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ABSTRACT

Digital agents for automating tasks across different platforms by directly manip-
ulating the GUIs are increasingly important. For these agents, grounding from
language instructions to target elements remains a significant challenge due to
reliance on HTML or AXTree inputs. In this paper, we introduce Aria-UI, a large
multimodal model specifically designed for GUI grounding. Aria-UI adopts a pure-
vision approach, eschewing reliance on auxiliary inputs. To adapt to heterogeneous
planning instructions, we propose a scalable data pipeline that synthesizes diverse
and high-quality instruction samples for grounding. To handle dynamic contexts
in task performing, Aria-UI incorporates textual and text-image interleaved action
histories, enabling robust context-aware reasoning for grounding. Aria-UI sets new
state-of-the-art results across offline and online agent benchmarks, outperforming
both vision-only and AXTree-reliant baselines. We release all training data and
model checkpoints to foster further research.

1 INTRODUCTION

Current Trajectory:
The agent is performing the ultimate task:
Look for the locks on the Etsy app so I
can utilize them at home.

History of the agent's steps:
1. Open Etsy app.
The recent steps with the GUI images
are:
2. Click on the search bar on the top of
the screen.

Input: [User Task] Look for the locks on
the Etsy app. [Observation]: GUI
Screenshots + Action History
Output: Click on the lock displayed on
the screen.

Input: [Instr.] Click on the lock displayed on
the screen. [Observation]: GUI Screenshot
 [Optional] User Task + Textual Action
History/Text-Image Interleaved History
Output: (12, 46)Aria-UI

Grounding

PlanningMultimodal Observation

? Coordinates:
(12, 46)

Action:
Click on the lock
displayed on the
screen.

Grounded GUI Action

Figure 1: The two-stage task performing process for general GUI agents. Aria-UI serves as a robust
grounding model to make the planned actions truly happen.

Collection #Web Img. #Mobile Img. #Desktop Img. Input Text Supervision Open Source Action History #Elements #Samples

Ferret-UI-AMP / 84K / Human Ann. Point Coordinates % % - 160K
CogAgent-CCS400K 400K / / HTML Text Point Coordinates % % 70M -
UGround-Web-Hybrid 773K / / HTML Attr. + Refer. Caption Point Coordinates % % 18.1M 9M
UGround-Web-Direct 408K / / Refer. Caption Point Coordinates % % 408K 408K
SeeClick 270K / / HTML Text Point Coordinates ! % 3.3M 3.3M
GUIEnv-local 73K 9K / HTML Text Point Coordinates ! % 700K 700K

Aria-UI Collection 173K 104K 1.3K Diversified Instr. Refer. Caption + Point Coordinates ! ! 3.9M 11.5M

Table 1: Grounding data of Aria-UI compared to existing collections.
The rapid expansion of graphical user interfaces (GUIs) across web, desktop and mobile platforms
has made them indispensable for digital interactions. From completing daily tasks like shopping or
booking tickets to complex professional workflows, GUI agents play a critical role in automating
these processes. As illustrated in Figure 1, a typical GUI agent operates in two stages: planning and
grounding. In the planning stage, the agent generates action decisions to accomplish the user’s task
based on the current screen state as its observation. In the grounding stage, the agent is tasked with
locating and interacting with the target element as referred in the instructions provided by planning,
thus make actions truly happen in the environment.

While efforts have been put to improve the planning of large multimodal models (LMMs) with
CoT Yao et al. (2022b); Wei et al. (2022), and inference-time scaling Saha et al. (2024), effectively
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grounding GUI elements from language remains a significant challenge. The problem is compounded
by the diverse visual layouts across diverse devices, wide variability in planned instructions, and the
dynamic nature of task execution in real-world environments, all of which demand robust, adaptable,
and efficient solutions.

The basic grounding method involves leveraging HTML or accessibility trees (AXTress, or A11y)
to identify the target element. However, feeding long textual contexts of the tree often leads to
inefficiencies, hallucination, and biases due to missing information in the tree. The absence of visual
input further limits the method’s ability to address instructions requiring visual or positional cues.
Set-of-Mark Yang et al. (2023) combines visual and tree tag information. However, its reliance on
HTML or AXTrees limits flexibility in diverse environments, as platform standards are inconsistent
and, particularly on mobile and desktop, the quality of AXTrees depend largely on app developers’
implementation. Additionally, LMMs struggle to accurately select from numerous tags in images,
constraining grounding performance Xie et al. (2024). To this end, building a pure-vision solution for
GUI agent grounding is crucial.

Training an LMM for GUI instruction grounding is non-trivial. Existing LMMs are: 1) heavily
skewed towards natural images due to data biases. 2) rarely trained for grounding. While some models
are trained with datasets like RefCOCO Kazemzadeh et al. (2014), these datasets are not aligned
with GUI scenarios and are sparsely populated. Recently, some studies Cheng et al. (2024); Gou
et al. (2024) have leveraged LMMs’ powerful vision and language capabilities, using public mobile-
or web-sourced data as (GUI image, instruction, coordinates) tuples to train LMMs as grounding
models. Despite their effectiveness, we identify two key limitations in these approaches: (1) They
overly depend on rigid instruction sources and formats, mainly HTML or AXTree-based textual
elements. This lack of diversity hinders their robustness in adapting to the flexible and heterogeneous
instructions generated by task planners. (2) They overlook the dynamic contextual information
during task performing, such as the action history, which can provide valuable references for more
accurate element grounding.

In this paper, we introduce Aria-UI, a robust LMM designed specifically for GUI grounding. Aria-UI
is built upon Aria Li et al. (2024a), the state-of-the-art multimodal MoE model with 3.9B activated
parameters. Aria-UI adopts a pure-vision approach, avoiding reliance on AXTree-like inputs while
achieving superior grounding accuracy across diverse tasks and platforms.

By addressing the core limitations of existing methods, we propose two key contributions in Aria-
UI. For the challenge of rigid instructions, we design a large-scale, diverse data synthesis pipeline
from our Common Crawl collection and public available data. This pipeline first leverages strong
LMMs to generate detailed and accurate element captions and then utilizes an LLM to create diverse,
human-like instructions that align with potential interactions based on these captions. We further
incorporate the high-quality captions as additional supervision during training, enabling the model to
better associate diverse instructions with their corresponding elements. For the challenge of ignoring
dynamic contexts, we further leverage textual or text-image interleaved action history from trajectory
data for training. This equips Aria-UI with robust grounding capabilities, enabling it to perform
effectively in dynamic, multi-step real-world task scenarios.

To summarize, our contributions are:

• We propose a novel approach to address the challenge of rigid instructions with a scalable, data-
centric pipeline. It generates high-quality and diverse (element caption, instruction) samples from
Common Crawl and publicly available data, enabling Aria-UI to generalize effectively across
diverse instructions in different environments.

• Aria-UI introduces innovative designs for incorporating dynamic action history in textual or inter-
leaved text-image formats. The improvements allow Aria-UI to ground elements more effectively
in dynamic, multi-step task scenarios, especially under zero-shot settings.

• We conduct comprehensive evaluations on extensive benchmarks including both offline and online
agent tasks, showcasing Aria-UI’s state-of-the-art performance. Notably, Aria-UI achieves higher
grounding accuracy and task success rates compared to both vision-only and AXTree-reliant
baselines.
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Aria-UI

Mobile Desktop Web

Coordinates 
(X, Y)

Referring Caption 
The Amazon Books
icon, located at the..

Coordinates 
(X, Y)

 Additional Supervision

 Instruction Diversification 

check more options
for the first vid

click the three-dot
menu for the first video

access more options for "28
YEARS LATER Trailer"

Diverse Instructions

"The veritical three dot, next to
the video... for accessing more

options such as share"

Task and Action History
 Multi-step Trajectories 

Single-stepDetailed Element
Caption

With Action History Single Step

Textual Text-Image
Interleaved

click to save
the second
entry to
favorite list

The agent is
performing: ...
Step 1.
Step 2.

Instruction: ...

Step 1.

Step 2.

GUI Screenshots
Element Captioning

Visual 
The vertical three-dot button
Postitional 
Next to the entry "28 YEARS
LATER - Official Trailer"
Functional 
Access more options for the
video entry

LMMs

Existing Data

Human
Annotation 
Expensive and
Difficult to Scale

HTML
Extraction 
Lack of accuracy,
diversity, and
clarity

"Action
Button"

Figure 2: The overall data and training pipeline for Aria-UI.

2 METHOD

Aria-UI is designed to seamlessly integrate into the latest general-purpose multimodal GUI agent
framework Zheng et al. (2024); Xie et al. (2024); Koh et al. (2024); Rawles et al. (2024a), serving
as a robust grounding model. We outline a solution to the challenges from a scalable, data-centric
approach, as shown in Figure 2. In Section 2.1.1, we detail the synthesizing of diverse grounding
data. Section 2.1.2 discusses building grounding samples with task context for dynamic scenarios,
and Section 2.2 explains Aria-UI ’s training details.

2.1 LARGE-SCALE DIVERSE GUI DATA SYNTHESIZING

As summarized in Table 1, several existing methods have collected diverse corpus for GUI grounding.
However, these corpora fail to effectively address GUI grounding for LMMs. They are either not
open-source, too small, or lack coverage of all the major platforms. Moreover, they rely on rigid
instruction sources and formats, from HTML extraction or specifically formatted referring caption.
Additionally, they overlook the importance of the contextual information for grounding during
dynamic task performing. We present how to solve these challenges by a data-centric approach with
diverse data scaling from multiple platforms and context-aware data extension with trajectories.

2.1.1 DIVERSE DATA SCALING FROM MULTIPLE PLATFORMS

We propose a two-stage pipeline to transform raw samples into high-quality and diverse element
instructions for grounding training. At the first stage, we utilize a strong LMM (GPT-4o or Qwen2-
VL-72B Wang et al. (2024a)) that takes element screenshots and text extracted from HTML as input
for accurate and detailed element descriptions. To enhance accuracy and reduce hallucination, the
model perceives two screenshots: (1) an isolated image of the element and (2) a zoomed-in view,
where the element is highlighted with a red bounding box. Additionally, the HTML text and the
screen position of the element are provided for reference. The model is then prompted to generate a
detailed caption of the element, including its visual properties, functionality, positional relationships,
and any other distinctive attributes. In the second stage, we utilize an LLM to generate natural
language instructions that correspond to potential interactions with the elements, based on their
detailed captions. For instance, for the caption "The "subscribe" button, colored in bright red with
white text and a bell icon, is positioned in the upper-right section of ChefMaria’s cooking channel
header, showing "2.3M" subscribers” underneath," the synthesized instruction could be "subscribe to
ChefMaria’s channel." To ensure diversity and expand the data volume, we produce three instructions
for each element.

We apply our pipeline to three key GUI environments: web, desktop, and mobile, each with distinct
challenges and characteristics.

Web. Web data, with its diversity and dynamic rendering, is ideal for expanding GUI grounding
datasets with varied element samples in size, type, and resolution. We leverage the latest collection
of Common Crawl for data collection. We build a rigorous data curation and filtering pipeline
to produce high-quality samples. We first filter out harmful webpages using fastText Bojanowski
et al. (2017). Subsequently, we identify and select interactive elements by checking the HTML
attributes. Considering that LMMs have acquired fundamental OCR skills during pretraining, we
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prioritize graphical elements over text-based elements. To reflect real-world grounding tasks in
complex, element-rich environments, we heuristically retain webpages containing more than 20 valid
elements. We use Playwright to render these webpages at 1920×1080 and 2440×1600 resolutions
to accommodate common resolution requirements. We gather a diverse set of 173K webpages
containing 2M elements through the procedure. With the data pipeline, we build detailed caption and
instructions for each element, and result in 6M high-quality and diverse instruction samples in total.

Desktop. Since desktop environment is less scalable and human annotation costs high, desktop data
has remained scarce. OmniACT Kapoor et al. (2024) manually annotated 7.3K instruction-grounding
pairs. However, creating an automated data scaling pipeline for desktop remains a challenge. To
mitigate the research gap, we develop a traverse agent powered by an LMM to explore the OS
environment for data collecting. We build the traverse agent on OSWorld Xie et al. (2024) with
Gemini 1.5 Flash. Leveraging the accessibility tree, the agent selects the next element to click in
each screen state, aiming to reach previously unexplored screens. We equip the agent with a simple
memory mechanism and guide its exploration through a heuristic depth-first search. We collect all
screenshots and the corresponding A11y to parse all elements. Using this automated pipeline, we
collected 15K elements tailored for desktop environment. We then utilize the data pipeline to extend
the samples to 45K by generating diverse instructions.

Mobile. Since automated GUI agents for mobile environments were explored earlier, a substantial
amount of open-source data has been accumulated for mobile environment. Currently, the largest-
scale grounding dataset for mobile is AMEX Chai et al. (2024), which provides 104K screenshots
and 1.6M elements. While AMEX provides a large-scale dataset, it has only 712K elements with
basic textual descriptions extracted from accessibility tags, and merely 3K elements are paired with
human-like instructions. To address this gap, we regenerate high-quality caption and instruction
samples with the data pipeline for AMEX, improving the training effectiveness while maintaining the
same data volume.

Public Data. To further expand our grounding corpus and introduce more diverse sources for GUI
images and instructions, we incorporate the following public datasets: 3M Web and 273K mobile
elements from SeeClick training data Cheng et al. (2024); Li et al. (2020b;a), 15K mobile elements
from Bai et al. (2021), 748k Web elements from GUICourse Chen et al. (2024), 131K desktop
elements from OmniAct Kapoor et al. (2024), and 693K Web and mobile elements from AutoGUI 1.

2.1.2 CONTEXT-AWARE DATA EXTENSION FROM TRAJECTORIES

Accurately and efficiently performing grounding tasks within the dynamic context of real-world
environments is a crucial capability for GUI agents. Despite its importance, existing approaches
largely focus on grounding tasks under a single-step setting, where LMMs are trained to infer
grounding results based only on the current state and instruction. Such approaches overlook the
dynamic nature of GUI grounding and the critical role of context in real-world scenarios. For
example, after executing a TYPE action, the next grounding step is likely associated with an ENTER
or SUBMIT button. Similarly, in multi-step tasks that involve navigating through a multi-layered
menu to locate a target entry, there is a strong contextual relationship between consecutive grounding
actions. Leveraging such contextual information enriches the grounding context and aids the model
in avoiding bias, thereby enhancing grounding performance.

We utilize publicly available agent trajectories to simulate grounding tasks with contexts. We focus on
constructing two types of contextual setups: (1) textual action history and (2) text-image-interleaved
history. The text-based setup incorporates the ultimate task along with prior action histories, and the
text-image-interleaved setup extends this by including N historical screen state images, providing
richer contextual cues and training the model to understand multimodal interaction history. Notably,
most trajectory data only includes basic sequential information, such as the click coordinates, thus
lacks comprehensive stepwise instruction semantics. To address this, we augment all grounding steps
within the trajectory data using the proposed data pipeline to generate detailed stepwise instructions.
For non-grounding actions, we encode instructions (e.g., SWIPE and TYPE) using rule-based methods
for natural language formats. For the interleaved setting, we collect data as per N = [1, 2, 3], and for
the text-based setting, we input all historical actions in text. Finally we collect 992K samples with the

1https://huggingface.co/AutoGUI
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trajectories from GUI-Odyssey Lu et al. (2024), Android in the Zoo Zhang et al. (2024d), Android
Control Li et al. (2024b), Android in the Wild Rawles et al. (2024b) and AMEX Chai et al. (2024).

2.2 MODEL ARCHITECTURE

Method Mobile Desktop Web Avg.
Text Icon/Widget Text Icon/Widget Text Icon/Widget

GPT-4 22.6 24.5 20.2 11.8 9.2 8.8 16.7
GPT-4o 20.2 24.9 21.1 23.6 12.2 7.8 18.1
CogAgent 67.0 24.0 74.2 20.0 70.4 28.6 49.6
SeeClick 78.0 52.0 72.2 30.0 55.7 32.5 55.8
Qwen2-VL 75.5 60.7 76.3 54.3 35.2 25.7 55.3
UGround 82.8 60.3 82.5 63.6 80.4 70.4 74.1

Aria-UI 92.3 73.8 93.3 64.3 86.5 76.2 82.4

Table 2: Results on ScreenSpot. We report element accuracy and the micro average results.
We build Aria-UI with the state-of-the-art multimodal MoE model, Aria Li et al. (2024a). We leverage
two strengths from Aria for GUI agents: 1) Aria is multimodal-native, built for better understanding
of complex and interleaved contexts; 2) with only 3.9B activated parameters, Aria shows even faster
inference speed than 7B dense models.

2.2.1 ULTRA RESOLUTION SUPPORT

With the shift from 1080p to 2K resolutions on computers and mobile devices, training grounding
LMMs at high resolutions has become essential. Aria originally supports high-resolution images up
to 980×980, which we extend to a maximum of 3920×2940 on Aria-UI by splitting the image into
smaller blocks, significantly increasing the range of image sizes to handle. To maintain positional
accuracy, we take inspiration from NaViT Dehghani et al. (2024) to place padding before resizing for
keeping the original screenshot ratio.

2.3 TRAINING AND INFERENCE PARADIGM

We train Aria-UI following a two-phase procedure. We first leverage all the single-step grounding
data to train the foundation GUI grounding capability of Aria-UI. Specifically, Aria-UI is tasked with
generating grounding answers given the prompt "Given a GUI image, what are the relative (0-1000)
pixel point coordinates for the element corresponding to the following instruction or description:
[...]". We follow Gou et al. (2024) to group all the samples for the same GUI image into a multi-turn
conversation format. Then, context-aware data with both text-based and text-and-image-interleaved
history settings are fed into the model to further enhance the grounding capability under the dynamic
setting. For this phase, we add extra 20% samples from the single-step data to keep the generic
grounding capability and avoid over-fitting.

During inference, Aria-UI outputs the grounded pixels coordinates normalized to [0, 1000]. Since
Aria-UI is also trained with context-aware trajectories, it can take historical agent actions and
grounding actions as chat history, formulating a stronger grounding system in dynamic environments.

3 EXPERIMENTS

We testify the performances of Aria-UI via extensive experiments including single-step grounding,
grounding under offline agent trajectories and grounding in dynamic online agent environments.

3.1 GUI GROUNDING EVALUATION

We first examine Aria-UI’s foundational GUI grounding capabilities on ScreenSpot Cheng et al.
(2024). The benchmark compasses six subsets spanning over two types of elements and three
major platforms. Each test entry provides a unique GUI image and a human-annotated instruction
for locating a specific element. The typical resolution for mobile and web subsets is 2k, and for
desktop samples it is 540p. We include the state-of-the-art UGround Gou et al. (2024), with previous

5
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Models AndroidControl-Low AndroidControl-High GUI-Odyssey
Grounding Task SR Grounding Task SR Grounding Task SR

Zero-shot

GPT-4o 16.36 5.12 10.36 2.84 19.66 0.05
Qwen2-VL 64.24 32.53 30.32 4.08 49.56 2.00
SeeClick 45.55 17.72 20.17 4.29 45.19 1.45
UGround - - - - 50.25 2.02
Aria-UI 79.70 54.39 35.12 5.95 64.81 5.28

W. Training Set

UGround 74.28 46.85 37.98 9.15 - -
Aria-UI 85.71 66.30 41.78 9.97 84.57 31.87
Aria-UITH 87.69 67.33 43.16 10.17 86.75 36.47
Aria-UIIH 87.20 67.26 42.97 10.10 87.02 37.30

Table 3: Results for offline mobile agent evaluation. We report element accuracy for grounding and
the task success rate. For AndroidControl-High, GPT-4o serves as the planner to generate stepwise
instructions for all methods.

grounding models SeeClick Cheng et al. (2024) and CogAgent Hong et al. (2024) as baselines. We
also include generic LMMs – GPT-4, GPT-4o and Qwen2-VL Wang et al. (2024a).

From the results in Table 2, Aria-UI achieves the highest average accuracy (82.4%) across all subsets,
demonstrating its superior grounding performance. Aria-UI achieves a significant margin over the
state-of-the-art UGround, particularly excelling in tasks for textual elements. The results showcase
Aria-UI’s robustness and generalizability across diverse platforms and element types.

3.2 OFFLINE AGENT EVALUATION

Input Planner Grounding Cross-Task Cross-Website Cross-Domain Avg.

Image + HTML Tree GPT-4 Choice 46.4 38.0 42.4 42.3
GPT-4 SoM 29.6 20.1 27.0 25.6

Image

GPT-4 SeeClick 29.6 28.5 30.7 29.6
GPT-4 UGround 45.1 44.7 44.6 44.8
GPT-4 OmniParser 42.4 41.0 45.4 42.9

GPT-4o SeeClick 32.1 33.1 33.5 32.9
GPT-4o UGround 47.7 46.0 46.6 46.8
GPT-4o Aria-UI 56.1 57.0 59.5 57.5
GPT-4o Aria-UITH 57.6 58.0 61.2 58.9
GPT-4o Aria-UIIH 57.6 57.7 61.4 58.9

Table 4: Results on Multimodal-Mind2Web, with grounding element accuracy reported. None of
the methods adopted the training split, therefore we exhibit a fully zero-shot out-of-distribution
evaluation.

Input Planner Grounding AndroidWorld MobileMiniWob++

AXTree GPT-4-Turbo Choice 30.6 59.7
Gemini 1.5 Pro Choice 19.4 57.4

Image + AXTree GPT-4-Turbo SoM 25.4 67.7
Gemini 1.5 Pro SoM 22.8 40.3

Image
GPT-4-Turbo UGround 31.0 -
GPT-4o UGround 32.8 48.4
GPT-4o Aria-UI 39.7 60.4
GPT-4o Aria-UITH 44.8 -

Table 5: Task success rate results for online mobile and Web agents on AndroidWorld and MobileMi-
niWob++.

Mobile Agents. We further testify how Aria-UI performs under an offline dynamic setting, where
the model is required to provide grounding coordinates in agent task trajectories. We employ
AndroidControl-Low Li et al. (2024b), GUI-Odyssey Lu et al. (2024) and AndroidControl-High, the
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Models OS Calc Impress Writer VLC Thunderbird Chrome VSC GIMP Multi Avg.

GPT-4o + SoM 20.83 0.00 6.77 4.35 6.53 0.00 4.35 4.35 0.00 3.60 4.59
CogAgent + SoM 4.17 2.17 0.00 4.34 6.53 0.00 2.17 0.00 0.00 0.00 0.99
GPT-4o + A11y 41.67 4.26 6.81 8.70 9.50 6.67 15.22 30.43 0.00 7.46 11.21

CogAgent 4.17 2.17 0.00 4.35 6.53 0.00 2.17 0.00 0.00 0.10 1.11
GPT-4o 8.33 0.00 6.77 4.35 16.10 0.00 4.35 4.35 3.85 5.58 5.03
GPT-4o + Aria-UITH 25.00 4.26 15.32 8.70 30.06 26.67 23.80 21.74 19.23 8.55 15.15

Table 6: OSWorld results. The top part denotes methods with both accessibility tree (A11y) and
screenshot input, while the bottom part is for pure-vision methods that rely only on screenshots.

first two has human-annotated or generated stepwise instruction, while the last one only provides
the user task, and needs an additional planner for stepwise instructions. We follow Li et al. (2024b);
Gou et al. (2024) to utilize GPT-4o as the planner. We report element accuracy and the task success
rate in Table 3. Specifically, we evaluate Aria-UI and the baselines on both zero-shot and training
split-included settings. As we evaluate Aria-UI with agent trajectories, we extend the model with
two variants: Aria-UITH and Aria-UIIH , for textual action history input and text-image interleaved
history input, separately. We choose N = 1 for Aria-UIIH to include additional one GUI image from
history during inference.

The results demonstrate the superior performance of Aria-UI across different evaluation settings and
metrics. Specifically, Aria-UI and its variants consistently outperform existing baselines, with Aria-
UITH achieving peak performance of grounding accuracy and task success rate on AndroidControl,
and Aria-UIIH achieving the best performances on GUI-Odyssey. Empirically, we found that the
incorporation of historical actions, whether in text-only (TH) or text-image interleaved (IH) format,
provides crucial context for accurate element grounding and task completion. In particular, we
observe that the textual action history (Aria-UITH ) strikes an effective balance between efficiency
and performance compared to both the base model and Aria-UIIH .

In summary, the significant performance gap between Aria-UI and existing approaches like SeeClick
and UGround underscores the effectiveness of our proposed model in understanding and executing
mobile interface interactions.

Web Agents. We evaluate how Aria-UI and its variants perform on multimodal Web agent tasks
with the Multimodal-Mind2Web Deng et al. (2024) benchmark. The original training split is not
included by Aria-UI and the baselines during the training stage, thus we form a fully zero-shot
out-of-distribution scenario. Three subsets, cross-task, cross-website and cross-domain are employed
for a comprehensive evaluation.

Shown in Table 4, Aria-UI and its variants significantly outperform all baselines across the three
subsets, achieving an average accuracy of 57.5% for the base model and 58.9% for Aria-UITH

and Aria-UIIH . Notably, Aria-UIIH demonstrates the strongest performance in the cross-website
and cross-domain subsets, showcasing its robust ability to leverage historical multimodal context.
The improvements over previous models, including UGround and SeeClick, underscore Aria-UI’s
effectiveness in handling zero-shot grounding tasks on diverse and unseen web interfaces.

3.3 ONLINE AGENT EVALUATION

Method Mobile Desktop Web Avg.
Text Icon/Widget Text Icon/Widget Text Icon/Widget

Aria-UI 92.3 73.8 93.3 64.3 86.5 76.2 82.4
(-) Ultra Resolution 87.5 61.1 70.6 40.0 53.5 40.3 61.1
(+) Visual CoT Prompting 93.8 59.8 80.4 51.4 73.0 57.8 71.4
(-) Aria-UI Data 89.0 60.7 78.3 34.3 79.6 52.9 68.7
(-) Diversified Instruction 88.3 67.2 83.0 57.1 82.2 63.1 74.9
(-) Refer. as Supervision 92.7 69.0 81.4 54.3 85.2 70.0 77.5

Table 7: Ablation study results on ScreenSpot.
Mobile and Web. We use AndroidWorld Rawles et al. (2024a) for online mobile agent evaluation in
an Android emulator environment. The evaluation is fully based on success of the task by checking
the system state of the virtual device. We also include the MobileMiniWob++ task collection
provided by AndroidWorld, which adpats the Web agent environment MiniWob++ Liu et al. (2018) to
AndroidEnv Toyama et al. (2021), the same environment as AndroidWorld. We evalute Aria-UI with
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the strongest baseline, UGround under the same M3A agent framework, compared with SoM and
Choice methods that require AXTree input. We report task success rate, the most important metric
for real agents in Table 5. Our observations are:

• In AndroidWorld, our approach achieves the best performance to date, with a task success rate of
44.8%, achieved by Aria-UITH . This surpasses the previous state-of-the-art method, UGround, as
well as non-pure vision methods such as SoM and Choice, which rely heavily on AXTree input.
The results highlight Aria-UI’s superior ability to handle diverse element instructions in real-world
settings, demonstrating its robustness and adaptability for pure-vision GUI agents.

• On MobileMiniWob++, Aria-UI outperforms UGround, and choice-based methods. Due to the
simplicity of MiniWob++ layouts, GPT-4-Turbo with SoM achieves the highest performance.
However, Aria-UI still demonstrates the highest scores with pure-vision input.

OSWorld. We further evaluate Aria-UI on the most up-to-date and complex computer use simulator
benchmark, OSWorld Xie et al. (2024). Following the pure-vision agent framework in OSWorld, we
place Aria-UI as the grounding model to work collaboratively with GPT-4o on the 369 real tasks
provided. We compared Aria-UI with previous SOTA methods and summarize the task success
rate in Table 6. With GPT-4o as planner and Aria-UITH as the grounding model, we achieve the
highest average task success rate of 15.15%, outperforming previous methods across all computer-use
scenarios in OSWorld. Notably, it excels in tasks like VLC (30.06%), Chrome (23.80%), and Impress
(15.32%), highlighting Aria-UI’s strong performance in diverse, complex GUI tasks.

3.4 ABLATION STUDY

We further testify how Aria-UI performs with ablation settings of the proposed components through
the following perspectives:

Model Components.

• (-) Ultra Resolution. We remove the ultra resolution support for Aria-UI.
• (+) Visual CoT Prompting. We use visual CoT prompting during test time for Aria-UI. For example:

"Think step-by-step with visual clues before giving the answer."

Training Data Ablation.

• (-) Aria-UI Pipeline Data. We remove the data from our pipeline during training.
• (-) Diversified Instruction. We directly use refer. caption as input and coordinates as output for

training, removing the diversified instructions.
• (-) Refer. as Supervision. We use only coordinates for supervision for our pipeline data.

We summarize the ablation results in Table 7. The results highlight the critical role of ultra resolution
(Avg. 61.1) and Aria-UI data, particularly for Icon/Widget grounding. Removing diversified instruc-
tion or refer. as supervision degrades performance across platforms, due to weak alignment between
instruction, refer. caption and grounding coordinates. We also found that adding CoT improves
text-based tasks on mobile but struggles with others, caused by noise in visual reasoning.

4 RELATED WORK

Vision-language Grounding with Large Multimodal Models. Foundational approaches for vision-
language grounding, such as Zou et al. (2023); Liu et al. (2023); Li et al. (2023), integrate CLIP
with specialized vision models to tackle language-guided grounding tasks. To address the limitations
in complex reasoning scenarios, researchers have begun leveraging LMMs Liu et al. (2024); Dai
et al. (2023); Shao et al. (2024) as a promising direction. Notable works Peng et al. (2023); Pi
et al. (2023); Wang et al. (2024b) train LMMs to respond to fine-grained language instructions by
grounding them in specific visual regions, while general-purpose models Bai et al. (2023); Li et al.
(2024a) incorporate grounding as a core function during training. Additionally, significant advances
in spatial information processing Zhang et al. (2023b); Chen et al. (2023); Zhang et al. (2023c); You
et al. (2023); Zhang et al. (2024b) have enhanced regional visual comprehension capabilities. Despite
these advancements, these methods, while effective for natural images, face challenges when applied
to GUI screenshots due to insufficient specialized training data.
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General GUI Agents. Automating GUI operations with capable agents has become a trending
research area that leverages LMMs. Existing efforts have been put to desgin autonomous agents for
complex task completion on mobile Rawles et al. (2024a); Bai et al. (2024); Li et al. (2024c); Zhang
et al. (2023a); Wen et al. (2024); Nong et al. (2024); You et al. (2024); Li et al. (2024d), Web Koh
et al. (2024); Yao et al. (2022a); Zhou et al. (2023); Lai et al. (2024); He et al. (2024); Abuelsaad et al.
(2024); Ma et al. (2023); Zhang et al. (2024c) and desktop Xie et al. (2024); Wu et al. (2024); Gao
et al. (2023); Zheng et al. (2023); Zhang et al. (2024a); Niu et al. (2024) environments. These methods
initially relied on HTML or AXTrees for element grounding to perform actions. Recently, several
notable studies Cheng et al. (2024); Gou et al. (2024) have proposed developing pure vision-based
GUI grounding models with LMMs. However, due to their lack of instruction diversity and insufficient
consideration of dynamic context, these approaches have delivered sub-optimal performances.

5 CONCLUSION

In this paper, we introduced Aria-UI, a robust LMM for GUI grounding across diverse environments.
We designed a two-stage data pipeline for high-quality and diverse GUI grounding data from multiple
platforms. We further incorporated dynamic action history as effective cues for stronger grounding
capabilities in real-world environments. As a scalable and data-centric method, Aria-UI outperforms
existing methods on all evaluated benchmarks, with both offline and online agent tasks. The model
demonstrates strong zero-shot generalization across platforms, establishing Aria-UI as a powerful
solution for universal GUI grounding.
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