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ABSTRACT

Distance fields offer a powerful representation for continuous geometry, yet current
learning-based neural unsigned distance fields (UDFs) remain limited in their
ability to capture data patterns and generalize to real-world open surfaces. Point-
Based methods mitigate grid quantization errors but current work often oversmooth
local details, as query features are obtained solely through interpolation of point-
wise features which are aggregated over large receptive fields. To address this, we
propose a discriminative region representation that fuses narrow neighborhood
features with broader contextual point-wise features, and a primitive-based region
representation that decomposes the query region into triplet-defined primitives,
enabling the detailed encoding of local surface geometry and the clear distinction of
multi-layer structures. Building on these designs, we propose RegionUDF, a region-
aware UDF framework that achieves state-of-the-art open-surface reconstruction
on both object- and room-level scenes, with additional validation on watertight
shapes. Extensive experiments on synthetic and real-world datasets demonstrate
superior accuracy and robust cross-domain generalization. Our source code will be
available at [no-name-for-blind-review].

1 INTRODUCTION

Implicit geometric representations have become a predominant paradigm in 3D vision, computer
graphics, and robotics (Park et al.,[2019; Huang et al., 2022; Mescheder et al., 2019} |Chibane et al.|
2020b; |Yang et al.,|2023)). Unlike explicit representations such as meshes or point clouds (Hanocka
et al., |2020; |Badki et al.; 2020; Lin et al., 2020), implicit representations model surfaces as continuous
isosurfaces in space, overcoming the resolution limits of discrete methods and enabling high-fidelity
reconstruction. Among them, signed distance fields (SDFs) and unsigned distance fields (UDFs) are
the most common. SDFs (Tang et al., 2021} Peng et al., [2020; Huang et al., [2023) encode signed
distances to the nearest surface, where the sign indicates whether a point lies inside or outside a
watertight object. UDFs (Ren et al., [2023} |[Fainstein et al., [2024;|Ye et al.,2022), in contrast, record
only distance magnitudes, allowing representation of more general, non-watertight shapes and making
them particularly suitable for real-world surface reconstruction.

Recent advances have explored direct neural mappings from spatial coordinates to UDFs, either
via scene-specific optimization (Zhou et al.l 2022} |2023) or by defining new distance fields such
as orthogonal [Lu et al.| (2024) and line-segment fields (Ren & Houl [2025). Optimization-Based
methods, however, are restricted to single scenes without addressing cross-scene generalization. In
contrast, learning-based approaches (Chibane et al.,|2020b; | Ye et al., [2022; Ren et al.,[2023)) must
construct query features from point-cloud inputs to generalize across scenes. Grid-Based trilinear
interpolation remains common but introduces quantization errors and surface detail loss. Point-Based
alternatives, though less studied for UDFs, have been explored for SDFs (Boulch & Marlet, 2022
Wang et al.} 2023; Ranade et al., [2025). While they better preserve fine details, most rely only on
point locations to refine interpolation, neglecting richer regional information; thus, neighborhood
structure is underrepresented and point-wise features alone fail to capture fine-grained geometry.

Point-Wise features capture broad receptive fields but often oversmooth local details. In point-based
methods, they encode regional characteristics over large spatial ranges, whereas narrow neighborhood



Under review as a conference paper at ICLR 2026

features we defined are confined to the immediate vicinity of a query point. These two levels of
representation, reflecting “global” and “local” perspectives, are inherently complementary, and
their integration produces a more compact and discriminative region feature, as illustrated in Fig. [I]
Furthermore, since those points are often distributed across discrete surface patches, the neighborhood
point cloud can be decomposed into finer primitives that are deliberately constructed to preserve
the underlying surface structure. Theoretically, complex structures can be constructed through the
aggregation of simple primitives. It enables a more detailed characterization of local geometry, while
aggregating the primitives preserves information about the neighborhood as a whole.

In this work, we propose a discriminative region representation that models a query neighborhood by
fusing broad contextual point-wise features with narrow region features extracted from its surrounding
neighbors. Naturally, narrow region features can be obtained by treating the query neighbors as an
independent point cloud, enabling the use of standard point cloud analysis techniques. This offers a
principled alternative to weighted interpolation for encoding the local region relative to the query. We
further propose a primitive-based region representation. The neighborhood is partitioned into multiple
triplets, each of which uniquely defines a planar patch. Through spherical projection and angular
sorting, primitives are constructed to preserve surface structure, thereby enabling clear discrimination
of adjacent layers when the query point lies within a multi-layer structure. We first extract primitive
features using the discriminative region representation with triplet points and point-wise features.
Each primitive is then treated as a point, with its primitive feature serving as the corresponding
point-wise feature. Finally, these primitives are aggregated to construct the query region feature.

Building on the above ideas, we develop a Region-Aware Unsigned Distance Fields framework, Re-
gionUDF, and evaluate it on both synthetic and real-world datasets. We further assess its cross-domain
generalization by varying datasets and scene scales. In addition, existing learning-based UDF studies
have seldom conducted quantitative evaluations in room-level scenarios, typically providing only
qualitative visual results. Yet, room-level scenarios are inherently more complex and variable, making
them a more rigorous and informative benchmark for assessing learning capability. Therefore, we
place particular emphasis on evaluation in room-level scenarios. Overall, our results demonstrate that
RegionUDF consistently outperforms existing methods. Our main contributions are as follows:

* We design a discriminative region representation that incorporates narrow, fine-grained region
features for more accurate modeling of the query neighborhood.

* We propose a primitive-based region representation that decomposes the region into primitives,
enabling detailed encoding of local geometry and clear distinction of multi-layer structures.

* We validate our model on both synthetic and real-world datasets, demonstrating superior per-
formance in both intra-domain and cross-domain evaluations. Comprehensive ablation studies
further confirm the effectiveness of our proposed approaches.

2 RELATED WORK

Surface reconstruction has long been studied, with discrete representations (Schonberger et al., 2016
Schonberger & Frahm|2016) limited by spatial resolution and memory. Implicit representations have
thus become mainstream, spanning objects to large-scale environments. Classic methods such as
Poisson reconstruction (Kazhdan & Hoppel 2013; Kazhdan et al.,[2006)), radial basis functions (Carr
et al.,|2001), and moving least-squares surfaces (Guennebaud & Gross, [2007; |[Levin, |1998)) rely on
smoothness priors, whereas neural implicit approaches offer greater expressiveness and flexibility.

Closed Surface. In distance field modeling, SDFs parallel occupancy fields by mapping distances
to occupancy probabilities. Early neural implicit models such as DeepSDF (Park et al., 2019) and
ONet (Mescheder et al., [2019) predict signed distances or occupancy scores from global shape
codes. To better capture local geometry, voxel-based methods (Peng et al., 2020; Tang et al.| 2021}
Chibane et al., [2020a) adopt voxel-based encodings, though interpolating latent features limits fine
detail. Spline-based methods (Williams et al., [2022; [Huang et al. [2022)) address this via local
patches. NKSR (Huang et al.| 2023)) further refines the SDF by incorporating hierarchical information
to solve the global gradient optimization problem. Optimization-based approaches (Gropp et al.,
2020; [Sitzmann et al.} [2020; Ma et al.l |2021) instead solve the Eikonal equation with neural PDE
solvers (Sirignano & Spiliopoulos}, 2018)). A shared limitation is the assumption of closed surfaces,
restricting applicability to open surfaces in real scans.
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Open Surface. To represent open surfaces, NDF (Chibane et al., |2020b) first introduced neural
unsigned distance fields, regressing unsigned distances from spatial queries to the surface. Subsequent
per-scene optimization methods refined this representation: CAP-UDF (Zhou et al,2022)) employs a
Chamfer-based pull objective, DUDF (Fainstein et al., 2024) enforces differentiability via hyperbolic
scaling, and LevelSetUDF (Zhou et al., 2023)) stabilizes gradients through point-projection. Other
variants like PDDF (Aumentado-Armstrong et al., 2022), NeuralODF (Houchens et al.| 2022), and
LineSeg (Ren & Houl, 2025), incorporate directional cues for direct mesh extraction. Specifically,
UODF (Lu et al.,|2024)) defines the minimal unsigned distance along three orthogonal directions, en-
abling each spatial point to directly access its closest surface point and thereby achieve high-precision
reconstruction without interpolation errors. While effective, these remain per-scene methods without
cross-domain generalization. Learning-based UDFs are less explored: GIFS (Ye et al., [2022)) predicts
binary extension flags, NVF (Yang et al.|[2023)) regresses vectors to nearest surfaces, GeoUDF (Ren
et al.,[2023)) upsamples input points and normals for interpolation, and SALS (Ren & Houl [2025)
learns line segment—surface relations beyond the UDF paradigm. Despite these advances, existing
approaches overlook that constructing query features with an emphasis on narrow neighborhood
features can yield more accurate representations.

3 METHOD

We propose a region-aware unsigned distance field framework that integrates point-wise and narrow
region features of each query neighborhood. Point-Wise features capture broad contextual information
but often oversmooth fine details, whereas narrow region features preserve local structures yet
are sensitive to noise. Their integration yields complementary and more discriminative region
representations. To further enhance local representation, we propose a primitive-based region
formulation, decomposing the neighborhood into finer primitives for more detailed characterization.

@ Query Point Neighbor Point Fitted Curve —— GT Curve Query Region Receptive Field

* Na? @__//:\/':> _J'\\/

Figure 1: Intuition of Discriminative Region Representation. As an illustrative 2D example. The
query identifies neighbors via KNN, defining the query region (blue). Through the point-wise features
of these neighbors, the query also inherits a broader receptive field (green). Features restricted to the
query region capture finer local detail but are sensitive to noise, whereas point-wise features alone
oversmooth details. Their integration yields a more faithful/discriminative region representation.

3.1 DISCRIMINATIVE REGION REPRESENTATION

We consider narrow region features to form complementary, more discriminative region representation
by fusing a narrow region feature 7, with the point-wise feature f,. Specifically, f, encodes multi-
scale surface context from the input point cloud at each neighboring point. In parallel, r, encodes the
spatial configuration of the region defined by the set N, of K neighboring points surrounding g.

Treating the neighborhood as an independent point cloud with the query point ¢ as the origin of
its coordinate system allows the direct application of point cloud analysis techniques. We follow
the pooling and propagation paradigm of PointNet++ (point-wise MLP — symmetric pooling —
skip/concat). We formulate the whole distance learning process as:

=9 —0)® (5 36l —Q)lp € Ny,

ey
fq=10(rp ® fp)lp € Ny,
dq = ¢(fg ® q)
where @ denotes element-wise concatenation, ¢ denotes MLPs, § means attention aggregation, f,
represents the feature of the region relative to a query point ¢, and ¢ is the regression MLP.
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As shown in Eq.[I] we treat the set of neighboring points as a local region centered at the query
point g. We apply a single layer of point-cloud abstraction followed by feature propagation to extract
the narrow region feature r,, as a narrow geometry representation relative to g for each neighbor p.
Concurrently, each neighbor is endowed with a point-wise feature f,, which encodes a large receptive
field and provides contextual information independent of ¢q. By fusing the narrow region features
{rp} with the query-independent features { f,, }, we construct a discriminative region representation
that effectively characterizes the region relative to the query point.

3.2 PRIMITIVE-BASED REGION REPRESENTATION

However, because the region defined by the reference points often comprises multiple discrete surface
patches, its holistic treatment in Eq. [I| may obscure fine-grained geometric details. To address this,
we decompose the local region into a set of triplet primitives {5}, since three non-collinear points
uniquely define a plane and complex shapes can then be represented as compositions of planar
patches. For each S, we apply the paradigm of Eq. [I|to extract a primitive feature fs,. We then
aggregate primitive features { fs, } to form a richer representation of the region surrounding g.

First, we decompose the query-centered region into a collection of triplet primitives. Let 7 = {5} } le
denote the set of K triplet primitives that together define the region surrounding the query point
q. Accurately recovering surface connectivity from discrete reference points is challenging due to
their sparse, unstructured nature. To mitigate this, we adopt an intuitive connectivity strategy based
on angular proximity: we select the K nearest neighbors of g, project them onto a virtual sphere
centered at g, sort by spherical angles, and connect each three consecutive points to form a primitive.
Through these operations, primitives are constructed to preserve surface structure, thereby enabling
clear discrimination of adjacent layers when the query point lies within a multi-layer configuration.

For each triplet primitive S = {p; | ¢ = 0, 1, 2} with the corresponding point-wise feature f,,, we
could extract a primitive feature fg with Eq.[l|as following:

r=0w-ao (3> ow-a)pes,

@)
fs = %Z(b(rp@fp)v

peS

where ¢ is an MLP, r,, is the hierarchical region feature at p, and fg is obtained via MLP and mean
pooling. After computing each fg, we aggregate these primitive features into a detailed region feature
fq relative to the query g, also with paradigm defined by Eq.

Cs = %Z(p_Q)a

pES
rs = 6(cs) ® (% Y oles —q))IS € T, )
S
fa=0{rs® fs | ST},
dy = (fs© q),

where cg denotes the center of the primitive S, rs means the hierarchical region feature at the
primitive S. In practice, J is the AttSet aggregation (Hu et al., [2020).

In practice, projecting reference points onto a sphere and sorting by angular coordinates via radix
sort ensures minimal angular separation and coherent primitive formation. Given the simplicity of
each triplet, a PointNet++-like structure suffices for feature extraction. Although each fg is relative
to g, incorporating these region features yields a more discriminative representation of the region.
For implement details, please refer to Appendix section

4 EXPERIMENTS
4.1 OVERVIEW

In this Section, we present a thorough evaluation of our method on both synthetic and real-world
datasets. Specifically, we test on the watertight ShapeNet (Chang et al., 2015), the multi-layer open
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surface “Car” subset of ShapeNet 2015), on indoor scans from ScanNet
2017) and Matterport3D (Chang et al.,[2017). We also compare with the latest SALS on the ABC

and non-manifold ABC datasets (Ren & Hou, it introduced. We further evaluate cross-domain
performance across synthetic and real data and scene scales, supported by ablation studies on region-
aware features and robustness tests under varying density and noise. For baseline reproduction details,
see Appendix Section[A.3.3] For cross-domain evaluation, see Appendix Section[A.4]

4.2 WATERTIGHT SURFACES

Following established evaluation protocols, we assessed performance on watertight shapes from the
ShapeNet 13-class dataset. For dataset details, please refer to Appendix Section[A3.1] For fairness,
all experiments used 3K points as input. Given the large scale of the dataset, we directly adopted the
comparative results reported in the GeoUDF manuscript rather than reproducing
them; consequently, the most recent SALS (Ren & Houl, 2025)) is not included in this comparison.
For evaluation metrics, please refer to Appendix Section|A.2.3

Table 1: Watertight ShapeNet Comparison (Xu et al.|, 2019). CDyr, x 1072, F-S. (%) with
threshold 0.005 and 0.01. Best are in bold, and second-best are underlined. Note that Marching
Cubes (MC) with a resolution of 128 was applied to all methods following the GeoUDF setting, while
“4” indicates the higher resolution reported in their original papers.
| Clean | Noise (0.005)
CDy, | F-S. 1 CDy, |
Mean Median | F1°%% F1'% | Mean Median

F-S. 1
F1045% Fll%

NDF (Chibane et al|[2020b) | 0341 0320 | 840 976 | 0431 0419 | 685  96.1
GIFS(Ye et al. 0328 0276 | 860 974 | 0418 0358 | 731 958
GIFS ™ 2022] 0281 0243 | 914 985 | 0376 0348 | 780 968
GeoUDF (Renetal.[2023) | 0234 0226 | 938 992 | 0289 0278 | 893 987
Ours 0229 0222 | 950 994 | 0273 0261 | 917 989

We compare our model with mainstream UDF methods for watertight shapes following the GeoUDF
protocol. As shown in Table([I] our model consistently outperforms existing learning-based UDF ap-
proaches across all metrics.Our method achieves consistent improvements over GeoUDF, particularly
in F-score, with gains of 1.2% on clean data and 2.4% on noisy data at the 0.5% threshold, indicating
closer surface approximation and fewer reconstruction artifacts. As shown in Fig.[2} GIFS produces
scaly textures, while GeoUDF introduces boundary gaps and fragmented details. In contrast, our
method attains higher fidelity, accurately recovering thin structures and separating adjacent objects.

GIFS

GeoUDE i it / . lj - B
] g 1
1 ¥ |_a_ _ &

Ours :ﬂ4 l
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Figure 2: ShapeNet (Chang et al.,2015) Visualization. All methods are evaluated at a resolution of
128. Zoomed-in views highlight the regions with the most significant differences for comparison.
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4.3 OPEN SURFACES

4.3.1 SURFACE RECONSTRUCTION OF SHAPES

To assess our method’s capability on shapes with arbitrary topology, we follow prior work (Chibane
et al.,2020b; | Ye et al., |2022) and evaluate on the original “Car” category of ShapeNet, which features
multi-layered and open-surface models. For evaluation metrics, please refer to Appendix Section
Since GeoUDF (Ren et al} [2023)) and SALS (Ren & Houl, [2023) do not provide training
results on open surfaces, we retrain them on the non-watertight Car models using the default settings
of their open source code and evaluate them under the same protocol. For SALS (Ren & Houl
2025)), resolution 256 exceeds a single RTX 3090’s capacity, so we report results at 128; the default
resolution is 256. We further compare against the recent learning-based open-surface reconstruction
method SALS (Ren & Houl [2025) on its proposed benchmark.

Table 2: ShapeNet Cars (Chibane et al., 2020b) Comparison. F-S. (%) with a distance threshold
of 0.005 and 0.01, d¢ = C' Dy, x 10%, and NC (%). Best are in bold, and second are underlined.

de E-S. NC
Mean] Median] | F-S.0005 4 FE-§0014 | 4
GeoUDF™ (Ren et al.|[2023) 0.138 0.134 86.07 98.91 859
NVFE~ (Yang et al.[[2023) 0.166 0.161 83.23 97.93 83.5
SALS (Ren & Hou![2025) 0.179 0.175 83.05 97.49 77.4
Ours™ 0.135 0.131 86.42 98.93 86.4
NDF (Chibane et al.| 2020b) 0.126 0.120 88.09 99.54 -
NDF (Mesh) (Chibane et al.|[2020b) | 0.202 0.193 77.40 97.97 79.1
GIFS (Ye et al.|2022) 0.128 0.123 88.05 99.31 -
GeoUDF (Ren et al.|[2023) 0.120 0.114 89.23 99.29 86.6
NVF (Yang et al.][2023) 0.134 0.126 87.39 98.93 84.0
Ours 0.110 0.105 90.69 99.50 86.9

Table 3: ABC and Non-Manifold ABC (Ren & Houl 2025) Comparison. F-S. (%) with a distance
threshold of 0.005 and 0.01, CDy,, x 1072,C Dy, x 10~°, and NC (%). Best are in bold, and second
are underlined. Default Marching Cubes resolution is 128.

Method CD F-S. NC

CDr, CDyp, | 8291 FS%% 1 | 1
NDF (Chibane et al.|[2020b) | 0324 154 86.31 98.66 | 80.6
O GIFS (Ye et al.]2022) 0345 173 84.56 97.84 | 91.7
& GeoUDF (Ren etal.[2023) | 0257  9.02 92.88 99.78 | 97.2
< SALS(Ren & Hou|[2025) | 0.251  8.87 92.66 99.73 | 97.3
Ours 0251  8.62 93.46 99.85 | 97.8
2 NDF (Chibane et al.][2020b) | 0395  21.1 75.62 9752 | 77.1
20 GIFS (Ye et al.|2022) 0412 226 73.78 97.71 | 89.9
S | GeoUDF (Renetall2023) | 0333 144 83.69 99.55 | 95.0
=< | SALS(Ren&Hou[2025) | 0330 143 83.63 99.52 | 93.9
S Ours 0320 132 85.65 99.74 | 96.8

For ShapeNet “Cars” benchmark, we compare RegionUDF against recent learning-based surface
reconstruction methods, NDF (Chibane et al., 2020b)), GIFS (Ye et al.,|2022)), GeoUDF (Ren et al.}
2023) and SALS (Ren & Hou, [2025)), on the ShapeNet Cars benchmark. Tablereports quantitative
metrics, ours consistently achieves the best scores across most metrics and is comparable to the best
normal consistency, indicating that ours produce fewer outlier artifacts.

For ABC and Non-Manifold ABC benchmark, in line with SALS default settings, we use 40k points
without normals as input for each shape. Please refer to Appendix Section[A.3.3|for more details.
As shown in Table[3] our model achieves comparable CD performance while surpassing others on
F-score and NC by about 1% on F-S°-%%5 and NC, particularly on the non-manifold ABC benchmark,
indicating fewer outlier artifacts and higher reconstruction quality.

As shown in Fig. 3] most methods struggle with complex non-manifold edges, an inherent limitation
of UDFs. Our approach performs better on manifold regions, preserving sharp details along crisp
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Figure 3: ABC and Non-Manifold ABC (Ren & Hou, 2025) Visualization. All methods are
evaluated at a resolution of 128 with non-manifold edges preserved and holes filled. The first row
shows non-manifold objects, while the subsequent three rows depict the original ABC objects.

edges. In contrast, GIFS produces scaly surfaces, GeoUDF shows missing parts and artifacts, and
SALS introduces excessive edge artifacts. This demonstrates that discriminative features help recover
sharp details, counteracting the smoothing effects of point-wise features.

4.3.2 SURFACE RECONSTRUCTION OF ROOMS

To further assess our method on real-world scene scans, we evaluate it on two large-scale indoor
datasets: ScanNet (Dai et al.,[2017) and Matterport3D (Chang et al.,2017). For evaluation metrics,
please refer to Appendix Section [A.2.3] As no prior work reports room-level results on these
benchmarks, we retrain them under default experimental settings reported in their papers and apply a
consistent evaluation protocol for fair comparison. Due to SALS meshing limitations, experiments
were conducted at two resolutions, with SALS results reported only at 128.

Table 4: ScanNet and Matterport3D Comparison (Dai et al.,[2017; |Chang et al.,2017). C Dy, x
1073, CDy, x 107°, F-S. (%) with threshold 0.005, and NC (%). Best results are in bold, and

second-best results are underlined. Default MC resolution is 256; “~” denotes 128.
ScanNet Matterport3D

CD.,l CDp,| FS.t NCt|CD.| CD.| FSt NCt
GeoUDF ™ (Ren et al.|[2023) 2.36 11.9 91.0 88.7 2.35 10.1 91.7 93.9
NVF™ (Yang et al.|[2023) 2.20 11.0 929 88.8 2.31 10.0 92.2 93.7
SALS™ (Ren & Hou|[2025) 2.02 7.49 94.7 87.1 2.81 15.8 87.8 89.5
Ours™ 2.02 7.13 94.3 89.4 2.20 7.95 93.2 94.3
NDF(Chibane et al.||2020b) 2.31 8.60 93.3 - 2.54 9.81 91.8 -
NDF (Mesh)(Chibane et al.}[2020b) 2.83 48.7 87.0 88.1 2.84 12.6 87.9 83.5
GIFS (Ye et al.[[2022) 2.20 7.92 94.6 87.7 2.56 10.3 91.3 92.3
GeoUDF (Ren et al.[[2023) 2.05 7.84 93.8 89.3 2.21 8.33 92.9 94.2
NVF (Yang et al.|[2023) 2.03 11.7 94.6 88.9 2.83 11.9 89.5 93.6
Ours ‘ 1.86 6.03 95.7 90.1 ‘ 2.09 7.29 94.1 95.5

As shown in Table[d] our method substantially outperforms existing approaches on real-world room-
level surface reconstruction. NDF (Mesh) fails to produce coherent meshes on ScanNet. We achieve a
10% improvement in C'Dy,, and nearly 20% in C'Dy,, on ScanNet, and 5% and /2% improvements
on Matterport3D, reflecting better recovery of fine details and closer alignment with ground-truth
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surfaces. Additionally, NC increases by 1% and F-Score by nearly 2%, indicating improved geometric
structure preservation. At resolution 128, our model perform a comparable performance as SALS
on ScanNet while clearly outperforming it on Matterport3D, demonstrating the effectiveness of our
region-aware features in capturing expressive details.

Figure 4: ScanNet (Dai et al., 2017) Visualization. All methods use a resolution of 128. Portions of
the walls are removed to highlight interior details and more distinguishable structures.

Fig. @ and Fig. 5] demonstrate the effectiveness of our model in room-level reconstruction. SALS
often generates spurious structures and incomplete geometry, mainly due to the reduced number of
input points and the limited capacity of its simple network. GeoUDF recovers the overall layout but
produces noticeable distortions and fragmented artifacts near object boundaries, which cannot be
corrected through standard post-processing because of incorrect local topology. NVF alleviates some
of these issues by reducing missing regions, though it still struggles with complex multi-layered
structures such as bookshelves, curtains, and clusters of pillows. In contrast, our method yields
smooth and contiguous surfaces, reliably separates adjacent objects, and faithfully reconstructs fine
details—including thin structures like curtains and pillowcases, while consistently preserving large
planar surfaces such as beds and desks in densely cluttered environments.

GeoUDF NVF SALS Ours GT

Figure 5: Matterport3D (Chang et al.,2017) Visualization. All methods use a resolution of 128.
Portions of the walls are removed to highlight interior details and more distinguishable structures.
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4.4  ABLATION STUDY
We conducted all ablation experiments on ScanNet, with default meshing resolution 256.

Table 5: Method Ablation. Report C Dy, and C'Dy,,, F-S. with thresholds 0.005, 0.01, and NC.

Methods | CDgr, x107® | CDp, x107° | F-S. (%) | NC (%) | Params. (M)
| Mean| Median| | Mean| Median] | F-S.9%°° ¢+ F-8°% ¢ | ¢ |

B 1.92 1.91 6.33 6.02 95.3 99.5 89.0 11.32

Bs 1.92 1.91 6.30 6.00 95.3 99.5 89.2 11.36

Co 2.10 2.07 8.20 7.73 93.7 99.1 88.6 11.37

Cy 1.90 1.90 6.33 6.06 95.3 99.5 89.8 11.36

C 1.86 1.87 6.03 5.82 95.7 99.6 90.1 11.37

Method Design All variants in Table 5 are controlled experiments sharing the exact same backbone
(PointTransformer V2) and similar network capacity, with the only differences being the small
modules designed to produce query features. We denote POCO-style baselines (represent positional
encoding interpolation) include: (1) Direct UDF regression, which failed to converge after 300
epochs; (2) Incorporating query point locations as skip connections, similar to NDF and our method;
(3) Replacing POCO’s attention module with our AttSet module, based on (2), denoted as By and Bs.
We denote Cj as the interpolation baseline (Eq.[d), C; as the architecture in Eq. [T] (Sec. B-I), and Cs
as the primitive-based architecture (Eqs. 2H3). Notably, without the paradigm of Eq.[I] C5 reduces to
a weighted sum of point-wise features.

Specifically, Cy — (1 isolates the effect of narrow region aggregation versus pure interpolation,
C1 — (5 isolates the contribution of primitive features, and C'; versus B;/B> isolates the impact
of region-aware design versus positional-encoding enhancements. As shown in Table[5] the metrics
for Cy, C1, and C5 exhibit a clear upward trend. Cy serves as a baseline, whereas C significantly
surpasses it, demonstrating the benefit of narrow region features. Cy further improves upon C',
indicating that primitive-based aggregation effectively captures finer details. Comparisons between
B; and B, reveal minimal impact from the AttSet module, while C; outperforms both, highlighting
that narrow region features complement point-wise features to achieve superior representations.

Table 6: Robustness Ablation. Report C' Dy, and C' Dy, F-S. with thresholds 0.005, 0.01, and NC.

Methods | Conditions | CDpr, x107* | CDg, x 107* | F-S. (%) | NC (%)
\ | Mean| Median| | Mean| Median| | F-S.°%% ¢+ F-8°% ¢ | ¢
Clean 2.02 2.02 0.075 0.069 94.7 99.3 87.1
SALS Noise 4.80 474 0.370 0.349 61.4 91.9 84.0
Noiser 8.49 8.43 1.06 1.04 232 62.3 74.4
Sparse 4.98 4.92 0.467 0.426 61.5 88.9 83.2
Clean 2.05 2.04 0.078 0.075 93.8 99.0 89.3
GeoUDE Noise 4.03 4.00 0.240 0.236 69.8 95.7 75.5
Noiser 10.4 10.4 1.84 1.85 24.6 51.6 56.2
Sparse 2.45 242 0.130 0.122 90.2 97.5 87.6
Clean 2.03 1.98 0.117 0.069 94.6 99.3 88.9
NVE Noise 2.88 2.84 0.171 0.142 87.2 97.6 85.6
Noiser 5.20 5.23 0.503 0.469 62.0 86.9 78.6
Sparse 277 273 0.199 0.175 87.2 96.1 85.1
Clean 1.86 1.87 0.060 0.058 95.7 99.6 90.1
Ours Noise 2.51 2.46 0.112 0.104 90.9 98.6 88.4
Noiser 491 4.89 0.418 0.412 64.8 89.0 80.0
Sparse 2.28 2.25 0.125 0.105 91.6 98.1 89.4

Robustness We evaluated robustness on ScanNet under three challenging conditions: (1) Gaussian
noise with o = 0.005 (“Noise”), (2) Gaussian noise with o = 0.025 (“Noiser”), and (3) sparse input
with 3,500 points, i.e., one-third of the original input (“Sparse”).

As shown in Table@ under the Noise setting, NVF exhibits a 41.9% degradation on C'Dy,,, whereas
our method achieves a noticeably smaller decline, outperforming NVF by 7%. Under the Sparse
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setting, NVF’s degradation increases to 36.5%, while our method again demonstrates enhanced
robustness with a 13.9% smaller performance drop. In the Noiser setting, the degradation of our
method becomes comparable to that of NVFE. GeoUDF, however, displays substantial instability in
noisy environments: its performance deteriorates by 96.5% under Noise and 407% under Noiser,
whereas our method reduces these declines by 61.6% and 243 %, respectively. Under sparse sampling,
our degradation remains close to that of GeoUDF.

These results highlight that our formulation effectively exploits independent neighborhood geometric
cues to suppress both noise and sparsity as long as local geometry remains partially preserved.
When the local geometry is heavily destroyed by extreme noise (Noiser), our architecture naturally
transitions to relying more on broader-receptive-field point-wise features via attention, yielding a
controlled and acceptable degradation. Overall, the method demonstrates balanced robustness across
multiple distribution drifts, maintaining strong performance in both noisy and sparse environments.

Table 7: Primitive Construction. Report C Dy, and C' Dy, F-S. with 0.005, 0.01, and NC.

| CDL, x107* | €D, x107° | F-S. (%) | NC (%)

| Mean| Median| | Mean] Median| | F-S.%°® ¢ F-S°% ¢ | ¢
Euclidean Distance-Based 2.11 2.11 8.43 8.21 93.1 99.1 88.6
Spherical Projection 1.86 1.87 6.03 5.82 95.7 99.6 90.1

Primitive Construction To demonstrate the effectiveness of our proposed primitive construction
method, we compare it with a basic Euclidean distance-based partitioning method on the ScanNet.

As shown in the Table[7] Euclidean distance—based partitioning markedly degrades structural fidelity
and thus harms reconstruction quality. Our spherical-projection grouping can produce ambiguity when
query points lie outside a multilayer structure, but this drawback is mitigated because query points
sampled between layers enable unambiguous separation of the two surfaces. During aggregation,
attention further downweights ambiguous primitives and upweights those originating from between-
layer queries, so the net effect of such ambiguity on the final reconstruction is small.

Table 8: Primitive Construction. Report C Dy, and C'Dy,, F-S. with 0.005, 0.01, and NC.

| CDL, x107® | CDp, x107° | F-S. (%) | NC (%)

| Mean| Median| | Mean| Median] | F-S.°%%° ¢ F-8.9%" ¢ | ¢
Segment 1.96 1.95 6.92 6.47 95.2 99.4 89.7
Triplet Plane 1.86 1.87 6.03 5.82 95.7 99.6 90.1
Four-Point Patch | 2.06 2.04 7.54 7.05 94.3 99.3 88.3

Primitive Type To demonstrate the effectiveness of our proposed triplet-plane primitive, we
compare it with segment and 4-point patch on the ScanNet.

The choice of three points is motivated by geometric principles: in 3D space, the simplest non-
degenerate local structure is defined by three non-collinear points, which uniquely determines a
plane. Theoretically, simple 3D primitives provide one additional geometric degree of freedom while
avoiding the excessive expressiveness of large patches. This intermediate complexity allows them
to be learned reliably with low sample complexity and then composed to approximate rich surface
structures. Results shown in Table[8]could support above claims.

5 CONCLUSION

In this paper, we present RegionUDF, a region-aware UDF framework that explicitly incorporates
neighborhood information for each query region. We first design a discriminative region repre-
sentation that fuses broad contextual point-wise features with narrow region features, providing
complementary information. Building on this, we propose a primitive-based region representation
that decomposes neighborhoods into triplet-defined primitives, enabling finer characterization of local
geometry. Extensive experiments on synthetic and real-world benchmarks show that RegionUDF
achieves superior reconstruction accuracy at both object and scene levels, with strong cross-domain
generalization across diverse datasets and scales.

10
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Reproducibility Statement The formulas in the main text Section [3|directly correspond to our
code. In Appendix Section we detail the backbone architecture, MLP configuration, and feature
dimensions. We also provide training parameters and evaluation settings, including the meshing
strategy, all based on official implementations. Furthermore, we describe the official baseline
implementations used and how we retrained them in Appendix Section
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A APPENDIX

A.1 PRELIMINARY

Naturally many works (Ye et al.l [2022; |Chibane et al.,|2020b) follow the ONet (Mescheder et al.,
2019) paradigm and the distance d, between query point ¢ and nearest surface is formulated as:

dq = ( Z Wyq fq), 4)

gEN,

where f, denotes the grid feature of grid g derived from point clouds P through the 3D Conv
backbone, w,, is a scalar obtained from positions of the query point ¢ and the grid g, as trilinear
interpolation, /N, means the neighbors of the query point g, and ¢ means a Regression Network,
e.g. MLPs. It is well recognized that grid division imposes a fixed discretization, which inevitably
introduces quantization errors and leads to the loss of fine-grained geometric details.

Recent point-based POCO (Boulch & Marlet, |2022) introduce attention-based interpolation to
compute weights for feature aggregation:

dq = p(A(S(fplP))), ©)

where p is a neighbor of query ¢, A means attentive pooling, and ¢ is a MLP to transform positions
and point-wise features. However, these approaches largely ignore the inherent structural relation-
ships within query neighborhoods, resulting a limited characterization of local regions. Point-Wise
features capture broad contextual information over large receptive fields but often oversmooth local
neighborhood details. In contrast, narrow region features faithfully describe neighborhood structures
but may be prone to local extremes. These two levels of representation, global and local, are inherently
complementary, and their integration yields a more compact and informative regional descriptor.
Building on this, we propose a framework that explicitly combines point-wise features with narrow
region representations to construct a discriminative representation of the query neighborhood.

A.2 IMPLEMENTATION

We present the implementation of our method. For clarity, the extraction of point-wise features via
PointTransformer V2 is omitted to highlight the core implementation (shown in Fig. [7).

Implementation of Discriminative Region Representation. In practical implementation, we
uniformly sample 8 reference points per query and encode the fused geometric and contextual
features { f,, 7, } through a lightweight two-layer MLP as shown in Eq These per-point feature
pairs are then aggregated using the attention-based AttSet mechanism (Hu et al., 2020) to form
the final query feature f;, which serves as input to the unsigned distance regressor. Since 7, is
computed from relative positions and f,, is extracted by a translation-invariant backbone, the resulting
fq inherits translation invariance, thereby ensuring robustness and stability in region representation.
Additionally, the query point ¢ is incorporated via a skip connection to retain explicit positional
information throughout the unsigned distance regression process.

Implementation of Primitive-Based Region Representation. We first reinforce the intuition
behind primitive-based region description. As discussed in Section 3.1} narrow region features con-
fined to the query region complement point-wise features, yielding more faithful and discriminative
representations. A natural solution is to adopt finer-grained partitioning and feature learning, where
the key challenge lies in constructing these fine-grained regions, termed primitives. While Euclidean
distance-based neighbor selection is the simplest strategy, Fig. [6]illustrates that spherical projection
more effectively aggregates patches on the same surface. The key lies in forming triplet primitives by
angle-sorted adjacent points. While it introduces ambiguity in multi-layer structures, where patches
may span different surfaces, such limitations are inherent to Euclidean distance—based method:

* When the query point is outside two layers, the primitives may treat them as a single surface,
yet this limitation is not unique to our method and also appears in Euclidean distance—based
partitioning.

* When the query point lies between layers, our formulation can effectively separate them,
which Euclidean distance—based method cannot achieve.
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* Moreover, during primitive aggregation, the attention mechanism operates over primitive
centers, enabling the model to reinterpret ambiguous primitives as representing the “in-
between” region of two layers. These primitives are then compensated by those constructed
from query points located between the layers, which provide clear and consistent cues.

Thus, ambiguity may introduce minor artifacts, such as closer surfaces or a few unintended connec-
tions, but overall the method retains clear advantages over Euclidean distance—based partitioning.

® Query Point Neighbor Point = GT Curve Projection Circle == Projection Ray O Projected Point e Regions
4 Projection
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A) Intuition of Primitive Decomposition B) Workflow of Primitive Decomposition

Figure 6: Primitive Decomposition. Subfigure A illustrates primitive decomposition in 2D. The
projection method preserves sharp details and discrete patches by prioritizing surface proximity over
Euclidean distance. Subfigure B shows that points are angle-sorted for primitive construction, while
projection serves only for partitioning—the final regions remain defined in Euclidean space.

Next, we describe the network framework for primitive-based region representation. As illustrated
in Fig. [/| the query region is first decomposed into individual primitives, each corresponding to
a distinct subregion. These primitives, together with point-wise features, are input into the region
feature constructor to learn primitive features. The primitives are then treated as points within the
query region, with their features corresponding to the associated point-wise features, and re-input
into the region feature constructor to produce the final query region feature. Note that, given the
simplicity of triplet primitives, mean pooling is sufficient in the region feature constructor, whereas
learning the final query region features requires attentive pooling.

@ Mean Pooli (k,©) Discriminative
L (k,c/2) (1,¢/2) Region Feature
Point-Wise MLP @ @ @/@
(_B G . Features 1,0
oncatenation
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Region Region Feature Constructor

Primitive Regions L
Primitive Features Query Region

Feature
Primitive . Region Feature o Region Feature
Decomposition ° Constructor . Constructor

Query Region

Figure 7: Primitive-Based Region Description. A query region is decomposed into primitives, each
defined by its points and associated point-wise features. Primitive features are built via mean pooling
in Region Feature Constructor, while final query region features need attention pooling. Primitive
features serve as point-wise features, while primitives serve as points within the region.

Loss Function Both the UDF value and UDF gradient are essential for optimization. The distances
are optimized using ¢; loss, while the gradient of the field is used to compute the cosine similarity:

la = [|dpa = dgtl1,
ly=1—|<gpiGot > |,

(6)

where [; denotes the loss of query distances, [, means the similarity loss of gradient. Since the UDF
is not differential at the iso-surface, the normal vector constraint on the surface is omitted. The loss
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function is the combination of the two, as [ = Allflf Fy ’1\—(1)13” + Ao197f . In our experiments, A, Ao
are hyper-parameters for weighting, on means on-surface queries, o ﬁ f means off-surface queries.

Evaluation Setting During testing, we input sparse point clouds and adopt the meshing strategy
introduced in MeshUDF (Guillard et al.| [2022)). During evaluation, we follow the protocol established
in GIFS (Ye et al.l 2022)), because the MeshUDF meshing strategy can produce artifacts at low
resolutions, especially when query points lie between multiple layers, we adopt the more robust,
though less efficient, GeoUDF (Ren et al.,|2023)) meshing strategy at a resolution of 128. As evaluation
metrics, including Chamfer Distance, F-Score, and Normal Consistency, are computed by uniformly
sampling points from both the predicted meshes (or dense point clouds) and the ground truth meshes.

Params. Setting Our framework employs PointTransformer V2 (Wu et al., 2022) as the backbone
with default settings except initial grid size and downsample ratio. Two configurations are used: for
simple watertight shapes with 3k points, the initial grid size is 0.015 with a downsample ratio of 2
per layer; for complex open-surface reconstruction, the initial grid size is 0.01 with a downsample
ratio of 2.5. Each layer uses 16 neighbors to ensure a large receptive field, and the number of nearest
neighbors K per query point is fixed at 8 across all experiments.

The point-wise features are 48-dimensional vectors derived from the input point cloud through
backbone. As MLP in Region Feature Constructor, we set it with one linear layer and one ReLU layer,
transforming a 4-dimensional position vector (with the length of the vector) to a 24-dimensional
feature vector. Note that the second optional mean pooling in the region feature constructor comprises
two Linear layers, two ReLU layers, followed by a mean pooling layer. The attentive pooling module
is formulated as: f = softmaz(linear(f)) = f. The final regression network is 4-layers MLP
with channels [51,256,32,32,1]. Note that, aside from the point-based backbone which uses batch
normalization for feature extraction, our core implementation does not rely on BN.

A.2.1 TRAINING SETTING

We adopt the ADAMW optimizer with default parameters, initializing the learning rate at 1073, A
warm-up phase of 2000 steps is applied at the beginning of training. Furthermore, the learning rate is
decayed to 30% of its current value at epochs 30, 70, 110, and 200 for all datasets. For dataset-related
settings refer to the Experiment section[d} For loss, A\; = 1, A2 = le~3. For Result[2] we trained on
2 RTX3090 GPUs with batch 4 for 56 hours, with other two datatsets results @] trained on 2 RTX3090
GPUs with batch 4 for 24 hours. The CPU core is Intel Xeon Platinum 8383C CPU @ 2.70 GHz.

A.2.2 MESHING STRATEGY

At the zero level set of an unsigned distance field (UDF), the derivative is undefined, leading to
unstable gradients as the predicted values approach this boundary. This instability complicates
the simultaneous optimization of distance and gradient losses (Eq. [6) in the vicinity of the zero
level set. Mesh extraction methods for UDFs, such as the Marching Cubes adaptation used in
MeshUDF (Guillard et al.} 2022), depend on reliable gradient computations to assign relative signs
via gradient dot products. When gradients fluctuate excessively near surface, mesh extraction suffers
from missing or erroneous edge intersections, producing holes and spurious artifacts. As a result, the
meshing strategies can amplify gradient extremes, yielding visible gaps or distorted geometry.

In our implementation, we adopt the MeshUDF pipeline to extract iso-surfaces from the predicted
UDF. For object-level reconstruction, we use a voxel grid of resolution 128 and discard vertices
whose distance estimates exceed % or % of the voxel size from the zero level set. For room-level
reconstruction, we employ resolutions of 128 and 256. Since MeshUDF often introduces artifacts at
low resolutions—particularly when query segments are inclined to the plane without intersection—we

instead use GeoUDF at resolution 128 despite its higher cost.

A.2.3 EVALUATION METRICS

Evaluation metrics included Chamfer Distance (CD) and F-Score (F-S.) and Normal Consistency (NC).
For object-level evaluation, they are computed by sampling 100k points from both the reconstructed
surfaces and the ground truth. For room-level evaluation, they are computed by sampling 500k
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points from both the reconstructed surfaces and 100k points from the ground truth. All objects are
normalized to the unit cube for comparison.

A.3 EXPERIMENT SETTINGS

A.3.1 DATASET INTRODUCTION

We include 1 watertight and 4 open-surface reconstruction benchmarks as follows:

ShapeNet (Chang et al.,|2015)) is an object-level 13 classes watertight dataset processed by the DISN
(Xu et al.l 2019)), with train/val/test split according to 3D-R2N2 (Choy et al.,[2016).

ShapeNet Cars (Chang et al.,[2015) is an object-level dataset of non-watertight car models featuring
complex internal architectures of ShapeNet core dataset. Following the original NDF split (Chibane
et al., [2020b), we use 5,249 scans for training, 749 for validation, and 1,499 for testing, while
employing 10k points as input rather than occupancy data.

ABC & Non-Manifold ABC (Ren & Houl [2025) is an object-level open-surface reconstruction
benchmark introduced by SALS (Ren & Houl 2025). Following its protocol, the model is trained on
100 shapes from ThingilOK (Zhou & Jacobson, [2016)) and evaluated on 50 shapes from ABC (Koch
et al.,|2019)), referred to as manifold ABC, as well as on 50 randomly selected shape pairs from ABC
that are intersected to construct non-manifold ABC.

ScanNet (Dai et al.|[2017) comprises 1,513 RGB-D scans of indoor scenes with complex topology
and noisy, open surfaces. We adopt the standard split of 1,201 training and 312 validation scans;
since test-set GT meshes are unavailable, all quantitative results are performed on the validation set.

Matterport3D (Chang et al.,2017) contains 10,800 panoramic RGB-D views derived from 194,400
images across 90 building-scale scenes. We follow the published partitioning of 61 scenes for training,
11 for validation, and 18 for testing. Each building-scale scene is further divided into room-level
segments by Officials, and our experiments are conducted on the segmented dataset.

A.3.2 TRAINING DATA GENERATION

For both object-level and indoor datasets, we adopt the preprocessing pipeline like NDF (Chibane
et al., 2020b), normalizing each ground-truth mesh to fit within the unit cube. During training, we
sample query points both on and off the surface: specifically, we generate 10K on-surface points
and 100K off-surface points per scene following the NDF sampling strategy. For each query point,
we compute the nearest surface point to derive the corresponding distance and directional vector.
Notably, for watertight shapes, we follow the convention of using 3k input points. For the ABC
benchmark introduced by SALS, 40k points are sampled to maintain consistency.

A.3.3 REPRODUCE BASELINES

Since many learning-based UDF approaches do not provide published results on room-scale scans,
we reproduce their scene-level performance by retraining each method using the default settings
reported in their papers and evaluating under a consistent protocol. All methods are compared using
the same evaluation pipeline; specific implementation details are provided below.

NDF (Chibane et al.,[2020b): Official implementation. We retrain NDF using its default settings and
employ MeshUDF (Guillard et al., 2022) as the meshing strategy to extract meshes.

GIFS (Ye et al., [2022)): Official implementation. We retrain GIFS with default settings. For mesh
extraction, we set the resolution to 128 and 256 instead of the original 160.

NVF (Yang et al.| [2023): Official implementation. We retrain NVF using its default settings. As the
journal version code is not yet available, we evaluate only the conference version.

GeoUDF (Ren et al.,[2023): |Official implementation. We retrain GeoUDF with default settings and
align the number of input points in its upsampling module to match our experiments.

SALS (Ren & Hou, [2025)): |Official implementation. We retrain SALS under default settings. This
method introduces the ABC and non-manifold ABC benchmarks. Since the authors did not release
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their pretrained model or detailed dataset, we reproduce the experiments with their offical codes
under a consistent setting and report our reproduced results.

POCO (Boulch & Marlet, 2022): Official implementation. We directly adopt the query feature
construction code to implement B; and B in Section 4.4]

A.3.4 VISUALIZATION ANALYSIS

For all figures, we use Blender 4.5.3 for rendering. Meshes are post-processed in MeshLab with three
steps: Remove Non-Manifold Edges, Fill Holes, and HC Laplacian Smooth. For GeoUDF and SALS,
which produce many non-manifold structures, these steps have limited effect, so we additionally
apply the Smooth with Angle filter (30° threshold). Overlapping and non-manifold structures can
vield erroneous normals in Blender, producing black shadows that are artifacts rather than missing
geometry, with negligible impact on distance-based metrics such as CD and F-Score. The scaly
texture observed in GIFS is further accentuated by the rendering method.

A.4 MORE RESULTS
A.4.1 CROSS-DOMAIN RECONSTRUCTION

Beyond intra-domain reconstruction, we evaluate cross-domain generalization by training on one
dataset and testing on two others. We consider shape-to-scene, scene-to-scene, and scene-to-shape
transfers to quantify performance. These experiments demonstrate the robustness and adaptability of
our method across diverse datasets and varying scales of reconstruction scenarios.

Table 9: Cross-Domain Evaluation Results. C Dy, X 1073, CDp, % 1076, F-S. (%) with a
threshold of 0.01, and NC (%). Best results are in bold, and second-best results are underlined.

Trained on | CDy,l CDg,l F-S.4 NCt|CDp |l CDg,l FSt NCtT
ShapeNet Cars | Tested on ScanNet | Tested on Matterport3D
NDF (Chibane et al.| 2020b) 2.64 12.6 98.0 - 2.80 11.8 98.9 -
NDF (Mesh) (Chibane et al.|[2020b) 2.76 15.0 983  78.0 3.32 26.2 977 81.6
GIFS (Ye et al.[[2022) 2.50 11.7 982 873 2.79 12.6 98.7 924
NVF (Yang et al.[|[2023) 2.11 9.19 988 87.6 2.33 10.0 98.8 919
GeoUDF (Ren et al.|[2023) 2.44 13.0 973  86.0 2.48 11.6 983 915
Ours | 211 8.92 98.8 88.0 | 223 8.59 99.2 933
Matterport3D | Tested on ScanNet | Tested on ShapeNet Cars
NDF (Chibane et al.|[2020b) 2.40 9.60 98.9 - 3.20 13.4 99.4 -
NDF (Mesh) (Chibane et al.||2020b) 2.80 15.6 97.1 88.2 - - - -
GIFS (Ye et al.[[2022) 231 9.09 989 878 3.44 16.4 982 83.0
NVF (Yang et al.||[2023) 1.98 7.90 99.2  89.0 3.31 16.2 98.0 813
GeoUDF (Ren et al.|[2023) 2.06 791 99.0  89.0 2.99 12.4 99.2 852
Ours | 188 6.65 994 911 | 2.89 11.4 99.5 85.1
ScanNet Tested on ShapeNet Cars Tested on Matterport3D
NDF (Chibane et al.|[2020b) 3.25 13.9 99.2 - 2.61 10.2 99.2 -
NDF (Mesh) (Chibane et al.|[2020b) 3.76 130 98.4 744 - - - -
GIFS (Ye et al.[[2022) 3.49 17.4 977  81.6 2.68 11.5 98.7 91.1
NVF (Yang et al.[|[2023) 3.45 17.9 97.5 792 3.17 38.5 98.1  92.0
GeoUDF (Ren et al.[[2023) 3.03 12.7 99.2  84.6 2.26 8.69 99.2 937
Ours | 2.90 11.5 994 852 | 214 7.61 99.5 946

As shown in Table[0] NDF (Mesh) exhibits almost complete failure when generalizing from scene-
level to shape-level reconstruction on Matterport3D, due to large errors in NDF predicted UDF
gradients. By contrast, our method consistently outperforms existing approaches across almost all
cross-domain scenarios, and matches their Normal Consistency when transferring from scene-level
to shape-level. In the shape-to-scene setting, our model achieves performance comparable to NVF,
while lower C'Dy,, and higher NC. Notably, our model outperforms all baselines across all metrics in
the scene-to-scene transfer setting. They demonstrate that our reconstruction results more closely
align with GT surfaces, and the larger C'Dy,, improvement indicates a reduction in outlier artifacts.
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The visual results Fig. [§] further demonstrate that our method excels at recovering sharp and fine-
grained details. At the scene-to-object level, it accurately reconstructs two closely positioned seats
within a vehicle. At the object-to-scene level, it yields noticeably sharper and more coherent object
boundaries. At the scene-to-scene level, it recovers challenging structures such as wall-mounted bed
curtains and crisp window-sill edges—features that competing methods fail to preserve.

GIFS GeoUDF NVF Ours GT

Figure 8: Cross-domain evaluation results. The first row shows scene-to-object transfer from
Matterport3D to ShapeNet-Cars. The second and third rows illustrate object-to-scene transfer from
ShapeNet-Cars to Matterport3D and ScanNet, respectively. The fourth row presents scene-to-scene
transfer from ScanNet to Matterport3D. All views highlight the most distinctive regions.

A.4.2 ABLATION STUDY

Gradient Loss To further illustrate the sensitivity of our method to gradient supervision, we
conducted experiments on ScanNet, adjusting the coefficients A\o. We observe that our method
performs best with a gradient weight of 1e~3; however, further reduction or even the absence of
gradient supervision results in only minor performance degradation. This indicates that incorporating
region-aware features improves robustness to the gradient supervision term.

Table 10: Gradient Weight Ablation. dc = C' Dy, x 10°, F-S. (%) with threshold 0.005, NC (%).

| A2 =0 | Az =1le”? | g =1e”? | g =1le™?
Methods | dc | F-S4+ NCt | dcl F-S+ NCt|decl FSt NCt|dol FSt NCt
Ch 756 949 894 | 952 927 880 | 633 953 898 | 771 940 887
Cs 6.16 955 89.7 | 687 949 893 | 603 957 90. | 624 954 898

Our region-aware features offer stronger representational capacity than alternative designs, enabling
the model to learn a more accurate distance field and thereby reducing reliance on gradient supervision.
Since the gradient field is directly derived from the distance field, once the latter is well captured,
gradients can be reliably obtained without heavy explicit supervision. In this way, a more accurate
distance field naturally reduces the marginal utility of the gradient loss as shown in Table[T0} C4
exhibits relatively weaker feature representation capabilities, so it relies more heavily on gradient
supervision to converge to a better distance field.

KNN Ablation Since we emphasize the complementarity of narrow region features with point-wise
features that provide larger receptive fields, the effect of KNN size—which directly determines the
query region—on narrow region features warrants ablation.
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Table 11: KNN Size. Report C'Dy,, and C'Dy,,, F-S. with thresholds 0.005, 0.01, and NC.

K | CDp,x107® | CDp,x107% | F-S. (%) | NC (%)
| Mean| Median| | Mean] Median| | F-S.0°° ¢ F-8.°01 4 | 4

4 | 2.00 2.00 7.40 7.06 94.2 99.4 88.6

8 | 186 1.87 6.03 5.82 95.7 99.6 90.1

16 | 250 2.50 11.3 111 88.0 98.3 82.4

As shown in Table|[I]] setting K = 4 results in significantly worse performance across all metrics,
indicating that a narrow region with too few points cannot effectively enhance query region feature
representation. Conversely, K = 16 causes the query region to cover a broader area, reducing its
ability to capture fine-grained details and produce more misleading guidance. Setting /' = 8§ strikes
a balance between expressiveness and scope, achieving the best performance.

K=4 K=8

Figure 9: KNN Size Ablation. We selected scenes containing both simple structures, such as planes,
and complex, varied geometries, highlighting the complex regions for more meaningful comparisons.

Fig. Billustrates the effect of K on reconstruction quality. With K = 4, performance is adequate in
planar regions but fails in complex areas (e.g., curtain undulations), causing abnormal protrusions
or loss of detail. In contrast, K = 16 captures overly broad neighborhoods, introducing redundant
information and misleading feature guidance. Instead of complementing point-wise features, it
becomes detrimental. K = 8 provides sufficient context to capture moderately complex structures
without excessively enlarging the query scope or introducing redundant information.

Meshing Strategy The relative advantage of our method remains stable across both extractors.
GIFS and SALS are not UDF-based and cannot be meaningfully re-meshed with UDF-specific
pipelines. For UDF work ( NVF, GeoUDF, and ours) we ran controlled comparisons on ScanNet
using both MeshUDF and GeoUDF (E-MC).
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Table 12: Meshing Strategy. Report C Dy, and C' Dy, F-S. with thresholds 0.005, and NC.

Methods CDy, x 1073 CDp, x 10 F-S.(%) NC (%)
GeoUDF (MeshUDF) 8.96 89.0 9.6 79.4
GeoUDF (E-MC) 2.05 7.84 93.8 89.3
NVF (MeshUDF) 2.03 11.7 94.6 88.9
NVF (E-MC) 2.05 12.0 94.4 86.8
Ours (MeshUDF) 1.86 6.03 95.7 90.1
Ours (E-MC) 1.81 5.54 96.5 91.2

The GeoUDF paper indicates that its E-MC method is more accurate than MeshUDF, and our
practical experience confirms this holds true in most cases. The remaining differences arise from
field definitions: NVF’s directions are not strictly equivalent to the UDF gradient and can exhibit
directional noise near surfaces; MeshUDF’s voting step partially suppresses that noise while E-MC is
more sensitive to it, producing different modes. Additionally, MeshUDF is completely unsuitable
for GeoUDF and will generate a double layer near the surface. We omitted E-MC for other UDF
methods at 256 resolution due to its high computational cost and instead used each method’s default
reconstruction procedure from the original papers.

Efficiency and Effectiveness We report performance comparisons on ScanNet clean and noiser
(added Gaussian noise with 0=0.025). Performance metrics are based on results at 256 resolution.
Here we summarize the effciency metrics and measurement protocol concisely: inference time=
wall-clock for the meshing pipeline (including distance inference + surface extraction); memory =
peak GPU memory during inference with 100k query points.

Table 13: Comparison of methods under clean/noiser settings and efficiency metrics.
Methods | CDy, x 1073 (clean) CDp, x 10~ (noiser) | Inference time (128) Inference time (256) ~Params. (M) ~Memory (G/100k pts)

GeoUDF 2.05 10.4 153 86.6 0.775 74
NVF 2.03 5.20 2.9 17.0 10.30 8.9
Ours 1.86 491 3.1 18.6 11.37 20.9

It can be observed that although GeoUDF has the smallest number of parameters and memory
footprint, it takes too long to reconstruct a room and completely fails in high-noise environments.
Our approach achieves a balance between efficiency and effectiveness.

A.4.3 FAILURE CASE ANALYSIS

We consider a challenging, real-world scenario: multi-tier cabinets commonly found in indoor scenes.
Sparse point sampling often causes closely stacked layers to be perceived as a single surface, which
blurs inter-tier boundaries and degrades reconstruction quality. In the example shown in Fig[I0] all
methods struggle to recover a complete, clean cabinet geometry; reconstructions exhibit substantial
noise and structural collapse in the inter-tier regions.

Despite producing some local artifacts and irregular layer geometry, our method preserves clear
separations between tiers: reconstructed layers show distinct gaps where the point evidence indicates
separation, rather than collapsing into a single thick shell. This contrast highlights the role of
our primitive construction, by encoding local structure and aggregating query-centric primitives,
the method is better able to maintain layer distinctions when query points fall between surfaces.
By comparison, competing methods produce largely undifferentiated or chaotic interior geometry
(GIFS in this case even yields a fully enclosed volume), which demonstrates that differences in
primitive/patch construction materially affect the ability to resolve multi-layer structure.
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Figure 10: Failure Case. A typical failure case: the multi-layer cabinet. Our method preserves clear
inter-layer gaps, while other approaches collapse multi-layer structures into one volume.

A.5 OTHERS
A.5.1 LIMITATION AND FUTURE WORK

Our RegionUDF demonstrates robust performance in reconstructing 3D scene surfaces from sparse
point clouds, however, its current mesh extraction relies on adapting the MeshUDF Marching
Cubes pipeline applied to a pseudo—signed distance field. A more promising approach would involve
developing a dedicated algorithm for directly extracting manifolds from unsigned distance predictions,
thereby avoiding the limitations of pseudo—SDF conversion. Furthermore, given that semantic
labels naturally extend over continuous surfaces, integrating our implicit surface reconstruction with
concomitant semantic segmentation via a unified network that predicts both geometry and semantics
constitutes a compelling avenue for future research.
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