How does task structure shape representations in
deep neural networks?

Kushin Mukherjee Timothy T. Rogers
Department of Psychology Department of Psychology
University of Wisconsin-Madison University of Wisconsin-Madison
Madison, WI 53706 Madison, WI 53706
kmukher jee2@wisc.edu ttrogers@uisc.edu

Abstract

While deep convolutional neural networks can be trained to perform at human
levels of object recognition and can learn visual features in the process, humans
use vision for a host of tasks beyond object recognition, including drawing, acting,
and making propositional statements. To investigate the role of task structure
on the learned representations in deep networks, we trained separate models to
perform two tasks that are simple for humans: imagery and sketching. Both models
encoded a bitmap image with the same encoder but used either a deconvolutional
decoder for the imagery task or an LSTM sequence decoder for the sketching
task. While both models learned their tasks well, the sketcher model acquired
representations that more clearly captured visual properties of the input, including
location, size, and semantic category. This work suggests that acquisition of robust
visual representations may depend importantly on the nature of the learning task.

1 Introduction

Cognitive science has long proposed that visual object representations are built from units or features
that compose in complex ways to form a rich repertoire of possible percepts [Palmer, [1975]]. Specific
hypotheses about what the features are, and how they compose, have oriented around two views.
Symbolic approaches [Biederman, 1987, Lake et al., |2015]] suggest a finite, pre-determined vocabulary
of visual primitives, and a visual “syntax” or rule-set for describing spatial relations amongst
features. On this view, visual abstraction is possible because the object representations preserve
essential characteristics of both the primitives and the spatial relations between them, but it remains
unclear where the primitives and rules come from or how they might be learned. In contrast, deep
convolutional neural network (DCNN) approaches view both the features and their composition as
arising from learning about the statistical structure of the natural visual environment. For instance,
DCNNSs [Simonyan and Zissermanl 2015] trained on millions of real-world object images can assign
photographs of objects to semantic categories with uncanny accuracy, and in so doing acquire a
vocabulary of visual primitives that, in some ways, resemble response properties of neurons in the
visual system [Kriegeskorte, [2015]]. Such models suggest how visual features might be learned from
visual input alone, but do not account for aspects of human visual perception that rely on componential
representation—thus off-the-shelf DCNNs rely too much on visual texture, fail to correctly classify line
drawings without additional training, and are susceptible to adversarial attack. Each of these failings
suggests that standard architectures and training methods do not capture the part-based compositional
processes that support human visual abstraction.

Perhaps this is unsurprising, since DCNNs are typically optimized to predict category labels for
images. Human vision supports many other tasks, including drawing (i.e., visual communication;Fan
et al.| [2018)]]), speaking (i.e., propositional knowledge; Lambon Ralph et al.|[2017]), and acting (i.e.,

2nd Workshop on Shared Visual Representations in Human and Machine Intelligence (SVRHM), NeurIPS 2020.

praxic, haptic, and functional knowledge; [Botvinick and Plaut| [2004]). The structure of action in
these tasks bears an important, componential relationship to the structure of objects—for instance,
the sequence of strokes produced when drawing, say, a hand-saw relates in non-trivial ways to (1)
the parts from which the saw is constructed, (2) the way we might grip a saw when using it and (3)
the words we use when talking about the saw (“handle,” “blade,” “teeth”). Thus drawing, speaking,
and using the saw all provide environmental cues about how the image should be partitioned into
components, which in turn may aid in acquisition of the componential representations that support
abstraction.

Recent approaches to learning visual representations have highlighted the need for sophisticated
computational machinery, often combining neural network models with graphics-renderers. Genera-
tive Query Networks (GQNs) learn representations of 3D scenes without explicit labels through a
probabilistic neural model, which can abstract away image-level details to represent the same scene
from different viewpoints closely in represenational space [Eslami et al.|[2018]|]. Adversarially-trained
reinforcement learning models coupled with graphics engines have also been applied to teach agents
to learn policies or ’visual programs’, which can be thought to functionally approximate task struc-
tures as described earlier |Ganin et al.| 2018 . Closer to the task we simulate in this paper, work by
Gregor et al.|[2015]] applies recurrence to variational autoencoding models to capture the sequential
nature of image production, although production in this work involved generation of bitmap images.
While these approaches represent remarkable advances in ideas about image-generation, to our
knowledge no prior work has considered whether or how different generation mechanisms might
influence internal representations of the same visual object.

The current paper thus assesses how the nature of the output task influences the internal visual
representations acquired by deep convolutional networks trained to reproduce an input image in
model analogs of two different tasks: imagery, where the input bitmap is reconstructed over the
outputs of a convolutional autoencoder, and sketching, where reconstruction involves generating
a sequence of pen-strokes. Both models use the same convolutional encoder projecting to a flat
densely-connected bottleneck layer. In the imagery network, these project to a deconvolutional
decoder trained to reproduce the original bitmap. In the sketcher, the bottleneck layer projects to
a two-layer LSTM trained to generate the associated sequence of strokes. Since the encoders are
structured identically in both models, and both are trained on the same corpus of images, differences
in the representations acquired by each must be due to the output task. We therefore used supervised
and unsupervised techniques to assess the degree to which acquired representations in each model
encode central elements of the input image including (1) its vertical and horizontal location on the
image plane, (2) its size, measured as number of "on" pixels, (3) its category, and (4) its encoding of
idiosyncratic details specific to a particular image.

2 Methods

2.1 Dataset

We created a simple 128x128 pixel 'Etch A Sketch’-style drawing environment where every image was
constructed through a sequence of horizontal and vertical lines. Thus each image can be represented
either as a 128x128 bitmap tensor, or as a sequence of (Az, Ay, p) coordinates of length equal to
the number of "strokes’ in a drawing. In this encoding, Ax and Ay captured the displacement of the
pen in the horizontal and vertical directions (relative to its current position), while p indicates a pen
state (up or down) that determines whether a line should be drawn when the pen location moves [Ha
and Eck, |2017]. We also defined functions that strung together successive strokes to describe simple
shapes-right angles, arcs, quadrilaterals, and lines—that can combine in different spatial configurations
to create drawings belonging to several semantic categories: tables, stools, chairs, mugs, briefcases,
birds, sheep, dogs, lizards, and pigs. Members of each category had the same elementary parts
arranged in the same relative spatial positions, but with parameters specifying the respective sizes of
the corresponding part. For example, sheep could vary in their overall size, but also in the relative
size of the head, length of neck, and leg length. The position of each drawing on the canvas was also
sampled at random with uniform probability across horizontal and vertical dimensions. These routines
provide a large universe of possible images, each the result of 5 independent factors: horizontal
location, vertical location, size of the item, semantic category of the item, and the parameterizations
that determine the relative size of each part. From the full universe we sampled 1000 drawings

independently with uniform probability for training samples, and another 1000 drawings as validation
samples.

2.2 Model architectures

The autoencoder model took a 128x128x3 input bitmap tensor, passed through 3 layers of convolution
and max pooling, and with all convolutional units employing rectified linear activations. The top
convolutional layer was flattened and projected densely to a bottleneck layer of 512 linear units,
which in turn was reshaped, deconvolved and upsampled to generate model outputs. We trained the
model on 1000 samples using binary cross-entropy (BCE) loss for 150 epochs with batch sizes of 10,
using PyTorch 1.6.

The sketcher model used the same convolutional encoding architecture through to the flat 512-unit
encoding. This then projected to a 2-layer LSTM that produced a 3-element output across linear
units for each of 20 timesteps (strokes) : a Ax value, a Ay, and a p value. This model was trained
using mean-squared error (MSE) loss across LSTM output units for 40 epochs in batches of 10. To
visualize the drawings produced by the sketcher, we fed the sequence of output values, together with
a starting location, to our drawing program, which then generated a bitmap of the model sketch by
moving a simulated "pen’ to the coordinates indicated by each output coordinate in turn, and printing
a line with each move whenever the pen-state output was in the ’"down’ state.

3 Results

Figure [T] shows examples of model outputs for items not seen during training, for both autoencoder
and sketcher architectures. Both models learned to produce outputs with low hold-out error and
relatively good reconstructions, but with qualitatively different kinds of error: the autoencoder shows
“uncertainty’ about which pixels should be "on’ in the area near the line segments, which produces
the stippling pattern observed in the reconstruction. In turn, the sketcher exhibits uncertainty about
the exact location of line endings, which produces the slight misalignment of strokes in the image
reconstruction. Which provides a better reconstruction of the image? Since both the nature of the
outputs and the loss function differ between models, they cannot be compared solely on reconstruction
loss. We instead measured the perceptual similarity between the input image and each reconstruction,
following the shape-matching method described in Belongie et al.| [2002]. Their shape-matching
cost is invariant to rotation, shear-transforms, and size differences between images so we take it
as a good measure of perceptual similarity between any given pair of objects. Because this is an
algorithm with a high time-complexity, we took a small subset of 45 validation images like the ones
in[T]and computed the average shape-matching perceptual similarity between the ground truth input
and the reconstructions from the autoencoder and sketcher models. In our setup, maximum similarity
corresponds to a shape-matching cost of 0 and the minimum similarity can be arbitrarily large because
the cost is a summation of n x? test statistic values, where n is the number of points sampled from
the image. The mean matching cost for autoencoder reconstructions was 10.55, (sd = 5.18) and
sketcher reconstructions was 13.27, (sd = 4.29). This shows that both models reached comparably
high levels of perceptual fidelity when reconstructing the input bitmaps.

The central question is whether these differences in output task produce systematic differences in how
each model encodes a given input image. In particular, does the output task lead to systematically
better or worse representations of visual information in the image? To answer this question, we
analyzed the internal representations generated over hidden units for 400 images unseen during
training from 4 of the 10 image categories (chairs, stools, dogs, sheep): 100 sampled randomly with
uniform probability from each category, and situated randomly with uniform probability across the
image canvas. For each architecture we considered (1) what image properties dominate the similarity
structure of the model’s representations, as observed in a low-dimensional embedding? (2) What
image properties can be reliably inferred from each model’s learned representations using linear
decoders? (3) What blend of image properties most strongly influence a model’s representations, as
assessed using representational similarity?

Embeddings of learned representations. To understand which image factors strongly influence learned
representations, we used classical multidimensional scaling (MDS) to compute 2D embeddings of the
representations for 400 held-out images in each model. Figure [2] shows the results: representations in
the sketcher are clearly organized to reflect the horizontal and vertical locations of the sketch on the

Auto-
encoder
- .

Figure 1: Examples of model outputs reconstructing a lizard (left), sheep (middle), and pig (right).
The input image is shown in the green channel while model reconstruction is shown in the red
channel, so yellow indicates pixels that are *on’ in both input and reconstruction. Both models can
generate approximately correct reconstructions for unseen images, but the nature of the errors differs:
autoencoders show uncertainty about which pixels should be on near the image components, while
sketchers may be slightly off in the start and end points of the image components.

True location and size Sketcher embedding AE embedding
al%0 @ X SO . o S
L, PR A) ‘1 .
+ S0, 3 %o =4 ALl T b
2| gW@® gt .0, %o &, L 3
- 3t e . 0 N A e
2t e 9 'y % Y A TR * @
B T TS &
2 [1) [o4 ‘yet k2 204 5’
= ‘ .'3 - f,‘ 3, ®] . - ’ :,‘(*H . .
LK o e, o O @ i) o e
o ’ @ *Y . ® . -
2 e » *: . [A * 8
e L . e » L - o
®%el® %0 o [. % ®
2 ~* g * Q%
® sl @ e
3 *0 O ® . ®
L T T T T T T 4 T T .I T T T T T T T T T
0 20 40 60 80 100 -10 0 10 20 30 -20 0 20 40 60 80 100

Figure 2: 2D embeddings of model representations. The left panel shows the true horizontal and
vertical locations of each test image and how these are colored in the remaining plots. Circle
size is proportional to the number of ’on’ pixels in the image. Middle and right panels show the
corresponding 2D embedding of model representations for the same images, in the sketcher and
autoencoder models respectively. The horizontal and vertical image locations clearly organize the
embeddings for sketcher representations but not the autoencoder.

image canvas, while also weakly reflecting image size. None of these features are clearly apparent
in embeddings of the autoencoder representations, where no pattern is easily discernable. Similar
results were observed using nonlinear embedding techniques such as t-SNE.

Decoding image information with linear classifiers. Autoencoder representations may still effectively
encode important image properties despite the seeming disorganization of 2D embeddings for this
model. To assess this possibility, we applied linear regression/pattern classification to decode
image properties from the learned representations for each model. We used linear regression with
elastic-net regularization to predict, from an image’s learned representation, each of its continuous
properties (horizontal and vertical location). For category decoding, we fit a four-way multinomial
classifier regularized with the elastic net to predict the category label of the drawing from the learned
representations. Note that the only category information available to the model during learning was
that objects from the same category have a similar sequence of generative actions, and hence are
composed of similar parts arranged in similar spatial configurations—no category labels were provided
in training. For each model we applied 10-fold cross-validation and computed the mean error across

Table 1: Decoding of image properties from hidden representations

Image property
Model Category (accuracy) Horizontal location () Vertical location (r) Size ()
Autoencoder 36.50% 0.71 0.61 0.64
Sketcher 54.00% 0.91 0.81 0.87

Table 2: Correlations between model features distance matrices and image property distance matrices

Image property

Model features Location (x, y coordinates) Size Shape-match
Autoencoder 0.39 0.001 —0.009
Sketcher 0.49 —0.026 —0.011

hold-out items from each fold. The results are shown in Table[I] and are unambiguous. While was
possible to decode all the image properties better than chance from AE representations, decoding
accuracy was much higher for representations learned by the sketcher.

Representational similarity. The preceding results show that both models learn representations that
express some important image properties, but the sketcher more systematically encodes all properties
assessed (location, size, and category). We next applied representational similarity analysis (RSA)
[Kriegeskorte et al., 2008|] to assess whether the model representations differ in their sensitivity
to different intrinsic image properties, including location, size, and shape [Belongie et al.| [2002].
Specifically, we computed a representational-dissimilarity matrix (RDM) using the 512-dimensional
encoding of the 400 test images from each model. We also computed trarget dissimilarity matrices
(TDM) for each type of image property. For location, this was the Euclidean distance between image
centers in the (x, y) image plane; for size, it was the Euclidean distance between the flattened bitmaps
such that on pixels were 1s and off pixels were Os; and for shape it was the alignment metric of
[Belongie et al.,|2002] described previously. Finally, we computed Pearson’s r between the upper
triangle each model’s RDM and each TDM. The results appear in Table 2] Representations in both
networks are most sensitive to the location of the object within the canvas relative to the size and
shape of the object. It is worth noting that the sketcher model produces outputs in an egocentric
coordinate frame to which we later add a starting location to generate an output image. Nevertheless,
the sketcher is more sensitive to location information than is the autoencoder, whose output relies on
turning on the correct pixels in the correct locations.

Training models with fixed image location. In both models, representations are largely dominated
by the location of the image on the input plane. In some ways this is unsurprising, since both
models must learn to generate correct outputs from training data in which the same item generates
largely or completely non-overlapping inputs when it appears in different spatial locations. Do
the representational differences we have described arise solely because the two models differ in
how they learn to solve this problem? To answer this question, we again trained both models to
reconstruct 1000 images, but with all inputs centered on the same location in the input plane. Images
still varied in overall size, the sizes of their respective parts, and the spatial configuration of their
parts, but were centered on the same (, y) location. The training process was exactly the same as
described in section 2.2, except with this new sample of training images. We then computed internal
representations generated for 400 novel inputs, equally sampled from the categories dog, sheep, chair,
and stool as in the previous analyses. The central questions were whether and how the architectures
differed in their ability to represent size and category structure.

We first applies an unsupervised approach by computing and inspecting 3D embeddings of the
representations using classical MDS. The results are shown in Figure 3] The image category is
apparent in both models, but the categories appear to be more clearly separated in the sketcher
embedding. Image size (measured as number of "on" pixels) appears to be captured moderately for
the animals, encoded almost linearly along z-axis of the sketcher embeddings and along a nonlinear
manifold in the auto-encoder embeddings. Size information for the chairs and stools is not clearly
expressed in either embedding.

Sketcher Autoencoder

>
Kvo"‘l'
B

10
3
Sy

chairs dogs sheep

Figure 3: 3d embeddings of internal representations for models trained on images always appearing
in the same location. Dot color indicates image category, while dot size indicates the number of
"on" pixels in the image. Image category is evident in both embeddings, but categories seem better-
separated in the sketcher. Both models appear to capture image size for animals but this is less clear
for chairs and stools.

To more quantitatively compare the degree to which each set of representations express category and
size information, we again applied supervised techniques. For category information, we fit a 4-class
multinomial classifier, regularized with elastic net, and evaluated for performance using 10-fold
cross-validation. Classification accuracy on held-out sets was near-perfect for the sketcher, which
achieved 99.8% accuracy. Accuracy for the auto-encoder was still quite good, but reliably worse, at
92% on average across hold-outs. For size, we fit linear regression models to predict the number of
"on" pixels from model representations, again applying the elastic net regularization and evaluating
performance on held-out items using 10-fold cross validation. The sketcher showed a mean r2 = 0.9
predicting the image size for held-out items, indicating that size is remarkably well encoded by a
linear combination of learned features. The auto-encoder did significantly less well, showing a mean
r2 = 0.74 predicting sizes of held-out images.

Together these results suggest that the differences between architectures shown in preceding analyses
did not arise solely from the ways the two models learn to handle variation of image location in the
input plane—even when location is held constant, the sketcher acquires representations that better
capture important image properties, including semantic class and size.

4 Discussion

This paper provides a proof-of-concept of the importance of output modality in shaping the structure
of object representations in a set of simple yet naturalistic visual tasks — imagery and sketching.
We show that while both models are able to learn their respective tasks quite well and produce
reconstructions that are perceptually similar to their target, the sketcher model learns representations
(1) in fewer training cycles that are also (2) better able to decode properties of the targets. These
properties include a latent category structure that is defined in terms of the sequence of actions needed
to produce the target. Information about category structure is also available to the autoencoder insofar
as objects belonging to the same category also "look’ similar save for placement on the canvas and the
size. Nevertheless, even with many more training cycles, the autoencoders ability to decode category
structure remains inferior to the sketcher. Thus, the specific output modality of generating sequences
of pen strokes is a critical factor.

This highlights the benefit of having multiple kinds of cues in learning visual object representations.
This work is supported by findings from cognitive neuroscience and neuropsychology [Lambon Ralph
et al.,[2017} [Lambon Ralph} 2014]] and adds to a growing literature on how modern machine learning
models can be augmented with theory from the cognitive sciences [Lake et al.l 2017].

References

S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape contexts.
IEEE transactions on pattern analysis and machine intelligence, 24(4):509-522, 2002.

I. Biederman. Recognition-by-components: a theory of human image understanding. Psychological
Review, 94(2):115, 1987.

M. Botvinick and D. C. Plaut. Doing without schema hierarchies: a recurrent connectionist approach
to normal and impaired routine sequential action. Psychological review, 111(2):395, 2004.

S. A. Eslami, D. J. Rezende, F. Besse, F. Viola, A. S. Morcos, M. Garnelo, A. Ruderman, A. A. Rusu,
I. Danihelka, K. Gregor, et al. Neural scene representation and rendering. Science, 360(6394):
1204-1210, 2018.

J. Fan, D. Yamins, and N. Turk-Browne. Common object representations for visual production and
recognition. Cognitive Science, 2018.

Y. Ganin, T. Kulkarni, I. Babuschkin, S. Eslami, and O. Vinyals. Synthesizing programs for images
using reinforced adversarial learning. arXiv preprint arXiv:1804.01118, 2018.

K. Gregor, 1. Danihelka, A. Graves, D. J. Rezende, and D. Wierstra. Draw: A recurrent neural
network for image generation. arXiv preprint arXiv:1502.04623, 2015.

D. Ha and D. Eck. A neural representation of sketch drawings. arXiv preprint arXiv:1704.03477,
2017.

N. Kriegeskorte. Deep neural networks: a new framework for modeling biological vision and brain
information processing. Annual review of vision science, 1:417-446, 2015.

N. Kriegeskorte, M. Mur, D. A. Ruff, R. Kiani, J. Bodurka, H. Esteky, K. Tanaka, and P. A. Bandettini.
Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron,
60(6):1126-1141, 2008.

B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-level concept learning through proba-
bilistic program induction. Science, 350, 2015.

B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. Building machines that learn and
think like people. Behavioral and Brain Sciences, 2017.

M. A. Lambon Ralph. Neurocognitive insights on conceptual knowledge and its breakdown. Philo-
sophical Transactions of the Royal Society B: Biological Sciences, 369(1634):20120392, 2014.

M. A. Lambon Ralph, E. Jefferies, K. Patterson, and T. T. Rogers. The neural and computational
bases of semantic cognition. Nature Reviews Neuroscience, 18(1):42, 2017.

S. E. Palmer. The effects of contextual scenes on the identification of objects. Memory and Cognition,
3:519-526, 1975.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition.
In International Conference on Learning Representations, 2015.

	Introduction
	Methods
	Dataset
	Model architectures

	Results
	Discussion

