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Abstract

Efficient online decision-making in contextual bandits is challenging, as methods
without informative priors often suffer from computational or statistical inefficien-
cies. In this work, we leverage pre-trained diffusion models as expressive priors
to capture complex action dependencies and develop a practical algorithm that
efficiently approximates posteriors under such priors, enabling both fast updates
and sampling. Empirical results demonstrate the effectiveness and versatility of
our approach across diverse contextual bandit settings.

1 Introduction

A contextual bandit models online decision-making under uncertainty [49]. At each round, an agent
observes a context, selects an action, and receives a reward, aiming to maximize cumulative reward by
balancing exploitation of high-reward actions and exploration of uncertain ones. However, in large-
scale settings (e.g, the number of actions K is large), standard exploration strategies (e.g., LinUCB
[11] or LinTS [60]) often become computationally expensive or statistically inefficient. Fortunately,
actions in many real-world problems exhibit correlations, enabling more efficient exploration since
observing one action can inform the agent about others. Thompson sampling is particularly well-
suited for this, as it naturally incorporates informative priors [33] that capture complex action
dependencies. Inspired by the success of diffusion models [62, 30], which excel at approximating
complex high-dimensional distributions [23, 58], this work leverages pre-trained diffusion models as
priors in contextual Thompson sampling.

Precisely, we introduce a framework for contextual bandits with a diffusion-derived prior, and
develop diffusion Thompson sampling (dTS) that is both computationally and statistically efficient.
dTS achieves fast posterior updates and sampling through an efficient approximation that becomes
exact when the diffusion prior and the likelihood are linear. A key contribution, beyond applying
pre-trained diffusion models in contextual bandits, is the efficient computation and sampling of the
posterior distribution of a d-dimensional parameter 6 | D, with D representing the data, when using
a pre-trained diffusion model prior on . This is relevant not only to bandits and RL but also to a
broader range of applications [19]. Our approximations are motivated by exact closed-form solutions
obtained in cases where both the pre-trained diffusion model and the likelihood are linear. These
solutions form the basis for our approximations for the non-linear case, demonstrating both strong
empirical performance and computational efficiency. Our approach avoids the computational burden
of heavy approximate sampling algorithms required for each latent parameter.

Diffusion models have been applied to offline decision-making [6, 36, 65], but their use in online
learning has only recently been explored by Hsieh et al. [34] who studied the multi-armed bandit
setting, and Kveton et al. [44] who explored a similar direction, with their preprint appearing shortly
after the first version of this work. An earlier, deliberately simplified version of our approach,
restricted to a linear diffusion model prior, was introduced in Aouali [7]. Here, we extend that
formulation to the more realistic and expressive non-linear case. A detailed discussion of related
work is provided in Appendix A.
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2  Setting

The agent interacts with a contextual bandit over n rounds. In round ¢ € [n], the agent observes a
context X; € X, where X C R? is a context space, takes an action A; € [K], and then receives a
stochastic reward Y; € R that depends on both the context X; and the taken action Ay.

We focus on the per-action (disjoint) setting, where each action a € [K] is represented by an unknown
parameter vector 6, € R, so that the reward received in round t is Y; ~ P(- | X;;604,), where
P(-| x;0,) is the reward distribution of action a in context x. The reward distribution is parametrized
as a generalized linear model (GLM) [54]. That is, P(- | x;6,) is an exponential-family distribution
with mean g(xTHG), where g is the mean function. For example, we recover linear bandits when
P(-| 2;0,) = N(-;270,,0%) where o > 0, and logistic bandits [24] with g(u) = (14 exp(—u))~*
and P(- | ;60,) = Ber(g(z " 0,)), where Ber(p) denotes the Bernoulli distribution with mean p. All
derivations and algorithms extend naturally to the shared-parameter case described in Remark 2.1.

We consider the Bayesian bandit setting [59, 33, 55, 28], where the true action parameters 6, are
assumed to be drawn from a known prior distribution. As both the true parameters and the model
parameters are sampled from this same prior, we use them interchangeably as a slight abuse of
notation. We proceed to define this prior distribution using a diffusion model. The correlations
between the action parameters 6, are captured through a diffusion model, where they share a set of
L consecutive unknown latent parameters 1, € R% for ¢ € [L)]. Precisely, the action parameter 6,
depends on the L-th latent parameter ¥y, as

Oa | Y1 ~ N(f1(¥1),21),
where the link function f; and covariance 3 are known. In particular, the action parameters 6, are
conditionally independent given ;. Also, the ¢ — 1-th latent parameter 1,1 depends on the ¢-th
latent parameter 1, as

Vo1 | he ~ N (fe(¥e), 2e),

where f, and ¥y are known. Finally, the L-th latent parameter vy, is sampled as ¢, ~ N (0,3X111),
where X1y is known. We summarize this model in Eq. (1) below

Y ~N(0,8141), (D
Vo1 | e ~ N (fe(r), Ze) s ve e [L]/{1},
ea|w1NN(fl(¢1)’El)> VQG[K]v
Yi | Xi,04, ~ P(- | X430a,), vt € [n].

Eq. (1) represents a Bayesian bandit, where the agent interacts with a bandit instance defined by 6,
over n rounds (4th line in Eq. (1)). These action parameters 6, are drawn from the generative process
in the first three lines of Eq. (1). In practice, Eq. (1) can be built by pre-training a diffusion model on
offline estimates of the action parameters 6, .

The goal of the agent is to minimize its Bayes regret [59], which measures the expected performance
across multiple bandit instances 6 that are sampled from the prior,
n

BR(n) = E[ 3" r(X, 41.36) — (X, A6)]
t=1
where the expectation is taken over all random variables in Eq. (1). Here r(z,a;0) =
Ey~p(|z:6,) [Y]is the expected reward of action a in context z, and A; . = arg max,, ¢ r(X¢, a;0)
is the optimal action in round ¢. The Bayes regret captures the benefits of using informative priors
[33, 32, 8], and hence it is suitable for our problem.

Remark 2.1 (Single shared action parameter). Our algorithm and analysis also apply to the case
where all actions share a single unknown parameter § € R%. Let ¢ : X x [K] — R? be a known
feature map, and assume the reward distribution mean is g (gp(x, a)TG). Then, the diffusion prior in
Eq. (1) specializes by replacing the per-action parameters (0, ),c[x] With a single shared parameter ¢

Y ~N(0,2r41), 2
Vo1 | e ~ N (fe(e), 2e) s Ve [L]\ {1},
01 ~N(fi1(¥1),%1),
Yy | Xi, Ap, 0 ~ P(- | o(X¢, A)T0) vt € [n].



This formulation is useful when a shared feature map ¢ is available. In that case, the diffusion
model can be pre-trained on parameters {95}85=1 from previous tasks, and dTS can then be applied
to a new task S+1 using the pre-trained prior. To avoid clutter, our main exposition focuses on
the model in Eq. (1), but all theoretical results and algorithmic components extend naturally to this
shared-parameter case, which we also include in some experiments (explicitly noted when applicable).

3 Diffusion contextual Thompson sampling

3.1 Algorithm

We design a Thompson sampling algorithm that samples the latent and action parameters hierar-
chically [51]. Let H; = (X, A;, Yi)ie[t,l] denote the history of all interactions up to round ¢, and
let Hy o = (X, Ai, Yi) fie[t—1);4,—a) be the history of interactions with action a up to round ¢. To
motivate our algorithm, we decompose the posterior density p(6, | H;) recursively as

L

p(0a | Hy) = / p@r | He) [ p(e-1 | 4o, Ho)p(Ba | 1, Hya) dipr.. 3)

1:L =2

Hierarchical sampling. This decomposition induces the following sampling procedure in round t.
First, draw a sample 1), 1, according to the posterior density p(¢r, | Hy). Then, for each £ € [L]\ {1},
draw 1, _1 from the conditional posterior p(v¢—1 | ¥1¢, H). Finally, given ¢, 1, draw each action
parameter independently from p(6, | ¢+,1, Ht o) (the 6, are conditionally independent given ;).
This defines Algorithm 1, diffusion Thompson Sampling (dTS).

Posterior components via recursion. To implement dTS, we provide an efficient recursive scheme
to express the required posteriors using known quantities. These expressions may not always admit
closed forms and can require approximation. The conditional action-posterior can be written as

PO | 1, Hia) o< ] P(Yi | Xi30a) N (0as f1(101), 1), “
i€St.a

where S, , = {¢ € [t — 1] : A, = a} is the set of rounds in which action a was selected. Moreover,
let p(Hy | v¢) denote the likelihood of the observations up to round ¢ given ¢),. For any ¢ € [L]\ {1},
the conditional latent-posterior is

P(e—1 [ e, He) o< p(Hy | Y1) N (the—1; fe(¥e), Be),
and the top-layer posterior is
p(r | He) o< p(Hy [ r) N (1 0,5141).

All terms above are known except the likelihoods p(H; | 1), which are computed recursively. The
recursion starts with

K
p(Hy | ) = H/ [ I P(vi Xi§9a)]f\/(9a;f1(¢1)721) dfa, &)
a=1"% |ies,,
and for ¢ € [L] \ {1}, proceeds as
U 1) = [ P | he) M £, B0) e ©

All posterior expressions above use known quantities (f¢, X¢, P(y | z;6)). However, these expres-
sions typically need to be approximated, except when the link functions f, are linear and the reward
distribution P(- | x; 0) is linear-Gaussian, where closed-form solutions can be obtained with careful
derivations. These approximations are not trivial, and prior studies often rely on computationally
intensive approximate sampling algorithms. In the following sections, we explain how we derive our
efficient approximations which are motivated by the closed-form solutions of linear instances.



Algorithm 1 dTS: diffusion Thompson Sampling

Input: Prior components { f, X} ZL:JT and reward model P.
fort=1,...,ndo
Draw v, 1, according to the posterior density p(¢, | Hy)
for/=1L,...,2do

| Draw 1; 1 according to p(tpe—1 | V4.0, Hy)
fora=1,...,Kdo

| Draw 6, , according to p(6, | 1¢,1, Hy,a)
Select action A; = arg max, ¢k 7(Xt, a;0;), where 0; = (01,0)ac|x]
Observe reward Y; ~ P(- | X;; 6.4,) and update the posteriors.

3.2 Posterior approximation

The reward distribution is parameterized as a generalized linear model (GLM) [54], which allows
for non-linear rewards. In addition, the diffusion model itself is highly non-linear due to the link
functions fy. These two sources of non-linearity make the posterior intractable, so we apply two
layers of approximation: (i) a likelihood approximation to linearize the reward model, and (ii) a
diffusion approximation to handle the non-linear hierarchy induced by the diffusion model prior.

(i) Likelihood approximation. We use an approach similar to the Laplace approximation, but instead
of approximating the entire posterior, we approximate only the likelihood by a Gaussian. Precisely,
the reward distribution P(- | z; 0,) belongs to the exponential family with mean function g. Thus

II P(il Xi;6a) = NM0a; Bia,Gra), )

1€St,a
where Bt,a is the maximum likelihood estimate and G’t,a is the Hessian of the negative log-likelihood:

Byo=argmax »  logP(Yi| Xii0.),  Gra= Y X, Bia)XiX;, 8
0o €R? 1€St,a i€St,a

and Sy, = { € [t — 1] : A; = a} is the set of rounds in which action a was selected. Unlike
Laplace, which fits a global Gaussian to the full posterior, this step only linearizes the local likelihood,
allowing the hierarchical diffusion structure of the prior to remain intact and expressive.

(ii) Diffusion approximation. Plugging the Gaussian likelihood approximation (7) into the posterior
expressions p(6, | 1, Hy o) and p(¢e—1 | 1¢, H;) removes the non-linearity of the reward model.
However, the diffusion hierarchy remains non-linear through f,. To handle this, we build on the
closed-form posteriors of the linear diffusion case (where f;(1p) = Wy1by; see Appendix B) and
generalize them by replacing the linear terms W), with their non-linear counterparts f;(t,). This
substitution yields a posterior diffusion model that retains the same hierarchical form as the prior
but with data-dependent means and covariances. Details on how we transition from the linear to the
general non-linear setting are provided in Appendices B and C. The resulting approximate posteriors
(both action and latent) admit the following closed-form expressions.

Approximate action posterior. We approximate the conditional action posterior as

p(oa | ¢1aHt,a) ~ N(9a§,at,a7i:t,a)v

where
S 1 —1 A - S -1 A A
Sl= w4 Gl e =S ST AW + GraBia ). O
~~ ~~ —— N——
prior precision data precision prior contribution data contribution

This posterior update has a clear interpretation. The posterior precision ilt_ ; is the sum of the prior
precision and the data precision. The posterior mean i, , is the precision-weighted average of the

prior mean and the MLE Bm. As more data are observed, the covariance shrinks and the mean
moves from the prior mean f;(¢)1) toward the MLE Bm. When no data are available (G‘t,a = 0), the
posterior reduces to the prior N'(f1(2)1), 31); in the limit of infinite data (G’t,a — 00), the posterior
collapses to the MLE Bm, with fi; o — Bm and it,a —0.



Approximate latent posteriors. For each ¢ € [L + 1] \ {1}, we approximate the latent posterior as

(o1 | e, Hy) = N(We—1; fire—1,Se0-1),

with
v —1 —1 ~ ~ 5 —1 >,
Siii= S+ Guer s fieer =S S0 4 B ), (10)
~— N——r —— N——
prior precision  data precision prior contribution  data contribution

where, by convention, fr.11(¢r+1) = 0 since the top layer ¢;, has no parent ;1. The quantities
G+ and B; ; are computed recursively. The base recursion is

K K
Gy = Z (Efl - Eflit,azfl); By = Efl Z gt,aét,aBt,av (11)

a=1 a=1
and for each ¢ € [L]\ {1},
Gre=37 =X 8%, Bio =75 01Bre1. (12)

The latent posterior update in Eq. (10) has the same structure as the action posterior. The posterior
precision X, 131_1 is the sum of the prior and data precisions , and the posterior mean is their precision-

weighted combination. The data terms Gu_l and Bt,z_1 are computed recursively (Egs. (11)
and (12)), so information collected at the action level propagates upward through the hierarchy.

Interpretation. The resulting approximate posterior remains a diffusion model whose conditional
Gaussians have updated, data-dependent means and covariances. The latent-posterior means can be
viewed as refined link functions:

Fro(be) = fieg—1 = o1 (S fe(We) + Bre—i)

and 3, 4 represents their updated uncertainty. Both are updated with data: covariances contract
as uncertainty decreases, and means move from the prior toward the MLE. Unlike a full Laplace
approximation, this formulation preserves the expressiveness of the posterior rather than replacing
it globally with a single Gaussian, while also avoiding the heavy computation required by other
approximate inference methods.

3.3 Extension to single shared action parameter

For the shared-parameter model in Remark 2.1, dTS’s posterior approximations are similar. The

action posterior is p(6 | ¥1, Hy) =~ N (fi, X¢), where

S7h =7t Gy, fir = ST f1(Y1) + GeBy). (13)
where
Bt = argmaleog P(Y; | QQ(X“ AZ)TQ) s Gt = Zg((p(X“AZ)TBt) LP(X“ Al)gO(X“ AZ)T
OeR? i<t

Similarly, for ¢ € [L + 1]\ {1}, the latent posterior is p(v¢—1 | ¥¢, Hy) = N (fiz.0—1, S¢.0—1), where

2;,21—1 =3, +Gio, fit,e—1 = So1(E27 " fe(vbe) + Bro—1), (14)
where, by convention, f1,11(¢r+1) = 0 and the quantities C_JM and BM are computed recursively as
Base case: G =37 =2y By =%7'%.GB,. (15)
Recursive case: Gt,f = Eé_l — Ze_lityg_lEZl, Btl = E[lim_lgtyg_l. (16)

Again, this shared-parameter variant of dTS is presented for completeness and to illustrate the
generality of our posterior derivations; the main focus of the paper remains on the per-action
formulation in Eq. (1). Unless stated otherwise, all theoretical results and experiments use the main
version of dTS described in Algorithm 1.



4 Informal theoretical insights

In this section, we present an informal Bayes regret analysis of dTS to build intuition around its
statistical efficiency. We assume a simplified linear—Gaussian setting to make the analysis tractable:
the reward distribution is linear-Gaussian and each link function fy(¢;) = W), is a known linear
mixing matrix. These assumptions induce a hierarchy of L linear Gaussian layers from the latent root
to the action parameters. In this case, our posterior approximation becomes exact which enables an
analysis reminiscent of linear contextual bandits [3]. However, our recursive hierarchical structure
introduces technical differences: the posteriors must be derived inductively using total covariance
decompositions, and regret bounds require tracking information flow across all latent layers. We
emphasize that this regret bound does not hold in the general nonlinear case studied in experiments
and on which we focus in this paper, and is only included here to provide theoretical intuition under
simplifying assumptions. Formal statements and derivations are provided in Appendices E and F.

Informal Bayes regret bound. The bound of dTS in this case is

O(y/n(dKa? + a5}, 02,0%,))

where 02, = maxye(r4+1) 1+ Z—‘z This dependence on the horizon n aligns with prior Bayes regret
bounds scaling with n. However, the bound comprises L + 1 main terms. First, one relates to action
parameters learning, conforming to a standard form [52], while the L remaining terms are associated
with learning each of the latent parameters.

Sparsity refinement. If each mixing matrix exhibits column sparsity, that, W, = (V_Vg, 0d,d—d,) With
dy¢ < d active columns, then the bound becomes

BR(n) = O(\/n(dKo? + X/ deo?, 108) )

Hence, informative, sparse priors can cut the cost of learning deep latent chains down from d to dy.
This Bayes regret bound has a clear interpretation: if the true environment parameters are drawn
from the prior, then the expected regret of an algorithm stays below that bound. Consequently, a
less informative prior (such as high variance) leads to a more challenging problem and thus a higher
bound. Then, smaller values of K, L, d, d, translate to fewer parameters to learn, leading to lower
regret. The regret also decreases when the initial variances o7 decrease. These dependencies are
common in Bayesian analysis, and empirical results match them.

The reader might question the dependence of our bound on both L and K. Details can be found
in Appendix D.2, but in summary, we model the relationship between 6, and v; stochastically as
N (W11, 0214) to account for potential nonlinearity. This choice makes the model robust to model
misspecification but introduces extra uncertainty and requires learning both the 6, and the ;. This
results in a regret bound that depends on both K and L. However, thanks to the use of informative
priors, our bound has significantly smaller constants compared to both the Bayesian regret for LinTS
and its frequentist counterpart, as demonstrated empirically in Appendix G.5 where it is much tighter
than both and in Section 4.1 where we theoretically compare our Bayes regret bound to that of LinTS.

Technical contributions. dTS uses hierarchical sampling. Thus the marginal posterior distribution of
0. | H; is not explicitly defined. The first contribution is deriving 8, | H; using the total covariance
decomposition combined with an induction proof, as our posteriors were derived recursively. Unlike
standard analyses where the posterior distribution of 8, | H; is predetermined due to the absence of
latent parameters, our method necessitates this recursive total covariance decomposition. Moreover,
in standard proofs, we need to quantify the increase in posterior precision for the action taken A; in
each round ¢ € [n]. However, in dT$S, our analysis extends beyond this. We not only quantify the
posterior information gain for the taken action but also for every latent parameter, since they are
also learned. To elaborate, we use our recursive posteriors that connect the posterior covariance of
each latent parameter 1, with the covariance of the posterior action parameters 6,. This allows us to
propagate the information gain associated with the action taken in round A, to all latent parameters
g, for £ € [L] by induction. Details are given in Appendix F.

Limitations. We identified several limitations that should be addressed in future work. First, our
Bayes regret analysis is established only for the linear—Gaussian case, where the diffusion prior
collapses to a hierarchy of Gaussian distributions and dTS becomes exact Thompson Sampling. While
this setting does not require a diffusion model, it validates our posterior approximation (exact in this



limit) and clarifies how prior structure and diffusion depth L affect regret. Extending the theory to
nonlinear diffusion or non-Gaussian rewards remains open. Second, for general nonlinear cases, dTS
employs (i) a Laplace approximation for the reward likelihood and (ii) layer-wise linearization of
diffusion links. A full analysis should account for errors coming from both approximations. We
leave formal guarantees for future work. Third, dTS relies on a pre-trained diffusion prior. With
scarce or biased offline data, the prior may be under-regularized. Empirically, performance degrades
gracefully: dTS still outperforms LinTS and HierTS with as little as 1-5% pretraining data. Overall,
dTS is advantageous when actions exhibit structured correlations and some offline data exist. In
unstructured or purely online regimes, simpler methods such as LinTS may suffice.

4.1 Discussion

Computational benefits. Action correlations prompt an intuitive approach: marginalize all latent
parameters and maintain a joint posterior of (04)qc[x] | H¢. Unfortunately, this is computationally
inefficient for large action spaces. To illustrate, suppose that all posteriors are multivariate Gaussians.
Then maintaining the joint posterior (6, ).c[x] | H; necessitates converting and storing its K x dK-
dimensional covariance matrix, leading to O(K3d*) and O(K?d?) time and space complexities. In
contrast, the time and space complexities of dTS are O((L + K)d*) and O((L + K)d?). This
is because dTS requires converting and storing L + K covariance matrices, each being d x d-
dimensional. The improvement is huge when K > L, which is common in practice. Certainly,
a more straightforward way to enhance computational efficiency is to discard latent parameters
and maintain K individual posteriors, each relating to an action parameter 6, € R? (LinTS).
This improves time and space complexity to O(Kd?) and O(Kd?). However, LinTS maintains
independent posteriors and fails to capture the correlations among actions; it only models 6, | Hy 4
rather than 6,, | H, as done by dTS. Consequently, LinTS incurs higher regret due to the information
loss caused by unused interactions of similar actions. Our regret bound and empirical results reflect
this aspect.

Statistical benefits. We do not provide a matching lower bound. The only Bayesian lower bound that
we know of is Q(log?(n)) for a much simpler K -armed bandit [45, Theorem 3]. All seminal works
on Bayesian bandits do not match it and providing such lower bounds on Bayes regret is still relatively
unexplored (even in standard settings) compared to the frequentist one. Also, a min-max lower bound
of Q(d+/n) was given by Dani et al. [21]. In this work, we argue that our bound reflects the overall
structure of the problem by comparing dTS to algorithms that only partially use the structure or do
not use it at all as follows.

When the link functions are linear, we can transform the diffusion prior into a Bayesian linear model
(LinTS) by marginalizing out the latent parameters; in which case the prior on action parameters
becomes 6, ~ N (0, X), with the 8, being not necessarily independent, and ¥ is the marginal initial
covariance of action parameters and it writes ¥ = 071, + Zle o7, ,B¢B/ with By = Hle W;.
Then, it is tempting to directly apply LinTS to solve our problem. This approach will induce
higher regret because the additional uncertainty of the latent parameters is accounted for in X
despite integrating them. This causes the marginal action uncertainty 3 to be much higher than the
conditional action uncertainty o7 1,, since we have ¥ = 071 + ZeL:1 07,.BB/ = ofl4. This
discrepancy leads to higher regret, especially when K is large. This is due to LinTS needing to learn
K independent d-dimensional parameters, each with a considerably higher initial covariance ¥. This
is also reflected by our regret bound. To simply comparisons, suppose that o > maxyc(r 1) 0¢ SO

that 02, < 2. Then the regret bounds of dTS (where we bound 2/, by 2°) and LinTS read

dTs : @(\/n(dKU% + Z,@L:l deo} 12%)), LinTS: @(\/ndK(U% + Z,@L:l 071)) -

Then regret improvements are captured by the variances o, and the sparsity dimensions d,, and we
proceed to illustrate this through the following scenarios.

(I) Decreasing variances. Assume that o, = 2¢ for any ¢ € [L + 1]. Then, the regrets become

aTs : @(\/n(dK—&—ZZL:l dedt))), LinTS: @(\/ndKQL))
Now to see the order of gain, assume the problem is high-dimensional (d > 1), and set L = log,(d)
and d; = | ]. Then the regret of dTS becomes O(+/nd(K + L))), and hence the multiplicative
factor 2% in LinTS is removed and replaced with a smaller additive factor L.




(IT) Constant variances. Assume that o, = 1 for any ¢ € [L + 1]. Then, the regrets become

drs : @(\/n(dK +3°01d2Y)),  LinTS: O(y/ndKL))

Similarly, let L = log,(d), and dy = |&|. Then dTS’s regret is O(y/nd(K + L)). Thus the
multiplicative factor L in LinTS is removed and replaced with the additive factor L. By comparing
this to (I), the gain with decreasing variances is greater than with constant ones. In general, diffusion
models use decreasing variances [30] and hence we expect great gains in practice. All observed
improvements in this section could become even more pronounced when employing non-linear
diffusion models. In our theory, we used linear diffusion models, and yet we can already discern
substantial differences. Moreover, under non-linear diffusion Eq. (1), the latent parameters cannot be
analytically marginalized, making LinT$S with exact marginalization inapplicable.

Regret independent of K? dTS’s regret bound scales with Ko7 rather than K ‘ o2, which is
particularly advantageous when o is small, as is often the case with diffusion model priors. Both our
theoretical bound and empirical results show that dTS’s advantage over LinTS increases as the action
space grows. Nevertheless, dTS’s regret still depends on K; this dependence arises from the problem
setting rather than from the algorithm itself. Prior works [25, 67, 70] have proposed bandit algorithms
whose regret does not scale with K. This difference stems from the setting considered: we study the
disjoint (per-action) case r(z, a;0) = z'0,, where 6 = (0a)ac[x] € R requiring the learning
of Kd parameters and thus introducing an inherent dependence on K when o7 > 0. In contrast,
K-independent regret results are obtained in the shared-parameter setting described in Remark 2.1,
where r(z,a;6) = ¢(x,a) " and only a single d-dimensional parameter must be learned. However,
this formulation requires access to the feature map . Fortunately, dTS is also compatible with this
setting (Section 3.3), in which case its regret would indeed be independent of K.

5 Experiments

Experimental setup. We evaluate 4TS using both synthetic and MovieLens problems. In our
experiments, we run 50 random simulations and plot the average regret with standard error. Our main
contribution is to demonstrate that pretraining a diffusion model offline enables the construction of ex-
pressive and informative priors that substantially improve exploration efficiency in contextual bandits.
We first evaluate dTS in a setting where the prior matches the true generative process (Section 5.1 to
isolate the benefit of informative priors), and then consider a misspecified regime (Section 5.2 and
Appendix G) where the prior is either trained on out-of-distribution data or intentionally perturbed.
These experiments show that even when the prior is imperfect, dTS maintains strong performance:
highlighting its robustness and practical relevance. Code can be found in this GitHub repository.

5.1 True prior is a diffusion model

Synthetic bandit problems are generated from the diffusion model in Eq. (1) with both linear and
non-linear rewards. Linear rewards follow P(- | ;60,) = N (z"6,,1), while non-linear rewards
are binary from P(- | x;6,) = Ber(g(z"6,)), with g as the sigmoid function. Covariances are
¥ = I4, and contexts X; are uniformly drawn from [—1,1]¢. We vary d € {5,20}, L € {2,4},
K € {102,10*}, and set the horizon to n = 5000, considering both linear and non-linear models.

Linear diffusion. We consider Eq. (1) with f,(¢) = W, where W, uniformly drawn from
[—1,1]%*4. Sparsity is introduced by zeroing the last dy columns of W, as W, = (W, 04.4_4,). For
d=5and L =2, (dy,ds) = (5,2); ford = 20 and L = 4, (dy,ds, d3,ds) = (20,10, 5, 2).

Non-linear diffusion. We consider Eq. (1) where f, are 2-layer neural networks with random weights
in [—1, 1], ReLU activation, and hidden layers of size h = 20 for d = 5, and h = 60 for d = 20.

Baselines. For linear rewards, we use LinUCB [1], LinTS [3], and HierTS [33], marginalizing out
all latent parameters except 1, which corresponds to HierTS-1 in Appendix D.1. For non-linear
rewards, we include UCB-GLM [50] and GLM-TS [18]. We exclude GLM-UCB [24] due to high regret
and HierTsS as it’s designed for linear rewards. We name dTS as dTS-dr, where d refers to diffusion
type (L for linear, N for non-linear) and r indicates reward type (L for linear, N for non-linear). For
example, dTS-LL signifies dTS in linear diffusion with linear rewards.

Results and interpretations. Results are shown in Fig. 1 and we make the following observations:


https://github.com/imadaouali/diffusion-thompson-sampling

Linear diffusion, linear reward Linear diffusion, nonlinear reward Nonlinear diffusion, linear reward  Nonlinear diffusion, nonlinear reward
1e3 K=100, L=2,d=5 le4 K=100, L=2,d=5 le3 K=100, L=2,d=5
T T T T T T T T T T T T

1e3 K=100, L=2, d=5
9 1.8 — 1.0 16
8F — dTs-LL 16F — dTS-LN 1 — dTS-NL 14+ — dTS-NN
7t h 141 4 0.8} ) 1 126
o 6L — HierTS 1o — dTs-LL 1 — LinTS 1-0 — dTS-NL
251 — LTS 1.0} — GLM-TS , 0.6 LinUCB ol — GMTS
2 g r LinUCB 8:2 r UCB-GLM 7 0.4} 061 UCB-G
2| 0.4 0.2} 0.4
1} 0.2} 0.2}
0 [ 0.0 - 0.0 L 0.0 S
0 10002000 3000 4000 5000 0 10002000 3000 4000 5000 0 10002000 3000 4000 5000 0 10002000 3000 4000 5000
K=10000, L=4, d=20 K=10000, L=4, d=20 K=10000, L=4, d=20 K=10000, L=4, d=20
qorea =R =R O 3ofes = b goper = R O g le2t —
3.5F — dTS-LL 1 25 — dTS-LN 1 3.5F — dTS-NL 7r +//— dTS-NN
30F — HierTs + | — dTS-LL 11 30F — LinTs 6 — dTS-NL
825 _ inTs 4 1 200 Gms T 251 LinuUCB Hi — GLMTS |
jg» 20} - A 1 15} Pa 1 20} at 7 1
215l Lm/g;g/i ] Lol UCB-GLM ) sl M UCB-GLM
1.0} ; ] F 1.0} 21
os| : 2% / 05t 1t/
0

0.0 T n " 0.0 0.0 i H . ! . .
0 10002000300040005000 0 10002000300040005000 0 10002000300040005000 0 10002000300040005000
Round ¢ € [n] Round ¢ € [n] Round € [n] Round ¢ € [n]

Figure 1: Regret of dTS with varying diffusion and reward models and varying parameters d, K, L.

1) dTS demonstrates superior performance (Fig. 1). dTS consistently outperforms the baselines
across all settings, including the four combinations of linear/non-linear diffusion and reward (columns
in Fig. 1) and both bandit settings with varying K, L, and d (rows in Fig. 1).

2) Latent diffusion structure may be more important than the reward distribution. When
rewards are non-linear (second and fourth columns in Fig. 1), we include variants of dTS that use
the correct diffusion prior but the wrong reward distribution, applying linear-Gaussian instead of
logistic-Bernoulli (dTS-LL in the second column and dTS-NL in the fourth). Despite the reward
misspecification, these variants outperform models using the correct reward distribution but ignoring
the latent diffusion structure, such as GLM-TS and UCB-GLM. This highlights the importance of
accounting for latent structure, which can be more critical than an accurate reward distribution.

3) Performance gap between dTS and LinTS widens as K increases (Fig. 2a). To show dTS’s
improved scalability, we evaluate its performance with varying values of K € [10,5 x 10%], in the
linear diffusion and rewards setting. Fig. 2a shows the final cumulative regret for varying K values
for both dTS-LL and LinTS, revealing a widening performance gap as K increases.

4) Regret scaling with K, d and L matches our theory (Fig. 2b). We assess the effect of the number
of actions K, context dimension d, and diffusion depth L on dTS’s regret. Using the linear diffusion
and rewards setting, for which we have derived a Bayes regret upper bound, we plot dTS-LL’s regret
across varying values of K € {10,100, 500,1000}, d € {5,10,15,20}, and L € {2,4,5,6} in
Fig. 2b. As predicted by our theory, the empirical regret increases with larger values of K, d, or L, as
these make the learning problem more challenging, leading to higher regret.

5) Diffusion prior misspecification (Fig. 2¢). Here, dTS’s diffusion prior parameters differ from
the true diffusion prior. In the linear diffusion and reward setting, we replace the true parameters
W, and ¥, with misspecified ones, W, + €; and ¥y + €5, where €; and €5 are uniformly sampled
from [v, v + 0.5]%%<, with v controlling the misspecification level. We vary v € {0.5,1,1.5} and
assess dTS’s performance, comparing it to the well-specified dTS-LL and the strongest baseline in
this fully-linear setting, HierTS. As shown in Fig. 2c, dTS’s performance decreases with increasing
misspecification but remains superior to the baseline, except at v = 1.5, where their performances are
comparable. Additional misspecification experiments are presented in Section 5.2, where the bandit
environment is not sampled from a diffusion model.

5.2 True prior is not a diffusion model

Swiss roll data. Unlike previous experiments, the true action parameters are now sampled from the
Swiss roll distribution (see Fig. 4 in Appendix G.1), rather than from a diffusion model. The diffusion
model used by dTS is pre-trained on samples from this distribution, with the offline pre-training
procedure described in Appendix G.2. Fig. 3a shows that larger sample sizes increase the performance
gap between dTS and LinTS. More samples improve the estimation of the diffusion prior (see Fig. 4 in
Appendix G.1), leading to better dTS performance. Notably, comparable performance was achieved
with as few as 10 samples, and dTS outperformed LinTS by a factor of 1.5 with just 50 samples.
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Figure 3: (a) and (b): Impact of pre-training sample size and diffusion depth L for the Swiss roll
data. (c): Regret of dTS in MovieLens.

While more samples may be required for more complex problems, LinTS would also struggle in such
cases. Therefore, we expect these gains to be even more significant in more challenging settings.

We studied the effect of the pre-trained diffusion model depth L and found that L ~ 40 yields the
best performance, with a drop beyond that point (Fig. 3b). While our theory doesn’t apply directly
here, as it assumes a linear diffusion model, it still offers some intuition on the decreased performance
for L > 40. The theorem shows dTS’s regret bound increases with L when the true distribution is a
diffusion model. For small L, the pre-trained model doesn’t fully capture the true distribution, making
the theorem inapplicable, but at L ~ 40, the distribution is nearly captured, and further increases in
L lead to higher regret, consistent with our theory.

MovieLens data. We also evaluate dTS using the standard MovieLens [46] setting. In this semi-
synthetic experiment, a user is sampled from the rating matrix in each interaction round, and the
reward is the rating the user gives to a movie (see Clavier et al. [20, Section 5] for details about
this setting). Here, the true distribution of action parameters is unknown and not a diffusion model.
The diffusion model is pre-trained on offline estimates of action parameters obtained through low-
rank factorization of the rating matrix. Fig. 3c demonstrates that dTS outperforms LinTS in this
setting. Additional CIFAR-10 ablation studies are provided in Appendix G.4 where similar strong
improvements are observed .

6 Conclusion

We use a pre-trained diffusion model as a strong and flexible prior for dTS. Diffusion pre-training
leverages abundant offline data, which is then fine-tuned through online interactions via our tractable
posterior approximation. This approximation enables efficient posterior sampling and updates while
maintaining strong empirical performance. Moreover, dTS admits a simple Bayesian regret bound
in the linear—Gaussian setting. Broader impact and computational considerations are discussed in
Appendices I and J, and directions for future work are provided in Appendix H.
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made in the paper.
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much the results can be expected to generalize to other settings.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
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* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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All assumptions should be clearly stated or referenced in the statement of any theorems.
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to make their results reproducible or verifiable.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
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instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
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sions to provide some reasonable avenue for reproducibility, which may depend on the
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code provided in supplementary materials
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* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Section 5 and Appendix G
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Section 5 and Appendix G
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Appendix J
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

 The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The authors confirm reading and adhering to the NeurIPS Code of Ethics
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Appendix |
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This is a bandit paper whose algorithms and data are not pretrained language
models, image generators, or scraped datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The Authors coded themselves all the baselines and algorithms. MovieLens
data was used and cited properly.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Supplementary materials contains the well-documented code
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

» At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper

include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing was involved
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No human subjects were involved
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
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Answer: [NA]
Justification: LLMs were only used in writing polishing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary materials

Notation. For any positive integer n, we define [n] = {1,2,...,n}. Let vy, ..., v, € R?be n vectors,
(vi)ie[n] € R™ is the nd-dimensional vector obtained by concatenating v, . . ., v,,. For any matrix
A € R4 \;(A) and \4(A) denote the maximum and minimum eigenvalues of A, respectively.
Finally, we write O for the big-O notation up to polylogarithmic factors.

Table of notations.

Table 1: Notation.

Symbol Definition

n Learning horizon

X Context space

K Number of actions

[K] Set of actions

d Dimension of contexts and action parameters d

0. d-dimensional parameter of action a € [K]

P(- | z;6,) Reward distribution of context z and action a
r(xz,a;0,)  Reward function of context x and action a

BR(n) Bayes regret after n interactions

N(u, X) Multivariate Gaussian distribution of parameters 4 and 3
N(;p,X)  Multivariate Gaussian density of parameters p and 3
L Diffusion model depth

Py {-th d-dimensional latent parameter

fe Link functions of the diffusion model

b, Covariances of the link function

H, History of interactions

A Extended related work

Thompson sampling (TS) operates within the Bayesian framework and it involves specifying a
prior/likelihood model. In each round, the agent samples unknown model parameters from the
current posterior distribution. The chosen action is the one that maximizes the resulting reward. TS
is naturally randomized, particularly simple to implement, and has highly competitive empirical
performance in both simulated and real-world problems [59, 18]. Regret guarantees for the TS
heuristic remained open for decades even for simple models. Recently, however, significant progress
has been made. For standard multi-armed bandits, TS is optimal in the Beta-Bernoulli model [37, 4],
Gaussian-Gaussian model [4], and in the exponential family using Jeffrey’s prior [39]. For linear
bandits, TS is nearly-optimal [59, 5, 2]. In this work, we build TS upon complex diffusion priors and
analyze the resulting Bayes regret [59, 55, 28] in the linear contextual bandit setting.

Decision-making with diffusion models gained attention recently, especially in offline learning
[6, 36, 65]. However, their application in online learning was only examined by Hsieh et al. [34],
which focused on meta-learning in multi-armed bandits without theoretical guarantees. In this work,
we expand the scope of Hsieh et al. [34] to encompass the broader contextual bandit framework. In
particular, we provide theoretical analysis for linear instances, effectively capturing the advantages of
using diffusion models as priors in contextual Thompson sampling. These linear cases are particularly
captivating due to closed-form posteriors, enabling both theoretical analysis and computational
efficiency; an important practical consideration.

Hierarchical Bayesian bandits [13, 43, 14, 61, 63, 33, 56, 64, 8] applied TS to simple graphical
models, wherein action parameters are generally sampled from a Gaussian distribution centered at
a single latent parameter. These works mostly span meta- and multi-task learning for multi-armed
bandits, except in cases such as Aouali et al. [8], Hong et al. [32] that consider the contextual bandit
setting. Precisely, Aouali et al. [8] assume that action parameters are sampled from a Gaussian
distribution centered at a linear mixture of multiple latent parameters. On the other hand, Hong et al.
[32] applied TS to a graphical model represented by a tree. Our work can be seen as an extension of
all these works to much more complex graphical models, for which both theoretical and algorithmic
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foundations are developed. Note that the settings in most of these works can be recovered with
specific choices of the diffusion depth L and functions f,. This attests to the modeling power of dTS.

Approximate Thompson sampling is a major problem in the Bayesian inference literature. This is
because most posterior distributions are intractable, and thus practitioners must resort to sophisticated
computational techniques such as Markov chain Monte Carlo [41]. Prior works [57, 18, 42] highlight
the favorable empirical performance of approximate Thompson sampling. Particularly, [42] provide
theoretical guarantees for Thompson sampling when using the Laplace approximation in generalized
linear bandits (GLB). In our context, we incorporate approximate sampling when the reward exhibits
non-linearity. While our approximation does not come with formal guarantees, it enjoys strong
practical performance. An in-depth analysis of this approximation is left as a direction for future
works. Similarly, approximating the posterior distribution when the diffusion model is non-linear as
well as analyzing it is an interesting direction of future works.

Bandits with underlying structure also align with our work, where we assume a structured rela-
tionship among actions, captured by a diffusion model. In latent bandits [53, 31], a single latent
variable indexes multiple candidate models. Within structured finite-armed bandits [47, 29], each
action is linked to a known mean function parameterized by a common latent parameter. This latent
parameter is learned. TS was also applied to complex structures [69, 27]. However, simultaneous
computational and statistical efficiencies aren’t guaranteed. Meta- and multi-task learning with upper
confidence bound (UCB) approaches have a long history in bandits [12, 26, 22, 16]. These, however,
often adopt a frequentist perspective, analyze a stronger form of regret, and sometimes result in
conservative algorithms. In contrast, our approach is Bayesian, with analysis centered on Bayes regret.
Remarkably, our algorithm, dTS, performs well as analyzed without necessitating additional tuning.
Finally, Low-rank bandits [35, 17, 68] also relate to our linear diffusion model when L = 1. Broadly,
there exist two key distinctions between these prior works and the special case of our model (linear
diffusion model with L = 1). First, they assume 6, = W11, whereas we incorporate additional
uncertainty in the covariance ¥; to account for possible misspecification as 6, = N (Wi, 31).
Consequently, these algorithms might suffer linear regret due to model misalignment. Second, we
assume that the mixing matrix W is available and pre-learned offline, whereas they learn it online.
While this is more general, it leads to computationally expensive methods that are difficult to employ
in a real-world online setting.

Large action spaces. The regret bound of dTS scales with Ko7 rather than K ), o7, which is
particularly advantageous when o is small: a common case in diffusion models with decreasing layer
variances. In the limiting case o1 = 0, the regret becomes independent of K. Our theoretical analysis
(Section 4.1) and empirical results both show that the performance gap between dTS and LinTS
widens as the number of actions increases, highlighting dTS’s suitability for large action spaces.

Some prior works [25, 67, 70] achieve regret bounds that do not scale with K. This discrepancy
stems from the problem setting rather than the algorithm itself. Specifically, those works adopt
a shared-parameter model r(x,a) = o(z,a) 0 with a single parameter § € R? and a known
feature map ¢, whereas we study the disjoint case r(z,a) = =" 6, with K separate d-dimensional
parameters. In the shared-parameter setting (see Remark 2.1 and Section 3.3), dTS would similarly
achieve regret independent of K.

In summary, the dependence on K arises from the modeling choice rather than a limitation of dTS.
When ¢ is available, 4TS scales only with d; otherwise, in the per-action setting, it remains both
computationally and statistically efficient (Section 4.1). Empirically, even for very large action
spaces (e.g., K = 10%), dTS substantially outperforms existing baselines, with the performance gap
increasing as K grows: highlighting its scalability to large action spaces.

B Posterior derivations for linear diffusion models

Our posterior approximation builds on the simplified setting where the diffusion model is fully
linear, i.e., each link function f, is linear in v,. This linear case, studied in our earlier work [7],
serves as the analytical foundation for our posterior approximation used in the general non-linear
case. In Appendix C, we show how the exact posteriors derived in this linear setting inspire our
efficient approximation, which extends naturally to practical diffusion models that are typically highly
non-linear.
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B.1 Linear diffusion model

Here, we assume the link functions f, are linear such as f;(¢y) = Wyt for £ € [L], where
W, € R4*4 are known mixing matrices. Then, Eq. (1) becomes a linear Gaussian system (LGS) [15]
and can be summarized as follows

v ~N(0,2141), (17)
Vo1 | e ~ N(Wethe, %), ve e [L]/{1},
Oa | 11 ~ N(W1t1,X1), Va € [K],
Yi | Xi,04, ~ P(- | X¢304,), vt € [n].

This model is important, both in theory and practice. For theory, it leads to closed-form posteriors
when the reward distribution is linear-Gaussian as P(- | z;6,) = N(;276,,0%). This allows
bounding the Bayes regret of dTS. For practice, the posterior expressions are used to motivate
efficient approximations for the general case in Eq. (1) as we show in Section 3.2. These derivations
can be proven following standard techniques [15], and the reader may refer to Aouali [7, Appendix
B] for an example of how these posteriors can be derived in the case of contextual bandits.

B.2 Posterior derivation in the linear diffusion case

We now consider the linear link function case, where f;(1¢) = W1, for £ € [L] (the setting above
in Appendix B.1). Recall that the reward distribution is modeled as a generalized linear model (GLM)
[54], allowing for non-linear rewards even when the diffusion links are linear. This non-linearity in
the reward distribution prevents closed-form posteriors. However, since the non-linearity arises only
through the reward likelihood, we approximate it by a Gaussian, leading to efficient posterior updates
that are exact whenever the reward model itself is Gaussian; a special case of the GLM framework.

Specifically, let P(- | z;6,) be an exponential-family distribution. The log-likelihood of the data
associated with action a is

logp(Ht,a | 9@) = Z D/zXZ—rea - A(XzTaa) + C(}/z)]a
i€St,a

where C'is a real-valued function and A is twice continuously differentiable, with derivative A = ¢
representing the mean function. Let B; , and G , denote the maximum likelihood estimate (MLE)
and the Hessian of the negative log-likelihood, respectively:

By o = argmaxlog p(Hy 4 | 0a), Gia = Z g(X;Et,a)XiX;, (18)
0o €RY 1€St.q

where S; , = {¢ € [t — 1] : Ay = a} is the set of rounds in which action a was taken up to round ¢.
We approximate the likelihood as

p(Hia | 02) =~ N(0ai Bra,Gr), (19)

which renders all subsequent posteriors Gaussian. Once this approximation is done, all other
derivations of the action posterior and latent posteriors are exact.

Action posterior. The conditional action posterior becomes

p(ea | qblyHt,a) ~ N(ea;ﬂt,aagt,a)7

with parameters

Sia =51 +Cha, e = S0 (ST Win + GraBra) . QO)

Latent posteriors. For each ¢ € [L] \ {1}, the conditional latent posterior is

p(e—1 | e, Hy) =~ N(ve—1;fit,—1, St.0-1),

where

St_,él—l =%, +Gro1, fito—1 = St o-1 (S, " Wby + By o—1) . 1)
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The top-layer posterior is
p(¥r | Hy) = N(ZZJL;ﬂt,L, it,L)a

with

St_i = EZi_l + Gy, B, =S¢ 1Brr. (22)

Recursive updates. The matrices C_JM and Bt’g for ¢ € [L] are defined recursively. The base
recursion is

K K
Gra=W[> (57" =578 ny )Wy, By =W/ 5uGraBra  (23)

a=1 a=1

Then, for ¢ € [L] \ {1}, the recursive step is

Gre=W/ (S, =218, 18,1 Wy, Biy=W/S 'S 1Bt 24)

Discussion. This completes the derivation of the linear posterior approximation. All posteriors are
Gaussian and exact whenever the reward distribution follows a linear-Gaussian model, i.e.

P(- | z;0,) :N(-;ITQG,UQ).

In this case, the above posterior updates coincide with the exact Bayesian updates, while for general
GLMs they serve as efficient and accurate approximations.

C Posterior derivations for non-linear diffusion models

The general diffusion model (Eq. (1), which is our case of interest) involves two sources of non-
linearity: (i) the reward distribution P(- | x; ), which may follow a non-linear generalized linear
model (GLM), and (ii) the diffusion links fy(1;), which can be arbitrary non-linear functions. Both
sources make the posterior intractable, and therefore two approximations are needed.

First approximation (likelihood). We first approximate the reward likelihood by a Gaussian density
(as we did above in Eq. (19)). After this substitution, the model becomes conditionally Gaussian given
the latent variables. This step is exact when the reward model is linear-Gaussian, and approximate
otherwise.

Second approximation (diffusion hierarchy). Even after the likelihood is approximated, the
diffusion hierarchy remains non-linear because of the non-linear mappings f,;. To handle this, we
reuse the exact Gaussian posteriors derived for the linear diffusion case (Appendix B.2) and generalize
them as follows:

* Replace each linear mapping W1}y by its non-linear counterpart f (1), which represents
the mean of the diffusion prior at layer /.

* Remove matrix multiplications involving W, in the recursive updates.

This step can be viewed as extending the linear-Gaussian posterior formulas to a general non-linear
setting, without performing explicit linearization or optimization.

Resulting approximation. The two steps above yield a posterior where each conditional factor
p(0a | ¥1,Hio) and p(the—1 | t¢, H;) remains Gaussian with updated means and covariances,
while the overall model retains the hierarchical diffusion structure. The approximation satisfies two
desirable properties: it exactly recovers the diffusion prior when no data is available, and as more
data is observed, the likelihood terms dominate and the prior influence fades naturally.

This approach is computationally efficient, avoids costly posterior sampling or variational optimiza-
tion, and remains expressive since the overall posterior is still a diffusion model with non-linear link
functions and covariances that are now data-dependent.
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D Additional discussions

D.1 Additional discussion: link to two-level hierarchies

The linear diffusion Eq. (17) can be marginalized into a 2-level hierarchy using two different strategies.
The first one yields,

Y ~N(0,07 1BLBL), (25)
0o | YL ~N(¥L, 1), Va € [K],
with Q = 021, + Zf;ll 07,,B¢B, and By = Hle W,. The second strategy yields,
Y1~ N(0,Q), (26)
Oa | 1 ~ N (41, 01la), Ya € [K],

where 25 = Zle o7 +1Bng. Recently, HierTS [33] was developed for such two-level graphical
models, and we call HierTS under Eq. (25) by HierTS-1 and HierTS under Eq. (26) by HierTS-2.
Then, we start by highlighting the differences between these two variants of HierTS. First, their
regret bounds scale as

HierTS-1: @(\/nd(K Zle o} + Lo} ,,), HierTS-2: @(\/’ﬂd(KO’% + Zle 07.1)) -

When K ~ L, the regret bounds of HierTS-1 and HierTS-2 are similar. However, when K > L,
HierTS-2 outperforms HierTS-1. This is because HierTS-2 puts more uncertainty on a single d-
dimensional latent parameter 1)1, rather than K individual d-dimensional action parameters 6,. More
importantly, HierTS-1 implicitly assumes that action parameters 6, are conditionally independent
given 11, which is not true. Consequently, HierTS-2 outperforms HierTS-1. Note that, under the
linear diffusion model Eq. (17), dTS and HierTS-2 have roughly similar regret bounds. Specifically,
their regret bounds dependency on K is identical, where both methods involve multiplying K by o,
and both enjoy improved performance compared to HierTS-1. That said, note that Theorem E.1
and Proposition E.2 provide an understanding of how dTS’s regret scales under linear link functions
fe, and do not say that using dTS is better than using HierTS when the link functions f; are linear
since the latter can be obtained by a proper marginalization of latent parameters (i.e., HierTS-2
instead of HierTS-1). While such a comparison is not the goal of this work, we still provide it for
completeness next.

When the mixing matrices W, are dense (i.e., assumption (A3) is not applicable), dTS and HierTS-2
have comparable regret bounds and computational efficiency. However, under the sparsity assumption
(A3) and with mixing matrices that allow for conditional independence of v); coordinates given s,
dTS enjoys a computational advantage over HierTS-2. This advantage explains why works focusing
on multi-level hierarchies typically benchmark their algorithms against two-level structures akin to
HierTS-1, rather than the more competitive HierTS-2. This is also consistent with prior works in
Bayesian bandits using multi-level hierarchies, such as Tree-based priors [32], which compared their
method to HierTS-1. In line with this, we also compared dTS with HierTS-1 in our experiments.
But this is only given for completeness as this is not the aim of Theorem E.1 and Proposition E.2.
More importantly, HierTS is inapplicable in the general case in Eq. (1) with non-linear link functions
since the latent parameters cannot be analytically marginalized.

D.2 Additional discussion: why regret bound depends on K and L

Why the bound increases with K'? This arises due to our conditional learning of 8, given .
Rather than assuming deterministic linearity, #, = W11, we account for stochasticity by modeling
0, ~ N (W11, 0%1,;). This makes dTS robust to misspecification scenarios where 6, is not perfectly
linear with respect to 1, at the cost of additional learning of 6, | ¥;. If we were to assume
deterministic linearity (o7 = 0), our regret bound would scale with L only.

Why the bound increases with L.? This is because increasing the number of layers L adds more
initial uncertainty due to the additional covariance introduced by the extra layers. However, this does
not imply that we should always use L = 1 (the minimum possible L). Precisely, the theoretical
results predict that regret increases with L when the true prior distribution matches a diffusion model
of depth L, as increasing L reflects a more complex action parameter distribution and hence a more
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complex bandit problem. However, in practice, when L is small, the pre-trained diffusion model
may be too simple to capture the true prior distribution, violating the assumptions of our theory.
Increasing L improves the pre-trained model’s quality, reducing regret. Once L is large enough and
the pre-trained model adequately captures the true prior distribution, the theoretical assumptions hold,
and regret begins to increase with L, as predicted. This is validated empirically in Fig. 3b.

E Formal theory

We analyze dTS assuming that: (A1) The rewards are linear P(- | z;0,) = N(-;2"04,02). (A2)
The link functions f; are linear such as fy (1) = Wy, for £ € [L], where W, € R4*? are known
mixing matrices. This leads to a structure with L layers of linear Gaussian relationships detailed in
Appendix B.1. In particular, this leads to closed-form posteriors given in Appendix B.2 that inspired
our approximation and enable theory similar to linear bandits [3]. However, proofs are not the same,
and technical challenges remain (explained in Appendix F).

Although our result holds for milder assumptions, we make additional simplifications for clarity and
interpretability. We assume that (A3) Contexts satisfy || X;||3 = 1 for any ¢ € [n]. Note that (A3) can
be relaxed to any contexts X; with bounded norms || X;||2. (A4) Mixing matrices and covariances
satisfy \;(W/ W,) = 1 forany ¢ € [L] and 3y = 071, for any ¢ € [L + 1]. (A4) can be relaxed to
positive definite covariances ., and arbitrary mixing matrices W. In particular, this is satisfied once
we use a diffusion model parametrized with linear functions. In this section, we write O for the big-O
notation up to polylogarithmic factors. We start by stating our bound for dTS.

Theorem E.1. Let 02, = maxecir4+1) 1+ Z—Z There exists a constant ¢ > 0 such that for any
d € (0,1), the Bayes regret of dTS under (A1), (A2), (A3) and (A4) is bounded as

L
BR(n) < | 2n(R**(n) + Y RET) log(1 /5)) +end,
=1

2
R (n) = codK log (1 + %), co =

RLAT dl (1 n UE—H) Utg-i-la%xx @7
4 = ¢palog ,Co = )
o? log (1 +J§+1)

Eq. (27) holds for any ¢ € (0,1). In particular, the term cnd is constant when 6 = 1/n. Then, the

bound is O (\/ n(dKo? +d 25:1 o7 +10%X)), and this dependence on the horizon n aligns with
prior Bayes regret bounds. The bound comprises L + 1 main terms, R*“"(n) and Rj*" for ¢ € [L].

First, R*“"(n) relates to action parameters learning, conforming to a standard form [52]. Similarly,
Ry is associated with learning the /-th latent parameter.

"l:o include more structure, we propose the sparsity assumption (AS) W, = (Wg, 0d,d—d, ), where
W, € R4 for any ¢ € [L]. Note that (A5) is not an assumption when d;, = d for any ¢ € [L].
Notably, (AS) incorporates a plausible structural characteristic that a diffusion model could capture.

Proposition E.2 (Sparsity). Let 02,y = maxye(r4+1] 1 + Z—z There exists a constant ¢ > 0 such that
forany 6 € (0,1), the Bayes regret of dTS under (A1), (A2), (A3), (A4) and (AS5) is bounded as

L
BR(n) < | 2n(RAT(n) + Zﬁ'@“) log(l/d)) +cnd,
=1

n02 0'2
RA*T(n) = codK log (1 + —2),c0 = ——2—st
(n) Co 0og ( + d )760 IOg (1 n 0_%) )
B 0_2 0.2 O_ZE
RIZAT — ngg log 1+ 041 cp = +1Y MAX ) (28)
( o2 ) log (1+07,,)
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From Proposition E.2, our bounds scales as

L
BR(n) = @( n(dKo? + Z dgal?ﬂa,%[ﬂx)) . (29)
=1

The Bayes regret bound has a clear interpretation: if the true environment parameters are drawn
from the prior, then the expected regret of an algorithm stays below that bound. Consequently, a
less informative prior (such as high variance) leads to a more challenging problem and thus a higher
bound. Then, smaller values of K, L, d or d, translate to fewer parameters to learn, leading to lower
regret. The regret also decreases when the initial variances O’? decrease. These dependencies are
common in Bayesian analysis, and empirical results match them.

The reader might question the dependence of our bound on both L and K. Details can be found
in Appendix G.5, but in summary, we model the relationship between 6, and 1)1 stochastically as
N (W14, 0314) to account for potential nonlinearity. This choice makes the model robust to model
misspecification but introduces extra uncertainty and requires learning both the 6, and the ;. This
results in a regret bound that depends on both K and L. However, thanks to the use of informative
priors, our bound has significantly smaller constants compared to both the Bayesian regret for LinTS
and its frequentist counterpart, as demonstrated empirically in Appendix G.5 where it is much tighter
than both and in Section 4.1 where we theoretically compare our Bayes regret bound to that of LinTS.

Technical contributions. dTS uses hierarchical sampling. Thus the marginal posterior distribution of
6. | Hy is not explicitly defined. The first contribution is deriving 6,, | H; using the total covariance
decomposition combined with an induction proof, as our posteriors were derived recursively. Unlike
standard analyses where the posterior distribution of 8,, | H; is predetermined due to the absence of
latent parameters, our method necessitates this recursive total covariance decomposition. Moreover,
in standard proofs, we need to quantify the increase in posterior precision for the action taken A; in
each round ¢ € [n]. However, in dTS, our analysis extends beyond this. We not only quantify the
posterior information gain for the taken action but also for every latent parameter, since they are
also learned. To elaborate, we use our recursive posteriors that connect the posterior covariance of
each latent parameter v, with the covariance of the posterior action parameters 6,. This allows us to
propagate the information gain associated with the action taken in round A; to all latent parameters
g, for £ € [L] by induction. Details are given in Appendix F.

F Regret proof

F.1 Sketch of the proof

We start with the following standard lemma upon which we build our analysis [8].

Lemma F.1. Assume that p(0, | Hy) = N (04; fit.a, 2t.0) for any a € [K), then for any § € (0,1),

BR(n) < +/2nlog(1/5) \/E {Z?:l HXt”QZt,At +cnd, where ¢ > 0 is a constant . (30)

Applying Lemma F.1 requires proving that the marginal action-posterior densities of 8, | H; in
Eq. (3) are Gaussian and computing their covariances, while we only know the conditional action-
posteriors p(6, | ¥1, H;) and latent-posteriors p(wy_1 | ¥, Hy). This is achieved by leveraging
the preservation properties of the family of Gaussian distributions [38] and the total covariance
decomposition [66] which leads to the next lemma.

Lemma F.2. Lett € [n] and a € [K], then the marginal covariance matrix Y., reads

Sta = Sta + epy PasSeePry . where Poy =5 o357 Wi [12) 5057 Wigr. 3D
The marginal covariance matrix Etya in Eq. (31) decomposes into L + 1 terms. The first term
corresponds to the posterior uncertainty of 8, | 11. The remaining L terms capture the posterior

uncertainties of ¢z, and ¢,_1 | 1 for ¢ € [L]/{1}. These are then used to quantify the posterior
information gain of latent parameters after one round as follows.
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Lemma F.3 (Posterior information gain). Lett € [n] and £ € [L], then

S—1 S—1 2 _—2UPpT T 2 _ e
Et-i-l,é — Et,e -0 CTMAXPAt,gXtXt Pa, ., where oy, = maxeepy1) 1+ o5 (32)

Finally, Lemma F.2 is used to decompose HXt||22t . inEq. (30) into L + 1 terms. Each term is

bounded thanks to Lemma F.3. This results in the B)ayes regret bound in Theorem E.1.

F.2 Technical contributions

Our main technical contributions are the following.

Lemma F.2. In dTS, sampling is done hierarchically, meaning the marginal posterior distribution of
.| H; is not explicitly defined. Instead, we use the conditional posterior distribution of 6, |Hy, 1.
The first contribution was deriving 6, | H; using the total covariance decomposition combined with an
induction proof, as our posteriors in Appendix B.2 were derived recursively. Unlike in Bayes regret
analysis for standard Thompson sampling, where the posterior distribution of 6, |H, is predetermined
due to the absence of latent parameters, our method necessitates this recursive total covariance
decomposition, marking a first difference from the standard Bayesian proofs of Thompson sampling.
Note that HierTS, which is developed for multi-task linear bandits, also employs total covariance
decomposition, but it does so under the assumption of a single latent parameter; on which action
parameters are centered. Our extension significantly differs as it is tailored for contextual bandits with
multiple, successive levels of latent parameters, moving away from HierTS’s assumption of a 1-level
structure. Roughly speaking, HierTS when applied to contextual would consider a single-level
hierarchy, where 0,|¢; ~ N (11,%1) with L = 1. In contrast, our model proposes a multi-level
hierarchy, where the first level is 0,[11 ~ N (W11, 1). This also introduces a new aspect to our
approach - the use of a linear function Wy, as opposed to HierTS’s assumption where action
parameters are centered directly on the latent parameter. Thus, while HierTS also uses the total
covariance decomposition, our generalize it to multi-level hierarchies under L linear functions W)y,
instead of a single-level hierarchy under a single identity function ).

Lemma F.3. In Bayes regret proofs for standard Thompson sampling, we often quantify the posterior
information gain. This is achieved by monitoring the increase in posterior precision for the action
taken A; in each round ¢ € [n]. However, in 4TS, our analysis extends beyond this. We not only
quantify the posterior information gain for the taken action but also for every latent parameter, since
they are also learned. This lemma addresses this aspect. To elaborate, we use the recursive formulas
in Appendix B.2 that connect the posterior covariance of each latent parameter v, with the covariance
of the posterior action parameters 6,. This allows us to propagate the information gain associated
with the action taken in round A, to all latent parameters ¢;, for ¢ € [L] by induction. This is a novel
contribution, as it is not a feature of Bayes regret analyses in standard Thompson sampling.

Proposition E.2. Building upon the insights of Theorem E.1, we introduce the sparsity assumption
(A3). Under this assumption, we demonstrate that the Bayes regret outlined in Theorem E.1 can
be significantly refined. Specifically, the regret becomes contingent on dimensions d; < d, as
opposed to relying on the entire dimension d. The underlying principle of this sparsity assumption is
straightforward: the Bayes regret is influenced by the quantity of parameters that require learning.
With the sparsity assumption, this number is reduced to less than d for each latent parameter. To
substantiate this claim, we revisit the proof of Theorem E.1 and modify a crucial equality. This
adjustment results in a more precise representation by partitioning the covariance matrix of each
latent parameter 1), into blocks. These blocks comprise a d; x d,; segment corresponding to the
learnable d, parameters of v, and another block of size (d — dy) x (d — dy) that does not necessitate
learning. This decomposition allows us to conclude that the final regret is solely dependent on dy,
marking a significant refinement from the original theorem.
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F.3 Proof of lemma F.2

In this proof, we heavily rely on the total covariance decomposition [66]. Also, refer to [33, Section
5.2] for a brief introduction to this decomposition. Now, from Eq. (20), we have that

. . -1
cov [0 | Hy, ] =310 = <Gt,a + 21_1> ,

E [ea | thl] = ﬂt,a = it,a (Gt,aBt,a + EI1W1¢1) .
. -1
First, given Hy, cov [0, | Hy, 1] = (Gt’a + Zfl) is constant. Thus

E [cov (6 | Hy,tn] | Hi] = cov | Hyutha] = (Gra+ 57%) T = S,
In addition, given Hy, im, ém and Bm are constant. Thus
cov [E [0 | Hy,41] | Hy] = cov [Et (GMBM + Eflwlzpl) ‘ Ht} :
= cov [it,azl—lwlwl ‘ Ht] ,
=3 2 Wicov v | H) W] 2718, 4,
=3 ST WIS W BT,

where im = cov [¢1 | Hy] is the marginal posterior covariance of ;. Finally, the total covariance
decomposition [66, 33] yields that

ZV]M = cov [0, | H] = E[cov [0, | Ht, 1] | Hi] + cov [E [0, | He, U] | He]
=0+ S ST WIS W TS, (33)

However, im = cov [¢)1 | Hy] is different from itg = cov [¢1 | Hy, 12] that we already derived in
Eq. (21). Thus we do not know the expression of it,l. But we can use the same total covariance
decomposition trick to find it. Precisely, let $; , = cov by | Hy] for any ¢ € [L]. Then we have that

_ 1 = -1
S = cov [¥1 | Hy, 2] = (35 by Gi1)
fen = E 1 | Hy o] = Sy (22_1W2¢2 + Bt,l) .

First, given Hy, cov [ty | Hy, o] = (Zgl + G’t,l)fl is constant. Thus

E [cov [1 | Hy, 9] | He] = cov [¢1 | Hy, 42 = 51

In addition, given Hy, ¥ 1, ¥ ; and B, are constant. Thus

cov [E [¢1 | Hy, 2] | Hy] = cov [im (E§1W21/12 + Bm) ’Ht} )

= cov [84155 'Watpg | Hy] |
=% 155 'Wacov [the | Hi ) Wy 2515, 1,
= 5155 T WoE oWy 518,

Finally, total covariance decomposition [66, 33] leads to

St = cov [y | Hy) = E [cov [¢1 | Hy, o] | Hy] + cov [E 1y | Hy, 2] | Hy)
=51+ 50107 T Wo S, o W) 8518,
Now using the techniques, this can be generalized using the same technique as above to

i@g = it,g + it7525j1W4+1§]t75+1WJ+1E;ﬁliw s NS [L — 1] .
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Then, by induction, we get that

it,l = Z Péit,lpz ) Vee[L-1],
Le[L]
where we use that by definition ¥, ;, = cov [y |Hy] = ¥, and set Py = I; and P, =

Hf;; E_]tﬁiZ;rllwiH for any ¢ € [L]/{1}. Plugging this in Eq. (33) leads to
St,a = i)t,a + Z ZA)t,azl_1W1P22t,ZPZWIE;12t,aa
Le[L]
= S0t Y BeaST WIPE (8,57 W) T
Le[L]
= 2A:t,a + Z Pa,fit,fplé )

Le[L]

where Py o = 5, .57 "W Py = 2, 27 'Wi [ 8080, Wi

F.4 Proof of lemma F.3
We prove this result by induction. We start with the base case when £ = 1.

AL _
(I) Base case. Let u = 0*125 AtXt From the expression of ¥, ; in Eq. (21), we have that

o1 S-1 _ wT
Et+1,1 - Et 1= Vv1

)

.
S 2 YYD Do L (34)
u u

In (i) we use the Sherman-Morrison formula. Note that (ii) says that 3, Jrll’l — %] is one-rank
which we will also need in induction step. Now, we have that || X;||?> = 1. Therefore,

1+u u=1+ szXtTXA]LAtXt <1+ 072/\1(21)|\Xt||2 =1+ 0'720% < g2

MAX »

where we use that by definition of 02, in Lemma F.3, we have that 02, > 1 + 0~ 20%. Therefore,
by taking the inverse, we get that > oy 2. Combining this with Eq. (34) leads to

1

1+uTu
S~ m o o W ST 4, X X B 4, BT W

Noticing that P 4, 1 = XAL; A 2] 1W1 concludes the proof of the base case when ¢ = 1.

(ID) Induction step. Let ¢ € [L]/{1} and suppose that - +117 -1 — 5;4_, is one-rank and that it
holds for £ — 1 that

-1 -1 -2 _—2
Zt+1,€71 - Et,eq Z 0 “Oua

—1)pT T -2 -2 2
,E )PAt)g_lXtXt Pa,¢-1, where oy = ?'El?ﬁl +o0" %0.

-1

Then, we want to show that £, , — ¥,/ is also one-rank and that it holds that

S—1 S—1 —2 _—upT T —2 —2 2
Y Et,é =0 "ouaxPa, 1 Xi Xy Pa, e, where o1y = ?elz[zﬁl + o0 %0}.
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This is achieved as follows. First, we notice that by the induction hypothesis, we have that 3. +11 —1—
Gro—1 =2} e Z; /_, is one-rank. In addition, the matrix is positive semi-definite. Thus we

can write it as Zt 101 thg_l = uu ' where © € R?. Then, similarly to the base case, we have

D
— W] (Se+ 1) We— W] (S0 + S0 1) Wy,
=W, [(Zz + it+1,£71)_1 —(Ze+ it,éfl)_l}wé ;
=W (57 + Gren) T = (B0 S T B,
= WIS (B 4 Gremt) T = (57 + G+ Sy — Grend) T S0W,
=W/ 5! [(Z;l +Gro) = (57 4+ Gro + uuT)_l}ZZIWg,
= WIS [Se - (Siiy + ) T EW,

'LLUT

Ty—1[5 S —1
= Wz E@ _Et,e—l mzt,l—l} E@ W£7

UUT

T+uTS e qu

=W, S, 'S Sie—1%; "Wy

However, we it follows from the induction hypothesis that uu™ = S , | = Gyoo1 =X | —
S =0 2oy VPL, 1 Xe X[ P a, ¢ 1. Therefore,
S-Sl =wlEs W S
t+1,0 =Y t,ffll UTite L tl—14yp £y
—2,-2(-1pT
1e 0 “Omax PA - 1XtX PAtK 1=
= WS 8 S S'W
= Wy 2y e T4 u Sy 1u t0-1 ¢

—9 —2(£-1)

0 “Omax Ty—1% T T 3 -1
= W, 3 %Py s 1 X X, Pa s 15012, W
T uT S qu e e B A1 t T Ay, , ¢ ,

072(7;/3)(([_1) T T
=—==P, , X4 X, P .
1+ UTEt’g,1U A 03t DAL
Finally, we use that 1 4+« Sy, qu < 1+ [Julla2A1(Zee-1) < 1+ 0207, Here we use that
[ull2 < o2, which can also be proven by induction, and that A1 (3 ¢—1) < o7, which follows from
the expression of £; o in Appendix B.2. Therefore, we have that
—_9 —2(£-1)

— g g
»! -5 - MAX Pl X, X, P4
t+1,4 1+’U/T2té 1 Al t tyto

—9 —2(£-1)
0 “Omax

~ l+o7207
-2 _—2¢
allo) UMAXPAt,éXtXt Pa,e,

PAt eXtX PAt YA 5
where the last inequality follows from the definition of 02, = maxpe(r) 1+ o207 This concludes

the proof.

F.5 Proof of theorem E.1

We start with the following standard result which we borrow from [32, 8],

Z X%, ,

BR(n) < +/2nlog(1/9)

+ cnd, where ¢ > 0 is a constant . 35)
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Then we use Lemma F.2 and express the marginal covariance X, 4, as

Sta=ta+ Y PaySeiPe,,  where Poy =3, 57 W, Hzm Wi (36)
Le[L]
Therefore, we can decompose || X; ||2Et L as
XS4, X G _ - _ _
HXtHgtyAt = 02% o 02(0 2XtTEt,A1,Xt +o7? Z XtTPAt,EEt,lP:Xt,ZXt),
Le[L]
(i1) _
< colog(1+ 072X, 8 4, X0) + D colog(l+ 072X, Pa, oS4 /Ph,  Xi), (37)
Le[L]
where (4) follows from Eq. (36), and we use the following inequality in (1)
log(1+ z),

T _log(l+a) < v log(1 + z) =
=———lo x max ——— | lo T) = —7
log(1 + x) & ~ \=€l0,u] log(1 + z) s log(l +u)
which holds for any = € [0, u], where constants ¢q and ¢, are derived as

Uz+1
, with the convention that oy 11 = 1.

)

of
Ce =

o= """,
log(1+4 2%) log(

2 (ST 4 Gra,) SANETY = A(B) = 0F.

The derivation of ¢y uses that
X804, X < M (Sea,)IX? < Ay

The derivation of ¢, follows from
X Pa S0Pl o X < M(Pa, Ph, )M (E )X < 07y

Therefore, from Eq. (37) and Eq. (35), we get that

BR(n) < +/2nlog(1/4) ( [C()Zlog (140~ 2X ZtAtXt)

+ 3 e > log(l + a—QXJPAt,giMP}MXt)])

t=1

N

+ cnd (38)

le[L]

Now we focus on bounding the logarithmic terms in Eq. (38)

(I) First term in Eq. (38) We first rewrite this term as

log(1+ 02X, %, AtXt) @ logdet(Iy + o i]

A +o02 X, X,") - logdet(E;A)

S+ N\»—A

W XXRE, Y,
logdet(7 4,) —logdet(3 ),

= log det (]
where (i) follows from the Weinstein-Aronszajn identity. Then we sum over all rounds ¢ € [n], and

get a telescoping
log det(i;},t ),

n A1 A1
Z logdet(Iq+ 0?87 4 X X Etz Z log det (2 +1 a,) —
=1
n K K n
= Z Z log det(ﬁlt_jm) — log det(i,;;) = Z log det(ﬁlt_jm) — log det(igg) )
t=1a=1 a=1t=1
K ~ 1 1
= Zlog det(Z;}H@) log det (37 a) ( ) Z logdet(223 1, B2),

a=1
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where (i) follows from the fact that El o = 21. Now we use the inequality of arithmetic and
geometric means and get

" A1 A1 1. 1
> logdet(ly+ 07257, X, X[ 57, ) =D logdet(S7 5,1, ,57),
t=1 a=1
K 1 Loy 1
<) dlog (d Te(S3 8,1 22 )) , (39)

(II) Remaining terms in Eq. (38) Let ¢ € [L]. Then we have that

log(1+ 072X, Pa, 150 Ph,  Xi) = ogaxouic log(l + 072X, Pa, iS4 Pl 1 X0),
<ol log(l+ 0 20y 2k X Pa, oS0 P ), o X1),
O 526 Jog det(Iy + 0 205252, Ph XX Pa,52,),

= oﬁAX<logdet(i;§ +o~ ]\;ffPAt X X, Pa, i) — logdet(i;él)) ,

where we use the Weinstein-Aronszajn 1dent1ty in (7). Now we know from Lemma F.3 that the
following inequality holds o 20MAXP£ (XX Pa, g 2 e 10— S As aresult, we get that

S o205 P ) X X[ Pa, o X5, Thus,

log(1 + 0*2XtTPAt7g2t,gPL7€Xt) < MAX(log det(Et_H ) — logdet(igg)) ,
Then we sum over all rounds ¢ € [n], and get a telescoping

D log(1+ 072X, Pa, ¢SeiPh, (X1) < oy > _logdet(S,) ) — logdet(S;})
t=1 t=1

= MAX(IOgdet(27L+1€) IOgdet(il_é))a
= o2 (logdet(SL, ) — log det(X7)))
- MAX(logdet(E 51

2
{+1"n+1 Zzl-i-l)) )

where we use that ¥ y = %41 in (i). Finally, we use the inequality of arithmetic and geometric
means and get that

n B 1
Z log(1 + 072XtTPAt,e2t,ePL,eXt) < J%\X(log det(ZZJrlEnJlrl ZEZZH)) )
t=1
1
S dJI\Q/Iﬁ.X ]'Og (d Tr(22+12nil EZ;+1)> ’ (40)

20 Ut?+1
< dJMAX 1Og < O‘? > bl

The last inequality follows from the expression of 2;41-1 ¢, in Eq. (21) that leads to

$Z o5l w3

(4150410041 — =1Iq+ 2

G, 52

{41 {41

=I;+ Egﬂwe (DI S SHPRED )W;Eul , 41)
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since Gt,f = W; (Ze_l — 2;12t7g_122_1)Wg. This allows us to bound é Tr(ZZ_lST_L}rME;_H) as

1 i _ 1 1 1 _ e _ 1
ST (SF B4 D) = S Tl + 37 W/ (3 = 5180 B ) Wekg)
1

1 — 1
L T h W (5 38 Wenk )

d
1 1 _ e _ 1
<14+ > M(EE W/ (B =S S S ) WesZ,
i=1

d
1 _ 1e _
<1+ QE M (Ber) M (W] W) (3571 = 27180 577)
i=1

d
1 i
<1+ d Z M (Ser) A (W] WA (271

i=1
d 2 2
1 9911 T¢+1
<1+ - =1 42
S T (42)

where we use the assumption that A; (W] W;) = 1 (A2) and that A (Z¢11) = UE_H and )\1(2;1) =
1/02. This is because ¥y = 021, for any ¢ € [L + 1]. Finally, plugging Eqs. (39) and (40) in Eq. (38)
concludes the proof.

F.6 Proof of proposition E.2

We use exactly the same proof in Appendix E.5, with one change to account for the sparsity assumption
(A3). The change corresponds to Eq. (40). First, recall that Eq. (40) writes

- —24T s T 2¢ 3§13
Zlog(l—i—a X PAt,fEt,ZPAt,ZXt) < Onax 1Ogdet(zz+12n+1,zze+1) )

t=1
where
P 1 1 T e e _ 1
Ef+12n}r1,zzf+1 =1li+ Ef+1wé (Ez t- 2, 12@,12@ I)WZE;+1 )
=i+ of W, (S =218 012 )Wy, (43)

where the second equality follows from the assumption that 41 = o7 ' 114- But notice that in
our assumption, (A3), we assume that W, = (W, 04,44, ), where W, € R4 for any ¢ € [L].
Therefore, we have that for any d x d matrix B € Rddxd  the following holds, W;BWg =
(WZ—BW[ Odg,dfd(

. In particular, we have that
Od—dp,de Od—dy,d—d,

_ 5T (y—1 _ y—15 —1\vx
W, (S, =218 )W, = <Wz (= Oie dzsl—lze )W Ogdzd;dz > YY)
—GQg,0p —GQg,a—dag

Therefore, plugging this in Eq. (43) yields that

FR

041 n+1752% (Idf + Ug-HV_V; (221 - Ezlitxfflzzl)we Od“dd2> . 45)

1 Od—d,,d, Ii_q,

As aresult, det(EZ_lf};il ZEE+1) = det(I4, + O'?+1W; (2;1 — Ee_litl_lEzl)W@). This allows
us to move the problem from a d-dimensional one to a d;-dimensional one. Then we use the inequality
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of arithmetic and geometric means and get that

~og(l 4 0-2XTP s o5y BT X,) < 02 (logdet(Sh, -1, 53
Z og(l+o ¢t PaeXe Py, 1 Xi) < oyax | logdet(X7,4 n+1,0 ‘1))

t=1
= deﬁx log det(I4, + ag_HV_V; (E;l — Zzlit,g_lzzl)Wg) ,

1 _ _ 1= _ —
< dyo2 log (de Tr(14, + O'?+1W2— (%, HED i YD O 1)W£)> )

02
< dyot log (1 + 2;1> . (46)
14

To get the last inequality, we use derivations similar to the ones we used in Eq. (42). Finally, the
desired result in obtained by replacing Eq. (40) by Eq. (46) in the previous proof in Appendix E.5.

G Additional experiments

G.1 Swiss roll data

Fig. 4 shows samples from the Swiss roll data and samples from generated by the pre-trained diffusion
model for different pre-training sample sizes.

3 3 3
e°e True distribution e*e True distribution e*e True distribution
2 Diffusion model 2 Diffusion model 2 Diffusion model
1 1 1 >
0
0 0
-1
-1 -1
-2
_3 -2 -2
-4 -3 -3
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
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Figure 4: True distribution of action parameters (blue) vs. distribution of pre-trained diffusion model

(red).

G.2 Diffusion models pre-training

We used JAX for diffusion model pre-training, summarized as follows:

Parameterization: Functions f, are parameterized with a fully connected 2-layer neural
network (NN) with ReLLU activation. The step £ is provided as input to capture the current
sampling stage. Covariances are fixed (not learned) as ¥, = 071, with oy increasing with £.

Loss: Offline data samples are progressively noised over steps ¢ € [L], creating increasingly
noisy versions of the data following a predefined noise schedule [30]. The NN is trained to
reverse this noise (i.e., denoise) by predicting the noise added at each step. The loss function
measures the L, norm difference between the predicted and actual noise at each step, as
explained in Ho et al. [30].

Optimization: Adam optimizer with a 10~2 learning rate was used. The NN was trained
for 20,000 epochs with a batch size of min(2048, pre-training sample size). We used CPUs
for pre-training, which was efficient enough to conduct multiple ablation studies.

After pre-training: The pre-trained diffusion model is used as a prior for dTS and compared
to LinTS as the reference baseline. In our ablation study, we plot the cumulative regret of
LinTS in the last round divided by that of dTS. A ratio greater than 1 indicates that dTS
outperforms LinTS, with higher values representing a larger performance gap.
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G.3 Quality of our posterior approximation

To assess the quality of our posterior approximation, we consider the scenario where the true
distribution of action parameters is A/ (04, I;) with d = 2 and rewards are linear. We pre-train a
diffusion model using samples drawn from N (04, [4). We then consider two priors: the true prior
N (04, I;) and the pre-trained diffusion model prior. This yields two posteriors:

e P : Uses N (04, 1) as the prior. P; is an exact posterior since the prior is Gaussian and
rewards are linear-Gaussian.
* P, : Uses the pre-trained diffusion model as the prior. P, is our approximate posterior.
The learned diffusion model prior matches the true Gaussian prior (as seen in Fig. 5a). Thus, if our

approximation is accurate, their posteriors P; and P» should also be similar. This is observed in
Fig. 5b where the approximate posterior P» nearly matches the exact posterior P;.
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Figure 5: Assessing the quality of our posterior approximation.

Empirical posterior validation with MCMC. Above, we assessed our posterior approximation in a
tractable linear-Gaussian case, showing that the diffusion-based posterior closely matches the exact
posterior. To further validate our approximation in more complex, non-linear settings, we compare
our diffusion Thompson sampling (dTS) posterior samples to those obtained via two MCMC variants
on the non-linear MovieLens benchmark:

* MCMC-Fast: Uses fewer sampling steps for efficiency.
* MCMC-Slow: Uses more sampling steps for higher accuracy.

As shown in Table 2, even the high-compute MCMC variant yields higher regret than dTS, motivating
our efficient approximation for online bandits.

Table 2: Comparison between dTS and MCMC-based posteriors on MovieLens.

Baseline Regret Improvement (%) Time Speed-Up (%)
dTs vs. MCMC-Fast 50.6 % 47.6 %
dTS vs. MCMC-Slow 12.7 % 80.5 %

G.4 CIFAR-10 ablation study

CIFAR-10. In Fig. 3a in Section 5.2, we showed that with only 10 pre-training samples, dTS
outperforms LinTS on the Swiss-roll benchmark. We now extend this analysis to the vision dataset
CIFAR-10 [40] (similar results were obtained on MNIST [48]). Our setting is similar to that in
Hong et al. [32] and we use dTS’s variant that uses a single shared parameter § € R¢ (Remark 2.1
and Section 3.3) because it is more suited for this setting. These additional ablations on CIFAR-10
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confirm that dTS consistently benefits from offline pre-training, even when the true prior is not a
diffusion model. Specifically, we vary the percentage of offline data used to train the prior and
compare against both HierTS and LinTS.

Table 3: Regret improvement (%) of dTS on CIFAR-10.

Offline Data (%) vs. HierTS vs.LinTS

1% 69.11% 87.74%
5% 79.56% 92.18%
25% 80.65% 92.48%
50% 81.67% 92.88%

G.5 Bound comparison

Here, we compare our bound in Theorem E.1 to bounds of LinTS from the literature.
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(a) Comparing our bound to the frequentist bound (b) Comparing our bound to the standard Bayesian
of LinTS in Abeille and Lazaric [2]. bound of LinTS.

Figure 6: Comparing our bound to the frequentist and Bayesian bounds of LinTS.

H Extensions

Theory beyond linear-Gaussian. Extending our analysis to nonlinear settings is nontrivial. A
promising direction is an information-theoretic analysis of Bayesian regret with structured priors
[59, 52] or a PAC-Bayesian treatment similar to that used in offline contextual bandits [9]. Closing
the gap to lower bounds remains open: the only known Bayesian lower bound applies to K -armed
bandits [45], while minimax frequentist bounds scale as (d+/n) [21].

K -independent regret. In the setting of Remark 2.1, where (x, a;0) = ¢(z,a) " 0 and 6 is shared
across actions, our proof techniques imply K-independent regret once ¢ is known or accurately
estimated. This connects to structured large-action-space results where regret does not scale with K
[25, 67, 70]. Exploring further the use of diffusion models in such setting is promising.

Robustness and misspecification. dTS may face misspecification at both the prior and likelihood
levels. When the diffusion prior is biased or trained on limited data, it remains empirically stable but
lacks robustness guarantees. Moreover, dTS assumes a generalized linear reward model; deviations
from this assumption leads to model misspecification.

Beyond contextual bandits. The posterior derivations of dTS extend naturally to other settings. For
instance, in off-policy learning, since dTS defines a tractable posterior over reward parameters, it
can be combined with off-policy estimators and policy improvement methods in structured offline
contextual bandits environments [10].

Online fine-tuning and offline RL. Pre-training a diffusion model on offline data and refining it
online via dTS amounts to diffusion fine-tuning from implicit bandit feedback. Extending this to
sequential decision-making with dynamics aligns with recent diffusion-for-decision work. A concrete
next step is to use dTS for fine-tuning pre-trained diffusion models on collected reward data.
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I Broader impact

This work contributes to the development and analysis of practical algorithms for online learning to
act under uncertainty. While our generic setting and algorithms have broad potential applications,
the specific downstream social impacts are inherently dependent on the chosen application domain.
Nevertheless, we acknowledge the crucial need to consider potential biases that may be present in
pre-trained diffusion models, given that our method relies on them.

J Amount of computation required
Our experiments were conducted on internal machines with 30 CPUs and thus they required a moder-

ate amount of computation. These experiments are also reproducible with minimal computational
resources.
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