
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ELASTIC AND BALANCED END-TO-END TRAINING OF
DYNAMIC LLMS WITH DYNMO

Anonymous authors
Paper under double-blind review

ABSTRACT

To reduce the computational and memory costs of Large Language Models
(LLMs), schemes that introduce dynamic training are increasingly emerging. Ex-
amples of dynamic models are: a) Mixture of Experts (MoEs) at which token
routing affects the compute balance, b) gradual pruning of the parameters of a
model, c) dynamically freezing layers, d) dynamic sparse attention schemes, e)
early exit of tokens as they pass through the model layers, and f) Mixture of
Depths (MoDs) schemes where tokens bypass blocks. One side effect that lim-
its the practical value of dynamic models is the introduction of workload im-
balance among workers, which in turn negatively affects the efficiency in dis-
tributed training. We propose a dynamic load balancing solution (DYNMO), with
a proof that it satisfies maximum reduction in imbalance, to adaptively maintain
equal compute workloads among different workers in pipeline parallelism. In
addition, DYNMO dynamically packs work into fewer workers, while sustaining
training throughput, to release the idle workers back to the job manager. DYNMO
supports both single nodes with multi-GPUs and systems with multi-GPU multi-
nodes. In comparison to static distributed training solutions (Megatron-LM and
DeepSpeed), DYNMO accelerates the end-to-end training of dynamic GPT models
by up to 1.23x (MoEs), 3.18x (parameter pruning), 2.23x (layer freezing), 4.02x
(sparse attention), 4.52x (early exit), and 1.17x (MoDs). DYNMO is available at
https://anonymous.4open.science/r/DynMo-4D04/.

1 INTRODUCTION

Sizes of neural networks used to train LLMs has exponentially grown since the introdution of trans-
formers Vaswani et al. (2017). This growth demands more memory and compute power. Yet, nei-
ther the memory capacity nor the compute capability of a single accelerator increases at the same
rate Sevilla et al. (2022). As a result, high-performance computing centers and cloud providers use a
mix of model and data parallelism for training large models Narayanan et al. (2021). One of the most
commonly used forms of model parallelism in LLMs is pipeline parallelism, in which consecutive
layers are grouped into stages, with each stage assigned to one accelerator (worker) Kahira et al.
(2021). Input mini-batches are split into micro batches (chunks) to improve accelerator utilization
by overlapping computation in a pipeline fashion Huang et al. (2019); Harlap et al. (2018); Fan et al.
(2021); Li & Hoefler (2021); Qi et al. (2024).

In traditional LLMs training schemes, the workload for each pipeline stage is known in advance and
remains static throughout the training. To reduce computational resource requirements, new training
schemes that introduce dynamic training workloads are emerging. This includes: a) neural networks
where different input samples take different pathways through the model layers 1, e.g. gated neural
networks Shazeer et al. (2017a), sparsely activated Mixture of Experts (MoEs) Zhou et al. (2022b),
Switch Transformers Fedus et al. (2022), Mixture of Depths (MoDs) Raposo et al. (2024) etc., b)
gradual pruning where the parameters of a model are pruned (i.e. sparsified) during training Gale
et al. (2019), c) freeze training where some of the layers of the model are adapatively frozen during
training Wang et al. (2022), d) different schemes to dynamically sparsify the attention matrix Liu
et al. (2022a); Pagliardini et al. (2023); Tay et al. (2020), and e) early exit strategies where tokens
skip remaining layers based on an exit decision Elbayad et al. (2020); Schuster et al. (2022); Liu et al.

1In this paper we use layer to refer to a transformer block (multi-head attention + a feed forward network)

1

https://anonymous.4open.science/r/DynMo-4D04/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0%

10%

20%

30%

40%

0%

20%

40%

60%

No Early
Exit

CALM ADP-C
0%

20%

40%

60%

80%

100%

Static
Freezing

Egeria AutoFreeze
0%

20%

40%

60%

80%

0%

10%

20%

30%

40%

Mixtral 8x7B LLaMA-MoE-3.5B

Id
le

ne
ss

 (i
n

%
)

Layer
Freezing

Early
Exit

Mixture of
Experts (MoEs)

Sparse
Attention

Mixture of
Depths (MoDs)

Bubble ratio
~25%

Mixtral 8x7b LLaMA-MoE-3.5B

48 Layers24 Layers 32 Layers 40 LayersS-BASE Load Bal. Loss

Bubble ratio
~18%

0%

20%

40%

60%

80%

Dense Attn. Dyn. Sparse Attn.

Id
le

ne
ss

 (i
n

%
)

Bubble ratio
↑ ~4x

Dense Attn. Sparse Attn. Expert Choice MoDsDense 30% 50% 70% 90%

Bubble ratio
↑ ~5x

Prune
Parameters

Static Egeria AutoFreeze

Bubble ratio
~40%

48 Layers

Bubble ratio
↑ ~5x

Static CALM ADP-C

Figure 1: Average idleness percentage of GPUs (per iteration) for training dynamic GPT mod-
els Radford et al. (2018). Five example cases use models parameterized to have between 24 and
48 layers, and for one example case (MoEs) we report the average idleness percentage for Mix-
tral 8x7b and LlaMA-MoE-3.5B models. For pipeline parallelism, we use the highest performing
pipeline parallelism scheme known to the authors: the ”almost zero-bubble pipeline parallelism”
scheme Qi et al. (2024). All reported bubble ratios are measured on a hybrid of pipeline parallelism
and data parallelism on 720 H100 GPUs in total, excluding MoEs which uses 128 H100 GPUs in
total. Mixture of Experts: we observe ∼25% bubble ratio in the pipeline on Mixtral 8x7b Jiang
et al. (2024) and LLaMA-MoE-3.5b Team (2024), arising from the load imbalance imposed by the
routing schemes used in token choice (S-BASE Lewis et al. (2021b) and load imbalance with auxil-
iary loss Jiang et al. (2024)). Gradual prunning of model parameters: we observe almost a five
fold increase in idleness at 90% sparsity levels. Note that idleness at Dense is the inherent pipeline
bubbles of a static model. Layer freezing: SoTA freezing schemes that incorporate load balancing
(Egeria Wang et al. (2022) and AutoFreeze Liu et al. (2021)) yield ∼40% bubble ratio. Dynamic
Sparse Flash Attention: locality sensitive hashing with support for flash attention Pagliardini et al.
(2023) exhibits a 4x increase in the bubble ratio over the baseline dense attention. Early exit: SoTA
early exit methods (CALM Schuster et al. (2022) and ADP-C Liu et al. (2022b)) exhibits up to 5x
increase in the bubble ratio over the baseline (w/o early exit), mainly due to the accumulation of
bubbles in late layers. Mixture of Depths: we observe ∼18% bubble ratio in the pipeline, arising
from the load imbalance imposed by the routing scheme of expert choices that lacks information
about future tokens Raposo et al. (2024).

(2022b); Kim et al. (2022). Other than computational efficiency, there is a wide range of reasons
that motivate the use of different forms of dynamic models to improve certain model attributes, such
as explainability and generalization. We refer the reader to the surveys Han et al. (2021); Tay et al.
(2022) on different forms of dynamic models.

One of the main downsides of using dynamic models is that they introduce load imbalance in
pipeline parallelism, effectively decreasing the throughput of LLM training Zhou et al. (2022a);
He et al. (2022). For example, Figure 1 shows the average idleness of GPUs for GPT language
models with different numbers of layers, for different types of dynamic models. Load imbalance
manifests itself as bubbles that appear in the pipeline due to a stalling accelerator waiting to receive
work from its late neighboring worker(s). Since a pipeline is only as fast as its slowest stage, load
balancing becomes crucial for efficient resource utilization.

Production distributed training solutions typically implement a static load balance at the beginning
of training and maintain the same load distribution throughout the training. For instance, Megatron-
LM Shoeybi et al. (2019) evenly distributes all transformer layers across the accelerators. Deep-
Speed Smith (2023) currently offers three partitioning methods for distributing model layers: Uni-
form, which balances the number of layers; param, which balances the number of parameters in each
stage; and regex, which balances layers whose names match a given regex pattern. However, this
approach operates on the assumption that the accelerators’ workloads remain roughly unchanged
throughout training. As a result, it fails to address the pipeline stalls introduced by dynamic models,
ultimately leading to a decrease in computational efficiency.

Considering the increasing importance of efficient MoEs/MoDs, sparse dynamic models, layer freez-
ing, and other dynamic training workloads, this work aims to mitigate the pipeline stalls introduced
by dynamic models. We introduce DYNMO, an elastic load-balancing framework designed for

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

dynamic models, to ensure balanced pipeline stages during training. DYNMO dynamically re-
distributes the workload among accelerators whenever an imbalance arises during training, con-
sequently enhancing computational efficiency and leading to cost savings. DYNMO incorporates
two different dynamic balancers, both proven to converge to the optimal workload balance among
workers. Our experiments demonstrate that DYNMO incurs negligible overhead and can scale effec-
tively in both: a) single-node multi-GPU environments and b) multi-node multi-GPU environments
typically used for training LLMs with hybrid parallelism.

DYNMO not only enhances performance through dynamic load balancing but also offers the ca-
pability to elastically adapt GPU resources. Specifically, as the total workload decreases during
training due to gradual pruning or early exit, the load balancer consolidates the work onto fewer
GPUs –subject to memory capacity constraints– while maintaining performance. GPUs that are no
longer needed for training can then potentially be released back to the job scheduler.

DYNMO is the first work to study pipeline stalls caused by training dynamic models. Innovative
designs of dynamic models struggle to deliver practical impact, at large scale training, unless there is
a platform from which those models can be made efficient. DYNMO provides the essential platform
for achieving efficiency in these models. Additionally, considering the substantial costs required
for each training run of GPT-class models Li (2022); Heim (2022); Morgan (2022), improving the
efficiency of dynamic models can result in significant cost savings.

Finally, we emphasize that DYNMO has no impact on model accuracy, as its role is solely to
redistribute workload, without interfering with the learning process or changing the learning
regime in any way, i.e., DYNMO functions as a complementary system software solution that op-
erates independently of the underlying strategies used for parameters pruning, early exist strategy,
layer freezing, experts routing etc. This makes DYNMO extendable and compatible with various
dynamic schemes. In principle, it can even be applied to models that undergo dynamic changes for
reasons other than the six example cases we list in this paper, such as manufacturing variability of
computing units Sinha et al. (2022). In short, our contributions are:

• We introduce DYNMO, which enables researchers to explore dynamic models and significantly
improves the end-to-end training efficiency of such models, making their practical application
more feasible. We invoke DYNMO to rebalance at regular intervals without prior knowledge of
dynamism, hence balancing the load in a fully automated and transparent manner. DYNMO is or-
thogonal to the underlying pipeline parallelism and dynamism scheme; it allows for compatibility
with various dynamic compute and model reduction schemes.

• We propose two load balancing algorithms proven to converge to optimal balancing in order to
alleviate the negative effects of dynamic models on pipeline utilization. We further introduce a
scheme for reducing the number of GPUs used during training by re-packing work to fewer GPUs.

• We show the benefits of the framework with six different example cases of dynamic models, in
both single-node and multi-node settings. DYNMO achieves 1.23x (MoEs), 3.18x (parameter
pruning), 2.23x (layer freezing), 4.02x (sparse attention), 4.52x (early exit), and 1.17x (MoDs)
speedups over (static) Megatron-LM on multi-node hybrid data and pipeline parallelism with up
to 720 H100 GPUs. We demonstrate that the re-packing strategy can be effective in reducing the
number of GPUs by up to half while sustaining comparable performance.

2 MOTIVATION AND BACKGROUND

2.1 BUBBLES IN PIPELINE PARALLELISM

There are two types of bubbles in pipeline parallelism: (i) inherent bubbles of the pipeline schedule
(e.g. bubbles in-between forward and backward passes in GPipe Huang et al. (2019)), and (ii)
bubbles introduced by the dynamic models during training (e.g. bubbles introduced by sparsification
during training). We aim to reduce the latter type of bubbles by carefully redistributing the layers
among stages to minimize the workload imbalance in the pipeline. Appendix B elaborates with
analysis of bubbles in pipeline parallelism.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 DYNAMIC MODELS

To reduce the compute and memory costs, training schemes that introduce dynamic training work-
loads are increasingly emerging. The irregular control-flow in those dynamics models lead in-
evitably to load imbalance. This leads to inefficiencies that often cause the dynamic model to be
slower than the baseline, hence defeating the purpose of using a dynamic model.

The load balancing problem considered can be formally defined as follows. Given a set of workers
N = {N1,N2, . . . ,Nn} and a set of tasks T = {t1, t2, . . . , tm}, each task tj ∈ T is associated
with a workload cj . The total workload is denoted by:

C =

m∑
j=1

cj .

Let A : T → N be a load assignment function that maps each task to a worker. The load of a worker
Ni ∈ N , denoted Li, is defined as the sum of the workloads of tasks assigned to it:

Li =
∑

tj∈A−1(Ni)

cj .

The objective of the load balancing problem is to minimize the maximum load among all workers:

min
A

max
i∈{1,...,n}

Li = min
A

max
i∈{1,...,n}

 ∑
tj∈A−1(Ni)

cj

 .

This optimization problem aims to distribute the tasks such that the workload is balanced across the
workers, minimizing the worst-case scenario in terms of load.

In the following we list the dynamic model example cases we examine in this paper.

Mixture of Experts

In Mixture of Experts (MoEs) Shazeer et al. (2017b), the model capacity is increased by routing
input tokens selectively to specialized sub-networks known as experts, rather than processing all
tokens through the same feed-forward network. This design improves efficiency but introduces a
new source of load imbalance.

We define the load imbalance in MoEs as follows. Let E = {e1, e2, . . . , ek} be the set of experts in
an MoE layer, where each expert ei is assigned to a worker Ni ∈ N . During distributed training,
tokens are routed to these experts based on a routing function R : T → E , where each token tj ∈ T
is sent to one (or more) experts.

The load of an expert ei, denoted Lei , is defined as the total workload of the tokens assigned to it:

Lei =
∑

tj∈R−1(ei)

cj .

Ideally, the load should be balanced across all experts, i.e., Lei ≈ Lej for all ei, ej ∈ E . However, in
practice, the routing function R does not guarantee perfect balance due to the stochastic and learned
nature of the routing process, which often includes an auxiliary loss Jiang et al. (2024) or a linear
assignment problem Lewis et al. (2021b).

Let Lmax and Lmin denote the maximum and minimum loads across the experts:

Lmax = max
i∈{1,...,k}

Lei , Lmin = min
i∈{1,...,k}

Lei .

The load imbalance ∆L is defined as the relative difference between the maximum and minimum
loads:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

∆L =
Lmax − Lmin

1
k

∑k
i=1 Lei

.

In practical scenarios, even for large batch sizes, this imbalance can be significant. For example,
empirical results from the Mixtral 8x7b model Jiang et al. (2024) demonstrate up to 40% difference
between the busiest and least busy experts. This is consistent with the imbalance observed in token
choice routing reported by several others (e.g., Zhou et al. (2022b); Raposo et al. (2024). This
discrepancy arises because the routing function R often includes a learned component, such as
an auxiliary loss attached to the MLPs or a linear assignment scheme, leading to suboptimal and
dynamic routing choices.

This imbalance propagates through the training pipeline, causing bubbles in the communication
phase, particularly during the all to all collective operation, where tokens are returned to their orig-
inal workers. The result is inefficiency in GPU utilization and increased latency, highlighting the
importance of developing improved load balancing mechanisms for MoEs in distributed training
systems.

Parameter Pruning

Parameter pruning removes a subset of model parameters, resulting in a sparse network that can
maintain similar performance to the original dense model. However, pruning during training intro-
duces load imbalance due to non-uniform pruning across different layers.

Parameter pruning methods, such as global magnitude pruning Hagiwara (1993), selectively remove
parameters across the entire network based on their importance. Let L = {l1, l2, . . . , ld} be the set
of layers in the neural network, and each layer li is assigned to a workerNi ∈ N . During distributed
training, the workload of each layer may change dynamically as parameters are pruned.

Let p(k)i denote the fraction of parameters retained in layer li at time step k. The effective workload
of layer li at time step k, denoted c

(k)
i , is proportional to the number of remaining parameters:

c
(k)
i = p

(k)
i · ci,

where ci is the initial workload of layer li before pruning. The total workload of the network at time
step k is:

C(k) =

d∑
i=1

c
(k)
i .

Let A(k) : L → N be the load assignment function at time step k. The load of a worker Nj ∈ N ,
denoted L

(k)
j , is defined as the sum of the effective workloads of the layers assigned to it:

L
(k)
j =

∑
li∈(A(k))−1(Nj)

c
(k)
i .

Ideally, the load should be balanced across all workers, i.e., L(k)
j ≈ L

(k)
j′ for allNj ,Nj′ ∈ N . How-

ever, if the pruning method does not prune each layer uniformly (e.g., global magnitude pruning),
the fraction p

(k)
i may vary significantly across layers, leading to load imbalance.

Let L(k)
max and L

(k)
min denote the maximum and minimum loads among the workers at time step k:

L(k)
max = max

j∈{1,...,n}
L
(k)
j , L

(k)
min = min

j∈{1,...,n}
L
(k)
j .

The load imbalance ∆L(k) at time step k is defined as the relative difference between the maximum
and minimum loads:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

∆L(k) =
L
(k)
max − L

(k)
min

1
n

∑n
j=1 L

(k)
j

.

In practice, non-uniform pruning introduces significant differences in layer workloads, causing im-
balances that lead to pipeline stalls or bubbles Zhu & Gupta (2017); Frankle & Carbin (2018);
Bellec et al. (2017). These bubbles occur because certain workers become idle while waiting for the
completion of tasks assigned to workers handling more heavily pruned layers. This dynamic load
imbalance emphasizes the need for adaptive load balancing strategies to efficiently handle pruned
models in distributed training scenarios. Appendix B elaborates on the factors that drive pruning:
pruning criteria, structure, schedule.

Layer freezing

Layer freezing is a technique used to reduce computational costs during training by halting updates
to certain layers of an LLM once they have converged. While layer freezing can lead to significant
efficiency gains, it also introduces load imbalance when the frozen layers are unevenly distributed
among workers.

Let L = {l1, l2, . . . , ld} denote the set of layers in the DNN, where each layer li is assigned to a
worker Ni ∈ N . During training, earlier layers of the network often converge faster Wang et al.
(2022), leading to the possibility of freezing these layers to reduce computation. Let f (k)

i ∈ {0, 1}
be an indicator variable for layer li at time step k, where:

f
(k)
i =

{
1, if layer li is frozen at time step k,

0, otherwise.

The effective workload of a layer li at time step k, denoted c
(k)
i , is adjusted based on its frozen

status:

c
(k)
i = (1− f

(k)
i) · ci,

where ci is the initial workload of layer li before freezing. If f (k)
i = 1, then c

(k)
i = 0, indicating

that the layer contributes no computational load.

The total workload at time step k is:

C(k) =

d∑
i=1

c
(k)
i .

Let A(k) : L → N be the load assignment function at time step k. The load of a worker wj ∈ W ,
denoted L

(k)
j , is defined as:

L
(k)
j =

∑
li∈(A(k))−1(wj)

c
(k)
i .

Ideally, the load should be balanced across all workers, i.e., L(k)
j ≈ L

(k)
j′ for all Nj ,Nj′ ∈ N .

However, if frozen layers are not evenly distributed among workers, this can lead to significant load
imbalance.

Let L(k)
max and L

(k)
min denote the maximum and minimum loads among the workers at time step k:

L(k)
max = max

j∈{1,...,n}
L
(k)
j , L

(k)
min = min

j∈{1,...,n}
L
(k)
j .

The load imbalance ∆L(k) at time step k is defined as:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

∆L(k) =
L
(k)
max − L

(k)
min

1
n

∑n
j=1 L

(k)
j

.

In practice, this imbalance occurs because the frozen layers often reside in the earlier parts of the net-
work, which may be unevenly assigned across workers. This uneven distribution can cause certain
workers to experience reduced computational load while others handle non-frozen, heavier work-
loads, resulting in pipeline stalls Shen et al. (2020). As a result, dynamic load balancing strategies
are needed to address the changing workload during training when using layer freezing.

Dynamic Sparse Flash Attention

Dynamic sparse flash attention is a recent technique that combines hash-based sparse attention with
FlashAttention Dao et al. (2024); Pagliardini et al. (2023). This approach leverages dynamic spar-
sification to accelerate attention computations by restricting the attention matrix to specific blocks
determined by hash codes. However, the varying levels of sparsification across layers introduce
significant load imbalances during distributed training.

Let L = {l1, l2, . . . , ld} be the set of layers in the neural network, where each layer li employs
a dynamic sparse attention mechanism. The workload of each layer depends on the sparsity level
induced by the hash-based attention mechanism, which varies dynamically during training.

Define s(k)i as the sparsity factor of layer li at time step k, where s(k)i ∈ [0, 1] represents the fraction
of non-zero elements in the attention matrix after sparsification. The effective workload of layer li
at time step k, denoted c

(k)
i , is adjusted based on the sparsity factor:

c
(k)
i = s

(k)
i · ci,

where ci is the initial workload of layer li before applying dynamic sparsification. The total work-
load at time step k is:

C(k) =

d∑
i=1

c
(k)
i .

Let A(k) : L → N be the load assignment function at time step k. The load of a worker Nj ∈ N ,
denoted L

(k)
j , is defined as:

L
(k)
j =

∑
li∈(A(k))−1(Nj)

c
(k)
i .

In an ideal scenario, the loads should be balanced across all workers, i.e., L(k)
j ≈ L

(k)
j′ for all

Nj ,Nj′ ∈ N . However, due to the dynamic nature of hash-based sparse attention, the sparsity
factor s(k)i can vary significantly across layers, causing discrepancies in the workloads assigned to
different workers.

Let L(k)
max and L

(k)
min denote the maximum and minimum loads among the workers at time step k:

L(k)
max = max

j∈{1,...,n}
L
(k)
j , L

(k)
min = min

j∈{1,...,n}
L
(k)
j .

The load imbalance ∆L(k) at time step k is defined as:

∆L(k) =
L
(k)
max − L

(k)
min

1
n

∑n
j=1 L

(k)
j

.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

In practice, the dynamic sparsification introduced by hash-based attention leads to varying levels of
computational effort among different layers and across different time steps Pagliardini et al. (2023).
This variability results in significant load imbalances, as some workers may process layers with
higher sparsity (lower workload), while others handle layers with denser attention matrices. Conse-
quently, dynamic load balancing mechanisms are required to mitigate these imbalances and maintain
efficient utilization of distributed resources during training.

Early Exit

Early Exit is a technique that allows tokens to skip subsequent layers once they have reached a confi-
dent state. While this method, also known as token pruning, can significantly reduce computational
costs, it introduces a new form of load imbalance due to the uneven distribution of token processing
across layers.

Let L = {l1, l2, . . . , ld} denote the set of layers in the neural network, where tokens can exit the
model early, skipping the remaining layers. Define t(k) as the total number of tokens being processed
at time step k, and let t(k)i be the number of tokens processed by layer li at time step k. In an Early
Exit scheme, t(k)i generally decreases with the layer depth, as tokens exit before reaching deeper
layers Schuster et al. (2022); Liu et al. (2022b).

The effective workload of layer li at time step k, denoted c
(k)
i , is proportional to the number of

tokens processed by that layer:

c
(k)
i =

t
(k)
i

t(k)
· ci,

where ci is the initial workload of layer li before applying Early Exit. The total workload at time
step k is:

C(k) =

d∑
i=1

c
(k)
i .

Let A(k) : L → N be the load assignment function at time step k. The load of a worker Nj ∈ N ,
denoted L

(k)
j , is defined as:

L
(k)
j =

∑
li∈(A(k))−1(Nj)

c
(k)
i .

Ideally, the loads should be balanced across all workers, i.e., L(k)
j ≈ L

(k)
j′ for all Nj ,Nj′ ∈ N .

However, due to Early Exit, the number of tokens processed by deeper layers (t(k)i for larger i)
decreases significantly, leading to a reduced workload for workers handling these layers.

Let L(k)
max and L

(k)
min denote the maximum and minimum loads among the workers at time step k:

L(k)
max = max

j∈{1,...,n}
L
(k)
j , L

(k)
min = min

j∈{1,...,n}
L
(k)
j .

The load imbalance ∆L(k) at time step k is defined as:

∆L(k) =
L
(k)
max − L

(k)
min

1
n

∑n
j=1 L

(k)
j

.

In practice, Early Exit schemes cause severe load imbalances as fewer tokens reach the deeper
layers, leading to underutilization of the workers responsible for these layers. The imbalance can be
exacerbated, resulting in increased bubble ratios (up to 5x) due to idle time Schuster et al. (2022).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

This makes Early Exit an ideal case for dynamic load balancing strategies, such as repacking layers
into fewer workers to sustain training throughput.

Mixture of Depths

Mixture of Depths(MoDs) Raposo et al. (2024) is a technique that generalizes the early exit scheme
by allowing tokens to skip not only the final layers but also intermediate ones. The version of MoDs
used in this paper is based on expert choice, leveraging Mixture of Experts (MoEs) for enhanced
performance. However, the dynamic nature of layer skipping and the inherent variability in expert
choice introduce significant load imbalances during distributed training.

Let L = {l1, l2, . . . , ld} be the set of layers in the neural network, and t(k) be the total number of
tokens being processed at time step k. In the Mixture of Depths scheme, tokens can skip intermediate
layers based on expert predictions, leading to a varying number of tokens processed at each layer.
Let t(k)i denote the number of tokens processed by layer li at time step k.

Define r
(k)
i as the routing weight for layer li, determined by an auxiliary MLP predictor that esti-

mates whether a token should bypass that layer or not. The effective workload of layer li at time
step k, denoted c

(k)
i , is then:

c
(k)
i = r

(k)
i · t(k)i · ci,

where ci is the initial workload of layer li before applying the MoD scheme. The total workload at
time step k is:

C(k) =

d∑
i=1

c
(k)
i .

Let A(k) : L → N be the load assignment function at time step k. The load of a worker Nj ∈ W ,
denoted L

(k)
j , is defined as:

L
(k)
j =

∑
li∈(A(k))−1(Nj)

c
(k)
i .

In an ideal scenario, the loads would be balanced across all workers, i.e., L(k)
j ≈ L

(k)
j′ for all

wj , wj′ ∈ W . However, two main factors contribute to load imbalance in the MoD scheme:

1. **Prediction Inaccuracies**: The auxiliary MLP predictor used to route tokens can misesti-
mate whether a token will be among the top-k selected for the next layer. These inaccuracies lead
to fluctuations in r

(k)
i , causing variability in the token distribution across layers. 2. **Integration

with MoEs**: The MoD implementation leverages Mixture of Experts (MoEs) for improved perfor-
mance, which introduces additional variability in token routing. Since the MoE layers dynamically
select experts based on token features, the effective workload c

(k)
i may differ significantly from the

expected workload, amplifying the imbalance.

Let L(k)
max and L

(k)
min denote the maximum and minimum loads among the workers at time step k:

L(k)
max = max

j∈{1,...,n}
L
(k)
j , L

(k)
min = min

j∈{1,...,n}
L
(k)
j .

The load imbalance ∆L(k) at time step k is defined as:

∆L(k) =
L
(k)
max − L

(k)
min

1
n

∑n
j=1 L

(k)
j

.

Empirically, we observe imbalances of up to 18% in the MoD scheme due to the combined effects
of routing prediction errors and the inherent variability in expert selection in MoEs Raposo et al.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Algorithm 1 End-to-end Training of Dynamic LLMs with DYNMO

Input: model, train iters, rank, workers
Input: dynamism args, balance args, pack args

1: dynamism rat, dynamism region, dynamism freq← dynamism args
2: is load balance, balancer← balance args
3: is pack, num workers to pack← pack args
4: dynamism idx← 0
5: dynamism iter← NULL
6: profile← 0
7: for iter← 0 to train iters do
8: train step(model, profile)
9: if iter in dynamism region AND iter % prune freq == 0 then

10: worker dynamism(model, dynamism rat[dynamism idx], rank) ▷ Algo. 2 in Appendix C
11: dynamism idx += 1
12: dynamism iter = iter
13: if is load balance then
14: profile = 1
15: end if
16: end if
17: if is load balance AND iter == dynamism iter + 1 then
18: load balance(model, balancer) ▷ Algo. 3 in Appendix C
19: profile← 0
20: end if
21: if is pack AND iter == dynamism iter + 1 then
22: pack workload(model, num workers to pack) ▷ Algo. 4 in Appendix C
23: end if
24: end for

(2024). These imbalances result in uneven workloads across workers, necessitating adaptive load
balancing strategies to maintain efficient training throughput.

3 DYNMO: ELASTIC AND BALANCED END-TO-END TRAINING OF DYNAMIC
LLMS

3.1 OVERVIEW

In this work, we use six example cases of dynamic models for which current (static) distributed
training systems are not ready to handle efficiently. Even though we show the efficiency of our load
balancing system for dynamic LLMs with these example cases, they can be a basis for expanding to
other forms of dynamic models.

Algorithm 1 shows the overall flow of operations of DYNMO with model dynamism. The dynamism
function (line 10) depends on the target case. For instance, if the target case is parameter pruning,
the dynamism function would apply global pruning on different worker. The algorithm takes as in-
put a model, the number of training iterations, the rank of the accelerator, and several arguments for
managing the dynamism, balancing, and packing the model’s workloads. We start the training with
the original model and train it until a user-specified dynamism to apply is reached. The frequency
varies by the target case, in layer freezing it is as frequent as every 50 iterations, while in parameter
tuning the pruning frequency is in the range of 3000-7000 iterations. The model or control flow
is altered only if the training is in the dynamism stage. In this stage, the model is adjusted every
dynamism freq iteration, where the model (or control flow inside the model) is modified until it
meets the specified stopping criteria (lines 9-16). The first iteration after each dynamism operation
is used for profiling the time it takes to execute each layer in the altered model and the memory
usage of all workers (accelerators) in the pipeline. Next, DYNMO collects the profiling information
and decides on balancing the workload by moving layers across pipeline stages based on the execu-
tion times of individual layers to minimize the pipeline stalls, subject to the constraints of memory
capacity per worker (line 17-20). DYNMO also attempts to re-pack the total workload into fewer
number of GPUs if the re-packing feature is enabled by the end user (line 21-23). Once the training
is out of the dynamism region, the balanced pipeline continues to execute with the model. Figure

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Figure 2: Overview of DYNMO. The flow in the figure (top to bottom) is repeated until training is
completed. Each yellow and orange rectangle represents a transformer layer. The size of a rectangle
illustrates the amount of work in a layer. (1) shows the pipeline before the model starts to change
due to dynamism. (2) some action (dynamically) changes the model, or the flow of work inside
the model. (3) profiles the pipeline to check if there is any imbalance between stages, (4) performs
load balancing based on the profiling results, (5) trains the balanced pipeline until the next time to
rebalance, optionally it reduces the number of resources (GPUs) used in training by re-packing.

2 illustrates the overview of DYNMO with all its steps. The implementation of individual steps of
model (or control-flow) altering, load balancing, and re-packing can be found in their respective
sections.

3.2 PROFILING THE DYNAMISM

To use DYNMO with different example cases of dynamic models, we profile the dynamism mecha-
nism for each example case. By large, the mechanism for measuring the load balance, redistributing
the load, and re-packing (when possible) does not vary from case to case. DYNMO operates as a
black-box approach where the load balancing happens at regular fixed intervals, without any knowl-
edge of whether the model has changed or not. As will be shown in the results section, the very low
overhead allows DYNMO to be invoked even at the granularity of each iteration. More details on
the dynamism in the example use cases, and the dynamic reconfiguration of the pipeline available in
Appendix F.

3.3 LOAD BALANCING

DYNMO implements two load balancing algorithms, and can be extended to support other algo-
rithms. The first is centralized parameter-based partitioning that balances partitions based on the
number of parameters. The load balancing algorithm is built on top of DeepSpeed’s load balanc-
ing utility functions for partitioning in model parallelism Smith (2023). The second algorithm is
an iterative decentralized diffusion-based algorithm that aims to minimize the variance between the
workload of each rank by attempting to move layers from overloaded workers to underloaded ones
in an iterative way. The workload cost can be described by either the layer execution times, or the
parameter counts as in the centralized partitioning method.

The diffusion-based load balancing algorithm achieves ideal load balancing by iteratively minimiz-
ing workload imbalances using a Lyapunov-inspired approach. The potential function ϕ, defined as
the sum of workload gaps between workers, serves as a measure of imbalance in the system. Each
iteration of the algorithm reduces ϕ by redistributing tasks from overloaded to underloaded workers,
prioritizing layer transfers that yield the largest reductions in imbalance while satisfying memory
constraints. The algorithm’s probabilistic analysis guarantees that ϕ decreases towards a conver-
gence threshold γ, with the rate of convergence bounded by O(N 2 log(SN/γ) logN), where N
is the number of workers and S is the total pipeline size. This systematic reduction ensures that
workload imbalances, quantified by the bubble ratio, are minimized, driving the system towards

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

an optimally balanced state. The theoretical guarantees of convergence and imbalance reduction
underpin the algorithm’s robustness in dynamic environments.

We demonstrate that the two load balancing schemes (used in Algorithm 1) meet the goals for
optimal load balancing by using the following lemmas. Lemmas proofs presented in Appendix C.

Lemma 1. A centralized load balancer Lc over N workers satisfies maximum reduction in the
imbalance Ni if and only if Ni reduces the bubble ratio to minimum.

Lemma 2. An iterative decentralized diffusion based load balancer Ld over N workers satisfies
maximum reduction in the imbalance Ni if and only if Ni reduces the bubble ratio to minimum.
Also the load balancer is guaranteed to converge to the maximum reduction in imbalance in the
following number of rounds

O

(
min

{
N 2log

(
SN
γ

)
log N ,

SN log N
γ

})
where γ ∈ R>0 is the convergence factor and ∈ R>0 is the total number of stages in the pipeline.

3.4 RE-PACKING DYNAMIC MODELS TO FEWER WORKERS

Workload re-packing is the process of merging the total workload into a smaller number of work-
ers (GPUs) with the purpose of using the available resources more efficiently, i.e. unused GPUs
are released when the overall amount of work in training drops. This can be achieved with simple
algorithms (in small scale) such as first-fit, best-fit, and round-robin as well as complex optimiza-
tion heuristics. Workload re-packing aims to increase the worker utilization and reduce the overall
number of workers employed to continue the training process. For long training schedules that are
common in LLM training, workload packing can result in substantial cost savings. It may also pro-
vide improved performance due to reduction in the number of cross-worker communication calls,
and smaller pipeline bubbles.

Re-packing Definition Re-packing occurs when the total workload C(k) decreases below a thresh-
old τ . At this point, the model layers (tasks) are redistributed across a smaller subset of workers to
optimize resource utilization. Let N (k) ⊆ N denote the active set of workers after re-packing at
time step k, where |N (k)| ≤ n.

The load assignment function after re-packing is denoted by A(k) : T → N (k). The load of an
active worker Ni ∈ N (k) is defined as:

L
(k)
i =

∑
tj∈(A(k))−1(Ni)

c
(k)
j .

The objective after re-packing is to minimize the maximum load across the active workers:

min
A(k),N (k)

max
i∈{1,...,|N (k)|}

L
(k)
i .

Re-packing Condition Re-packing is triggered if:

C(k) < τ and |N (k)| < n.

The aim of re-packing is to reduce the number of active workers |N (k)|, while ensuring that the
maximum load remains balanced:

max
i∈{1,...,|N (k)|}

L
(k)
i ≈ C(k)

|N (k)|
.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

We use a first-fit algorithm for workload consolidation. The goal of this algorithm is to reduce the
number of active workers (subject to memory capacity constraints). When the combined memory
usage of every pair of workers is less than the memory capacity of a single worker, we migrate the
layers in order to free one of the GPUs. This repeats in an iterative fashion for every two pairs until
no more GPUs can be eliminated. Appendix C elaborates on our algorithm for efficient re-packing.

When possible, repacking is an additional advantage to load balancing. We implement repacking in
DYNMO at the load balancer level to enable the release of GPUs. To ensure the GPUs are released
in a practical manner, we use the NCCL communicator splitting functionality to allow idle GPUs to
be used by a concurrent communicator of the new job without the risk of deadlock. We elaborate
on our method for releasing GPUs and list other alternative methods in Appendix C. DYNMO’s
task ends at releasing the GPUs; reclamation of the released GPUs and assigning them new jobs
by the middleware or scheduler is outside the scope of this paper. That being said, it is worth
noting that in single-node multi-GPU systems, Nvidia Multi-Instance GPU (MIG) Nvidia (2023)
supports node partitioning for multi-tenancy. GPUs that have been released can be returned to MIG
for allocation to other tenants. In multi-node environments, cloud schedulers have the ability to
acquire released resources and reassign them to other jobs, often leveraging technologies like elastic
Kubernetes Elastic (2023).

3.5 OVERHEAD OF DYNMO AND FREQUENCY OF DYNAMISM

The overhead of DYNMO is negligible. For all the results we show in this paper, for all model
sizes and different dynamism example cases, the percentage of overhead is a few single digits at
its highest; this includes the complete overhead of DYNMO: profiling data collection, rebalancing
algorithm, and layers migration between GPUs. The evaluation section reports the load balancing
overheads.

As a basic rule, we apply the rebalancing (via DYNMO) every time the model or the control flow
changes. Since the overhead of DYNMO is very low, we could apply it as frequently as needed,
based on the requirements of the applications. For example in gradual pruning the typical frequency
of dynamism (i.e. model changes requiring load rebalancing) is in the order of 1,000s of iterations.
On the other hand, for MoEs and MoDs the rebalancing in every iteration since the imbalance
is unpredictable and dependent on point the routing decision is taken, i.e., in the forward pass at
each FFN. For MoEs and MoDs we rebalance in the back propagation phase where we attach the
movement of layers to the pipeline parallelism scheme (i.e. we migrate the layers as we propagate
the gradients back down the pipeline from the last layer to the first layer).

3.6 LIMITATIONS

We focus on dynamism for LLMs and currently do not support other types of DNNs. Our method
cannot automatically detect imbalance in a way that is transparent to the training process, i.e., we
apply DYNMO at a fixed frequency regardless of whether the model has changed or not. We also
allow the user to set the frequency. As future work, a background light weight tracker can be used
to identify the dynamism pattern. Another alternative would be training our method to forecast the
imbalance during training.

4 EVALUATION

This section contains empirical results and analysis of DYNMO’s effectiveness. Elaborate details on
the software, hardware, and training environment in Appendix A.

We conducted experiments using two dynamic load balancing algorithms, each with two different
configurations. These algorithms were employed consistently the experiments for all six example
cases of dynamic models. The first algorithm, referred to as Partition: by Param, is based on a
DeepSpeed Rajbhandari et al. (2020) API. It uses a combination of binary search and linear probing
to determine the optimal partitioning based on the parameter counts of the decoder layers. Another
variation of this algorithm, called Partition: by Time, employs execution times of decoder layers as
input. The second algorithm is a decentralized iterative diffusion-based load balancing approach,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

0

2,000

4,000

6,000

8,000

10,000

24 32 40 48

To
ke
ns
/s
ec

Static (Megatron-LM)
Static (DeepSpeed)
DynMo w/o Re-packing
DynMo (Partition)
DynMo w/o Re-packing
DynMo (Diffusion)2.32x
2.78x 2.84x

2.61x

Gradual Pruning

Number of Layers

720 A100 GPUs (90 nodes w\ 8x A100s) 30-way data parallel + 24-way pipeline
PERIODIC W/O and W Re-packing

0

1,000

2,000

3,000

4,000

5,000

6,000

To
ke
ns
/s
ec

Static (Megatron-LM)

Static (DeepSpeed)

Tutel

DynMo w/o
Re-packing
DynMo w/o
Re-packing
DynMo (Partition)

DynMo (Diffusion)

Mixtral 8x7b LLaMA-MoE-3.5B

Model

1.21x

1.23x

Mixture of Experts

0

1,000

2,000

3,000

4,000

5,000

24 32 40 48

To
ke
ns
/s
ec

Egeria
DynMo w/o Re-packing
DynMo (Parition)
DynMo w/o Re-packing
DynMo (Diffusion)

Number of Layers

Layer Freezing

1.36x
1.48x
1.58x

1.69x

0

1,000

2,000

3,000

4,000

5,000

6,000

24 32 40 48

To
ke
ns
/s
ec

Dense Attn.
DynMo w/o Re-packing
DynMo (Parition)
DynMo w/o Re-packing
DynMo (Diffusion)

Number of Layers

2.71x
3.90x

4.02x

3.73x

Dynamic Sparse Attention

Number of Layers

0

2,000

4,000

6,000

8,000

10,000

24 32 40 48

To
ke
ns
/s
ec

No Early Exit
DynMo w/o Re-packing
DynMo (Parition)
DynMo w/o Re-packing
DynMo (Diffusion)

Early Exit

3.07x

2.70x

2.39x
4.83x

Number of Layers

Mixture of Depths

0

1,000

2,000

3,000

4,000

5,000

24 32 40 48

To
ke
ns
/s
ec

Static (Megatron-LM)
Static (DeepSpeed)
DynMo w/o Re-packing
DynMo (Partition)
DynMo w/o Re-packing
DynMo (Diffusion)

1.17x

1.17x
1.16x
1.16x

Figure 3: Throughput of end-to-end training for six different example cases. DYNMO rebalances
at regular intervals w/o prior knowledge of dynamism. MoE, Sparse Attn., and MoDs: invoke
DYNMO every iteration. Pruning, layer freezing, and early exit: invoke DYNMO every 100s to
1,000s iterations. Speedup we report is the highest among balancing by number of parameters or
layer execution time, divided by the highest among static Megatron-LM and DeepSpeed (or SoTA
baseline, when available). MoEs and MoDs: we use 128 GPUs (16 nodes each with 4x H100s) in
a hybrid of 8-way data parallel + 16-way pipeline). For gradual pruning, layer freezing, dynamic
sparse attention, and early exit we use a total of 720 H100 GPUs (90 nodes each with 4x H100s) in
a hybrid of 30-way data parallel + 24-way pipeline.

which iteratively minimizes load variances among workers. Similar to DeepSpeed, this balancer has
two variants: Diffusion: by Param and Diffusion: by Time.

4.1 END-TO-END TRAINING THROUGHPUT AND SPEEDUP

All our throughput and speedup results include the load balancing overhead, unless specified other-
wise. We trained GPT models Radford et al. (2018) having different numbers of layers to determine
the training throughput and speedup over static Megatron-LM and DeepSpeed (or SoTA baseline,
when available). Figure 3 for MoEs, gradual pruning, and MoDs presents the highest throughput of
two static and four dynamic load balancers. The first static balancer, Megatron-LM Shoeybi et al.
(2019), evenly distributes layers across accelerators. The second static balancer, DeepSpeed Mi-
crosoft (2023), balances the number of parameters before training begins. In contrast, each of the
two the dynamic load balancers (Partition and Diffusion) has two variants to redistribute the layers
after each dynamism step: redistribute based on number of parameters or based on the layer exe-
cution time. Parameter-based balancers require profiling after the pruning step for memory usage
information, while time-based balancers require profiling for memory usage and layer execution
time information. We report the highest among both. Figure 3 for layer freezing, dynamic sparse
attention, and early exit compare the two dynamic load balancers (Partition and Diffusion) over
SoTA baseline that exists for those example cases. We observed that the use of layer execution time
for dynamic load balancing, such as diffusion or partitioning, consistently outperforms parameter
count-based implementations across all scales. In every scale, execution time-based dynamic bal-
ancers surpass the baseline static balancers. As seen in the figure, most of the speedup reported

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

8 6 4 2 8 6 4 2 8 6 4 2 8 6 4 2

24 Layers 32 Layers 40 Layers 48 Layers

Th
ro

ug
hp

ut
 (T

ok
en

s/
Se

c)

Th
ro

ug
hp

ut
 /

G

PU
s

Throughput/# GPUs Throughput (Tokens/Sec)

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

0

500

1,000

1,500

2,000

2,500

8 6 4 2 8 6 4 2 8 6 4 2 8 6 4 2

24 Layers 32 Layers 40 Layers 48 Layers

Th
ro

ug
hp

ut
 (T

ok
en

s/
Se

c)

Th
ro

ug
hp

ut
 /

G

PU
s

Throughput/# GPUs Throughput (Tokens/Sec)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0

100

200

300

400

500

600

700

800

8 6 4 2 8 6 4 2 8 6 4 2 8 6 4 2

24 Layers 32 Layers 40 Layers 48 Layers

Th
ro

ug
hp

ut
 (T

ok
en

s/
Se

c)

Th
ro

ug
hp

ut
 /

G

PU
s

Throughput/# GPUs Throughput (Tokens/Sec)

OO
M OO

M

Re-packing Model While in-Training to Fewer GPUs

8

6

4

2

1st itr.

2,300

6,700

8,500

8

6

4

2

1st itr.

3,000

6,900

8,500

8

6

4

2

1st itr.

3,600

6,900

9,000

8

6

4

2

1st itr.

4,400

7,700

N/A

8

6

4

2

1st itr.

5,800

N/A

N/A

Average Number of GPUs Used Over 10,000 Iterations
5.4 5.7 5.9 6.4 7.2

8

6

4

2

1st itr.

2,300

6,700

8,500

8

6

4

2

1st itr.

3,000

6,900

8,500

8

6

4

2

1st itr.

3,600

6,900

9,000

8

6

4

2

1st itr.

4,400

7,700

N/A

Average Number of GPUs Used Over 10,000 Iterations
5.4 5.7 5.9 6.4

O
O
M

O
O
M

O
O
M

Freezing LayersGradual Pruning

Early Exit

OO
M

OO
M

OO
M

OO
M

Load Balancing Overhead
Number of Layers à 24 32 40 48

Pruning
Param.

Overhead <0.1% <0.1% <0.1% <0.1%

Breakdown

Frequency Every 2,300~4,400 iterations

Layer
Freezing

Overhead <0.1% <0.1% <0.1% <0.1%

Breakdown

Frequency Every 300 iterations

Sparse
Attn.

Overhead 2% 7% 8% 13%

Breakdown

Frequency (Ideally) every iteration

Early
Exit

Overhead <0.1% 0.1% 0.2% 0.3%

Breakdown

Frequency Every 100 iterations

MoDs

Overhead 2% 5% 5% 7%

Breakdown

Frequency Every iteration

Models à Mixtral 8x7b LLaMA-3.5b

MoEs

Overhead 5% 4%

Breakdown

Frequency Every iteration

H100

8,000

7,200

6,400

5,600

4,800

4,000

3,200

2,400

1,600

800

0

12,000

8,000

4,000

0

16,000

20,000

24,000

28,000

32,000

36,000

40,000

1,200

800

400

0

1,600

2,000

2,400

2,800

3,200

6,000

4,000

2,000

0

8,000

10,000

12,000

14,000

16,000

20,000

16,000

0

24,000

28,000

32,000

36,000

40,000

12,000
8,000

4,000

10,000

8,000

6,000

4,000

2,000

Figure 4: Re-packing the layers of GPT models into fewer GPUs as the model gets smaller due to
dynamism. X-axis: Number of GPUs in pipeline parallelism using 90 nodes and up to 8 GPUs per
node. Left Y-axis: throughput/number of GPUs shown with yellow bars. Right Y-axis: through-
put (tokens/sec) shown with blue squares. Below: we show the average number of GPUs needed
throughout the gradual pruning training at which we dynamically re-pack (total 10,000 iterations).
Right: load balancing overhead for example cases. The overhead reported includes: profiling (in

), DYNMO load balancing algorithm (in), and migration of layers between GPUs (in
).

is attributed to balancing the load by redistributing the, and not due to the reduced communication
when we re-pack: the speedup gain from re-packing is between 4 11% of the entire speedup gain. In
other words, even if we do not re-pack at, the speedup gain remains almost the same. Hence we treat
re-packing as just a way to be efficient by using less GPUs, and not as a way to speed up imbalanced
dynamic training. Additional experiments demonstrating the effect of network bandwidth, vertical
scaling, and weak scaling are provided in Appendix E.

Mixture of Experts MoEs requires find-grained dynamism since the load vary from iteration to
iteration. DYNMO shows more than 1.21x improvement on Mixtral 8x7b and LLaMA-MoE-3.5B in
continual training. We do not change any of the hyperparameters from the original implementations.
In addition to the Megatron-LM and DeepSpeed baselines, we also compare a highly MoE-tailored
system: Tutel Hwang et al. (2022). DYNMO significantly outperforms Tutel: 1.18x on Mixtral 8x7b
and 1.21x on LLaMA-MoE-3.5B.

The improvement margins on MoEs and MoDs are in fact among the top in all six use cases, relative
to how much for the bubble ratio was eliminated. DYNMO reduces the bubble ratios of MoEs
and MoDs from 25% to 8% and 18% to 4%, respectively. As a result, the end-to-end training of
two production models improve 1.21x on Mixtral 8x7b and 1.23x on LLaMA-MoE-3.5B. Those
improvements would translate to significant cost savings, considering the huge cost of training those
models (and other similar models).

Gradual Pruning The pruning region starts from iteration 3000 and continues until iteration 7000
and the model is pruned every 1000 iterations until the 90% target sparsity is reached. This corre-
sponds to sparsity levels of 52%, 79%, and 90% after each pruning step. All other hyperparameters
are the same as Megatron-LM. Using layer execution time for diffusion or partitioning dynamic load
balancing outperforms the parameter count-based implementations in each scale, for up to 3.18x.

Layer Freezing DYNMO ourperforms the SoTA layer freezing tool Egeria Wang et al. (2022). We
can observe two main points. First, the speedups of different load balancing algorithms over static
algorithms are largely similar. This is mainly because the different algorithms tend to arrive at
similar load balancing solutions when entire layers are frozen. Second, DYNMO shows increased

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

speedup as the number of layers increases, particularly with diffusion, primarily because Egeria’s
overhead grows fast with the number of layers, while DYNMO overhead remains almost flat.

Dynamic Sparse Attention DYNMO achieves between 2.71x-4.02x speedup over the baseline
dense attention (w/o sparsification). Dynamic sparse attention is the example case where DYNMO
is most efficient at removing the pipeline bubbles. That is since using layer time execution, which
fluctuates a lot in dynamic sparse attention, enables effective redistribution of the layers.
Early Exit DYNMO achieves more than 4x on average over the baseline w/o exit, i.e. when all
tokens pass through the entire model. Similar to dynamic sparse attention, early exit benefits the
most from DYNMO due to the big variance in load between earlier and later layers.
Mixture of Depths Like MoEs, MoDs layer loads vary from iteration to iteration. DYNMO shows
1.17x improvement on the baseline in continual training. We suspect MoDs will in the future be
able to benefit more from custom load balancers that leverage the knowledge of how MoEs is used
in hybrid with MoDs.

4.2 OVERHEAD OF LOAD BALANCING

Figure 4 (right) reports the load balancing overheads. This includes both the load balancing decision
and the actual transfer of the parameters and other data of the layers to be sent or received, e.g., row
offsets and column indices in CSR format for gradual pruning, and gradients in the case of MoEs and
MoDs. The overhead is generally negligible, hence giving the opportunity for the use of DYNMO in
other forms of dynamic models, and not just the six example cases in this paper.

4.3 RE-PACKING MODELS TO FEWER GPUS

In the re-packing experiments, the training starts with 8 GPUs per node in pipeline parallelism. After
a dynamism step, DYNMO attempts to re-pack the total workload into fewer GPUs while satisfying
the memory capacity constraints. Figure 4 reports the throughput/number of GPUs for each model
size where the model is packed into 6, 4, and 2 GPUs. The 8 GPU setting for each model size serves
as a baseline where there is no re-packing. This measurement also corresponds to the performance
per dollar metric as the cost is directly proportional to the number of GPUs used in training.

We observe that in all model scales, re-packing can allow the training to be continued with fewer
GPUs which may result in significant cost savings. For example, in gradual pruning we reduce the
GPU count from 8 to an average of 5.8 GPUs while sustaining the training throughout.

5 CONCLUSION

DYNMO is a load-balancing system for dynamic models where the loads of the workers change
during training. DYNMO provides better load balance than state-of-the-art static load balancing
approaches, which results in better efficiency and faster end-to-end training time. Empirical results
for LLMs with six example cases of dynamic models show that DYNMO significantly improves the
training throughput over the counterparts. We foresee that dynamic models will be more prominent
in the future and dynamic load distribution will be of utmost importance.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

REFERENCES

Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring: Training
very sparse deep networks. arXiv preprint arXiv:1711.05136, 2017.

Dimitri P. Bertsekas. Auction algorithms for network flow problems: A tutorial introduction. Com-
putational Optimization and Applications, 1(1):7–66, Oct 1992. doi: 10.1007/BF00247653. URL
https://doi.org/10.1007/BF00247653.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of
neural network pruning? Proceedings of machine learning and systems, 2:129–146, 2020.

Yann Le Cun, John S. Denker, and Sara A. Solla. Optimal Brain Damage, pp. 598–605. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1990. ISBN 1558601007.

Bin Dai, Chen Zhu, Baining Guo, and David Wipf. Compressing neural networks using the varia-
tional information bottleneck. In International Conference on Machine Learning, pp. 1135–1144.
PMLR, 2018.

Xiaoliang Dai, Hongxu Yin, and Niraj K Jha. Nest: A neural network synthesis tool based on a
grow-and-prune paradigm. IEEE Transactions on Computers, 68(10):1487–1497, 2019.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: fast and
memory-efficient exact attention with io-awareness. In Proceedings of the 36th International
Conference on Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2024.
Curran Associates Inc. ISBN 9781713871088.

Kousik Dasgupta, Brototi Mandal, Paramartha Dutta, Jyotsna Kumar Mandal, and Santanu
Dam. A genetic algorithm (ga) based load balancing strategy for cloud computing. Proce-
dia Technology, 10:340–347, 2013. ISSN 2212-0173. doi: https://doi.org/10.1016/j.protcy.
2013.12.369. URL https://www.sciencedirect.com/science/article/pii/
S2212017313005318. First International Conference on Computational Intelligence: Model-
ing Techniques and Applications (CIMTA) 2013.

Marco Dorigo, Mauro Birattari, and Thomas Stutzle. Ant colony optimization. IEEE Computational
Intelligence Magazine, 1(4):28–39, 2006. doi: 10.1109/MCI.2006.329691.

Elastic. Elastic cloud on kubernetes (eck), 2023. [Retrieved 22 January 2023].

Maha Elbayad, Jiatao Gu, Edouard Grave, and Michael Auli. Depth-adaptive transformer. In In-
ternational Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=SJg7KhVKPH.

Erich Elsen, Marat Dukhan, Trevor Gale, and Karen Simonyan. Fast sparse convnets. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 14629–14638, 2020.

Shiqing Fan, Yi Rong, Chen Meng, Zongyan Cao, Siyu Wang, Zhen Zheng, Chuan Wu, Guoping
Long, Jun Yang, Lixue Xia, et al. Dapple: A pipelined data parallel approach for training large
models. In Proceedings of the 26th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pp. 431–445, 2021.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. J. Mach. Learn. Res., 23:120:1–120:39, 2022.

Wikimedia Foundation. Wikimedia downloads, 2023. URL https://dumps.wikimedia.
org.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. arXiv preprint arXiv:1803.03635, 2018.

Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

17

https://doi.org/10.1007/BF00247653
https://www.sciencedirect.com/science/article/pii/S2212017313005318
https://www.sciencedirect.com/science/article/pii/S2212017313005318
https://openreview.net/forum?id=SJg7KhVKPH
https://openreview.net/forum?id=SJg7KhVKPH
https://dumps.wikimedia.org
https://dumps.wikimedia.org

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Trevor Gale, Matei Zaharia, Cliff Young, and Erich Elsen. Sparse gpu kernels for deep learning.
In SC20: International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–14. IEEE, 2020.

M. Hagiwara. Removal of hidden units and weights for back propagation networks. In Proceedings
of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan), volume 1, pp.
351–354 vol.1, 1993. doi: 10.1109/IJCNN.1993.713929.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021.

Aaron Harlap, Deepak Narayanan, Amar Phanishayee, Vivek Seshadri, Nikhil Devanur, Greg
Ganger, and Phil Gibbons. Pipedream: Fast and efficient pipeline parallel dnn training. arXiv
preprint arXiv:1806.03377, 2018.

Chaoyang He, Shen Li, Mahdi Soltanolkotabi, and Salman Avestimehr. Pipetransformer: Automated
elastic pipelining for distributed training of transformers. arXiv preprint arXiv:2102.03161, 2021.

Jiaao He, Jidong Zhai, Tiago Antunes, Haojie Wang, Fuwen Luo, Shangfeng Shi, and Qin Li.
Fastermoe: Modeling and optimizing training of large-scale dynamic pre-trained models. In
Proceedings of the 27th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, PPoPP ’22, pp. 120–134, New York, NY, USA, 2022. Association for Com-
puting Machinery. ISBN 9781450392044. doi: 10.1145/3503221.3508418. URL https:
//doi.org/10.1145/3503221.3508418.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European conference on
computer vision (ECCV), pp. 784–800, 2018.

Lennart Heim. Estimating palm’s training cost, Jun 2022. URL https://blog.heim.xyz/
palm-training-cost/.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. The Journal
of Machine Learning Research, 22(1):10882–11005, 2021.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant neural
networks using pipeline parallelism. Advances in neural information processing systems, 32,
2019.

Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong Wang, Rafael Salas,
Jithin Jose, Prabhat Ram, Joe Chau, Peng Cheng, Fan Yang, Mao Yang, and Yongqiang Xiong.
Tutel: Adaptive mixture-of-experts at scale. CoRR, abs/2206.03382, June 2022. URL https:
//arxiv.org/pdf/2206.03382.pdf.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024.

Albert Njoroge Kahira, Truong Thao Nguyen, Leonardo Bautista-Gomez, Ryousei Takano, Rosa M.
Badia, and Mohamed Wahib. An oracle for guiding large-scale model/hybrid parallel training of
convolutional neural networks. In HPDC, pp. 161–173. ACM, 2021.

18

https://doi.org/10.1145/3503221.3508418
https://doi.org/10.1145/3503221.3508418
https://blog.heim.xyz/palm-training-cost/
https://blog.heim.xyz/palm-training-cost/
https://arxiv.org/pdf/2206.03382.pdf
https://arxiv.org/pdf/2206.03382.pdf

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande, Edward Lock-
hart, Florian Stimberg, Aaron Oord, Sander Dieleman, and Koray Kavukcuoglu. Efficient neural
audio synthesis. In International Conference on Machine Learning, pp. 2410–2419. PMLR, 2018.

Sehoon Kim, Sheng Shen, David Thorsley, Amir Gholami, Woosuk Kwon, Joseph Hassoun, and
Kurt Keutzer. Learned token pruning for transformers. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, KDD ’22. ACM, August 2022. doi:
10.1145/3534678.3539260. URL http://dx.doi.org/10.1145/3534678.3539260.

J.K. Kruschke and J.R. Movellan. Benefits of gain: speeded learning and minimal hidden layers
in back-propagation networks. IEEE Transactions on Systems, Man, and Cybernetics, 21(1):
273–280, 1991. doi: 10.1109/21.101159.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
Simplifying training of large, sparse models. In International Conference on Machine Learning,
pp. 6265–6274. PMLR, 2021a.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base lay-
ers: Simplifying training of large, sparse models. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pp. 6265–6274. PMLR, 18–24 Jul 2021b. URL
https://proceedings.mlr.press/v139/lewis21a.html.

Chuan Li. Openai’s gpt-3 language model: A technical overview, Aug 2022. URL https://
lambdalabs.com/blog/demystifying-gpt-3.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Shigang Li and Torsten Hoefler. Chimera: efficiently training large-scale neural networks with
bidirectional pipelines. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–14, 2021.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning. In Proceedings of the 31st
International Conference on Neural Information Processing Systems, NIPS’17, pp. 2178–2188,
Red Hook, NY, USA, 2017. Curran Associates Inc. ISBN 9781510860964.

Tao Lin, Sebastian U Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. Dynamic model pruning
with feedback. arXiv preprint arXiv:2006.07253, 2020.

Liu Liu, Zheng Qu, Zhaodong Chen, Fengbin Tu, Yufei Ding, and Yuan Xie. Dynamic sparse
attention for scalable transformer acceleration. IEEE Transactions on Computers, 71(12):3165–
3178, 2022a. doi: 10.1109/TC.2022.3208206.

Yuhan Liu, Saurabh Agarwal, and Shivaram Venkataraman. Autofreeze: Automatically freezing
model blocks to accelerate fine-tuning, 2021.

Zhuang Liu, Zhiqiu Xu, Hung-Ju Wang, Trevor Darrell, and Evan Shelhamer. Anytime dense pre-
diction with confidence adaptivity. In ICLR. OpenReview.net, 2022b.

Microsoft. Deepspeed user guide: Pipeline parallelism. URL https://
deepspeed.readthedocs.io/en/latest/pipeline.html#deepspeed.pipe.
PipelineModule.

Microsoft. Microsoft/deepspeed: A deep learning optimization library that makes distributed
training and inference easy, efficient, and effective., 2023. URL https://github.com/
microsoft/deepspeed.

Mistral. Hugging face: Mixtral of experts, May 2024. URL https://huggingface.co/
papers/2401.04088.

19

http://dx.doi.org/10.1145/3534678.3539260
https://proceedings.mlr.press/v139/lewis21a.html
https://lambdalabs.com/blog/demystifying-gpt-3
https://lambdalabs.com/blog/demystifying-gpt-3
https://deepspeed.readthedocs.io/en/latest/pipeline.html#deepspeed.pipe.PipelineModule
https://deepspeed.readthedocs.io/en/latest/pipeline.html#deepspeed.pipe.PipelineModule
https://deepspeed.readthedocs.io/en/latest/pipeline.html#deepspeed.pipe.PipelineModule
https://github.com/microsoft/deepspeed
https://github.com/microsoft/deepspeed
https://huggingface.co/papers/2401.04088
https://huggingface.co/papers/2401.04088

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine Gibescu,
and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse connec-
tivity inspired by network science. Nature communications, 9(1):1–12, 2018.

Dmitry Molchanov, Arsenii Ashukha, and Dmitry Vetrov. Variational dropout sparsifies deep neural
networks. In International Conference on Machine Learning, pp. 2498–2507. PMLR, 2017.

Timothy Prickett Morgan. Counting the cost of training large language mod-
els, Dec 2022. URL https://www.nextplatform.com/2022/12/01/
counting-the-cost-of-training-large-language-models/.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization. In International Conference on Machine Learning, pp.
4646–4655. PMLR, 2019.

Michael C. Mozer and Paul Smolensky. Skeletonization: A Technique for Trimming the Fat from a
Network via Relevance Assessment, pp. 107–115. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 1989. ISBN 1558600159.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vi-
jay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, et al.
Efficient large-scale language model training on gpu clusters using megatron-lm. In Proceed-
ings of the International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–15, 2021.

Nvidia. Nvidia nccl user guide. URL https://docs.nvidia.com/deeplearning/
nccl/user-guide/docs/usage/communicators.html.

Nvidia. Nvidia multi-instance gpu (mig), 2023. URL https://www.nvidia.com/en-us/
technologies/multi-instance-gpu/. [Retrieved 18 January 2023].

Matteo Pagliardini, Daniele Paliotta, Martin Jaggi, and François Fleuret. Fast attention over long se-
quences with dynamic sparse flash attention. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=UINHuKeWUa.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. When bert plays the lottery, all tickets are win-
ning. arXiv preprint arXiv:2005.00561, 2020.

Fareed Qararyah, Mohamed Wahib, Doğa Dikbayır, Mehmet Esat Belviranli, and Didem Unat. A
computational-graph partitioning method for training memory-constrained dnns. Parallel com-
puting, 104:102792, 2021.

Penghui Qi, Xinyi Wan, Guangxing Huang, and Min Lin. Zero bubble (almost) pipeline parallelism.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=tuzTN0eIO5.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Lan-
guage models are unsupervised multitask learners. 2018. URL https://d4mucfpksywv.
cloudfront.net/better-language-models/language-models.pdf.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

David Raposo, Sam Ritter, Blake Richards, Timothy P. Lillicrap, Peter Humphreys, and Adam San-
toro. Mixture-of-depths: Dynamically allocating compute in transformer-based language models.
2024. URL https://api.semanticscholar.org/CorpusID:268876220.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. arXiv preprint arXiv:2003.02389, 2020.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Q. Tran, Yi Tay, and
Donald Metzler. Confident adaptive language modeling. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022.
URL https://openreview.net/forum?id=uLYc4L3C81A.

20

https://www.nextplatform.com/2022/12/01/counting-the-cost-of-training-large-language-models/
https://www.nextplatform.com/2022/12/01/counting-the-cost-of-training-large-language-models/
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/communicators.html
https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/usage/communicators.html
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://openreview.net/forum?id=UINHuKeWUa
https://openreview.net/forum?id=tuzTN0eIO5
https://openreview.net/forum?id=tuzTN0eIO5
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://api.semanticscholar.org/CorpusID:268876220
https://openreview.net/forum?id=uLYc4L3C81A

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Jaime Sevilla, Lennart Heim, Anson Ho, Tamay Besiroglu, Marius Hobbhahn, and Pablo Villalobos.
Compute trends across three eras of machine learning. arXiv preprint arXiv:2202.05924, 2022.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017a.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc V. Le, Geoffrey E. Hin-
ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts
layer. In ICLR (Poster). OpenReview.net, 2017b. URL http://dblp.uni-trier.de/db/
conf/iclr/iclr2017.html#ShazeerMMDLHD17.

Sheng Shen, Alexei Baevski, Ari S Morcos, Kurt Keutzer, Michael Auli, and Douwe Kiela. Reser-
voir transformers. arXiv preprint arXiv:2012.15045, 2020.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053, 2019.

Prasoon Sinha, Akhil Guliani, Rutwik Jain, Brandon Tran, Matthew D Sinclair, and Shivaram
Venkataraman. Not all gpus are created equal: Characterizing variability in large-scale,
accelerator-rich systems. arXiv preprint arXiv:2208.11035, 2022.

Shaden Smith. Pipeline parallelism, Jan 2023. URL https://www.deepspeed.ai/
tutorials/pipeline/#load-balancing-pipeline-modules.

A. M. Sukhov and N. Kuznetsova. What type of distribution for packet delay in a global network
should be used in the control theory?, 2009.

Masahiro Tanaka, Kenjiro Taura, Toshihiro Hanawa, and Kentaro Torisawa. Automatic graph par-
titioning for very large-scale deep learning. In 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 1004–1013. IEEE, 2021.

Yi Tay, Dara Bahri, Liu Yang, Donald Metzler, and Da-Cheng Juan. Sparse sinkhorn attention,
2020.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey.
ACM Comput. Surv., 55(6), dec 2022. ISSN 0360-0300. doi: 10.1145/3530811. URL https:
//doi.org/10.1145/3530811.

LLaMA-MoE Team. Llama-moe: Building mixture-of-experts from llama with continual pre-
training, May 2024. URL https://github.com/pjlab-sys4nlp/llama-moe.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Yiding Wang, Decang Sun, Kai Chen, Fan Lai, and Mosharaf Chowdhury. Efficient dnn training
with knowledge-guided layer freezing. arXiv preprint arXiv:2201.06227, 2022.

Mitchell Wortsman, Ali Farhadi, and Mohammad Rastegari. Discovering neural wirings. Advances
in Neural Information Processing Systems, 32, 2019.

Hao Zhang, Lianmin Zheng, Zhuohan Li, and Ion Stoica. Welcome to the ”big model” era:
Techniques and systems to train and serve bigger models, 2022. URL https://icml.cc/
virtual/2022/tutorial/18440.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai, Zhifeng
Chen, Quoc Le, and James Laudon. Mixture-of-experts with expert choice routing. arXiv preprint
arXiv:2202.09368, 2022a.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M. Dai, Zhifeng
Chen, Quoc V. Le, and James Laudon. Mixture-of-experts with expert choice routing. In NeurIPS,
2022b.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for
model compression. arXiv preprint arXiv:1710.01878, 2017.

21

http://dblp.uni-trier.de/db/conf/iclr/iclr2017.html#ShazeerMMDLHD17
http://dblp.uni-trier.de/db/conf/iclr/iclr2017.html#ShazeerMMDLHD17
https://www.deepspeed.ai/tutorials/pipeline/#load-balancing-pipeline-modules
https://www.deepspeed.ai/tutorials/pipeline/#load-balancing-pipeline-modules
https://doi.org/10.1145/3530811
https://doi.org/10.1145/3530811
https://github.com/pjlab-sys4nlp/llama-moe
https://icml.cc/virtual/2022/tutorial/18440
https://icml.cc/virtual/2022/tutorial/18440

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

A SOFTWARE, HARDWARE, AND TRAINING ENVIRONMENTS

Experiments were mainly conducted on a supercomputer at which each of the compute nodes con-
tains 2x AMD EPYC 9654 96-Core/2.4GHz processors, and 4x NVIDIA H100 SXM5 (80GB)
GPUs. The GPUs in the same node communicate with CPUs using PCIe Gen5 x16 per GPU,
and NVSwitch amongst the GPUs (NVLink34 x6). The compute nodes are connected by InfiniBand
NDR200 200Gbps x 4. We used CUDA 12.1, OpenMPI 4.0.7, and PyTorch 2.3.1 with NCCL 2.17.1
distributed backend.

We train the models on the Wikipedia dataset Foundation (2023). for Mixtral 7bx8 and LLaMA-
MoE-3.5B we do continual training. All models used for training have a sequence length of 2048, a
hidden size of 1024, 32 attention heads, and the models are trained with a micro-batch size of 2 and
batch size of 64 for 10,000 iterations, unless specified otherwise. For the multi-node experiments,
as we increase the number of workers (GPUs), we also increase the batch size to fix the number of
micro batches to four times the number of GPUs in the pipeline, as suggested in Huang et al. (2019)
to achieve good pipeline utilization.

B BUBBLE RATIO IN THE STATIC MODEL

In this Section we describe the theoretical bubble ratio that appears in the static model. The bubble
ratio refers to the ratio of the idle time of devices when different workers (GPUs) stall while waiting
for work to be available. Additional bubbles appear in the pipeline when the model become dynamic
(due to the load imbalance). The bubble ratio for the almost zero bubble pipeline scheme Qi et al.
(2024) we use in the paper is:(

3
(

P 2

2 − P
)
+ 6P − 2

(
P 2

2 − P
)
/P − 8

)
TC + 2

(
P 2

2 − P
)
TB

(3P 2 − 2P)TC + (2P 2 − 2P)TB + P 2TF
(1)

where S is the number of pipeline stages, B is the number of micro-batches (chunks) in a single
iteration, P is the number of workers used in the pipeline, TF is the time cost for a complete forward
pass (all forward stages added together) divided by P, TB is the time cost for a complete backward
pass (all backward stages added together) divided by P, and TC is the communication time for
moving a from a worker to its neighbor for the un-overlappable portion of communication.

The bubble ratio is derived from the un-overlappable portions of communication TC and forward
pass TB (numerator of Equation 1) from the entire end-to-end span of the pipeline (denominator of
Equation 1), where

(
P 2

2 − P
)

is the gaps/stalls in the pipeline due to lack of components to overlap
after the forward and backward passes of the two duplicate models have been overlapped.

Figure 5 illustrates how the bubbles attributed to the dynamic sparsification adds up to, and is dif-
ferent from, the inherent bubbles that are observed in the pipeline scheme.

Figure 5: Illustration of bubble types in the almost zero bubble pipeline scheme Qi et al. (2024)
with 8 microbatches. Each row represent a GPU’s pipeline stages over time. Inherent bubbles in the
pipeline are shown in gray and bubbles introduced by dynamicity (e.g. sparsity) are shown in red.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

C PRUNING, LOAD BALANCING, AND PACKING

C.1 NEURAL NETWORKS PRUNING

There are three main considerations that need to be taken into account when applying network
pruning: criterion, structure, and schedule of the pruning.

Pruning Criterion: Every pruning scheme needs to define a criterion to choose which parameters to
prune. A non-exhaustive list of pruning criteria used in the literature includes: weight magnitude Li
et al. (2016); Renda et al. (2020), gradient magnitude Cun et al. (1990); Mozer & Smolensky (1989),
Bayesian statistics-based criteria Dai et al. (2018); Molchanov et al. (2017), and reinforcement learn-
ing based criteria Lin et al. (2017); He et al. (2018). These criteria can be applied either locally (i.e.
considering each layer’s weights separately) or globally (i.e. considering weights in all layers).

Pruning Structure: Parameters in a model can be removed in a structured or unstructured way.
Structured sparsity Kruschke & Movellan (1991) enforces a pattern to be applied while choosing
the parameters to be pruned. This can range from removing filters in a convolution layer to remov-
ing attention heads in a multi-headed attention layer. On the other hand, unstructured sparsity Han
et al. (2015) is not under the constraint of a pattern (i.e parameters can be freely removed), hence,
offers a finer granularity. Even though unstructured sparsity offers better flexibility, structured spar-
sity is more prevalent since it is difficult to implement efficient kernels for sparse data structures
in unstructured sparsity and deep learning frameworks have limited support for sparse computa-
tions. However, it has been shown that the enforcement of a certain structure for the pruning of
parameters can result in significant degradation in model quality compared to unstructured sparsity
Kalchbrenner et al. (2018); Elsen et al. (2020).

Pruning Schedule: After choosing the criterion and the structure of the pruning, one must decide
when to prune and how often to prune. The most popular schedule in the literature consists of
pruning after training is over, and then fine-tune the model to recover the loss introduced by the
pruning Han et al. (2015). Another effective approach is to remove a certain percentage of weights
progressively during the training until the target sparsity is reached Zhu & Gupta (2017), which
eliminates the fine-tuning process. There are also schedules that enforce a constant rate of sparsity
throughout the training Mocanu et al. (2018).

For a more comprehensive analysis of various sparsification procedures which are applied in deep
learning, we refer the reader to Hoefler et al. (2021).

C.2 GRADUAL GLOBAL MAGNITUDE PRUNING

For our pruning design, we use the gradual pruning schedule proposed in Zhu & Gupta (2017) which
is formulated as:

St = Sf + (Si − Sf)(1−
t− t0
n∆t

)3, t ∈ {t0, t0 +∆t, ..., t+ n∆t} (2)

where Si, Sf , n, t0, and ∆t are initial sparsity, final sparsity, number of pruning steps, initial pruning
step, and pruning frequency, respectively. The aim of this schedule is to prune the model rapidly in
the initial pruning steps since there are many irrelevant connections, then reduce the pruning rate as
the number of parameters in the network gets smaller.

We employed an unstructured magnitude pruning technique as opposed to a structured one since
unstructured magnitude pruning typically retains better accuracy under high sparsity rates Prasanna
et al. (2020). Unstructured magnitude pruning is applied globally (taking all parameters in the model
into account) instead of locally since it has been empirically shown that global pruning yields better
accuracy under high compression ratios Blalock et al. (2020).

To our knowledge, there is no deep learning framework that supports global pruning on a distributed
model at the time of this writing (support is only for undistributed models). Thus we implemented
our own global pruning algorithm as shown in Algorithm 2. The global pruning method takes three
arguments, namely the model, target sparsity, and the rank of the device. Note that each rank2 has

2We use one MPI rank per GPU.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Algorithm 2 Dynamism (Global Pruning as an Example)
Input: model, sparsity, rank
Output: model

1: params← concat params(model)
2: k← num params × (1 - sparsity)
3: local topk, local topk indices← topk(abs(params), k)
4: topk values← gather(local topk)
5: if rank == 0 then
6: global topk indices← topk(abs(topk values), k)
7: end if
8: indices to keep← scatter(global topk indices)
9: model = compress model(model, indices to keep)

10: return model

only its own portion of the model. First, each rank finds its own local top-k parameters in terms of
magnitude (line 3). Then, rank 0 gathers the top-k parameters of each rank (line 4). When rank 0
receives all top-k parameters, it calculates the indices of global top-k parameters to keep (line 6),
and sends the indices that belong to each rank (line 8). Finally, after each rank receives its indices
to keep, they prune (discard) parameters with all other indices in their local parameters (line 9).

C.3 LOAD BALANCING

DYNMO implements two load balancing algorithms, and can be extended to support other algo-
rithms. The first one is a centralized parameter-based partitioning method that balances partitions
based on the number of parameters. We also implemented a version where the same algorithm is
used for balancing partitions based on the layer execution times instead of the number of parame-
ters. This algorithm with two variants is built on top of DeepSpeed’s load balancing utility functions
for partitioning in model parallelism Smith (2023). The second algorithm is an iterative decentral-
ized diffusion-based algorithm that aims to minimize the variance between the workload of each
rank by attempting to move layers from overloaded ranks to underloaded ranks in an iterative way.
The workload can either be the layer execution times or the parameter counts as in the DeepSpeed-
based algorithms. The number of iterations to decide on the final load distribution is a user-defined
parameter.

Algorithm 3 shows the pseudo-code for the diffusion-based load balancing algorithm. At the start
of the balancing process, each worker evaluates their workload. A worker is deemed overloaded if
their total workload exceeds the average workload across all workers and underloaded otherwise.
Overloaded workers aim to offload some tasks to underloaded workers to achieve a more balanced
distribution.

The balancing process unfolds iteratively. In each iteration, overloaded workers identify a task that
contributes the least to their workload (e.g., a computational layer with minimal execution time).
This task is then considered for transfer to the underloaded worker with the lightest workload. For
every potential transfer, the algorithm computes the new workload distribution and evaluates the
variance. A transfer is accepted if it reduces the variance and satisfies the memory constraints of the
receiving worker. Accepted transfers are tracked, ensuring that tasks are redistributed efficiently.

By iteratively reducing workload variance through these localized decisions, the algorithm ensures a
progressively balanced distribution. After the balancing phase, the transfer information is distributed
to all workers, who update their local task assignments accordingly. This iterative and decentralized
approach allows for effective load balancing in dynamic, distributed systems.

We elaborat on the details of the algorithm in this paragraph. After rank 0 gathers the loads (i.e.
layer execution times or the number of parameters for each layer) from all ranks, it discovers all
layer transfers between ranks by calling a diffusion re-balance function. The number of iterations
to minimize the variance is an argument that can be tuned according to the workload. For each
iteration of balancing, the total load of each rank, variance, and average load are calculated (lines
3-5). Then, each rank is assigned a status: overloaded or underloaded (lines 6-7). After the status of
each rank is assigned, each overloaded rank attempts to send its least loaded layer to the least loaded

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 3 Diffusion-based Load Balancing Algorithm
Input: loads, num ranks, max iters, times, mem info
Output: transfers (list)

1: transfers← []
2: for iter← 0 to max iters do
3: total loads← [sum(t) for t in times]
4: avg load← average(total loads)
5: var← variance(total loads)
6: status← [”Overloaded” if l > avg load
7: else ”Underloaded” for l ∈ loads]
8: for src← 0 to num ranks do
9: if status[src] == ”Overloaded” then

10: dst← get least loaded rank(loads)
11: lyr idx← get least loaded layer(src, times)
12: new loads← update loads(src, dst, lyr idx, loads)
13: new total loads← [sum(l) for l ∈ new loads]
14: new var← variance(new total loads)
15: mem req = sum(mem info[dst]) +
16: mem info[src][lyr idx]
17: if new var < var && mem req < MAX MEM then
18: var← new var
19: loads← new loads
20: update mem info(src, dst, lyr idx, mem info)
21: transfers.append((src, dst, lyr idx))
22: end if
23: end if
24: end for
25: end for
26: return transfers

rank (lines 7-24). Every time an overloaded rank attempts to send a layer to an underloaded rank,
new loads and variance are calculated (lines 12-14). If the new variance is smaller than the current
variance and it satisfies the memory constraints of the destination rank, the transfer is accepted and
added to the transfers list in the format of (source, destination, layer id) (lines 17-22). When rank
0 discovers all layer transfers from source ranks to destination ranks, it distributes the information
to other ranks and the sparse format data structures, CSR, of the layers to be transferred are sent to
their new destinations.

We now demonstrate that the two load balancing schemes (used in Algorithm 3) meet the goals for
optimal load balancing by using the following lemmas. Detailed proofs on the lemmas are presented
in the supplementary material.

C.3.1 PROOF OF LEMMA 1

Lemma 1. A centralized load balancer Lc over N workers satisfies maximum reduction in the
imbalance Ni if and only if Ni reduces the bubble ratio to minimum.

Proof. We will prove by contradiction. Suppose a centralized load balancer Lc overN workers satis-
fies maximum reduction in the imbalance Ni when Ni has a bubble ratio higher then the minimum.
By the definition of maximum reduction in load balance, Lc must preserve minimum differential
between the loads of workers Ni and Nj , which Ni and Nj have the minimum load and maximum
loads in N , respectively. Consequently, increasing the bubble ratio of Nj changes the difference
of loads between Ni and Nj . This is in contradictory of Lc achieving the maximum reduction on
imbalance.

C.3.2 PROOF OF LEMMA 2

Lemma 2. An iterative decentralized diffusion based load balancer Ld over N workers satisfies
maximum reduction in the imbalance Ni if and only if Ni reduces the bubble ratio to minimum.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Also the load balancer is guaranteed to converge to the maximum reduction in imbalance in the
following number of rounds

O

(
min

{
N 2log

(
SN
γ

)
log N ,

SN log N
γ

})
where γ ∈ R>0 is the convergence factor and S ∈ R>0 is the total number of stages in the pipeline.

Proof. We leverages core ideas from Lyapunov optimization. We first define a potential function, ϕ,
that measures at each round the total magnitude of workload gaps in the system:

∀r ≥ 0 : ϕ(r) =
∑

u,v∈V

|xu(r)− xv(r)|

Similar to a Lyapunov function, ϕ maps the system state (in this case, a vector of workloads for
N workers) at any given round to a non-negative scalar value that describes the desirability of the
current system state. As ϕ decreases toward 0, the system state becomes more desirable; i.e. the
workload is balanced across N . As in a standard Lyapunov optimization, we show below that the
modifications to a system state caused by executing a single round of our max neighbor algorithm
will drift the value of ϕ toward zero in a non-decreasing manner. We establish a probabilistic lower
bound for the amount of drift in a given round to obtain our time bounds.

For a given round r ≥ 0 and node pair u, v ∈ V , we define du,v(r) = |xu(r)− xv(r)| to describe
the gap between u and v’s workload at the end of that round. For each such r, we also define:
{{u, v} |u and v connected and averaged their workloads in round r}, i.e., the set of node pairs that
connect and average in r, and Dr =

∑
u,v∈Ar

du,v(r − 1), i.e., the sum of gaps averaged in r.
Finally, we define tmax(r) = maxu,v∈V {du,v(r)} to describe the largest gap between any two
nodes at the end of round r. From the above analysis that ϕ(r) decreases by at least Dr in each
round r, we proceed to prove the converge time complexity bound.

For a maximum number of rounds to converge to the minimum imbalance:

O

(
min

{
N 2log

(
SN
γ

)
log N ,

SN log N
γ

})
Note that these two bounds essentially coincide at Õ(N 2) with γ = Θ(S/n), where the notation Õ
hides logarithmic factors. In other words, if we want all nodes to have the same workload up to a
constant factor, the max neighbor strategy uses Õ(N 2) rounds. We first note that if we arrive at a
round r in which ϕ(r) ≤ γ, then the system ends this round γ-converged, i.e. the sum of the gaps is
at most γ, and thus clearly any individual gap is at most γ. Since ϕ is monotonically non-increasing,
it follows that every round r′ ≥ r is also γ-converged. So we just need to show that with high
probability, ϕ will decrease to γ in the time bound stated by the theorem statement.

For each r ≥ 1, we call r “good” if and only if ϕ(r − 1) − ϕ(r) ≥ smax(r − 1)/(60 ln(2n)). We
next calculate how many good rounds guarantee that ϕ falls below γ. To do so, we first note that,
non-good rounds cannot increase ϕ, so we are safe to focus only on reductions generated by good
rounds in calculating our bound.

By the definition of ϕ, for each r ≥ 1 we know that ϕ(r) < smax(r)n
2. It follows that if r is a good

round, then it decreases ϕ(r − 1) by a multiplicative factor less than (1 − 1
60n2ln(2n)). Finally, we

also observe that smax(0) ≤ S and therefore ϕ(0) < Sn2. Leveraging these observations, to find
the number of good rounds needed to decrease ϕ below γ, we just need to find the minimum s time
steps such that

Sn2

(
1− 1

60n2ln(2n)

)
≤ γ

A simple calculation implies that scon = 60n2ln(2n)ln(Sn2γ−1) is sufficient to satisfy this in-
equality. We have now established that after scon good rounds the system will be γ-converged for
all future rounds. We are left to bound the number of rounds required to generate scon good rounds
with high probability.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Algorithm 4 Re-pack Layers into Fewer Workers
Input: active workers, mem usage
Input: target num workers, num layers
Output: transfers (list)

1: transfers← []
2: for src in range(num ranks) do
3: for dst in range(src + 1, num ranks) do
4: if mem usage[src] + mem usage[dst] < MAX MEM
5: && sum(active workers) > target num workers then
6: active workers[src] = 0
7: for lyr idx in range(num layers[src]) do
8: transfers.append((src, dst, lyr idx))
9: end for

10: mem usage[dst] += mem usage[src]
11: num layers[dst] += num layers[src]
12: end if
13: end for
14: end for
15: return transfers

For each round r, let Xr be the random indicator variable that evaluates to 1 if round r is good and
otherwise evaluates to 0. We know a given round r is good with probability at least 1/N , regardless
of the history of the execution through the round r − 1. We cannot, however, directly leverage this
observation to calculate (and concentrate) the expected sum of X variables for a given execution
length, as the distribution determining a given Xr might depend in part on the outcome of previous
experiments. To overcome this issue, we define for each round r, a trivial random indicator variable
X̂r that evaluates to 1 with independent probability 1/N and otherwise evaluates to 0. Note that for
each r, Xr stochastically dominates X̂r, and therefore for each s > 0, Ys =

∑s
r=1 Xr stochastically

dominates s > 0, Ŷs =
∑s

r=1 X̂r. It follows for any s > 0, if Ŷs ≥ scon with some probability p
then Ys ≥ scon with probability at least p.

A Chernoff bound applied to Ŷs, for s = c.scon (where c ≥ 1 is a sufficiently large constant
defined with respect to the constants in scon and the constants in the Chernoff form used), provides
that Ŷs ≥ scon with high probability, and therefore so is Ys. To conclude the proof, we note that
c.scon ∈ O

(
N 2log(SN

γ)logN
)

, as required by the theorem γ statement.

C.4 RE-PACKING DYNAMIC MODELS TO FEWER WORKERS

Workload re-packing is the process of merging the total workload into a smaller number of worker
(GPUs) with the purpose of using the available resources more efficiently, i.e. unused resources
can be released. This can be achieved with simple algorithms (in small scale) such as first-fit, best-
fit, and round-robin as well as complex optimization problems (for large scale) such as ant colony
optimization Dorigo et al. (2006) or genetic algorithms Dasgupta et al. (2013). Workload packing
aims to increase GPU utilization and reduce the overall number of GPUs employed to continue the
training process. For long training schedules that are common in LLM training, workload packing
can result in substantial cost savings. It may also provide improved performance due to reduction in
the number of cross-GPU communication calls, and smaller pipeline bubbles.

Algorithm 4 shows a first-fit algorithm that we used for workload consolidation. We iterate over all
the available GPUs (lines 2-3) and check if the combined memory usage of the two GPUs is less
than the maximum memory capacity of a single GPU, and the number of active GPUs is greater than
the target number of GPUs target num gpus for packing (lines 4-5). If that is the case, we transfer
all layers of the source GPU to the destination GPU (lines 7-8). Then, it updates the memory
usage and the number of layers on the destination GPU accordingly. This process continues until
all the available GPUs have been checked and processed. The goal of this algorithm is to reduce
the number of active GPUs to the target num gpus, while also ensuring that the total memory usage
remains within device limits.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

C.5 RELEASING UNUSED GPUS AFTER RE-PACKING

The NCCL communicator cannot be resized, and there is no support for having more than one NCCL
rank per GPU in the same communicator. Solutions around that include:

• The solution implemented and used in DYNMO: While the NCCL communicator can not
be resized, NCCL supports splitting the communicator (using the ncclCommSplit()
function) into multiple sub-partitions, or even creating a single communicator with fewer
ranks Nvidia. The GPUs to which the model is re-packed can be split to their own sub-
communicator, while the sub-communicator of the idle GPUs can be assigned to a different
concurrent communicator of the new job to which they will be assigned (concurrent com-
municator are allowed in NCCL Nvidia). Since the released GPUs would never be used in
the sub-communicator of the repacked GPUs, there is no risk or need to mitigate deadlocks
of multiple concurrent communicators.

• Since large-scale full training runs for a long time (days and weeks) and MTBF (Mean
Time Before Failure) in large scale training is typically in the order of hours, restarting
from checkpoints becomes inevitable. On restarting the training from a checkpoint, the
size of the communicator could be set to the new number of fewer GPUs.

• Different NCCL communicators can be used in a hierarchical fashion (and it is often the
case). To allow for repacking, one could use a hierarchy of communicators with the inten-
tion to repack to one branch of hierarchy, and then assign a new job to the GPUs in the idle
branch of the hierarchy.

Finally, we would like to emphasize that the primary focus of the paper is load balancing to make the
end-to-end training process faster. Re-packing (when possible) is an additional advantage to load
balancing. We implement repacking in DYNMO at the load balancer level to enable the release of
GPUs. We would like to point out that DYNMO’s task ends at releasing the GPUs: reclamation of
the released GPUs and assigning them new jobs by the middleware or scheduler is outside the scope
of this paper.

D IMPLEMENTATION

The DYNMO load balancing system was developed on top of NVIDIA Megatron Core 0.5.03. Each
component of DYNMO, namely hooking to dynamism point in model training, load balancing, and
re-packing is implemented in a separate package for ease of use and extension.

One particular challenging case in the six example cases is gradual pruning. The reminder of other
example cases did not require hard codes changes to be able to use DYNMO. We elaborate more on
gradual pruning. Unstructured pruning requires a sparse storage format to compactly store, train, and
transfer the pruned model. One of the most commonly used sparse formats is the compressed sparse
row (CSR) format. Using a sparse matrix format requires dense matrix multiplication (DMM) oper-
ations to be converted to sparse counterparts (SpMM). Since PyTorch does not support computing
the derivative of SpMM operations for backpropagation on a CSR tensor, we evaluated CSR-based
SpMM implementations available for use on GPUs, namely cuSPARSE by Nvidia and Sputnik Gale
et al. (2020). Figure 6 shows the performance of cuSPARSE and Sputnik against the dense coun-
terpart (cuBLAS). The SpMM kernel of Sputnik outperforms cuSPARSE in all sparsity levels. This
is mainly because Sputnik kernels were implemented by specifically considering the deep learning
workloads, unlike cuSPARSE kernels that mainly target the HPC workloads, which often have more
than 99% sparsity. It is also worth noticing that Sputnik starts to outperform cuBLAS after 75%
sparsity. Thus, for sparse operations, we implemented PyTorch bindings for the CUDA kernels of
Sputnik 4.

The gather and scatter operations in global pruning were implemented by employing NCCL Peer-to-
Peer (P2P) send-receive operations instead of collective communication operations since the sizes
of the objects to be sent (local topk) and received (indices to keep) from each rank are different and
other ranks do not have this size information to participate in the collective call.

3https://github.com/NVIDIA/Megatron-LM/releases/tag/core_v0.5.0
4The Sputnik bindings are made available at the following link: https://anonymous.4open.

science/r/Torch-Sputnik-E926/README.md.

28

https://github.com/NVIDIA/Megatron-LM/releases/tag/core_v0.5.0
https://anonymous.4open.science/r/Torch-Sputnik-E926/README.md
https://anonymous.4open.science/r/Torch-Sputnik-E926/README.md

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

1

10

100

50% 60% 70% 80% 90%

Ti
m

e
(m

s)

Sparsity

Sputnik cuBLAS cuSPARSE

Figure 6: Sparse (Sputnik Gale et al. (2020) and cuSPARSE) vs Dense (cuBLAS) matrix multipli-
cation performance comparison for M=N=K=4096 on Nvidia H100. Starting at 75% sparsity level,
sparse kernels using Sputnik gives performance advantages over dense kernels.

Multi-Node End-to-End Training Performance: 720 H100 GPUs
 Network Delay injected: 30-way data parallel + 24-way pipeline

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

24 32 40 48

To
ke

ns
/s

ec

Number of Layers

Static (Megatron-LM)

Static (DeepSpeed)

DynMo
(Partition by Time)

DynMo
(Partition by Param)

DynMo
(Diffusion by Time)

DynMo
(Diffusion by Param)

H100

0
4,000

8,000

12,000

16,000

20,000

24,000

28,000

32,000

36,000

Figure 7: Multi-node end-to-end early exit training throughput of GPT models for a network with
unstable bandwidth. We inject network delays up to 4x modeled by a normal distribution (as sug-
gested by Sukhov et al. Sukhov & Kuznetsova (2009)). The intended delay is achieved by inflating
the MPI message sizes based on the delay model.

The necessary information for load balancers such as layer execution times and memory usage
comes from the profiling iteration after each pruning iteration. The execution time profiling is im-
plemented by extending the built-in timers of Megatron-LM. The memory consumption of each
pipeline stage is gathered with PyTorch’s memory statistics for CUDA.

E ADDITIONAL RESULTS AND ABLATION

E.1 EFFECT OF CHANGE IN NETWORK BANDWIDTH ON LOAD BALANCING

In fact DYNMO’s load balancing algorithm is desgined to, indirectly, handle variability/instability
in the network. That is since we define our diffusion load balancing algorithm to consider the gaps
between workers to include the total time until work arrives to node B from neighboring node A, i.e.
we include the amount of time that A spent on work plus the time it takes to transfer the activations
of the layers over the network. In intuitive terms, if worker B is stalling due to delay from neighbor
A (in part due to a slow network connection between A and B), the load balancer would push more
work to worker B until the amount of work in A plus the time it takes to transfer the activations over
the network is roughly equal to the amount of work on B.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 1: Vertical scaling experiments show the throughputs (samples/sec) of baseline Megatron-
LM, and time-based algorithms, namely Diffusion by Time and Partition by Time for dynamic sparse
attention. The speed is calculated for the best-performing balancer in each case. The benefits of
dynamic load balancing increase as the number of GPUs in the pipeline increases. The number of
GPUs listed are the GPUs in pipeline parallelism (in a 90-way data parallelism)

Megatron Diff Part Speed
Layers GPUs LM by Time by Time Up

24 2 10.67 12.38 12.88 1.20x
4 20.23 24.86 24.82 1.22x
8 37.253 46.939 45.071 1.26x

32 2 8.28 10.35 10.12 1.25x
4 15.69 19.06 19.76 1.26x
8 30.809 39.899 37.933 1.29x

40 2 7.14 8.84 9.13 1.28x
4 12.84 16.11 16.82 1.31x
8 26.425 35.262 33.296 1.33x

48 2 OOM OOM OOM OOM
4 10.89 14.7 14.54 1.35x
8 23.126 31.724 29.711 1.37x

56 2 OOM OOM OOM OOM
4 OOM OOM OOM OOM
8 19.126 26.724 25.711 1.39x

Figure 7 shows results in a multi-node setting where we inject up to 4x delay in exchange of layers
between neighbor nodes to demonstrate the robustness of DYNMO load balancing w.r.t. fluctuations
in the network bandwidth. In fact the improvement of speedup of DYNMO over the baseline static
model increases since the static model suffers from higher stalling when the network bandwidth
fluctuates due to contention for instance.

E.2 VERTICAL SCALING

In single-node multi-GPU vertical scaling experiments, the number of layers in the model and the
number of GPUs used in the pipeline are changed. In Table 1, we report throughputs of the static
baseline balancer (Megatron-LM) and the best-performing dynamic load balancers from end-to-end
training experiments (Diffusion by Time and Partition by Time). The dynamic load balancers speed
up the training in various degrees up to 1.39x for different numbers of GPUs.

One important observation is that as the number of GPUs used in the pipeline increases, the speed-
up gained by the usage of a dynamic balancer builds up. This suggests that the importance of load
balancing increases as the pipeline gets deeper because the additional bubbles that are introduced by
the dynamic nature of the model affect the efficiency of the pipeline more. This is important when
considering the fact that the model size of large language models doubles approximately every 3.9
months Zhang et al. (2022) which leads to deeper pipelines.

E.3 WEAK SCALING

For multi-nodes with multi-GPUs weak scaling experiments, we trained the GPT models having
different numbers of layers and batch sizes (with work volume proportional to the number of GPUs)
on up to 240 nodes, each of which contains 4x H100 GPUs. The pruning region starts from itera-
tion 30 and continues until iteration 70 and the model is pruned every 10 iterations until the 90%
target sparsity is reached. The pruning and load balancing over-heads are excluded from the mea-
surements since the number of iterations to do this scaling experiment is not sufficient enough to
amortize the overheads; in actual training (1000s to 10,000s iterations) the pruning and load balanc-
ing overheads would be negligible (elaborate overhead analysis in Appendix E.1). Figure 8 shows
that the pipeline that is dynamically balanced with Partition by Time algorithm of DYNMO reaches
higher throughputs in all scales and it provides speedups over baseline Megatron-LM up to 2.12x.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

0
20
40
60
80
100

0

10

20

30

15 Nodes
(120 GPUs)

30 Nodes
(240 GPUs)

60 Nodes
(480 GPUs)

120 Nodes
(960 GPUs)

R
ed

uc
tio

n
in

 R
un

tim
e

(%
)

Th
ro

ug
hp

ut
 (T

ok
en

s/
Se

c)

Multi-node Weak Scaling

Megatron-LM
(Static)

Partition by Time
(DynPipe)

Reduction in Runtime (%)

0

10

20

30

40

50

60

0

2

4

6

8

10

12

8 6 4 2 8 6 4 2 8 6 4 2 8 6 4 2 8 6 4 2

24 Layers 32 Layers 40 Layers 48 Layers 56 Layers Th
ro

ug
hp

ut
 (T

ok
en

s/
Se

c)

Th
ro

ug
hp

ut
 /

G

PU
s

Re-packing Model While Training to Different Number of GPUs

Throughput/# GPUs Throughput (Tokens/Sec)

O
O

M

O
O

M
O

O
M

Re-packing Model While Training to Different Number of GPUs

24 Layers 32 Layers 40 Layers 48 Layers 56 Layers

40

H100

30K

20K

10K

0
30 Nodes 60 Nodes 120 Nodes 240 Nodes

(DynMo)

Figure 8: Gradual pruning weak scaling throughput (tokens/sec) comparison of baseline static load
balancing with Megatron-LM and dynamic load balancing with Partition by Time algorithm of
DYNMO.

E.4 DYNAMIC MINIBATCH/MICROBATCH SIZE

In cases where the total load of the pipeline decreases such as gradual sparsification, dynamic sparse
attention, early exit, and freeze training, carefully changing the minibatch and microbatch size ac-
cording to the needs of the new pipeline after load balancing may increase the efficiency of the
training. For instance, GPipe Huang et al. (2019) suggests the number of micro batches to be greater
than four times the number of GPUs in the pipeline for optimal overlapping. Since the packing
decreases the number of GPUs in the pipeline, adjusting the number of micro batches in the pipeline
after packing could be beneficial. In addition, minibatch size can be increased after the pruning
operations since the memory requirement for execution is less after the pruning. DYNMO currently
does not support this feature, which if supported would further improve the speedup gains.

F DYNAMISM

F.1 DYNAMIC RECONFIGURATION OF THE PIPELINE

DeepSpeed’s PipelineModule Microsoft currently offers three partitioning strategies for distributing
model layers, which can be set using the partition_method() keyword argument passed to
the PipelineModule. This allows us to move the layers between GPUs, when needed. When a
layer is migrated from GPU A to GPU B, the memory allocated for the layer (weights, activation,
gradients, optimizers) is released on GPU A and allocated on GPU B. As the training resumes (after
the layers are migrated), the underlying pipeline scheme starts to pass the new mini-batches along
the new distribution of layers in the pipeline.

F.2 MIXTURE OF EXPERTS

We build on Mixtral 8x7b weights from Hugging Face Mistral (2024) and LLaMA-MoE-3.5B Team
(2024) in continual training by monitoring the imbalance between layers w.r.t. number of assigned
tokens. We used both the auxiliary load balance scheme adopted in Mixtral 8x7b Jiang et al. (2024)
and the S-BASE load balancer Lewis et al. (2021a). Since the imbalance is dependent on the point
the routing decision is taken, i.e., in the forward pass at each FFN, we rebalance in the back propa-
gation phase where we attach the movement of layers to the pipeline parallelism scheme.

F.3 GRADUAL GLOBAL MAGNITUDE PRUNING

For our pruning design, we use the gradual pruning schedule proposed in Zhu & Gupta (2017) which
is formulated as:

St = Sf + (Si − Sf)(1−
t− t0
n∆t

)3, t ∈ {t0, t0 +∆t, ..., t+ n∆t} (3)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

To our knowledge, there is no deep learning framework that supports global pruning on a distributed
model at the time of this writing (support is only for undistributed models). Appendix C elaborates
on the unstructured magnitude pruning scheme we implemented in PyTorch.

F.4 LAYER FREEZING

DYNMO sits on top of layer freezing solutions. More specifically, we build on Wang et al. Wang
et al. (2022) Egeria solution by monitoring the rate by which the training loss changes, freezing
layers when they reach the convergence criterion, and drop frozen layers from in both the back
propagation phase and gradient exchange when data parallelism is used. It is important to note that
Egeria periodically updates the reference model (on the CPU) to drive the layer freezing, yet does
not actively try to remedy the load imbalance caused by layer freezing. The effect of load imbalance
is particularly pronounced since earlier layers tend to be more frozen than later layers, i.e. the
layer freezing is not uniformly occurring across the model. In comparison, DYNMO load balances
dynamically, and in an orthogonal fashion, the spread of layers on GPUs every time the reference
model that drives the freezing is updated.

F.5 DYANMIC SPARSE ATTENTION

We build on Pagliardini et al. dynamic sparse attention Pagliardini et al. (2023) in continual training
by implementing a binding from PyTorch to the CUDA kernel provided by authors of the paper. The
hash-based attention makes the causal attention mask irregular, i.e., we get blocked sparsity that is
then leveraged by the Flash Attention. The irregular causal structures caused by the hashing lead to
different amount of blocks/tiles in different layers.

F.6 EARLY EXIT

We adapt the early exit methods CALM Schuster et al. (2022) and ADPC Liu et al. (2022b) to
observe the imbalance by peaking into the confidence measure prediction of CALM and ADPC.
Since early exit happens at the later layers, we start our observation from the first layer at which
tokens start to exit, and we assume all layers before than to have the same load. Early exit in
particular benefits greatly from re-packing, and that since the change in control flow of the model
happens in the later layers.

F.7 MIXTURE OF DEPTHS

We build on the MoDs work by Raposo et al. Raposo et al. (2024) by including in our GPT models
we use in testing the small auxiliary MLP predictor that predicts whether that token will be among
the top-k or not in the sequence. Similar to the case of MoEs, since the imbalance is dependent on
the point the router takes the decision, i.e. in the forward pass, we rebalance in the back propagation
phase where we attach the movement of layers to the pipeline parallelism scheme. Since the routing
happens around the entire block, i.e., the routing applies to both to both forward MLPs and multi-
head attention, we treat the skipped layers to be shadow layers when redistributing the layers on
workers.

G RELATED WORK

G.1 LOAD BALANCING MODEL-PARALLEL DEEP NEURAL NETWORKS

G.1.1 LAYER-WISE LOAD BALANCING

Layer-wise balancing techniques work on layer granularity instead of operators. DeepSpeed Mi-
crosoft (2023) offers three partitioning methods to balance the workload of stages: parameters,
uniform, and regex. While the parameters method is trying to balance the number of parameters in
each stage, the uniform aims to distribute the layers evenly. Regex only distributes the layers that
match the given regex (e.g. transformer layers). Similar to the parameters method of DeepSpeed, He
et al. He et al. (2021) balance the stages based on the number of parameters in each stage. Narayanan
et al. Narayanan et al. (2021) assign each stage the same number of transformer layers to balance the

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

load. None of the aforementioned studies use the actual execution time of the layers to decide on the
distribution of layers. DYNMO supports DeepSpeed’s partitioning scheme with both parameters and
layer execution times to guide load balancing, as well as a diffusion-based load balancing algorithm
out of the box.

G.1.2 LOAD BALANCING VIA GRAPH PARTITIONING

Graph partitioning-based load balancing schemes find atomic operations in the model and consider
them as nodes in a directed acyclic graph (DAG). Edges in the graph represent the dependencies be-
tween operations. Tanaka et al. Tanaka et al. (2021) partition the DAG in three phases at which they
first find atomic operations, then group these operations into blocks according to their computation
times, and finally, they combine blocks into final partitions by using a dynamic programming-based
algorithm. Qararyah et al. Qararyah et al. (2021) create disjoint clusters from the nodes of the graph
by finding critical paths and mapping these clusters to devices based on a mapping algorithm that
takes both critical-communication minimization and temporal load balancing into account. Both
studies perform profiling before the actual training and partition the graph once.

G.1.3 LOAD BALANCING IN MIXTURE OF EXPERTS MODELS

The mixture of experts (MoE) Jacobs et al. (1991) models contain many sub-networks (experts)
where a router allocates inputs to top-k experts. At scale, experts are distributed across devices.
Lepikhin et al. Lepikhin et al. (2020) defines an expert’s capacity to limit the maximum number of
tokens that can be processed by an expert to achieve workload balance. Fedus et al. Fedus et al.
(2022) route each token to only one expert and use the same expert capacity for restrictions. Lewis
et al. Lewis et al. (2021a) employ an auction algorithm Bertsekas (1992) to solve the token-to-expert
assignment problem. This line of work is different from ours in the sense that their aim is to balance
workload in the feed-forward network while our work aims to balance all layers of the transformer
model.

G.2 PACKING

In dynamic neural network models, packing the total workload into fewer number accelerators can
provide significant cost-saving benefits. PipeTransformer He et al. (2021) offers an elastic pipelining
system for freeze training where some of the layers of the model are frozen during the training.
PipeTransformer packs the remaining active layers into fewer GPUs and creates pipeline replicas
if possible. When PipeTransformer receives a notification for layer freezing, it attempts to divide
the number of GPUs by 2 subject to the memory capacity constraints. On the other hand, our work
DYNMO can pack to an arbitrary number of GPUs specified by the user. Another difference between
the packing mechanism of DYNMO and PipeTransformer is that PipeTransformer uses the parameter
size as a proxy to estimate the memory usage while DYNMO uses the actual memory usage from the
profiling step before load balancing. Finally, PipeTransformer is only capable of packing layers to
fewer GPUs, and not load balancing. DYNMO, on top of being capable of re-packing when deemed
beneficial, it can also redistribute the workload to achieve a better load balance.

G.3 DYNAMIC PRUNING

Model pruning is a fast-paced research area. Since the optimization problem has many dimensions,
there are many approaches to prune a model. We mainly focus on the schedule of the pruning rather
than the decision of how to prune (e.g. magnitude pruning, variational dropout etc.) and what kind
of structure (e.g. unstructured pruning, structured pruning) to be applied while pruning.

One of the commonly used sparsification technique is sparsification during training (i.e. gradual
pruning) where the pruning starts before the model is trained until convergence. While some stud-
ies Wortsman et al. (2019); Lin et al. (2020) use a binary mask to specify whether a parameter is
pruned, which enables them to apply better weight regrowth or selection, others Gale et al. (2020)
delete the pruned parameters to reduce the memory usage and number of operations. There are also
many works on how fast to prune. For instance, Zhu and Gupta Zhu & Gupta (2017) prune the model
rapidly in the first pruning steps when there are many abundant parameters in the model, and then
reduce the pruning ratio as the number of parameters in the model are getting less and less. Dai et

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

al. Dai et al. (2019) employ a three phase schedule (birth-brain, baby-brain, and adult-brain) similar
to the human brain development. Mostafa et al. Mostafa & Wang (2019) uses magnitude pruning as
criterion to prune the parameters and regrows parameters to comply with the training budget.

34

	Introduction
	Motivation and Background
	Bubbles in Pipeline Parallelism
	Dynamic Models

	DynMo: Elastic and Balanced End-to-end Training of Dynamic LLMs
	Overview
	Profiling the Dynamism
	Load Balancing
	Re-packing Dynamic Models to Fewer Workers
	Overhead of DynMo and Frequency of Dynamism
	Limitations

	Evaluation
	End-to-end Training Throughput and Speedup
	Overhead OF Load Balancing
	Re-packing Models to Fewer GPUs

	Conclusion
	Software, Hardware, and Training Environments
	Bubble Ratio in the Static Model
	Pruning, Load Balancing, and Packing
	Neural Networks Pruning
	Gradual Global Magnitude Pruning
	Load Balancing
	Proof of Lemma 1
	Proof of Lemma 2

	Re-packing Dynamic Models to Fewer Workers
	Releasing Unused GPUs after Re-packing

	Implementation
	Additional Results and Ablation
	Effect of Change in Network Bandwidth on Load Balancing
	Vertical Scaling
	Weak Scaling
	Dynamic Minibatch/Microbatch Size

	Dynamism
	Dynamic Reconfiguration of the Pipeline
	Mixture of Experts
	Gradual Global Magnitude Pruning
	Layer Freezing
	Dyanmic Sparse Attention
	Early Exit
	Mixture of Depths

	Related Work
	Load Balancing Model-Parallel Deep Neural Networks
	Layer-wise load balancing
	Load balancing via graph partitioning
	Load balancing in Mixture of Experts Models

	Packing
	Dynamic Pruning

