How does task structure shape representations in deep neural networks?

Anonymous Author(s)

Abstract

While modern deep convolutional neural networks can be trained to perform at human levels of object recognition and learn visual features in the process, humans use vision for a host of tasks beyond object recognition including — drawing, acting, and making propositional statements. To investigate the role of task structure on the learned representations in deep networks we trained separate models to perform two tasks that are simple for humans — imagery and sketching. Both models encoded a bitmap image with the same encoder architecture but used either a deconvolutional decoder for the imagery task or an LSTM sequence decoder for the sketching task. We find that while both models learn to perform their respective tasks well, the sketcher model learns representations that can be better decoded to provide visual information about an input including — shape, location, and semantic category highlighting the importance of output task modality in learning robust visual representations.

1 Introduction

Cognitive science has long proposed that visual object representations are built from units or features that compose in complex ways to form a rich repertoire of possible percepts [Palmer, 1975]. Specific hypotheses about what the features are, and how exactly they compose, have oriented around two views. Symbolic approaches [Biederman, 1987, Lake et al., 2015] suggest a finite, pre-determined vocabulary of visual primitives, and a visual “syntax” or rule-set for describing spatial relations amongst features. In this view, visual abstraction is possible because the object representations preserve essential characteristics of both the primitives and the spatial relations between them, but it remains unclear where the primitives and rules come from or how they might be learned. In contrast, deep convolutional neural network (DCNN) approaches view both the features and their composition as arising through learning about the statistical structure of the natural visual environment. For instance, DCNNs [Simonyan and Zisserman, 2015] trained on millions of real-world object images can assign photographs of objects to semantic categories with uncanny accuracy, and in so doing acquire a vocabulary of visual primitives that, in some ways, resemble response properties of neurons in the visual system [Kriegeskorte, 2015]. Such models suggest how visual features might be learned from visual input alone, but do not account for aspects of human visual perception that rely on componential representation — thus off-the-shelf DCNNs rely too much on visual texture, fail to correctly classify line drawings without additional training, and are susceptible to adversarial attacks. Each of these failings suggests that standard architectures and training methods do not capture the part-based compositional processes that support human visual abstraction.

Perhaps, this is unsurprising since DCNNs are typically optimized to predict category labels for images. In contrast, humans vision supports many other tasks, including drawing (i.e., visual communication [Fan et al., 2018]), speaking (i.e., propositional knowledge; Lambon Ralph et al.].

Submitted to 2nd Workshop on Shared Visual Representations in Human and Machine Intelligence (SVRHM).
2 Methods

2.1 Dataset

We created a simple 128x128 pixel 'Etch A Sketch'-style drawing environment where every image was constructed through a sequence of horizontal and vertical lines. Thus each image can be represented either as a 128x128 bitmap tensor, or as a sequence of \((\Delta x, \Delta y, p)\) coordinates of length equal to the number of 'strokes' in a drawing. In this encoding, \(\Delta x\) and \(\Delta y\) captured the displacement of the pen in the horizontal and vertical directions (relative to its current position), while \(p\) indicates a pen state (up or down) that determines whether a line should be drawn when the pen location moves \([2017]\). We also defined functions that strung together successive strokes to describe simple shapes—right angles, arcs, quadrilaterals, and simple lines—that can combine in different spatial configurations to create drawings belonging to several semantic categories: tables, stools, chairs, mugs, briefcases, birds, sheep, dogs, lizards, and pigs. Members of each category had the same elementary parts arranged in the same relative spatial positions, but with parameters specifying the respective sizes of the corresponding part. For example, sheep could vary in their overall size, but also in the relative size of the head, length of neck, and leg length. The position of each drawing on the canvas was also sampled at random with uniform probability across horizontal and vertical dimensions. These routines provide a large universe of possible images, each the result of 5 independent factors: horizontal location, vertical location, size of the item, semantic category of the item, and the parameterizations that determine the relative size of each part. From the full universe we sampled 1000 drawings independently with uniform probability for training samples, and another 1000 drawings as validation samples.

2.2 Model architectures

The autoencoder model took a 128x128x3 input bitmap tensor, passed through 3 layers of convolution and max pooling with a 3-unit kernel and a stride of 1, and with all convolutional units employing rectified linear activations. The top convolutional layer was flattened and projected densely to a bottleneck layer of 512 linear units, which in turn was reshaped, deconvolved and upsampled to generate model outputs. We trained the model on 1000 samples using binary cross-entropy (BCE) loss for 150 epochs with batch sizes of 10, using PyTorch 1.6. The sketcher model used the same convolutional encoding architecture through to the flat 512-unit encoding. This then projected to a 2-layer LSTM that produced a 3-element output across linear units for each of 20 timesteps (strokes): a \(\Delta x\) value, a \(\Delta y\), and a \(p\) value. This model was trained...
Figure 1 shows examples of model outputs for items not seen during training, for both autoencoder and sketcher architectures. Both models learned to produce outputs with low hold-out error and relatively good reconstructions, but with qualitatively different kinds of error: the autoencoder shows 'uncertainty' about which pixels should be 'on' in the area near the line segments, which produces the stippling pattern observed in the reconstruction. In turn, the sketcher exhibits uncertainty about the exact location of line endings, which produces the slight misalignment of strokes in the image reconstruction. Which provides a better reconstruction of the image? Since both the nature of the outputs and the loss function differ between models, they cannot be compared solely on reconstruction loss. We instead measured the perceptual similarity between the input image and each reconstruction, following the shape-matching method described in [Belongie et al., 2002]. Their shape-matching cost is invariant to rotation, shear-transforms, and size differences between images so we take it as a good measure of perceptual similarity between any given pair of objects. Because this is an algorithm with a high time-complexity, we took a small subset of 45 validation images like the ones in Figure 1 and computed the average shape-matching perceptual similarity between the ground truth input and the reconstructions from the autoencoder and sketcher models. In our setup, maximum similarity corresponds to a shape-matching cost of 0 and the minimum similarity can be arbitrarily large because the cost is a summation of \(n \chi^2 \) test statistic values, where \(n \) is the number of points sampled from the image. The mean matching cost for autoencoder reconstructions was 10.55, (sd = 5.18) and sketcher reconstructions was 13.27, (sd = 14.29). This shows that both models reached comparably high levels of perceptual fidelity when reconstructing the input bitmaps.
The central question is whether these differences in output task produce systematic differences in how each model encodes a given input image. In particular, does the output task lead to systematically better or worse representations of visual information in the image? To answer this question, we analyzed the internal representations generated over hidden units for 400 images unseen during training from 4 of the 10 image categories (chairs, stools, dogs, sheep): 100 sampled randomly with uniform probability from each category, and situated randomly with uniform probability across the image canvas. For each architecture we considered (1) what image properties dominate the similarity structure of the model’s representations, as observed in a low-dimensional embedding? (2) What image properties can be reliably inferred from each model’s learned representations using linear decoders? (3) What blend of image properties most strongly influence a model’s representations, as assessed using representational similarity?

Embeddings of learned representations. To understand which image factors strongly influence learned representations, we used classical multidimensional scaling (MDS) to compute 2D embeddings of the representations for 400 held-out images in each model. Figure 2 shows the results: representations in the sketcher are clearly organized to reflect the horizontal and vertical locations of the sketch on the image canvas, while also weakly reflecting image size. None of these features are clearly apparent in embeddings of the autoencoder representations, where no pattern is easily discernable. Similar results were observed using nonlinear embedding techniques such as t-SNE.

Decoding image information with linear classifiers. Autoencoder representations may still effectively encode important image properties despite the seeming disorganization of 2D embeddings for this model. To assess this possibility, we applied linear regression/pattern classification to decode image properties from the learned representations for each model. We used linear regression with elastic-net regularization to predict, from an image’s learned representation, each of its continuous properties (horizontal and vertical location). For category decoding, we fit a four-way support vector machine (SVM) to predict the category label of the drawing from the learned representations. Note that the only category information available to the model during learning was that objects from the same category have a similar sequence of generative actions. For each model we applied 10-fold cross-validation and computed the mean error across hold-out items from each fold. The results are shown in Table 1, and are unambiguous. It was possible to decode all the image properties from AE representations, but nevertheless decoding accuracy was much higher for representations learned by the sketcher.

Representational similarity. The preceding results show that both models learn representations that express some important image properties, but that the sketcher model more systematically encodes all properties assessed (location, size, and category). Since both models capture multiple aspects of structure to some degree, we considered whether the models differ in their sensitivity to different intrinsic image properties — location of the object on the canvas, size of the object, and the shape of the object as measured through shape contexts [Belongie et al., 2002]. To this end, we computed a series of representational similarity analyses (RSA) [Kriegeskorte et al., 2008]. In RSA, we compute...
Table 1: Decoding of image properties from hidden representations

<table>
<thead>
<tr>
<th>Image property</th>
<th>Model</th>
<th>Category (accuracy)</th>
<th>Horizontal location (r)</th>
<th>Vertical location (r)</th>
<th>Size (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Autoencoder</td>
<td>36.50%</td>
<td>0.71</td>
<td>0.61</td>
<td>0.64</td>
</tr>
<tr>
<td></td>
<td>Sketcher</td>
<td>54.00%</td>
<td>0.91</td>
<td>0.81</td>
<td>0.87</td>
</tr>
</tbody>
</table>

Table 2: Correlations between model features distance matrices and image property distance matrices

<table>
<thead>
<tr>
<th>Image property</th>
<th>Model features</th>
<th>Location (x, y coordinates)</th>
<th>Size</th>
<th>Shape-match</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Autoencoder</td>
<td>0.39</td>
<td>0.001</td>
<td>-0.009</td>
</tr>
<tr>
<td></td>
<td>Sketcher</td>
<td>0.49</td>
<td>-0.026</td>
<td>-0.011</td>
</tr>
</tbody>
</table>

a distance matrix for our 400 test images using different representations of these images — their 512-unit encoding from the sketcher and autoencoder models, and their image properties (location as expressed through an (x, y) coordinate pair, size as measured through number of ‘on’ pixels, and shape alignment) — and appropriate distance functions (euclidean, cosine, or shape-matching distance). Next, we computed Pearson’s r between the upper triangle of our 2 models’ feature-distance matrices and the upper triangles of our 3 image property-based distance matrices. The results of the RSA analyses can be seen in Table 2. This reveals quite clearly that our neural network representations are most sensitive to the location of the object within the canvas relative to the size and shape of the object. It is worth noting that the sketcher model produces outputs in an egocentric coordinate frame to which we later add a starting location to generate an output image. Nevertheless, the sketcher is more sensitive to location information than is the autoencoder, whose output relies on turning on the correct pixels in the correct locations.

4 Discussion

This paper provides a proof-of-concept of the importance of output modality in shaping the structure of object representations in a set of simple yet naturalistic visual tasks — imagery and sketching. We show that while both models are able to learn their respective tasks quite well and produce reconstructions that are perceptually similar to their target, the sketcher model learns representations (1) in fewer training cycles that are also (2) better able to decode properties of the targets. These properties include a latent category structure that is defined in terms of the sequence of actions needed to produce the target. Information about category structure is also available to the autoencoder insofar as objects belonging to the same category also ‘look’ similar save for placement on the canvas and the size. Nevertheless, even with many more training cycles, the autoencoders ability to decode category structure remains inferior to the sketcher. Thus, the specific output modality of generating sequences of pen strokes is a critical factor.

This highlights the benefit of having multiple kinds of cues in learning visual object representations. This work is supported by findings from cognitive neuroscience and neuropsychology [Lambon Ralph et al., 2017, Lambon Ralph, 2014] and adds to a growing literature on how modern machine learning models can be augmented with theory from the cognitive sciences [Lake et al., 2017].

In the future we will rigorously explore why the sketcher model is more sensitive to visual properties, such as object position, than the autoencoder architecture. While we have approached our analyses of these two tasks in two separate networks, we know from cognitive neuroscience that there is no such clear functional separation of brain networks. Our next steps will be to integrate these two models and study the development of potentially compositional representations as a function of multiple kinds of feedback during learning. We believe this will lead to more robust models in the field of machine learning while also providing mechanistic insights into the computations that underlie the process of visual abstraction in humans.
References

