to be robust to ϵ-contamination of delay model misspec-
ification unless DMSO’s Graves-Lai constant (Graves and Lai, 1997; Dong and Ma, 2023;
Wagenmaker and Foster, 2023) being zero. While this is a strong negative result, we also
provide a positive result for linear DMSO problems (linear contextual bandit, reinforcement
learning with linear MDPs) that the Graves-Lai constant (Graves and Lai, 1997) being zero
is sufficient for achieving bounded regret without any knowledge of delay models. As the
Graves-Lai constant being zero holds if and only if we can achieve bounded regret (Dong
and Ma, 2023; Wagenmaker and Foster, 2023), the results in this paper strongly motivate
the practical usefulness of achieving bounded regret.

1Most research in this literature focuses on the setting of delayed, anonymous, and aggregated (DAAF)
feedback, where we only observe sum of the rewards arriving at each episode. Here, we consider impossibility
results for the strictly easier case, where we observe each anonymous delayed reward separately.

2The total variation distance dTV(ν, υ) is defined as 1
2
∥ν−υ∥1 = supE∈Σ |ν(E)−υ(E)|, where Σ stands

for the measurable sets on which two distributions ν and υ are defined.
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2 Preliminaries

2.1 Decision-Making with Structured Observations (DMSO)

Here, we focus on an interactive decision-making problem framework called Decision-
Making with Structured Observations (DMSO) (Dong and Ma, 2023; Wagenmaker and Fos-
ter, 2023) which generalizes bandit, contextual bandit, and episodic reinforcement learning
problems (see Appendix A). Like other interactive decision-making problems, it is charac-
terized by the environment and its learning protocol. The environment of a DMSO problem
framework is specified by a decision space Π, a reward space R, an observation space O
and a model class F =

∏
π∈ΠFπ, where Fπ ⊆ △R×O (Here, △E denotes the collection of

probability distributions over a set E). A ground-truth model f⋆ ∈ F governs the rewards
and the observations based on the decisions made in the rounds. While f⋆ is unknown to
the learner, it is typically assumed that a set F that includes f⋆ is known to the learner.

The learning protocol of DMSO problem consists of n rounds. In round k ≤ n,

1. The learner makes a decision πk ∈ Π.
2. A reward rk ∈ R and an observation ok ∈ O are generated, where (rk, ok) ∼ f⋆

πk
∈ Fπk

3. Learner observes ok. The learner also observes Rk, the set of rewards that arrive at
the round k. Rk is equivalent to rk when there are no reward delays.

2.2 Learning Algorithm and its Regret for DMSO

Given that we characterized the DMSO problem framework, we can now describe a learning
algorithm. Let hk be the history up to round k, i.e., hk = (π1, R1, o1) , . . . , (πk−1, Rk−1, ok−1),
and H be the set of all possible histories of rounds for k ≥ 1. A learning algorithm A is
defined as an element of A ⊆ (H 7→ △Π), which is a subset of the set of all possible
mappings from the history space H to the set of all possible distributions over Π. At each
round k, given the history hk ∈ H, learning algorithm A ∈ A chooses pk = A(hk) ∈ △Π.
The decision at round k, πk, is sampled from pk. Note that f ∈ F , A ∈ A and the round
n completely determine the stochastic behavior of the learning protocol up to round n,
i.e., they induce a probability distribution we call Pf,n,A[·] over the set of all histories up
to round n. We also denote the respective expectation by Ef,n,A[·]. When the meaning is
clear from the context, we use Pf,n[·] and Ef,n[·] instead of Pf,n,A[·] and Ef,n,A[·].

Given (r, o) ∼ fπ, we denote µfπ := Efπ [r]; when the meaning is clear from context,
we use µfπ = µπ and µf⋆

π
= µ⋆

π. Furthermore, let πf ∈ argmaxπ∈Π µfπ denote an optimal
decision for the model f ; when the meaning is clear from context, we use π⋆ := πf⋆ . We
denote {g ∈ F | πg = πf} by F(f). The suboptimality gap of the decision π for model f
is defined as df (π) := µfπf

− µfπ .

When the ground truth model is f , choosing πf every round until round n yields the
largest total reward until round n. Therefore, we can measure the optimality of an algo-
rithmA until round n in terms of regret, which is defined by Regf,A(n) := EA,f,n [

∑n
k=1 df (πk)] .
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2.3 Consistent Learning Algorithm and Asymptotic Regret Lower Bound

It is natural to exclude non-uniformly good algorithms, i.e., algorithms that are specifically
designed to achieve small regret for some instances and suffer polynomially increasing regret
in some other instances. The notion of consistent algorithm formalizes this idea.

Definition 1 (Consistent learning algorithm (Graves and Lai, 1997)). A learning algorithm
A is called consistent if Regf,A(n) = o (np) holds for every p > 0 and f ∈ F .

For DMSO problems, it has been recently shown that any consistent algorithm’s instance-
dependent regret must satisfy the following asymptotic regret lower bound.

Theorem 1 (Dong and Ma (2022) Dong and Ma (2023)). For every instance f ∈ F ,

the expected regret of any consistent algorithm A satisfies lim supn→∞
Regf,A(n)

lnn ≥ C(f) =
lim
n→∞

C(f, n), where C(f, n) is the solution to the optimization equation

C(f, n) ≜ min
w∈R|Π|

+

∑
π∈Π

wπdf (π)

s.t.
∑
π∈Π

wπDKL(fπ∥gπ) ≥ 1 , ∀g ∈ F(f)c

∥w∥∞ ≤ n,

(1)

where DKL is the KL divergence and F(f) := {g ∈ F | πg = πf}.

Corollary 1. A consistent algorithm achieves sub-logarithmic regret only if C(f⋆) = 0.

According to Corollary 1, the design of a learning algorithm that a priori assures sub-
logarithmic regret requires the condition C(f) = 0 for f ∈ F to hold.

2.4 Main Model: Unknown Reward Delays and Robustness

Denote the true reward delay distributions of each decision π ∈ Π by Dπ. Every time
πk is determined at each round k, dk ∼ Dπk

is generated along with the generation of
(rk, ok) ∼ fπ. While ok is observed immediately at round k, rk is scheduled to arrive
at round dk + k. As discussed earlier, we consider unknown reward delays (also called
anonymous feedback) throughout the paper, as in Pike-Burke et al. (2018)3.

As also discussed earlier, we specifically model delay robustness against ϵ-contamination.
That is, we address the case when D̂π is a result of ϵ-contamination of the delay distri-
bution model Dπ, i.e., dTV (Dπ, D̂π) ≤ ϵ. The formal definition of robustness in terms of
delay distribution knowledge is as follows.

Definition 2. We say that a consistent algorithm has ϵ-delay robustness if it is consistent
when the given delay distributions are ϵ-contaminatations of the true delay distributions.

3While Pike-Burke et al. (2018) considers aggregated anonymous reward arrivals, we show impossibility
result that holds even for the weaker setting, where reward arrivals are still anonymous but not aggregated.
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3 Main Results for DMSO

3.1 Main Result 1: Delay Robustness Requires C(f ⋆) = 0

Given the definition of ϵ-delay robustness provided in Section 2.4, the main question is
when a consistent, ϵ-delay robust algorithm exists. The answer is quite negative: unless
C(f⋆) = 0 holds, no consistent algorithm can be ϵ-delay robust, however small ϵ > 0 is.
That is, delay robustness can be achieved only if bounded regret can be achieved.

This theoretical result can be intuitively understood as follows. When the reward
delay model is precisely known, i.e., when the reward delay model is not contaminated,
we might be able to address this challenge by designing a good algorithm that makes the
probability of confusion in reward attribution as small as we want. However, in the case of
ϵ-contamination of delay models, under minor technical assumptions (Appendix B), we can
provide a delay model contamination that makes the precision of any consistent algorithm’s
reward attribution no better than 1− δ for some δ > 0. This leads to reward distribution
suffering δ-contamination. Theorem 2 formally states this result.

Theorem 2. Under minor assumptions (see Appendix B), regardless of how small ϵ > 0
is, a consistent learning algorithm is ϵ-delay robust only if C(f⋆) = 0.

The proof of Theorem 2 can be found in Appendix C.1. Theorem 2 implies that the
concept of consistent algorithm fails even with a very small misspecification of the delay
model unless C(f⋆) = 0. Since we want to design a learning system with existence of a
consistent algorithm that works for all instances of f ∈ F , we need C(f) = 0 for f ∈ F .

3.2 Main Result 2: Design of Robust, Bounded Regret Algorithm

While the result shown above a negative result, the results we provide here are positive
results on the condition required to assure achieving the best-of both worlds, i.e., achiev-
ing bounded regret and robustness to any delay-model misspecification at the same time.
Before answering this question, we need the following Lemma 2 to see what C(f) = 0 for
f ∈ F implies. Let us denote the algorithm that always chooses decision π ∈ Π as π.

Lemma 2. Suppose that f ∈ F is the ground-truth model instance. Then C(f) = 0 implies
that DKL

(
Pf,n,πf

∥Pg,n,πf

)
= Ω(n) holds for g ∈ F(f)c.

Lemma 2 shows how informative πf is when the true hypothesis is f . When the true
hypothesis is not f , πf can be arbitrarily uninformative. The natural question that arises
is how much cross-informativeness (informativeness of πh ∈ Π for the ground truth f ∈ F
when h ̸= f) is sufficient for us to achieve bounded regret.

Assumption 1 (Cross-informativeness). Suppose that f ∈ F is the ground-truth model.
Then for any h ∈ F , DKL (Pf,n,πh

∥Pg,n,πh
) = ω(lnn) holds for g ∈ F(f)c.
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We also need a technical assumption 2, which excludes trivially informative cases where
hypotheses f and g are almost immediately distinguished given the observation o ∈ O.

Assumption 2. For all f, g ∈ F , π ∈ Π, and o ∈ O, DKL(fπ(· | o)∥gπ(· | o)) < ∞.

Note that we can well-define β = (supg∈Π,π∈Π,E∈Eπ
dfπ(·|o)
dgπ(·|o)(E))−1 (where Eπ denote the

collection of measurable sets for fπ(· | o) and gπ(· | o)), as Assumption 2 holds if and only

if the log-likelihood ratio ln fπ(·|o)
gπ(·|o) is well-defined on the support of gπ and is finite a.e..

We now provide a simple algorithm, which is shown to achieve bounded regret without
any knowledge of the delay model under Assumption 1 and 2. For this, we need to define
the concept of max-contamination δmax

π (k). For details, see Appendix D and E.

Algorithm 1: Simply-Test-to-Commit (ST2C) Algorithm

1 for n = 0 do

2 Choose any h ∈ F , set f̂ = h

3 for n = 1, 2, . . . do
4 Choose πn = πf̂

5 Observe on and Rn, newly compute δmax
π
f̂

(n)

6 for g ∈ F \ f̂ do

7 if {
∑n

k=1 ln
gc
π
f̂
(k)

f̂c
π
f̂
(k)

≥ 2 lnn+
∑n

k=1
2√
β
δmax
π
f̂

(k)} then

8 Set f̂ = g

Theorem 3. Under Assumptions 1 and 2, the algorithm ST2C (Algorithm 1). which does
not require any knowledge of the delay distribution model, achieves bounded regret.

The question remains as to how strong Assumption 1 is. Theorem 4 and Theorem 5
(Appendix F, G) show that C(f) = 0 for f ∈ F makes linear systems satisfy the condition
of Assumption 1, completing the equivalence between bounded regret and delay robustness.

Theorem 4. Under the linear contextual bandit setting in Hao et al. (2020) and almost the
same condition as C(θ) = 0 for θ ∈ Θ, DKL

(
Pθ⋆,n,πθ

∥Pθ′,n,πθ

)
= Ω(n) holds for θ′ ∈ F(f)c.

Theorem 5. Under linear MDP setting with horizon H in Papini et al. (2021a) and close

to C(θ) = 0 for θ ∈ Θ, DKL

(
Pθ⋆h,n,πθ

∥Pθ′h,n,πθ

)
= Ω(n) holds for θ′h ∈ F(f)c, h ∈ [H].

4 Conclusion

We show that no consistent algorithm for DMSO can achieve any level of delay model
robustness, unless the previously known condition for bounded regret holds. Given the
condition for bounded regret, on the other hand, you can achieve bounded regret without
any knowledge of delay models in case of linear systems. Achieving such best-of-both-
worlds result for general non-linear systems will be an interesting future study.
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Appendix A. Special Cases of DMSO (Wagenmaker and Foster, 2023)

- In finite-armed bandit problems, each round is an arm pull. Π is the arm space, and
R is the space of rewards from arms. Since there is no observation space O, the
model class degenerates to F ⊆ (Π 7→ ∆R).

- In contextual bandit problems, each round is an arm pull. Π is the set (X 7→ A) of
all policies, where X is the context space and the A is the arm space. The reward
space R is the space of rewards from arms. The observation space O is X , where
the kth round’s observation ok ∈ O (which results from πk) is the k + 1th round’s
context. Since the future context arrival is not affected by previous decisions, the
model class degenerates to F ⊆ (Π 7→ ∆R).

- In episodic reinforcement learning problems, each round is an episode. Π is the set
(S 7→ A) of all policies, where S is the space of all possible states and A is the action
space. The reward space R is the space of value functions at each initial state, and
the observation space O is the set of all possible sequences of action choices, state
transitions, and received rewards in one episode. The model class F is characterized
jointly by the initial state distribution and the transition kernel, which are shared
across all the episodes.

Appendix B. Technical assumptions for Theorem 2 of Section 3.1

Assumption 3. For the family of distributions Dr|o := {fπ(· | o) | f ∈ F , π ∈ Π, o ∈
O}, there exists a function q(δ) s.t. for D1, D2 ∈ Dr|o, |E[D1] − E[D2]| ≤ q(δ) implies
dTV (D1, D2) ≤ δ.

For some special families of reward distributions, such q is known Diakonikolas and
Kane (2023). (Let k be a constant in what follows)

• For the family of Gaussian distributions with standard deviation 1, q(δ) = kδ.

• For the family of log-concave distributions with standard deviation 1, q(δ) = kδ log(1/δ).

• For the family of distributions with kth moment bounded by 1 for k ≥ 2, q(δ) =
kδ1−1/k.

Assumption 4 expresses the conditional unimodality in likelihood functions in terms of
rewards.

Assumption 4. Given ground truth f ∈ F and g1, g2 ∈ F , for every π ∈ Π, Eg1π
[r|o] ≤

Eg2π
[r|o] ≤ Efπ [r|o] or Eg1π

[r|o] ≥ Eg2π
[r|o] ≥ Efπ [r|o] implies DKL(fπ(· | o), g2π(· | o)) ≤

DKL(fπ(· | o), g1π(· | o)) almost everywhere (a.e.).

Assumptions 5 and 6 exclude trivial cases where the reward information is not at all
needed for the inference of the ground-truth model f .
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Assumption 5 (Density of Fπ for every π ∈ Π). For every π ∈ Π, {gπ ∈ Fπ | µgπ ≥
µfπf

} ∩ {gπ ∈ Fπ | |Efπ(r | o)− Egπ(r | o)| ≤ q(δ) a.e.} is nonempty given δ > 0.

Intuitively, {gπ ∈ Fπ | µgπ ≥ µfπf
} is the set of hypotheses in Fπ we need to reject,

and {gπ ∈ Fπ | |Efπ(r | o) − Egπ(r | o)| ≤ q(δ) a.e.} is the set of hypothesis we cannot
reject under contamination of outcomes from decision π. Note that {gπ ∈ Fπ | |Efπ(r |
o)− Egπ(r | o)| ≤ q(δ) a.e.} ⊆ {gπ ∈ Fπ | |µgπ − µfπ | ≤ q(δ)}.

Assumption 6. Let goπ be the marginal distribution of the observatiion for of gπ ∈ Fπ.
There exists ro > 0 such that for every π ∈ Π, |µfπ − µgπ | ≤ ro implies fo

π = goπ a.e..

Note that fo
π = goπ a.e. if and only if DKL(f

o
π∥goπ) = 0 holds. If DKL(f

o
π∥goπ) > 0,

no information on the rewards will be required to reject gπ under fπ, the true hypothesis
for the decision π. On the other hand, in the reinforcement learning problems where
reward functions are parametrized independent of the transition model parameters, r0 in
the Assumption 6 is +∞.

Appendix C. Proof of Theorem 2

C.1 Proof of Theorem 2

Recall that Pf,n,A[·] denotes the distribution of outcomes of algorithm A on the true model
instance f by the round n. We further denote the marginal distribution of Pf,n,A[·] in terms
of decision π’s rewards and outcomes by P π

f,n,A[·].

Lemma 3. Suppose that the ground-truth model is f ∈ F . Then a consistent algorithm

must satisfy (1 + o(1)) lnn ≤
∑

π∈ΠDKL

(
P π
f,n,A∥P π

g,n,A

)
for g ∈ F(f)c.

Proof According to Dong and Ma (2022) Dong and Ma (2023), any consistent algorithm A
must satisfy (1 + o(1)) lnn ≤ DKL (Pf,n,A∥Pg,n,A) for g ∈ F(f)c. Since the terms involving
A (the algorithm used to collect the data) cancel out and the outcomes of decisions are

independent of each other,
Pf,n,A

Pg,n,A
=
∏

π∈Π
Pπ
f,n,A

Pπ
g,n,A

holds. Therefore, the condition of Dong

and Ma (2022) becomes (1 + o(1)) lnn ≤
∑

π∈ΠDKL

(
P π
f,n,A∥P π

g,n,A

)
for g ∈ F(f)c.

Lemma 4. For any ϵ > 0, ϵ-contamination in the delay model of π⋆ makes the rewards of
decisions π ̸= π⋆ suffer δ-contamination for some δ > 0 under consistency.

The proof of Lemma 4 is deferred to Section C.3. Lemma 5 shows that, under δ-reward
contaminations in reward distributions of all π ̸= π⋆, choosing optimal decision π⋆ alone
must be enough to satisfy the condition described in Lemma 3 and otherwise, we cannot
satisfy it.

Lemma 5. If the rewards of decisions π ∈ Π \ πf suffer δ-contamination for some δ > 0,

consistency of the algorithm requires (1 + o(1)) lnn ≤ DKL

(
P

πf

f,n∥P
πf
g,n

)
for all g ∈ F(f)c.
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The proof of Lemma 5 is deferred to Section C.3.

The rest of the proof of Theorem 2 is immediate from the derivation of Dong and Ma

(2023)’s Theorem 1, which is as follows: from the chain rule of divergence,DKL

(
P π
f,n∥P π

g,n

)
=

Ef,n [Nπ]DKL(fπ∥gπ) holds for π ∈ Π. Defining wπ := Ef [Nπ] /((1 + o(1)) lnn), Lemma 5
implies that C(f) = 0 by the definition of C(f) in the equation (1). Since we don’t know
the ground truth f a priori, designing a learning system that assures the existence of a
robust algorithm requires C(f) = 0 for all f ∈ F .

C.2 Proof of Lemma 4

Denote by N
[a,b]
π the random variable that counts the number of decisions of π between

rounds a and b. For consistency, for any small enough p > 0, for any r > 0, for some
m, there must exist a constant nr,p such that for all intervals [a, b] with b − a ≥ nr,p and

a, b > m, E[N
[a,b]
π⋆ ] ≥ (b− a)− (b− a)pr holds. Recall that we denote by Dπ the true delay

model for the decision π ∈ Π, and by D̂π the given model forDπ. Note that ϵ-contamination
means we can arbitrarily choose {Dπ}π∈Π as long as dTV (Dπ, D̂π) ≤ ϵ. Consider the case
when Dπ⋆ = D̂π⋆ + ϵDa − ϵDc where P (Da = k) = 1

nr,p
for 0 ≤ k ≤ nr,p − 1 and 0 for

elsewhere, and Dc is an arbitrary distribution. For π ∈ Π \ π⋆, consider Dπ = D̂π. Then
for k ≥ max(nr,p,m),

P ({A reward arrival at k is not from π⋆})

=

∑k
i=1 P ({πi’s reward arrives at k and πi ̸= π⋆})∑k

i=1 P ({πi’s reward arrives at k})

≤ |Π| − 1

|Π| − 1 +
∑k

i=1 P ({πi’s reward arrives at k and πi = π⋆})
(2)

≤ |Π| − 1

|Π| − 1 + ϵ
nr,p

∑k
i=k−nr,p

E[1πi=π⋆ ]

≤ |Π| − 1

|Π| − 1 + ϵ
nr,p

(nr,p − np
r,pr)

=
|Π| − 1

|Π| − 1 + ϵ(1− np−1
r,p r)

where the inequality in the equation (2) follows from the fact that the delay distribution
of each decision sums to one. Therefore, P ({A reward arrival at k is from π⋆}) > δ :=

ϵ(1−np−1
r,p r)

|Π|−1+ϵ(1−np−1
r,p r)

.

Denote the rewards distributions associated with Dπ⋆ , D̂π⋆ , Da, and Dc as Rπ⋆ , R̂π⋆ , Ra,
and Rc each. Then Rπ⋆ = R̂π⋆ + ϵRa − ϵRc must hold, where the mean of Rπ⋆ and Rπ⋆

are supposed to be the same. Since the choice of Ra can be arbitrary by choosing Rc

accordingly, we can conclude that the reward distributions of decisions π ̸= π⋆ indeed
suffer δ-contamination.
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C.3 Proof of Lemma 5

Recall that we use fπ to refer to an element of Fπ, while fπ also denotes the π-coordinate
of some f ∈ F . Suppose that the ground-truth model is f ∈ F . For g ∈ F(f)c, a consistent
algorithm must satisfy

(1 + o(1)) lnn ≤ DKL (Pf,n∥Pg,n) =
∑
π∈Π

DKL

(
P π
f,n∥P π

g,n

)
. (3)

= DKL

(
P

πf

f,n∥P
πf
g,n

)
+

∑
π∈Π\πf

Ef,n [Nπ]DKL(fπ(r, o)∥gπ(r, o)) (4)

= DKL

(
P

πf

f,n∥P
πf
g,n

)
+

∑
π∈Π\πf

Ef,n [Nπ]

(
DKL(f

o
π(o)∥goπ(o)) + Efπ

[
log

fπ(r|o)
gπ(r|o)

])
(5)

Above,

• The inequality in the equation (3) is from Dong and Ma (2022) Dong and Ma (2023).

• The equality in the equation (3) follows from the fact that algorithm-related terms
cancel out.

• The inequality in the equation (4) is from the Divergence decomposition Lemma
Lattimore and Szepesvári (2020)

• The inequality in the equation (5) follows from the chain rule of KL divergence Cover
(1999).

Let min(q(δ), ro) = q′(δ), where ro is defined as in Assumption 6. By Assumption 5,
for every π ̸= πf , there exists a non-empty set Eπ := {lπ ∈ Fπ | |Efπ [r|o] − Elπ [r|o]| ≤
q′(δ) a.e.} ∩ {µlπ ≥ µfπf

}. Hense we can construct E(π) := {l ∈ F | lπ ∈ Eπ, lπ′ = fπ′ for

π′ ̸= π}. Note that E(π) ⊆ F(f)c := {g ∈ F | πg ̸= πf} = {g ∈ F | ∃π ∈ Π s.t. µgπ ≥
µfπf

}. Therefore, for every π ̸= πf ,

(1 + o(1)) lnn ≤ DKL

(
P

πf

f,n∥P
πf
g,n

)
+

∑
π∈Π\πf

Ef,n [Nπ(n)]Efπ

[
log

fπ(r|o)
gπ(r|o)

]
for g ∈ E(π) (6)

(⇒) (1 + o(1)) lnn ≤ DKL

(
P

πf

f,n∥P
πf
g,n

)
+ Ef,n [Nπ(n)]Efπ

[
log

fπ(r|o)
gπ(r|o)

]
for g ∈ E(π) (7)

(⇒) (1 + o(1)) lnn ≤ DKL

(
P

πf

f,n∥P
πf
g,n

)
for g ∈ E(π) (8)

(⇒) (1 + o(1)) lnn ≤ DKL

(
P

πf

f,n∥P
πf
g,n

)
for g ∈ E ′(π) (9)

(⇒) (1 + o(1)) lnn ≤ DKL

(
P

πf

f,n∥P
πf
g,n

)
for g ∈ {g ∈ F | µgπ ≥ µfπf

}. (10)

where E ′
π := {lπ ∈ Fπ | µfπf

≤ µlπ} and E ′(π) := {l ∈ F | lπ ∈ E ′
π, lπ′ = fπ′ for π′ ̸= π}.

Above,

12



• Equation (6) follows from Assumption 6 and equation (5).

• The logical implication in equation (7) follows from the definition of E(π).

• The logical implication in equation (8) follows from Assumptions 3, 4 and 5:
|Efπ [r|o] − Egπ [r|o]| ≤ q′(δ) ≤ q(δ) a.e. implies dTV (fπ(· | o), gπ(· | o)) < δ a.e.
from Assumption 3; therefore, under some δ-contamination of fπ(· | o), the con-
taminated Efπ [r|o] can be farther from the true Efπ [r|o] than Egπ [r|o]. Therefore,

DKL (fπ(· | o) ∥ gπ(· | o)) ≤ 0 a.e. due to Assumption 4, and so Efπ

[
log fπ(r|o)

gπ(r|o)

]
=

Efo
π

[
Efπ(r|o)

[
log fπ(r|o)

gπ(r|o)

]]
= Efo

π
[DKL (fπ(· | o) ∥ gπ(· | o))] ≤ 0.

• The logical implication in equation (9) follows from Assumption 4:
Define Êπ := {|µfπ − µgπ | ≤ q′(δ)} ∩ {µgπ ≥ µfµf

} and Ê(π) := {l ∈ F | lπ ∈ Êπ, lπ′ =

fπ′ for π′ ̸= π}. Note that Ê(π) ⊆ E(π). Then for g′ ∈ E ′(π) \ Ê(π) and g ∈ Ê(π)
with (µgπ − µfπ)(µg′π − µfπ) ≥ 0, DKL

(
P π
f,n∥P π

g,n

)
≤ DKL

(
P π
f,n∥P π

g′,n

)
due to the

monotonicity assumption of Assumption 4.

• The logical implication in equation (10) follows from the fact that any element in
{g ∈ F | µgπ ≥ µfπf

} has an element in E ′ that is strictly closer to f .

Since F(f)c := {g ∈ F | πg ̸= πf} = {g ∈ F | ∃π ∈ Π s.t. µgπ ≥ µfπf
}, we immediately get

(1 + o(1)) lnn ≤ DKL

(
P

πf

f,n∥P
πf
g,n

)
for g ∈ F(f)c.

Appendix D. Max-contamination

Here we define the concept of max-contamination. Whatever true delay distribution the
reward delays follow, the maximum number of reward arrivals from π by the round k is
Nπ(k), the total number of π decisions by the round k. Then the max-contamination of

the decision π′ ∈ Π at round k is defined as δmax
π′ (k) := min(

∑
π∈Π\π′ Nπ(k)

Ñ(k)
, 1), where Ñ(k)

stands for the total number of reward arrivals by round k. Note that the contamination of
reward arrival at k is bounded by the max-contamination δmax

π′ (k), as the delay distributions
of decisions are stationary, i.e., they do not change over time.

Let P c
g,k,π indicates the likelihood of g ∈ F that is computed as if all reward arrivals by

the round k are from the decision π. (We add the superscript c since this is not true, as

we allow decision transitions in Algorithm 1.) Note that ln
P c
f,k,π

P c
g,k,π

=
∑n

k=1 ln
fc
π(k)

gcπ(k)
, where

f c
π(k) and gcπ(k) are likelihood of each data assuming that the data is from π.

Appendix E. Proof of Theorem 3

Lemma 6 shows that it takes finite time in expectation to transition to correct instances.
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Lemma 6. After Algorithm 1’s f̂ transitions to g ∈ F(f⋆)c, it converges within a finite
expected number of rounds to f̂ = f .

Proof Let f be the ground truth model. After each transition to g ∈ F(f)c,

P ({
n∑

k=1

ln
f c
πg
(k)

gcπg
(k)

≤ 2 lnn+
n∑

k=1

2√
β
δmax
πg

(k)})

= P ({
n∑

k=1

(ln
fπg

gπg

+ ln
f c
πg
(k)

fπg

+ ln
gπg

gcπg
(k)

) ≤ 2 lnn+
n∑

k=1

2√
β
δmax
πg

(k)})

≤ P ({
n∑

k=1

(ln
fπg

gπg

+ ln
f c
πg
(k)

fπg

+ ln
gπg

gcπg
(k)

) ≤ 2 lnn+
2C√
β
lnn}) for some C (11)

≤ P ({
n∑

k=1

(
ln

fπg

gπg

−DKL(fπg , gπg)

)
+

n∑
k=1

(
ln

f c
πg
(k)

fπg

)
+

n∑
k=1

(
ln

gπg

gcπg
(k)

)
≤ − lnn}) for n ≥ n0 for some n0 < ∞ (12)

≤ P ({
n∑

k=1

(
ln

fπg

gπg

−DKL(fπg , gπg)

)
+

n∑
k=1

(
ln

f c
πg
(k)

fπg

−DKL(fπg , f
c
πg
(k))

)

+

n∑
k=1

(
ln

gπg

gcπg
(k)

−DKL(gπg , g
c
πg
(k))

)
≤ − lnn}) for n ≥ n0 (13)

≤ P ({
n∑

k=1

(
ln

fπg

gπg

−DKL(fπg , gπg)

)
≥ − lnn,

n∑
k=1

(
ln

f c
πg
(k)

fπg

−DKL(fπg , f
c
πg
(k))

)

≥ − lnn,

n∑
k=1

(
ln

gπg

gcπg
(k)

−DKL(gπg , g
c
πg
(k))

)
≥ − lnn}c) for n ≥ n0

= P ({
n∑

k=1

(
ln

fπg

gπg

−DKL(fπg , gπg)

)
≤ − lnn} ∪ {

n∑
k=1

(
ln

f c
πg
(k)

fπg

−DKL(fπg , f
c
πg
(k))

)

≤ − lnn} ∪ {
n∑

k=1

(
ln

gπg

gcπg
(k)

−DKL(gπg , g
c
πg
(k))

)
≤ − lnn}) for n ≥ n0

≤ 3O(
1

n2
) = O(

1

n2
). (14)

Above,

• Equation 11 follows from the fact that δmax
πg

(k) decreases with the rate 1/n.

• Equation 12 follows from the fact that nDKL(fπg , gπg) = DKL(Pf,n,πg∥Pg,n,πg) =
ω(lnn) from the Assumption 1.

14



• Equation 13 follows from the fact that substracting positive value on the left does
not change the inequality.

• Equation 14 follows from the fact that the log-likelihood ratios are bounded due to
Assumption 2, and thus sub-gaussian random variables.

Therefore, after each time a bad transition to g ∈ F(f)c happens, the event {
∑n

k=1 ln
fc
πg

(k)

gcπg (k)
≤

2 lnn +
∑n

k=1
2√
β
δmax
πg

(k)} happens only finite many times in expectation by the Borel-

Cantelli lemma, which implies that the inference will arrive at the correct instance within
finite expected time.

Lemma 7 shows that the total number of wrong transitions from the correct inferences
is finite in expectation.

Lemma 7. Under Algorithm 1, the number of rounds at which event {f̂ = f⋆} ∩ {∃g ∈

F(f⋆)c s.t.
∑n

k=1 ln
gcπ

f̂
(k)

f̂c
π
f̂
(k)

≥ 2 ln k +
∑n

k=1
2√
β
δmax
π
f̂

(k)} holds is finite in expectation.

Proof For any g ∈ F(f)c, when f is the ground truth model,

P ({
n∑

k=1

ln
gcπg

(k)

f c
πg
(k)

≥ 2 lnn+

n∑
k=1

2√
β
δmax
πg

(k)})

= P ({
n∑

k=1

(ln
gπg

fπg

+ ln
fπg

f c
πg
(k)

+ ln
gcπg

(k)

gπg

) ≥ 2 lnn+

n∑
k=1

2√
β
δmax
πg

(k)})

≤ P ({
n∑

k=1

(
ln

gπg

fπg

)
+

n∑
k=1

(
ln

fπg

f c
πg
(k)

−DKL(fπg , f
c
πg
(k))

)

+

n∑
k=1

(
ln

gcπg
(k)

gπg

−DKL(g
c
πg
(k), gπg)

)
≥ 2 lnn}) (15)

≤ P ({
n∑

k=1

(
ln

gπg

fπg

)
≤ 2 lnn,

n∑
k=1

(
ln

fπg

f c
πg
(k)

−DKL(fπg , f
c
πg
(k))

)
≤ 2 lnn,

,

n∑
k=1

(
ln

gcπg
(k)

gπg

−DKL(g
c
πg
(k), gπg)

)
≤ 2 lnn}c)

≤ P ({
n∑

k=1

(
ln

gπg

fπg

)
≥ 2 lnn} ∪ {

n∑
k=1

(
ln

fπg

f c
πg
(k)

−DKL(fπg , f
c
πg
(k))

)
≥ 2 lnn}

,∪{
n∑

k=1

(
ln

gcπg
(k)

gπg

−DKL(g
c
πg
(k), gπg)

)
≥ 2 lnn})
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≤ 3O(
1

n2
) = O(

1

n2
). (16)

Above,

• Equation 15 follows from the reverse Pinsker’s inequality (Verdú, 2014) (total varia-
tion distance smaller than δ implies KL divergence smaller than 1√

β
δ)

• Equation 16 follows from Lemma 4.3 of Dong and Ma (2022) Dong and Ma (2023),

which says that PQ

({∑m
i=1 ln

Pi
Qi

≥ c
})

≤ exp(−c), and the fact that the log-

likelihood ratios are bounded due to Assumption 2, and thus sub-gaussian random
variables.

Therefore, the event holds in total only for finite rounds of k in expectation by the
Borel-Cantelli lemma.

Combining Lemmas 6 and 7, we can conclude that f̂ /∈ F(f⋆) holds only for a finite
number of rounds in expectation. That is, regret is bounded in expectation.

Appendix F. Details of Theorem 4 (Linear contextual bandit case)

F.1 Setting of Hao et al. (2020)

Hao et al. (2020) was the first to characterize the condition for achieving bounded regret
in linear contextual bandit problem. Consider the stochastic K-armed contextual linear
bandit problem with a horizon of n rounds and a finite A-size set of k-dimensional possible
contexts X = {xj}j∈[A]. At each round, a context is chosen according to the unknown
distribution p over X . When the sampled context is xj and its chosen arm is m, we receive
ϕm(xj)

′θ + ϵ, where {ϕm : Rk 7→ Rd}m∈[M ] are linear representation functions that are
assumed to be precisely known, θ is a parameter vector of dimension d that is shared across
the arms, and ϵ is an i.i.d. random noise that follows a sub-Gaussian distribution with
variance proxy σ2.

Theorem 6 (Hao et al. (2020); Papini et al. (2021b)). Let mjθ be an optimal arm for
context j ∈ [A], when the true parameter is θ, i.e., mjθ ∈ argmaxm∈[M ] ϕm(xj)

′θ. Given
linear contextual bandit setting described above, bounded regret can be achieved if and only
if
{
ϕmjθ

(xj) | j ∈ A
}
spans Rd.

F.2 Proof of Theorem 4

Let Θ be the set of all parameters, and let θ⋆ ∈ Θ be the unknown true parameter. Suppose
that C(θ) = 0 for θ ∈ Θ. By Theorem 1 and Theorem 6,

{
ϕmjθ

(xj) | j ∈ A
}
spans Rd for

θ ∈ Θ. Denote Tx(n) be the number of arrivals of context x ∈ X .

Then for any θ̃ ∈ Θ \ {θ⋆},
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DKL

(
Pθ⋆,n,πθ

∥Pθ̃,n,πθ

)
=

1

2

∑
x∈A

E [Tx(n)] ⟨x, θ⋆ − θ̃⟩2 (17)

=
1

2
(θ⋆ − θ̃)⊤E

[∑
x∈A

Tx(n)xx
⊤

]
(θ⋆ − θ̃)

=
1

2
(θ⋆ − θ̃)⊤nE

[∑
x∈A

Tx(n)

n
xx⊤

]
(θ⋆ − θ̃)

≥ 1

2
∥θ⋆ − θ̃∥2nλmin (18)

= Ω(n) (19)

Above,

• The equality in equation (17) is from the divergence decomposition lemma Lattimore
and Szepesvári (2020)

• λmin of equation (18) denotes the smallest eigenvalue for Exj∼p

[
ϕmjθ

(xj)ϕmjθ
(xj)

⊤]
• The inequality of equation (18) is from the fact that xTAx

xT x
is larger than the smallest

eigenvalue of A.

• The equality of equation (19) comes from the fact that λmin > 0 is equivalent to{
ϕmjθ

(xj) | j ∈ A
}
spanning Rd (Papini et al., 2021b).

Appendix G. Details of Theorem 5 (RL with Linear MDP case)

G.1 Setting of Papini et al. (2021a)

Papini et al. (2021a) characterized the condition for achieving bounded regret in reinforce-
ment learning with Linear MDP. Consider a Linear MDP with a horizon of H, while we
are given total n episodes. It has finite A-size state space with k-dimensional covariates
S = {sj}j∈[A]. All states share K-size action space. At each episode l ≤ n, a policy πl is
chosen. When state is xj and its chosen action at h ∈ [H] is m, The state-action function
Qh(s, a) equals ϕh(xj ,m)′θh, where {ϕh : Rk 7→ Rd}h∈[H] are linear representation func-
tions that are assumed to be precisely known, θh is a parameter vector of dimension d that
is shared across different episodes.

Theorem 7 (Papini et al. (2021a)). Suppose that the MDP satisfies Bellman closure
(Zanette et al., 2020) or Low-rank MDP assumption (Jin et al., 2020). Define the op-
timal policy as π⋆ and ϕ⋆

h(s) := ϕh (s, π
⋆(s, h)). Then, the condition that

span {ϕ⋆
h(s) | ∀s, optimal policy visits s at h with positive probability} = Rd is sufficient for

achieving bounded regret.
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G.2 Proof of Theorem 5

It is straightforward that the proof of Theorem 5 is almost equivalent to the proof of
Theorem 4, except that we infer θh for each h ∈ [H].
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