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Abstract

The task of condensing large chunks of textual001
information into concise and structured tables002
has gained attention recently due to the emer-003
gence of Large Language Models (LLMs) and004
their potential benefit for downstream tasks,005
such as text summarization and text mining.006
Previous approaches often generate tables that007
directly replicate information from the text, lim-008
iting their applicability in broader contexts, as009
text-to-table generation in real-life scenarios010
necessitates information extraction, reasoning,011
and integration. However, there is a lack of012
both datasets and methodologies towards this013
task. In this paper, we introduce LIVESUM,014
a new benchmark dataset created for generat-015
ing summary tables of competitions based on016
real-time commentary texts. We evaluate the017
performances of state-of-the-art LLMs on this018
task in both fine-tuning and zero-shot settings,019
and additionally propose a novel pipeline called020

T3(Text-Tuple-Table) to improve their perfor-021
mances. Extensive experimental results demon-022
strate that LLMs still struggle with this task023
even after fine-tuning, while our approach can024
offer substantial performance gains without ex-025
plicit training. Further analyses demonstrate026
that our method exhibits strong generalization027
abilities, surpassing previous approaches on028
several other text-to-table datasets.029

1 Introduction030

Reading extensive texts is demanding and time-031

consuming for humans, further compounded by032

the challenge of effectively capturing the key ele-033

ments. Consequently, recent works have shifted to034

explore the structured summarization of text (Jain035

et al., 2024), with tables being one highly prevalent036

form (Wu et al., 2022; Li et al., 2023c; Sundar et al.,037

2024). These approaches improve text comprehen-038

sion by extracting inherent yet valuable structural039

information from long unstructured text and en-040

abling their applications in downstream scenarios,041

Player5 scores with a shot from close range to 
the bottom left corner, assisted by Player12.

Player2 from the Home Team misses a header 
to the left from the center of the box.

Goal Shot

Home Team 1 2

Goal!!! It’s a goal for the Home Team, they 
lead 1-0 against the Away Team!

(P2,   Home Team, Shot)
(P5,   Home Team, Goal)
(P5,   Home Team, Shot)

(Home Team, Shot, 2)
(Home Team, Goal, 1)

Text to Tuple (Inference)

Tuple to Table
Integration

The Thunder defeated 
the Suns 112-88 on Sunday.

Points

Thunder 112

Suns 88

Previous Text-to-Table Dataset

Text-to-Table with Inference and Integration

Text to Table

Figure 1: An overview of the differences between our
proposed LIVESUM dataset and previous dataset (Wise-
man et al., 2017), as well as our proposed pipeline called
T3(Text-Tuple-Table) which consists of three steps.

such as question answering (Chen et al., 2020; Zhu 042

et al., 2024), text summarization (Wiseman et al., 043

2017; Wang et al., 2020; Mulwad et al., 2023) and 044

text data mining (Li et al., 2023b; Sui et al., 2024). 045

However, previous studies on text-to-table gen- 046

eration primarily rely on datasets traditionally 047

used for table-to-text tasks (Wiseman et al., 2017; 048

Novikova et al., 2017). One evident issue is that 049

these tasks focus merely on format transformation, 050

where the information in the table and the corre- 051

sponding text representation are essentially sim- 052

ilar (Lebret et al., 2016; Bao et al., 2018). For 053

example, in the upper part of Figure 1, the table 054

can be easily completed by extracting relevant num- 055

bers from the text without intermediate inference. 056

Such seemingly meaningful correlations can intro- 057

duce bias into the models, causing them to excel at 058
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replicating relevant information but struggle when059

it comes to categorizing and integrating numbers in060

complex scenarios. This is further evidenced by the061

fact that fine-tuning models already perform very062

well and greatly surpass zero-shot LLMs (Tang063

et al., 2023; Sundar et al., 2024). Hence, a more064

complicated dataset that requires information ag-065

gregation and minimizes the presence of spurious066

correlations, closely resembling real-world scenar-067

ios, is definitely needed for a more rigorous evalua-068

tion of models’ text-to-table generation proficiency.069

Apart from the research gap at the benchmark070

level, in terms of methodology, considerable at-071

tention has been given to studying the ability of072

LLMs to comprehend and generate complex struc-073

tured outputs (Tang et al., 2023; Jain et al., 2024),074

driven by the exceptional success of LLMs in re-075

cent years (Touvron et al., 2023; Anthropic, 2024;076

OpenAI, 2024). Extensive benchmarks indicate077

that LLMs exhibit sub-optimal performance in078

zero-shot settings, with multiple cases of gener-079

ating inaccurate contents deviate from the given080

text (Tang et al., 2023). To address this issue, more081

sophisticated prompting mechanisms have been082

proposed (Wei et al., 2022; Khot et al., 2022; Dua083

et al., 2022). Among them, Jain et al. (2024) in-084

troduce a divide-and-generate prompting approach085

to generate more accurate and informative tables,086

demonstrating its effectiveness in improving model087

performance. However, this simplistic approach088

of dividing text into paragraphs and generating ta-089

bles is unsuitable in more complicated situations090

because table-relevant information may not be con-091

tiguous in the original text and may span across092

various paragraphs. Therefore, developing a ro-093

bust prompting method is also needed for generat-094

ing complex tables that capture crucial information095

from scattered text or paragraphs.096

To resolve the aforementioned research gaps, we097

introduce a novel benchmark, LIVESUM, which098

consists of 3,771 text-based live commentaries099

from real-world football matches, intending to eval-100

uate the models’ ability to generate summary ta-101

bles. Unlike previous benchmarks, our benchmark102

necessitates the model to possess the ability to ex-103

tract correct and meaningful information from com-104

plex textual data, specifically emphasizing infor-105

mation integration, reasoning, and conceptualiza-106

tion skills (Wang et al., 2023a). This is because107

commentaries in close temporal proximity or with108

similar semantic meanings may describe the same109

event, while verbs with similar meanings may re-110

fer to the same types of events. For example, in 111

Figure 1, the second and third dialogue boxes both 112

describe the same goal event, and the verbs “goal” 113

and “score” refer to the same goal event. 114

Along with the benchmark, we also introduce 115

a robust prompting-based method T3 to address 116

our proposed task. Specifically, our method draws 117

inspiration from the inherent attributes of the table, 118

where each cell, along with its corresponding row 119

header and column header, creates an informative 120

triple (namely (row header, column header, cell)), 121

which degenerates into a binary tuple when lacking 122

row or column headers. These tuples serve as cues 123

for humans to locate specific information in the text 124

and complete the table accordingly. Consequently, 125

our pipeline begins by extracting the relevant tu- 126

ples from the text, followed by the integration of 127

these tuples, and ultimately generating one or more 128

summary tables. 129

We hope that the proposed dataset, method, and 130

experimental results can provide valuable insights 131

for tasks such as text-to-table, as well as any task 132

involving the generation of complex structured out- 133

puts from text. In summary, in this paper, we make 134

the following contributions: 135

• To the best of our knowledge, LIVESUM is the 136

first benchmark dataset designed to evaluate 137

the information integration ability of models 138

in text-to-table generation tasks. 139

• We introduce a novel T3(Text-Tuple-Table) 140

prompting pipeline that functions as a flexi- 141

ble framework, applicable to any text-to-table 142

generation tasks. 143

• We conduct extensive experiments to evaluate 144

the performance of LLMs under different set- 145

tings and demonstrate that our T3 pipeline can 146

bring significant improvements while show- 147

casing excellent generalization capabilities. 148

2 Task Definition 149

We first provide a formal definition of the text-to- 150

table generation. The input S consists of a textual 151

passage with n tokens, denoted as x = x1, . . . , xn, 152

and optionally, an instruction text with m tokens, 153

denoted as y = y1, . . . , ym, which provides guid- 154

ance on the format or content of the generated ta- 155

bles. The output T is a set of k(k ≥ 1) tables, 156

T
1
, . . . ,T

k. For the output tables, we present a 157

more detailed definition that covers two aspects: 158

structure-related and content-related. 159
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Goal! West Ham United 0, Liverpool 1. Steven Gerrard (Liverpool) converts 
the penalty with a right footed shot to the bottom right corner.

Live Commentary Summary Table

Original Live Text

Annotation

(Liverpool, goal)
(Liverpool, penalty)
(Liverpool, shot)

Integration

(Liverpool, goal, 1)
(Liverpool, penalty, 1)
(Liverpool, shot, 1)

Paraphrasing
Goal for Liverpool! Steven Gerrard, with 
nerves of steel, slots the penalty right-
footed into the bottom right corner. 
West Ham United 0, Liverpool 1!

Data Anonymization
Goal for Home Team! Player5, with 
nerves of steel, slots the penalty right-
footed into the bottom right corner. 
Away Team 0, Home Team 1!

Figure 2: Overview of the pipeline for constructing the
LIVESUM dataset illustrated with a sample sentence.

Structure We assume there are no merged cells160

in the tables for simplicity. Each table T
i has a161

caption c
i
= c

i
1, . . . , c

i
d, where d = ∣ci∣, and it162

consists of ni
r rows and n

i
c columns, resulting in163

a total of ni
r × n

i
c cells. The cell Ti

p,q in the p-th164

row and q-th column is composed of a sequence of165

tokens: Ti
p,q,1, . . . ,T

i
p,q,r, where r = ∣Ti

p,q∣. The166

table Ti must have either a row header for all rows167

or a column header for all columns and it is also168

possible for the table to have both.169

Content We define that the information in the170

output tables should be derived from the input x171

or can be inferred from x. For each cell Ti
p,q in172

table T
i, when combined with its row header Ti

p,1173

(if any), its column header Ti
1,q (if any), and the174

table’s caption c
i, it should convey the equivalent175

information as expressed in the input x and com-176

plies with the instruction y (if any).177

3 LIVESUM Dataset178

We consider the problem of generating match statis-179

tic information tables from textual live commentary.180

Inspired by ROTOWIRE (Wiseman et al., 2017), a181

data-to-document dataset in the sports domain that182

aims to generate textual summaries by incorporat-183

ing statistical data from basketball games, we in-184

stead focus on live commentary in football, which185

is available on BBC Sports1. We crawl the data for186

the English Premier League from 2014 to 2023 and187

obtain complete commentary for 3,771 matches.188

Figure 2 shows the pipeline we use to construct189

the dataset. Section 3.1 describes the generation190

process of the live commentary, and Section 3.2191

describes the generation process for the summary192

table. More details are provided in Appendix A.193

1
https://www.bbc.com/sport/football
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Figure 3: Eight types of event information (inner circle)
that require summarization in LIVESUM dataset, along
with their common expressions (outer circle) in the com-
mentary.

3.1 Live Commentary Generation 194

To address formatting issues in the original textual 195

live commentary on the website, we paraphrase the 196

text to match the commentator’s style while ensur- 197

ing a certain degree of diversity. Building upon pre- 198

vious studies (Kim et al., 2023a; Chen et al., 2023; 199

Kim et al., 2023b), we employ ChatGPT (OpenAI, 200

2022) to generate complete live commentary auto- 201

matically. Subsequently, to comply with privacy 202

regulations and prevent bias in LLM benchmarks, 203

we also anonymize the data leveraging named en- 204

tity recognition (NER) techniques (Qi et al., 2020) 205

to produce the final version of the live commentary. 206

3.2 Summary Table Generation 207

On the other hand, human annotators label a sum- 208

mary table for each match’s commentary. We re- 209

cruit five workers who are interested in football and 210

are from English-speaking countries to perform the 211

annotations. Since the occurrence of the events in 212

football matches is deterministic, the ground truth 213

is essentially unambiguous. In cases where there 214

are inconsistencies in the annotated results, the cor- 215

rect answer is determined through a majority vote. 216

3.3 Statistics 217

LIVESUM comprises a collection of 3,771 pairs, 218

consisting of textual live commentaries and cor- 219

responding summary tables. We randomly split 220

the entire dataset into training and test sets, re- 221

sulting in 3,017 instances for the training set and 222

754 instances for the test set. On average, each 223

live commentary segment consists of 1,256 words. 224

LIVESUM focuses on eight types of events, with 225

the names and their corresponding common de- 226

scriptions displayed in Figure 3. 227
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4 T3(Text-Tuple-Table) Pipeline228

Our proposed T3(Text-Tuple-Table) pipeline is de-229

signed to mimic the intuitive steps followed by230

humans when performing this task. When individ-231

uals aim to summarize a table from text, they typi-232

cally extract pertinent or valuable tuples from the233

content, guided by any provided instructions, and234

then organize these tuples into one or more tables.235

Based on this concept, we divide this transforma-236

tion into three stages: text-to-tuple, integration, and237

tuple-to-table, each of which is discussed in the fol-238

lowing subsections. Taking Figure 1 as an example,239

we first extract key events mentioned in the text,240

then aggregate this information into consolidated241

tuples, and ultimately compile them into a table.242

4.1 Text-to-Tuple243

Considering the superior performance and flexibil-244

ity of LLMs in information extraction compared to245

traditional techniques (Ma et al., 2023; Xu et al.,246

2023), we employ an LLM as our tuple extractor.247

We follow the instructions from InstructUIE (Wang248

et al., 2023b) and design the following prompting:249

Text-to-Tuple Prompting Template

According to <Instruction>, please extract the rel-
evant events and information in the form of tuples,
structured as (subject, object, verb) or (subject, at-
tribute, value): <Text>

250

where <Instrction> is the directive for the cur-251

rent task, and <Text> is the text to be transformed.252

4.2 Information Integration253

In this stage, we propose two approaches for inte-254

grating information. The first one involves direct255

execution by the LLM, using prompting to consol-256

idate tuple data. The second one uses algorithms257

and code generated by the LLM to integrate tuple258

information, inspired by the LLMs’ great success259

in code generation tasks (Roziere et al., 2023; Luo260

et al., 2023; Guo et al., 2024). T3 defaults to using261

code generation in this step. The promptings for262

these two methods are shown as follows:263

Information Integration Prompting Template

Direct Execution: According to <Instruction>,
please integrate these tuples as required: <Tuples>

Code Generation: According to <Instruction>,
please develop an algorithm to consolidate these tu-
ples as specified: <Tuples>

264

where <Instrction> is the directive for the cur- 265

rent task, and <Tuples> consists of the tuples ex- 266

tracted in the prior stage. 267

4.3 Tuple-to-Table 268

After obtaining the integrated tuples, we follow the 269

previous implementation (Tang et al., 2023; Jain 270

et al., 2024) and use the following prompting to 271

generate the final tables: 272

Tuple-to-Table Prompting Template

According to <Instruction>, please generate one or
more tables based on the following tuples: <Tuples>

273

where <Instrction> is the directive for the cur- 274

rent task, and <Tuples> consists of the tuples pro- 275

duced in the prior stage. 276

5 Experimental Setup 277

Baseline Models In this study, we conduct fine- 278

tuning on the LIVESUM dataset using three repre- 279

sentative open-source LLMs: Mistral-7B-Instruct- 280

v0.2 (Jiang et al., 2023), LLaMA-2 Chat 7B and 281

LLaMA-2 Chat 13B (Touvron et al., 2023). We 282

fine-tune these models following the current state- 283

of-the-art fine-tuning methodologies (Tang et al., 284

2023). Therefore, the outcomes represent the 285

best results achievable with the present fine-tuning 286

methods. We also evaluate eight state-of-the-art 287

LLMs in zero-shot settings: LLaMA-2 Chat 13B, 288

LLaMA-2 Chat 70B (Touvron et al., 2023), Mistral 289

Large (MistralAI, 2024), Claude 2.1 (Anthropic, 290

2023), Claude 3 Opus (Anthropic, 2024), Chat- 291

GPT (OpenAI, 2022), and GPT-4 (OpenAI, 2024). 292

For each model, we conduct tests using two types 293

of prompts. The first type directly describes the 294

task by providing an instruction text y and accom- 295

panying it with the text x. The second type uses 296

the Chain-of-Thought (CoT) prompting (Wei et al., 297

2022), incorporating the phrase “let’s think step by 298

step” into the instruction text. See more details in 299

Appendix C. 300

Evaluation Metric As the generated cell content 301

in this task consists of numerical values, we utilize 302

commonly employed metrics in regression tasks, 303

namely the Root Mean Square Error (RMSE). We 304

also report the Error Rate (ER) for each cell, defin- 305

ing a cell as erroneous if its content does not exactly 306

match the ground truth. 307

Grouping by Event Difficulty Furthermore, we 308

categorize the eight types of events into three 309
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Figure 4: The performance of various LLMs under fine-tune and zero-shot settings, as well as after the application of
the T3 method on the test set of LIVESUM dataset. The average RMSE and error rate for each model are displayed,
along with the error rate for each of the three difficulty sections. More results are in Table 1.

groups based on assessed difficulty: Goals, due310

to direct descriptions of scores in the original text,311

and Red Cards, due to their rare occurrence are cat-312

egorized into the Easy section. Shots and Fouls,313

due to their varied expressions and descriptions,314

are classified into the Hard section. The remaining315

four event types are classified as Medium section.316

We report the RMSE and ER for each model across317

different difficulty categories to provide a more318

comprehensive analysis.319

6 Experiments and Analyses320

In this section, we will benchmark the performance321

of current state-of-the-art LLMs on the LIVESUM322

dataset, and further evaluate the effectiveness and323

generalization of our proposed approach. We aim324

to answer the following research questions:325

RQ1 (Benchmarking) How do the current state-326

of-the-art LLMs perform on this dataset in fine-327

tuning and zero-shot settings?328

RQ2 (Effectiveness) How does our proposed329

T3 pipeline impact model performance?330

RQ3 (Generalization) How effective is the T3
331

pipeline when applied to other real-world datasets332

for the text-to-table generation task?333

6.1 Benchmarking (RQ1)334

We first analyze the performance of existing state-335

of-the-art LLMs on the LIVESUM dataset under336

fine-tuning and zero-shot settings, with results dis-337

played in Figure 4 and Table 1. Overall, the per-338

formance of most models in the zero-shot setting339

far exceeds that in the fine-tuning setting, indicat- 340

ing that the previous state-of-the-art fine-tuning 341

method has limited capability for information inte- 342

gration, and there is substantial room for improve- 343

ment on this benchmark. In the zero-shot setting, 344

it is noteworthy that most models show a slight 345

improvement in both metrics after applying COT. 346

Among them, the best-performing models are Mis- 347

tral Large, GPT-4, and Claude 3 Opus, which are 348

nearly comparable. They achieve RMSEs ranging 349

from 2.08 to 2.27 and error rates between 46.20% 350

and 48.33%. Nevertheless, this still highlights a 351

notable deficiency in the information integration 352

capabilities of LLMs in the zero-shot settings, un- 353

derscoring the challenges and significance of our 354

benchmark. We then analyze performance across 355

three categories of difficulty. 356

Easy Section It can be observed that the error 357

rate of the fine-tuned models is generally around 358

40%, with an RMSE close to 1. In the zero-shot 359

setting, LLaMA-2-Chat, ChatGPT, and Claude 2.1 360

models exhibit relatively poor performance, occa- 361

sionally producing anomalously large values. The 362

error rates of the other models generally remain be- 363

low 5%, with RMSEs less than 0.2. Among these, 364

the Mistral Large model performs the best, with 365

both metrics significantly lower than other models. 366

Medium Section The medium section exhibits 367

the greatest variation among models and serves 368

as a crucial determinant of overall model perfor- 369

mance. We organize the models based on their 370

performance, with error rates in the zero-shot set- 371
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Model Easy Medium Hard Average
RMSE ER RMSE ER RMSE ER RMSE ER

♦ Fine-Tune
Mistral-7B-Instruct-v0.2 1.045 38.36 3.832 85.11 7.115 95.52 4.564 76.03
LLaMA-2-Chat 7B 1.047 38.41 3.728 84.91 7.107 95.40 4.512 75.91
LLaMA-2-Chat 13B 1.043 39.22 3.587 84.60 6.671 94.42 4.287 75.71

♦ Zero-Shot
LLaMA-2-Chat 13B 0.775 33.29 4.554 87.37 5.203 93.29 4.279 75.33
LLaMA-2-Chat 13B (COT) 0.780 31.83 4.376 87.42 5.088 92.35 4.162 74.75
LLaMA-2-Chat 70B 0.410 12.34 3.189 88.59 4.941 92.41 3.455 70.48
LLaMA-2-Chat 70B (COT) 0.450 12.86 3.221 89.25 5.314 94.24 3.613 71.40
ChatGPT 0.200 8.06 2.864 72.73 4.257 90.62 3.008 61.03
ChatGPT (COT) 0.229 10.61 2.809 72.75 4.087 90.38 2.911 61.62
Claude 2.1 1.014 10.08 2.581 63.99 4.621 90.58 3.171 57.16
Claude 2.1 (COT) 1.496 14.06 2.291 61.70 4.081 90.38 2.918 56.96
Mistral Large 0.005 0.27 2.385 52.45 2.712 84.62 2.209 47.45
Mistral Large (COT) 0.018 0.73 2.311 51.82 2.608 84.08 2.139 47.12
GPT-4 0.156 4.64 1.167 46.05 4.114 88.53 2.273 46.32
GPT-4 (COT) 0.154 4.38 1.173 45.86 3.981 88.73 2.225 46.20
Claude 3 Opus 0.078 2.52 1.617 51.36 3.713 88.06 2.253 48.33
Claude 3 Opus (COT) 0.040 1.59 1.642 49.60 3.265 87.86 2.079 47.17

♦ Zero-Shot with T3

Claude 2.1 (T3) 0.193 8.95 1.965 44.99 2.751 72.15 2.066 42.77
Mistral Large (T3) 0.191 8.82 1.596 42.37 2.136 69.23 1.631 40.70
GPT-4 (T3) 0.056 3.18 0.854 25.83 1.219 46.22 0.929 25.27
Claude 3 Opus (T3) 0.081 5.30 0.406 14.79 0.477 21.29 0.438 14.04

Table 1: The performance of various LLMs under three settings, showing RMSE and error rate across three difficulty
categories and overall average. We bold the best results and underline the second-best results in each setting.

ting ranging from 89.25% down to 45.86%. GPT-4372

with COT performs the best, achieving the low-373

est error rate, which still indicates the suboptimal374

capabilities of LLMs.375

Hard Section The charts clearly show that in the376

hard section, the zero-shot method shows minimal377

enhancement compared to fine-tuning, as most er-378

ror rates are around 90%. However, Mistral Large379

is an exception, achieving a lower error rate of380

84.08%, which demonstrates the challenging na-381

ture of the hard section.382

6.2 Effectiveness (RQ2)383

We apply the T3 pipeline to four LLMs: Claude384

2.1, Mistral Large, GPT-4, and Claude 3 Opus;385

the rest are not applicable to this method due to386

their ineffective extraction of tuples from inputs387

of such lengths, resulting in a minimal number of388

tuples or a substantial duplication of the same tu-389

ple. The implementation details are discussed in390

Appendix B. From Figure 4 and Table 1, it is ob-391

servable that Claude 2.1 and Mistral Large exhibit392

similar improvements after applying the T3 method,393

both showing slight enhancements over the best re-394

sults in the zero-shot setting, with reductions in395

RMSE of 34.9% and 26.2% respectively and de-396

creases in error rate of 25.2% and 14.2%. In con- 397

trast, GPT-4 and Claude 3 Opus display substantial 398

improvements after implementing the T3 method, 399

with RMSE reductions of 59.1% and 80.6%, re- 400

spectively, and error rate reductions of 45.4% and 401

70.9%. The reductions in these metrics are pri- 402

marily reflected in the significant decrease in the 403

error rate for the hard sections, creating a clear dis- 404

tinction from the zero-shot approaches. We then 405

conduct an ablation study to evaluate the impact 406

of the T3 method on model performance. We ex- 407

periment with two variant methods: T3-MERGED 408

(T3
M) and T3-DIRECT-EXECUTION (T3

D). The 409

former method involves using a single prompt that 410

instructs the model to first extract relevant tuples 411

before generating the table, while the latter one 412

modifies the second step of the T3 method to be di- 413

rectly executed by the LLM, rather than using code 414

generation (see Appendix B.5 for more details). 415

Table 2 presents the results using GPT-4 as an ex- 416

ample. It is apparent that using T3 considerably 417

enhances the model’s overall performance, lead- 418

ing significantly in overall metrics, with average 419

reductions in RMSE and error rate of 59.1% and 420

45.4%, respectively. Compared to GPT-4 and COT, 421

the variants T3
M and T3

D also exhibit notable im- 422
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Model Easy Medium Hard Average
RMSE/ER RMSE/ER RMSE/ER RMSE/ER

GPT-4 0.16/4.6 1.17/46.1 4.11/88.5 2.27/46.3
w/ COT 0.15/4.4 1.17/45.9 3.98/88.7 2.23/46.2
w/ T3

M 0.00/0.1 1.42/43.2 2.46/82.8 1.62/42.3
w/ T3

D 0.09/4.5 1.12/40.1 2.23/81.4 1.42/41.5

w/ T3 0.06/3.2 0.85/25.8 1.22/46.2 0.93/25.3

Table 2: The ablation study results comparing the per-
formance of different prompting methods. We bold the
best results and underlined the second-best results.

Metric Zero-Shot Fine-Tune
ChatGPT w/ T3 LLaMA-7B

SacreBLEU 77.58 78.91 90.60
ROUGE-L 86.11 88.36 88.98
BERTScore 96.75 97.34 98.54
BLEURT 64.66 67.47 66.07
BARTScore -2.08 -1.90 -0.69
Content P-Score 6.84 7.29 7.69
Format P-Score 9.70 9.88 8.60
Content H-Score 1.66 1.68 1.65
Format H-Score 3.28 3.63 3.61

Table 3: The evaluation results on the test set of STRUC-
BENCH Table dataset with nine metrics. We bold the
best results and underlined the second-best results.

provements, with respective reductions in RMSE423

of 28.7% and 37.6%, and error rates of 8.6% and424

10.3%. Full ablation studies are in Appendix D.425

6.3 Generalization (RQ3)426

To examine the generalization capabilities of T3,427

we apply T3 to two additional datasets designed428

to test text-to-table performance and compare it429

with previous methods. Section 6.3.1 involves ta-430

ble generation without the need for information431

integration, while Section 6.3.2 focuses on table432

generation without instructions.433

6.3.1 Performance of T3 on STRUC-BENCH434

Table Dataset435

We test the performance of T3 on the text-to-436

table benchmark STRUC-BENCH Table (Tang et al.,437

2023). This benchmark is based on the ROTOWIRE438

dataset (Wiseman et al., 2017) and employs tra-439

ditional evaluation metrics, prompting score(P-440

Score), and heuristical score(H-Score), to conduct441

a comprehensive assessment of the output tables.442

They also introduce a fine-tuning approach incor-443

porating row and column header information in the444

training instructions. We argue that this comparison445

with the zero-shot method is problematic. In zero-446

shot settings, due to the absence of a fine-tuning447

process, the format of the output tables is uncertain. 448

For example, in ground-truth tables, cells that are 449

left blank may be filled with terms such as “un- 450

known” or “not mentioned” by the model, substan- 451

tially impacting similarity-based metrics. Hence 452

we modify the model’s outputs under zero-shot 453

settings before reporting the results. We evaluate 454

the performance of ChatGPT with and without em- 455

ploying the T3 method and also compare it to the 456

fine-tuned LLaMA-7B model proposed by Tang 457

et al. (2023). Results are detailed in Table 3. It is 458

observable that the application of the T3 method re- 459

sults in significant improvements across all metrics, 460

with some measures outperforming the fine-tuned 461

model. Further details on the experiments and anal- 462

ysis of the results are discussed in Appendix E. 463

6.3.2 Performance of T3 on WIKI40B Dataset 464

We intend to evaluate the performance of our pro- 465

posed approach in the text-to-table task without 466

instructions and ground-truth tables. In line with 467

the pioneering work of STRUCTSUM (Jain et al., 468

2024), we experiment on a randomly sampled set 469

from the English section of WIKI40B dataset (Guo 470

et al., 2020). As there is no ground-truth table for 471

the text in the dataset, they leverage LLMs and pro- 472

pose AUTO-QA Coverage as an evaluation metric: 473

Cov(T ) =
∑∣G(S)∣

i=1 E(qi,ai)[Q(T , qi)]
∣G(S)∣ 474

where G(S) is the list of Question-Answer pairs 475

(qi, ai) generated by the LLM based on text S, 476

Q(T , q) is the LLM’s answer to question q based 477

on table T , and E(q,a)[x] is the LLM’s evaluation 478

of whether answer a and x are equivalent for ques- 479

tion q. On top of this evaluation, we add a step 480

where an LLM is used to pre-screen each (q, a) 481

pair based on text S, filtering out any pairs where 482

the question can not be correctly answered. This 483

process further assures the quality of the QA pairs 484

generated by G. We opt for ChatGPT as the LLM 485

for evaluation and randomly sample 500 passages 486

for the test dataset following Jain et al. (2024). We 487

also introduce T2(Text-Tuple) which treats the in- 488

termediary tuples from T3 as a single table T . We 489

aim to investigate the extent of information loss 490

during the conversion from tuples to tables through 491

this configuration. Figure 5 shows the AUTO-QA 492

Coverage of three methods. The curve indicates 493

the percentage of generated tables meeting a given 494

coverage threshold. Overall, T3 demonstrates a 495
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substantial improvement over the prior Devide-and-496

Generate method (Jain et al., 2024). For example,497

when the coverage threshold is set to 70%, about498

65% of data reach this threshold after applying T3,499

compared to only 50% with the preceding approach.500

It is important to note that T2 outperforms T3, with501

83% of data retaining the same coverage after tu-502

ple extraction. This suggests that information loss503

occurs during the transformation of raw tuples into504

structured tables. Exploring ways to mitigate this505

loss represents an essential area for further research.506

More details are discussed in Appendix F.507

6.4 Case Studies508

We present specific case studies on the outputs of509

different models on the LIVESUM dataset in Ap-510

pendix G. These cases directly demonstrate the ef-511

fectiveness of our proposed method. Additionally,512

we summarize some common errors of the model513

after applying T3 and areas for improvement.514

7 Related Work515

Text-to-Table Generation Many studies have516

been proposed to perform text-to-table genera-517

tion, converting it into sequence-to-sequence prob-518

lems (Wu et al., 2022; Li et al., 2023c), or fram-519

ing them as question-answering problems (Sundar520

et al., 2024). With the rise of LLMs, some research521

has also explored evaluating LLMs under fine-522

tuning or zero-shot settings, and it shows that fine-523

tuning yields highly effective results (Tang et al.,524

2023; Sundar et al., 2024). However, these meth-525

ods employ datasets that only require the model 526

to extract relevant information from text and popu- 527

late tables, which significantly limits the scope of 528

this task. Therefore, we introduce a new challeng- 529

ing dataset and propose a universal solution that 530

greatly enhances the performance of LLMs under 531

zero-shot setting. 532

LLMs for Information Extraction Information 533

Extraction (IE) is critical and foundational for 534

many downstream tasks in NLP. Many works have 535

been conducted to leverage LLMs and provide ef- 536

fective solutions for IE tasks within a generative 537

framework (Ma et al., 2023; Lu et al., 2023; Wan 538

et al., 2023; Zhou et al., 2024). Recent progress in 539

LLMs also has led to the development of unified 540

frameworks that model various IE tasks and do- 541

mains (Wang et al., 2023b; Sainz et al., 2024). This 542

aligns with our intention to harness this capability 543

to address general text-to-table generation tasks. 544

LLM Promptings Prompt engineering has been 545

essential for enhancing LLMs and has demon- 546

strated great success across a wide range of ap- 547

plications (Wei et al., 2022; Dua et al., 2022; Li 548

et al., 2023a; Wang et al., 2024). Among the vari- 549

ous prompting techniques, we find the decomposed 550

prompting (Khot et al., 2022), which breaks down 551

complex tasks into easier sub-tasks via prompting, 552

highly effective for text-to-table generation. Jain 553

et al. (2024) adopts this idea by breaking the text 554

into small pieces for table generation. However, 555

we argue that such a decomposition approach is im- 556

practical because text is not always easily divisible. 557

For example, in our dataset, such division might re- 558

sult in adjacent sections describing the same event, 559

causing errors. Hence we propose a more intu- 560

itive and broadly applicable task decomposition 561

pipeline. 562

8 Conclusion 563

In this work, we introduce LIVESUM, a novel and 564

challenging benchmark dataset for assessing the 565

capability of models to integrate information in 566

the text-to-table generation, along with a robust 567

pipeline named T3. Experimental results show that 568

current LLMs underperform on our dataset in both 569

fine-tuning and zero-shot settings; however, signifi- 570

cant improvements are observed after applying our 571

proposed T3 pipeline. Our method can also be ap- 572

plied to any text-to-table dataset, enabling LLMs to 573

outperform previous methods in zero-shot settings. 574
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Limitations575

Although our LIVESUM benchmark extensively576

evaluates the information integration capabilities577

of LLMs, we have not yet tested their performance578

in a few-shot setting. Despite the challenge posed579

by the token length of live commentary for few-580

shot settings, we reserve this aspect for future work.581

Furthermore, while our proposed T3 pipeline sig-582

nificantly improves performance on several state-583

of-the-art LLMs, it cannot be effectively applied584

to LLMs that are deficient in tuple extraction ca-585

pabilities, as it fails in the first stage and cannot586

proceed to the next phase. Developing methods587

that boost performance on such LLMs remains a588

valuable area for future research.589

Ethics Statement590

When constructing the LIVESUM dataset, we sam-591

ple texts of live football match commentary from592

the open-access BBC Sports official website. We593

apply LLMs to paraphrase this live commentary594

and conduct manual reviews to ensure no harmful595

content is generated. We also anonymize the data596

using named entity recognition (NER) technology597

combined with player rosters. The datasets used598

in our experiments, STRUC-BENCH (Tang et al.,599

2023) and WIKI40B (Guo et al., 2020), are open-600

source, and all experiments adhere to their intended601

use for research purposes. Therefore, to the best of602

the authors’ knowledge, we believe that this work603

introduces no additional risk.604
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Appendices904

A Details of LIVESUM Dataset905

This section extends Section 3, where we dis-906

cuss additional details of dataset construction, and907

present detailed statistical information and a spe-908

cific example of the dataset.909

A.1 Live Commentary Generation910

Paraphrasing We first utilize ChatGPT to para-911

phrase the original text to make it closer to the912

language used by the commentator while ensur-913

ing a certain degree of diversity. The prompting914

template used in this step is as follows:915

Paraphrase Prompting Template

You are a football commentator, paraphrase the sen-
tence and don’t make it too long: <Original Text>

916

where <Original Text> represents the original917

live commentary on the webpage. After the tran-918

scription of each live commentary segment, we919

manually inspect whether the meaning of each sen-920

tence has been altered. If any issues are identified,921

we make manual revisions accordingly.922

Data Anonymization We then perform the data923

anonymization. First, we obtain the list of players924

participating in each match from the BBC Sports of-925

ficial website. Then, using a combination of string926

matching and NER techniques (Qi et al., 2020),927

we match fully detected names to players on the928

list based on textual similarity. Each individual is929

assigned a unique number and recorded in the for-930

mat Player<number>(<team>), where <number>931

is a positive integer and <team> is the team that932

player belongs to. We anonymize the team names933

as “Home Team” and “Away Team”. The inclusion934

of team names is intended to eliminate the need935

for the model to infer the team affiliation of each936

player, thus avoiding any potential interference937

with our evaluation of their information integration938

ability. We also manually inspect whether there is939

any missed anonymization. If any are found, we940

make manual revisions accordingly.941

A.2 Summary Table Generation942

Annotation We recruit five workers who are in-943

terested in football and are from English-speaking944

countries to annotate the events and employ a ma-945

jority voting approach to resolve any disagreements.946

We randomly sample 100 cases with discrepan-947

cies and find that all errors are due to carelessness.948

Train Set Test Set

# Instances 3,017 754

Average Text Length
Words 1,258 1,250
Chars 6,852 6,816

Average Event Occurrence Frequency
Goals 1.38 1.39
Shots 12.71 12.55
Fouls 10.60 10.57
Yellow Cards 1.74 1.76
Red Cards 0.04 0.03
Corner Kicks 5.25 5.24
Free Kicks 10.34 10.30
Offsides 1.86 1.84

Table 4: Average statistics in LIVESUM dataset.

Therefore, we conclude that the quality of the an- 949

notation quality is assured. 950

Integration After manual annotation and review, 951

the data are aggregated into several tuples, and we 952

count the occurrence of each tuple to obtain the 953

integrated result. Finally, we sequentially fill in the 954

column headers of the table with the eight events, 955

convert the team names to Home Team and Away 956

Team for the row headers of the table, and then 957

fill in the corresponding counts into the cells to 958

generate the final summary table. 959

A.3 Statistics 960

Table 4 presents the statistical data regarding text 961

length and the frequency of various events within 962

the train and test sets of the LIVESUM dataset. It 963

can be seen that the statistical metrics across the 964

train set and test set are comparably uniform, con- 965

sistent with our method of completely random divi- 966

sion. 967

A.4 Example 968

Figure 6 presents an example of the live commen- 969

tary and a summary table generated through the 970

pipeline depicted in Figure 2. 971

B Implementation of T3 on LIVESUM 972

Dataset 973

This section is an extension of Section 4, where we 974

provide description of the implementation details 975

of the T3 method applied to the LIVESUM dataset. 976

B.1 Instrction on LIVESUM Dataset 977

We present the instruction directives common to all 978

experiments conducted on the LIVESUM dataset, 979

which are some rules related to this task: 980
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Instruction on LIVESUM Dataset

According to the live text, please count the number of:
1.goals, 2. shots, 3.fouls, 4.yellow cards, 5.red cards,
6.corner kicks, 7.free kicks, and 8.offsides for each
team. Note that goals and saved attempts and blocked
attempts and missed attempts are considered shots.
Handball and dangerous play are also considered foul.
The second yellow card is also considered a red card.
Penalty is also considered as free kicks.

981

B.2 Text-to-Tuple Prompts982

Based on the characteristics of the text in the983

Livesum dataset, we have defined the format of984

tuples as (player name, team name, event) or (team985

name, event). Subsequently, we define the follow-986

ing prompting template:987

T3

Text-to-Tuple Prompting Template

<Instruction>
Please extract all the relevant event from the follow-
ing passage, output them in (player name, team name,
event) or (team name, event) format. Constrain the
event names to only the following options: 1.goals,
2.shots, 3.fouls, 4.yellow cards, 5.red cards, 6.corner
kicks, 7.free kicks, and 8.offsides:
<Text>

988

where <Instruction> represents the text provided989

in Appendix B.1, and <text> is the live commen-990

tary text.991

B.3 Information Integration Prompts992

As discussed in Section 4.2, T3 employs code gen-993

eration as the default approach for information in-994

tegration. The following is the prompting template995

we define, and Figure 7 presents an example of996

Python code generated by GPT-4.997

T3

Information Integration Prompting Template

Code Generation:
<Instruction>
Please develop a Python code to consolidate these
tuples as specified:
<Tuples>

998

where <Instruction> represents the text provided999

in Appendix B.1, and <Tuples> is the tuples ex-1000

tracted in the previous step.1001

B.4 Tuple-to-Table Prompts1002

In this step, we present the format of the generated1003

table and specify the following prompting template:1004

T3

Tuple-to-Table Prompting Template

<Instruction>
Please only output a table with the team name in CSV
format with 2 rows based on the following tuples:
<Tuples>

1005

where <Instruction> represents the text provided 1006

in Appendix B.1, and <Tuples> is the tuples inte- 1007

grated by the code in the previous step. 1008

B.5 Prompts of Variant Methods 1009

In Section 6.2, two variants of the T3 method are 1010

mentioned during the design of the ablation study. 1011

Here, we present the implementation details of 1012

these variants. 1013

T3-MERGED This method combines all three 1014

stages of T3 into one, resulting in a single prompt: 1015

T3-MERGED
Prompting Template

<Instruction>
Let’s do the following things:
1. Extract all the relevant events from the following
passage in (player name, team name, event) or (team
name, event) format.
2. Integrate these tuples.
3. Output a table with 2 rows in CSV format.
<Text>

1016

where <Instruction> represents the text provided 1017

in Appendix B.1, and <text> is the live commen- 1018

tary text. 1019

T3-DIRECT-EXECUTION This method replaces 1020

code generation with direct execution in the second 1021

stage of T3. The prompts are as follows: 1022

T3-DIRECT
Information Integration Prompting Template

<Instruction>
Please count all the information required and inte-
grate these tuples:
<Tuples>

1023

where <Instruction> represents the text provided 1024

in Appendix B.1, and <Tuples> is the tuples ex- 1025

tracted in the previous step. The first and third steps 1026

remain unchanged and are described exactly as in 1027

Appendix B.2 and B.4. 1028

C Details of Benchmark Configuration 1029

This section serves as an extension of Section 5, 1030

providing additional details regarding the bench- 1031

mark configuration. 1032
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C.1 Fine-Tune Setting1033

We use the open-source library named LLaMA-1034

Factory2 (Zheng et al., 2024) to fine-tune all mod-1035

els. LoRA (Hu et al., 2022) is used as the fine-1036

tuning paradigm to accommodate our computa-1037

tional resources. The pre-trained weights are down-1038

loaded from the huggingface library (Wolf et al.,1039

2020). We load the models with FP16 as the1040

precision and optimize them with an Adam op-1041

timizer (Kingma and Ba, 2015). The learning rate1042

is set to 5e-5 and the batch size is 32. The maxi-1043

mum length for the input and generated sentence1044

concatenation is 3,500. We warm up the model1045

with 3,000 steps and evaluate the model every 3001046

steps. A linear scheduler is also used. The LoRA1047

rank is set to 8, and the α is set to 32.1048

C.2 Zero-Shot Setting1049

The zero-shot and chain-of-thought inference for1050

LLaMA-2 models are conducted on eight V1001051

GPUs. When obtaining outputs from LLMs via1052

APIs, we ensure deterministic results by setting1053

the temperature to zero. In Table 5, we list the1054

model names corresponding to different model1055

types. Note that unless specifically stated other-1056

wise, when a model type from the table is used, the1057

model name corresponding to it in the table is the1058

one being invoked.1059

Model Type Model Name

Mistral Large mistral-large-2402
ChatGPT gpt-3.5-turbo-0125
GPT-4 gpt-4-0613
Claude 2.1 claude-2.1
Claude 3 Opus claude-3-opus-20240229

Table 5: Model types and their corresponding names of
LLMs used in our experiments.

C.3 Prompts1060

Below are the two prompting templates we used to1061

evaluate the baseline models:1062

Baseline Prompting Template

Prompt w/o COT
<Instruction>
Please output a table with 2 rows in CSV format
according to the following live text:
<Text>

1063

2https://github.com/hiyouga/LLaMA-Factory

Baseline Prompting Template

Prompt w/ COT
<Instruction>
Let’s think step by step! At last, please output a table
with 2 rows in CSV format according to the following
live text:
<Text>

1064

where <Instruction> represents the text provided 1065

in Appendix B.1, and <text> is the live commen- 1066

tary text. 1067

C.4 Result Parsing 1068

As the table format in this experiment is fixed, most 1069

models can produce recognizable tables. We em- 1070

ploy a comprehensive evaluation algorithm based 1071

on regular expressions to parse various types of out- 1072

put. For improperly formatted tables in the model’s 1073

output, we filtered out those instances. This is be- 1074

cause when the table format is disrupted, we are 1075

unable to obtain the meaning of each number in the 1076

output, and thus cannot calculate the metric. More- 1077

over, this indicates that the model is even unable 1078

to perform the text-to-table generation task, which 1079

falls outside the scope of assessing its information 1080

integration abilities in the text-to-table process. 1081

D Full Results of Ablation Study 1082

In this section, we extend Section 6.2 and provide a 1083

comprehensive supplementary ablation study. We 1084

apply two variant methods, T3-MERGED (T3
M) 1085

and T3-DIRECT-EXECUTION (T3
D), proposed in 1086

Section 6.2, to all four LLMs capable of applying 1087

the T3 method. The results of all experiments are 1088

listed in Table 6. In this table, we also provide 1089

a separate listing for each model, showcasing the 1090

average change in error rate for each method com- 1091

pared to the baseline. It is important to note that a 1092

lower error rate indicates better performance. 1093

Impact of COT Prompting Firstly, we observe 1094

that COT prompting yields positive effects across 1095

all four LLMs, resulting in an overall reduction in 1096

error rate ranging from 0.3% to 2.4%. This further 1097

corroborates that COT is a concise and effective 1098

prompting strategy. 1099

Impact of T3M Prompting After applying the 1100

T3
M method, it is observed that the performance of 1101

the Mistral Large and Claude 3 Opus deteriorates, 1102

particularly with a significant increase in error rate 1103

of 6.7% for Claude 3 Opus. This indicates that the 1104

models’ ability to summarize the information inter- 1105

nally is superior to the approach of extracting and 1106

14

https://github.com/hiyouga/LLaMA-Factory


Model Easy Medium Hard Average
RMSE ER RMSE ER RMSE ER RMSE ER ∆ER

Claude 2.1 1.014 10.08 2.581 63.99 4.621 90.58 3.171 57.16
Claude 2.1 (COT) 1.496 14.06 2.291 61.70 4.081 90.38 2.918 56.96 ↓ 0.3%
Claude 2.1 (T3

M) 1.144 13.92 2.289 62.28 4.114 90.12 2.869 57.15 ↓ 0.0%
Claude 2.1 (T3

D) 3.653 39.15 2.444 64.88 5.621 92.06 4.056 65.24 ↑ 14.1%
Claude 2.1 (T3) 0.193 8.95 1.965 44.99 2.751 72.14 2.066 42.77 ↓ 25.2%

Mistral Large 0.005 0.27 2.385 52.45 2.712 84.62 2.209 47.44
Mistral Large (COT) 0.018 0.73 2.311 51.82 2.608 84.08 2.139 47.12 ↓ 0.7%
Mistral Large (T3

M) 0.039 1.84 2.223 52.70 3.479 86.18 2.399 48.36 ↑ 1.9%
Mistral Large (T3

D) 0.142 6.59 1.677 57.46 2.735 84.81 1.865 51.58 ↑ 8.7%
Mistral Large (T3) 0.191 8.82 1.596 42.37 2.137 69.23 1.631 40.70 ↓ 14.2%

GPT-4 0.156 4.64 1.167 46.05 4.114 88.53 2.273 46.32
GPT-4 (COT) 0.154 4.38 1.163 45.86 3.981 88.73 2.225 46.20 ↓ 0.3%
GPT-4 (T3

M) 0.003 0.13 1.419 43.22 2.458 82.76 1.621 42.34 ↓ 8.6%
GPT-4 (T3

D) 0.087 4.47 1.124 40.13 232 81.45 1.418 41.55 ↓ 10.3%
GPT-4 (T3) 0.056 3.18 0.854 25.83 1.219 46.22 0.929 25.27 ↓ 45.4%

Claude 3 Opus 0.078 2.52 1.617 51.36 3.713 88.06 2.253 48.33
Claude 3 Opus (COT) 0.040 1.59 1.642 49.60 3.265 87.87 2.079 47.17 ↓ 2.4%
Claude 3 Opus (T3

M) 1.244 15.14 1.610 52.97 3.625 85.27 2.426 51.59 ↑ 6.7%
Claude 3 Opus (T3

D) 0.327 9.66 1.315 46.43 1.924 79.50 1.432 45.50 ↓ 5.9%
Claude 3 Opus (T3) 0.081 5.30 0.406 14.79 0.477 21.29 0.438 14.04 ↓ 70.9%

Table 6: The comprehensive ablation study results comparing the performance of different prompting methods. We
bold the best results and underlined the second-best results.

merging information separately. On the contrary,1107

GPT-4 demonstrates a significant reduction in error1108

rate of 8.6% after applying T3
M, which indicates1109

that the capabilities of GPT-4 are sufficiently ro-1110

bust to support the T3
M prompting approach and1111

effectively execute all three steps. The change in1112

error rate for Claude 2.1 is not significant; however,1113

there is a notable 9.6% reduction in RMSE. This1114

indicates that T3
M leads to a closer approximation1115

of the true values in its results.1116

Impact of T3D Prompting After applying T3
D,1117

the error rates of Claude 2.1 and Mistral Large in-1118

crease by 14.1% and 8.7%, respectively, indicating1119

that they are not suitable for this prompting method.1120

Comparing these results to those obtained with T3,1121

it can be inferred that the reason for the increase1122

in error rate is likely due to their inferior ability to1123

integrate information compared to the generated1124

code, as the error rate significantly decreases when1125

using code integration. On the other hand, GPT-41126

and Claude 3 Opus achieved error rate reductions of1127

10.3% and 5.9%, respectively, under this prompting1128

approach. This indicates that both models possess1129

a certain level of ability to integrate information.1130

Impact of T3 Prompting All four LLMs showed1131

substantial improvements after applying the T3
1132

prompting method. Specifically, Mistral Large,1133

Claude 2.1, and GPT-4 achieve average error rate 1134

reductions of 14.2%, 25.2%, and 45.4% respec- 1135

tively. Notably, Claude 3 Opus exhibits a remark- 1136

able error rate reduction of 70.9%. This strongly 1137

indicates the effectiveness of the proposed method. 1138

From the perspective of absolute error rates, under 1139

the T3 method, the performance of the four models 1140

from best to worst is as follows: Claude 3 Opus, 1141

GPT-4, Mistral Large, and Claude 2.1. This rank- 1142

ing essentially reflects their capabilities in tuple 1143

extraction. 1144

E Details of the Experiment on 1145

STRUCT-BENCH Table Dataset 1146

This section is an extension of Section 6.3.1, in 1147

which we will introduce the evaluation criteria for 1148

this dataset, our implementation details, and an 1149

analysis of the results. 1150

E.1 Evaluation Metrics 1151

This benchmark employs nine evaluation met- 1152

rics, five of which are traditional and applica- 1153

ble to text generation tasks: SacreBLEU (Post, 1154

2018), ROUGE-L (Lin, 2004), BERTScore (Zhang 1155

et al., 2020), BLEURT (Sellam et al., 2020), and 1156

BARTScore (Yuan et al., 2021). These metrics 1157

can to some extent measure the similarity between 1158

the generated tables and the target tables. The last 1159
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Model SacreBLEU ROUGE-L BERTScore BLEURT BARTScore Content
P-Score

Format
P-Score

Content
H-Score

Format
H-Score

♦ Zero-Shot
ChatGPT 77.58 86.11 96.75 64.66 -2.08 6.84 9.70 1.66 3.28
ChatGPT (T3 ) 78.91 88.36 97.34 67.47 -1.90 7.29 9.88 1.68 3.63
GPT-4 87.26 92.81 98.15 77.08 -1.58 7.45 9.71 1.76 3.87
GPT-4 (T3 ) 87.75 92.37 98.30 79.80 -1.60 7.60 9.74 1.77 3.89

♦ Fine-Tuning
LLaMA-7B 90.60 88.98 98.54 66.07 -0.69 7.69 8.60 1.65 3.61

Table 7: Evaluation results on the test set of STRUC-BENCH Table dataset, consisting of nine metrics. We bold the
best results and underlined the second-best results.

four metrics, P-score (Prompting Score) and H-1160

score (Heuristical Score), are evaluation criteria1161

proposed by Tang et al. (2023), which involve us-1162

ing ChatGPT to score the content and format of1163

generated tables and applying manually devised1164

rules to assess the content and format, respectively.1165

For all evaluation metrics, higher numbers signify1166

better performance.1167

E.2 Implementation Details1168

We conduct experiments on STRUCT-BENCH Ta-1169

ble dataset (Tang et al., 2023) using ChatGPT and1170

GPT-4 to assess the impact of T3 on model per-1171

formance. As described in Section 6.3.1, we first1172

obtain the outputs of ChatGPT and GPT-4 using1173

the provided prompting, removed terms such as1174

“unknown” and “not mentioned” from the outputs,1175

and then recalculate all metrics. This step involves1176

using all instructions, prompting templates, and the1177

code for calculating all metrics, all of which are1178

sourced from the codebase3 provided by Tang et al.1179

(2023). We then apply our proposed T3 method to1180

both ChatGPT and GPT-4. We design the prompt-1181

ing template for the first step as follows:1182

T3 on STRUCT-BENCH Table Dataset
Text-to-Tuple Prompting Template

<Instruction>
You are now required to extract team and player infor-
mation from the following input. Please focus on the
table format and extract all relevant tuples in (team
or player name, attribute, value) format:
<Text>

1183

where <Instruction> is provided from the1184

dataset, and <text> is the original text. Because1185

the content of this dataset does not involve informa-1186

tion integration, the second step does not alter the1187

tuples from the first step. Therefore, we proceed1188

directly to the third step of table generation, setting1189

the following prompting template:1190

3https://github.com/gersteinlab/Struc-Bench

T3 on STRUCT-BENCH Table Dataset
Tuple-to-Table Prompting Template

<Instruction>
Based on the instructions and the following extracted
tuples, please generate two tables according to the
table format:
<Tuples>

1191

where <Instruction> is provided in the dataset, 1192

and <Tuples> is the tuples extracted in the previ- 1193

ous step. 1194

E.3 Results Analysis 1195

Table 7 presents all our experimental results, with 1196

the fine-tuning section quoting the state-of-the-art 1197

results (Tang et al., 2023). The results indicate that 1198

GPT-4 outperforms ChatGPT across all metrics. 1199

After applying the T3 method, both ChatGPT and 1200

GPT-4 show improved performance, with ChatGPT 1201

experiencing a greater enhancement, suggesting the 1202

generalizability of the T3 method. When compared 1203

with state-of-the-art fine-tuning methods, the zero- 1204

shot approaches perform better on some metrics. 1205

This indicates that the T3 method still offers signif- 1206

icant improvements for text-to-table tasks that do 1207

not require information integration, further demon- 1208

strating its broad applicability. 1209

F Details of the Experiment on WIKI40B 1210

Dataset 1211

This section is an extension of Section 6.3.2, in 1212

which we will discuss more details. 1213

F.1 Evaluation Metrics 1214

As introduced in Section 6.3.2, the evaluation crite- 1215

rion adopted for this dataset, AUTO-QA Coverage, 1216

is designed due to the absence of ground truth for 1217

the generated tables. Jain et al. (2024) propose 1218

using question answering as a medium and lever- 1219

age LLMs to assess the quality of the generated 1220

tables. This metric not only measures how much 1221

information from the original text is covered by 1222
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the table but also checks the accuracy of the values1223

within the table since incorrect content would also1224

lead to errors in the QA. They also demonstrate1225

through detailed experiments that AUTO-QA Cov-1226

erage aligns with human evaluation standards, and1227

thus we follow this metric in our experiments.1228

F.2 Implementation Details1229

Since Jain et al. (2024) samples 100 entries from1230

the English version of WIKI40B (Guo et al., 2020)1231

without disclosing which ones, we replicate their1232

setting by sampling 500 texts to serve as the dataset1233

for this experiment. For each passage, we utilize1234

ChatGPT to generate 20 (question, answer) pairs1235

that can be answered based on the text. Subse-1236

quently, we introduced a verification step where all1237

(question, answer) pairs are re-fed into ChatGPT1238

to confirm their correctness. Pairs that ChatGPT1239

cannot accurately answer are filtered out. This ap-1240

proach enhances the accuracy of metric evaluation.1241

Here, we present the prompts for T3:1242

T3 on WIKI40B Dataset
Text-to-Tuple Prompting Template

You are going to summarize a table for this passage,
but the first step is to extract useful information. Out-
put them in (subject, attribute, value) or (subject,
verb, object) format: <Text>

1243

where <text> is the original passage. It is note-1244

worthy that, under this task setting, there are no1245

instructions provided. Next, we feed the output1246

tuples into the second step, where the LLM au-1247

tonomously integrates the tuples:1248

T3 on WIKI40B Dataset
Information Integration Prompting Template

Please integrate these tuples if necessary: <Tuples>
1249

Finally, the tuples output from this step are fed into1250

the prompt for the last step.1251

T3 on WIKI40B Dataset
Tuple-to-Table Prompting Template

Summarize the triples below in one or multiple tables.
Use the following format: Caption: A caption for the
table you generate. It can be multiple lines. Table: A
table in markdown format.
<Tuples>

1252

The other prompts used in the experiments, such as1253

those for generating question-answer pairs, assess-1254

ing the correctness of answers, and the Divide-and-1255

Generate method’s prompting, all originate from1256

Jain et al. (2024).1257

F.3 Results Analysis 1258

The results of this experiment are presented in Fig- 1259

ure 5. As discussed in Section 6.3.2, T3 demon- 1260

strates higher AUTO-QA Coverage than the base- 1261

line, proving its ability to generate higher qual- 1262

ity tables in text-to-table generation tasks without 1263

instructions. We also experiment with using the 1264

tuples extracted in the first step of T3 directly as 1265

the generated tables and assessed their coverage, 1266

resulting in constructive findings. The coverage 1267

curve of T2 is entirely above that of T3, indicating 1268

a certain loss of information from tuple to table. 1269

Although this could also be due to insufficient ta- 1270

ble question answering capabilities leading to a 1271

decrease in metrics, it is necessary to employ rele- 1272

vant techniques (Wu et al., 2023; Wang et al., 2024) 1273

to mitigate the impact of this factor in future work. 1274

Nevertheless, the conclusion that T3 improves the 1275

performance of the previous work remains sound. 1276

G Case Studies 1277

Figure 8 lists the outputs of four LLMs with and 1278

without the application of the T3 method on the 1279

data shown in Figure 6. For the results not utilizing 1280

T3, we can not easily analyze why it generates a 1281

range of large or small values. However, for the 1282

results using the T3 method, we perform a detailed 1283

examination. We randomly sample 100 results gen- 1284

erated by GPT-4 applying T3 and conduct a spot 1285

check, finding that all errors originated from the 1286

first stage. Among these errors, 78% are due to 1287

missing event tuples, and 21% are due to wrong 1288

event tuples. Here, we present two representative 1289

examples. 1290

Missing Event Tuple Example

Player18(Home Team) earns a free kick on the left
wing after being fouled by Player20(Away Team).

(Player18, Home Team, Free Kick)
(Player20, Away Team, Foul)(missing)

1291

Wrong Event Tuple Example

Player17(Home Team) from the Home Team draws
a foul in the penalty area, resulting in a penalty con-
ceded by Player33(Away Team).

(Player17, Home Team, Foul)(wrong)
(Player33, Away Team, Foul)
(Player17, Home Team, Free Kick)(missing)

1292
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Textual Live Commentary
Players are being announced for the lineup and getting ready for the game. The game is now underway with the start of
the first half. Offside called on Home Team as Player5(Home Team) attempts a through ball to Player11(Home Team), who is
caught offside. Player28(Away Team) makes a goal with a right-footed shot from the center of the box, giving the Away
Team a 1-0 lead over the Home Team. Player8(Home Team) earns a free kick on the right side of the field. Player23(Away
Team) commits a foul. Player9(Home Team) commits a foul. Player27(Away Team) earns a free kick in their own half. The
Home Team earns a corner kick. Player5(Home Team)’s left footed shot from outside the box is saved in the bottom left
corner after an assist from Player7(Home Team). Player26(Away Team) scores with a right-footed shot from outside the box,
assisted by Player29(Away Team), Home Team 0, Away Team 2. The Home Team wins a corner kick. Player8(Home Team) commits a
foul. Player21(Away Team) earns a free kick in their own half. Player29(Away Team) scores with a right-footed shot from
the right side of the box, assisted by Player28(Away Team), Home Team 0, Away Team 3. Player7(Home Team) of the Home
Team attempts a through ball, but Player11(Home Team) is flagged for being offside. Player29(Away Team) misses the goal
with a high right footed shot from outside the box, assisted by Player26(Away Team). The Home Team wins a corner kick.
Player10(Home Team) attempts a through ball, but Player11(Home Team) is offside for the Home Team. The Away Team wins a
corner kick. Player5(Home Team) earns a free kick in their own half. Player21(Away Team) commits a foul. Player25(Away
Team) fouls Player5(Home Team), who earns a free kick on the left wing. The Home Team wins a corner kick. Player10(Home
Team) of the Home Team is caught offside after Player8(Home Team) attempts a through ball. At the end of the first half,
the Home Team is trailing with a score of 0-3 against the Away Team. And we’re back for the second half with the Home Team
trailing 0-3 against the Away Team. Player2(Home Team) earns a free kick in their own half. Player23(Away Team) commits
a foul. Player18(Home Team)’s header from the center of the box is saved in the bottom left corner. Player4(Home Team)
commits a foul. Player29(Away Team) earns a free kick in their own half. Player4(Home Team) has received a yellow card for
a reckless foul. Player29(Away Team) is currently delayed in the match due to an injury. The delay is finished and they are
prepared to resume play. Player8(Home Team) is holding up the game due to an injury. The delay is finished and they are
prepared to resume play. Player14(Home Team) commits a foul. Player23(Away Team) earns a free kick in the opponent’s half.
Player28(Away Team) missed the target with a shot from the right side of the box, with an assist from Player27(Away Team)
after a quick counterattack. Player28(Away Team)’s right footed shot from the centre of the box was close, but missed to
the right and then blocked. Player29(Away Team)’s shot from the center of the box is saved in the center of the goal after
an assist from Player28(Away Team). The Away Team earns a corner kick. Player28(Away Team)’s shot from the center of the
box is blocked with the assistance of Player23(Away Team). Player26(Away Team) attempts a through ball, but Player23(Away
Team) is offside for the Away Team. Player14(Home Team) from the Home Team attempts a through ball, but Player11(Home
Team) is flagged for being offside. The Home Team wins a corner kick. Player6(Home Team)’s close-range attempt is saved in
the bottom left corner with an assist from Player3(Home Team)’s headed pass. Player18(Home Team) earns a free kick on the
left wing after being fouled by Player20(Away Team). Player26(Away Team) attempts a through ball but Player20(Away Team)
is offside for the Away Team. Player4(Home Team) commits a foul. Player28(Away Team) earns a free kick in their own half.
Player27(Away Team)’s shot from the center of the box was blocked with the help of Player26(Away Team). Player6(Home Team)
is being delayed in the match due to an injury. The delay is finished and they are prepared to resume play. Player18(Home
Team)’s shot from outside the box with their right foot was too high, assisted by Player5(Home Team). Player6(Home Team)
commits a foul on Player23(Away Team), resulting in a free kick being awarded on the left wing. The Away Team gets a corner
kick. Player23(Away Team)’s left footed shot from outside the box following a corner is too high. Player25(Away Team)
attempted a shot with his right foot from the right side of the box but it was too high, with an assist from Player28(Away
Team). Player7(Home Team) earns a free kick in the opponent’s half. Player36(Away Team) commits a foul. Player3(Home Team)
misses the header to the left from the center of the box, assisted by Player16(Home Team) with a cross. Player28(Away Team)
misses the target with a left-footed shot from long range. Player16(Home Team) attempts a through ball, but Player18(Home
Team) is offside for the Home Team. The Home Team finishes the second half with a score of 0, while the Away Team has 3.
Final score, Home Team 0, Away Team 3.

Summary Table

Team Goals Shots Fouls Yellow
Cards Red Cards Corner

Kicks Free Kicks Offsides

Away Team 3 12 6 0 0 3 6 2

Home Team 0 5 6 1 0 5 6 6

Figure 6: An instance within the LIVESUM dataset. The above section presents a complete textual live commentary
that has undergone paraphrasing and data anonymization, while the table below represents a manually annotated
summary table.
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� �
# Initialize a dictionary to store the counts
team_stats = {}

# List of tuples
tuples = [(’player1 ’, ’home␣team’, ’goal’),

(’player2 ’, ’home␣team’, ’shot’),
(’player3 ’, ’away␣team’, ’foul’)]

# Loop through the tuples
for player , team , event in tuples:

# If the team is not in the dictionary , add it
if team not in team_stats:

team_stats[team] = {’goals’: 0, ’shots’: 0, ’fouls’: 0, ’yellow␣cards’: 0, ’red␣cards’: 0,
’corner␣kicks’: 0, ’free␣kicks’: 0, ’offsides ’: 0}

# Update the counts based on the event
if event == ’goal’:

team_stats[team][’goals’] += 1
team_stats[team][’shots’] += 1

elif event in [’shot’, ’saved␣attempt ’, ’blocked␣attempt ’, ’missed␣attempt ’]:
team_stats[team][’shots’] += 1

elif event in [’foul’, ’handball ’, ’dangerous␣play’]:
team_stats[team][’fouls’] += 1

elif event == ’yellow␣card’:
team_stats[team][’yellow␣cards’] += 1

elif event in [’red␣card’, ’second␣yellow␣card’]:
team_stats[team][’red␣cards’] += 1
if event == ’second␣yellow␣card’:

team_stats[team][’yellow␣cards’] += 1
elif event == ’corner␣kick’:

team_stats[team][’corner␣kicks’] += 1
elif event in [’free␣kick’, ’penalty ’]:

team_stats[team][’free␣kicks’] += 1
elif event == ’offside ’:

team_stats[team][’offsides ’] += 1

# Print the counts for each team
for team , stats in team_stats.items ():

print(f"{team}:␣{stats}")� �
Figure 7: Python code generated by GPT-4 in response to the prompting as described in Appendix B.3.
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Outputs from Claude 2.1

Results w/o T3: RMSE=1.888, Error Rate=43.75%.

Team Goals Shots Fouls Yellow Cards Red Cards Corner Kicks Free Kicks Offsides

Away Team 3 ✓ 13 ✗ 10 ✗ 0 ✓ 0 ✓ 3 ✓ 5 ✗ 4 ✗

Home Team 0 ✓ 10 ✗ 7 ✗ 1 ✓ 0 ✓ 5 ✓ 6 ✓ 3 ✗

Results w/ T3: RMSE=0.661, Error Rate=25.00%.

Team Goals Shots Fouls Yellow Cards Red Cards Corner Kicks Free Kicks Offsides

Away Team 3 ✓ 12 ✓ 4 ✗ 0 ✓ 0 ✓ 3 ✓ 6 ✓ 2 ✓

Home Team 0 ✓ 5 ✓ 7 ✗ 1 ✓ 0 ✓ 6 ✗ 6 ✓ 5 ✗

Outputs from Mistral Large

Results w/o T3: RMSE=1.458, Error Rate=50.00%.

Team Goals Shots Fouls Yellow Cards Red Cards Corner Kicks Free Kicks Offsides

Away Team 3 ✓ 10 ✗ 7 ✗ 0 ✓ 0 ✓ 3 ✓ 10 ✗ 2 ✓

Home Team 0 ✓ 8 ✗ 7 ✗ 1 ✓ 0 ✓ 4 ✗ 7 ✗ 5 ✗

Results w/ T3: RMSE=0.612, Error Rate=18.75%.

Team Goals Shots Fouls Yellow Cards Red Cards Corner Kicks Free Kicks Offsides

Away Team 3 ✓ 12 ✓ 6 ✓ 0 ✓ 0 ✓ 3 ✓ 4 ✗ 2 ✓

Home Team 0 ✓ 5 ✓ 5 ✗ 1 ✓ 0 ✓ 5 ✓ 5 ✗ 6 ✓

Outputs from GPT-4

Results w/o T3: RMSE=1.785, Error Rate=31.25%.

Team Goals Shots Fouls Yellow Cards Red Cards Corner Kicks Free Kicks Offsides

Away Team 3 ✓ 10 ✗ 6 ✓ 0 ✓ 0 ✓ 3 ✓ 5 ✗ 2 ✓

Home Team 0 ✓ 11 ✗ 9 ✗ 1 ✓ 0 ✓ 5 ✓ 7 ✗ 6 ✓

Results w/ T3: RMSE=0.433, Error Rate=18.75%.

Team Goals Shots Fouls Yellow Cards Red Cards Corner Kicks Free Kicks Offsides

Away Team 3 ✓ 12 ✓ 5 ✗ 0 ✓ 0 ✓ 3 ✓ 5 ✗ 2 ✓

Home Team 0 ✓ 5 ✓ 6 ✓ 1 ✓ 0 ✓ 5 ✓ 5 ✗ 6 ✓

Outputs from Claude 3 Opus

Results w/o T3: RMSE=2.046, Error Rate=56.25%.

Team Goals Shots Fouls Yellow Cards Red Cards Corner Kicks Free Kicks Offsides

Away Team 3 ✓ 18 ✗ 7 ✗ 0 ✓ 0 ✓ 2 ✗ 7 ✗ 3 ✗

Home Team 0 ✓ 9 ✗ 7 ✗ 1 ✓ 0 ✓ 5 ✓ 9 ✗ 5 ✗

Results w/ T3: RMSE=0.000, Error Rate=0.00%.

Team Goals Shots Fouls Yellow Cards Red Cards Corner Kicks Free Kicks Offsides

Away Team 3 ✓ 12 ✓ 6 ✓ 0 ✓ 0 ✓ 3 ✓ 6 ✓ 2 ✓

Home Team 0 ✓ 5 ✓ 6 ✓ 1 ✓ 0 ✓ 5 ✓ 6 ✓ 6 ✓

Figure 8: Case study analysis showing the outputs and evaluation metrics of Claude 2.1, Mistral Large, GPT-4, and
Claude 3 Opus with and without the T3 method on data shown in Figure 6.
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