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ABSTRACT

To reduce the computational and memory costs of Large Language Models
(LLMs), schemes that introduce dynamic training are increasingly emerging. Ex-
amples of dynamic models are: a) Mixture of Experts (MoEs) at which token
routing affects the compute balance, b) gradual pruning of the parameters of a
model, c) dynamically freezing layers, d) dynamic sparse attention schemes, e)
early exit of tokens as they pass through the model layers, and f) Mixture of
Depths (MoDs) schemes where tokens bypass blocks. One side effect that lim-
its the practical value of dynamic models is the introduction of workload im-
balance among workers, which in turn negatively affects the efficiency in dis-
tributed training. We propose a dynamic load balancing solution (DYNMO), with
a proof that it satisfies maximum reduction in imbalance, to adaptively maintain
equal compute workloads among different workers in pipeline parallelism. In
addition, DYNMO dynamically packs work into fewer workers, while sustaining
training throughput, to release the idle workers back to the job manager. DYNMO
supports both single nodes with multi-GPUs and systems with multi-GPU multi-
nodes. In comparison to static distributed training solutions (Megatron-LM and
DeepSpeed), DYNMO accelerates the end-to-end training of dynamic GPT models
by up to 1.23x (MoEs), 3.18x (parameter pruning), 2.23x (layer freezing), 4.02x
(sparse attention), 4.52x (early exit), and 1.17x (MoDs). DYNMO is available at
https://anonymous.4open.science/r/DynMo—4D04/\

1 INTRODUCTION

Sizes of neural networks used to train LLMs has exponentially grown since the introdution of trans-
formers Vaswani et al.[(2017). This growth demands more memory and compute power. Yet, nei-
ther the memory capacity nor the compute capability of a single accelerator increases at the same
rate Sevilla et al.|(2022)). As a result, high-performance computing centers and cloud providers use a
mix of model and data parallelism for training large modelsNarayanan et al.|(2021). One of the most
commonly used forms of model parallelism in LLMs is pipeline parallelism, in which consecutive
layers are grouped into stages, with each stage assigned to one accelerator (worker) Kahira et al.
(2021)). Input mini-batches are split into micro batches (chunks) to improve accelerator utilization
by overlapping computation in a pipeline fashion Huang et al.|(2019); Harlap et al.|(2018);|Fan et al.
(2021); L1 & Hoefler| (2021); Qi et al.| (2024).

In traditional LLMs training schemes, the workload for each pipeline stage is known in advance and
remains static throughout the training. To reduce computational resource requirements, new training
schemes that introduce dynamic training workloads are emerging. This includes: a) neural networks
where different input samples take different pathways through the model layers E], e.g. gated neural
networks |Shazeer et al.| (2017a)), sparsely activated Mixture of Experts (MoEs) Zhou et al.|(2022b),
Switch Transformers |[Fedus et al.| (2022), Mixture of Depths (MoDs) Raposo et al.| (2024) etc., b)
gradual pruning where the parameters of a model are pruned (i.e. sparsified) during training Gale
et al.[(2019), ¢) freeze training where some of the layers of the model are adapatively frozen during
training [Wang et al.[ (2022), d) different schemes to dynamically sparsify the attention matrix [Liu
et al.| (2022a)); |[Pagliardini et al.| (2023); [Tay et al.| (2020), and e) early exit strategies where tokens
skip remaining layers based on an exit decision|Elbayad et al.|(2020); Schuster et al.|(2022); Liu et al.

'In this paper we use layer to refer to a transformer block (multi-head attention + a feed forward network)
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Figure 1: Average idleness percentage of GPUs (per iteration) for training dynamic GPT mod-
els Radford et al.| (2018)). Five example cases use models parameterized to have between 24 and
48 layers, and for one example case (MoEs) we report the average idleness percentage for Mix-
tral 8x7b and LlaMA-MoE-3.5B models. For pipeline parallelism, we use the highest performing
pipeline parallelism scheme known to the authors: the “almost zero-bubble pipeline parallelism”
scheme Q1 et al.| (2024)). All reported bubble ratios are measured on a hybrid of pipeline parallelism
and data parallelism on 720 H100 GPUs in total, excluding MoEs which uses 128 H100 GPUs in
total. Mixture of Experts: we observe ~25% bubble ratio in the pipeline on Mixtral 8x7b Jiang
et al. (2024) and LLaMA-MoE-3.5b Team| (2024), arising from the load imbalance imposed by the
routing schemes used in token choice (S-BASE |Lewis et al.|(2021b)) and load imbalance with auxil-
iary loss Jiang et al.|(2024)). Gradual prunning of model parameters: we observe almost a five
fold increase in idleness at 90% sparsity levels. Note that idleness at Dense is the inherent pipeline
bubbles of a static model. Layer freezing: SoTA freezing schemes that incorporate load balancing
(Egeria Wang et al.| (2022)) and AutoFreeze Liu et al. (2021))) yield ~40% bubble ratio. Dynamic
Sparse Flash Attention: locality sensitive hashing with support for flash attention |Pagliardini et al.
(2023)) exhibits a 4x increase in the bubble ratio over the baseline dense attention. Early exit: SoTA
early exit methods (CALM |Schuster et al.| (2022) and ADP-C |Liu et al.| (2022b)) exhibits up to 5x
increase in the bubble ratio over the baseline (w/o early exit), mainly due to the accumulation of
bubbles in late layers. Mixture of Depths: we observe ~18% bubble ratio in the pipeline, arising
from the load imbalance imposed by the routing scheme of expert choices that lacks information
about future tokens Raposo et al.| (2024).

(2022b)); Kim et al.| (2022). Other than computational efficiency, there is a wide range of reasons
that motivate the use of different forms of dynamic models to improve certain model attributes, such
as explainability and generalization. We refer the reader to the surveys Han et al.[(2021); Tay et al.
(2022) on different forms of dynamic models.

One of the main downsides of using dynamic models is that they introduce load imbalance in
pipeline parallelism, effectively decreasing the throughput of LLM training Zhou et al.| (2022a));
He et al (2022). For example, Figure [T] shows the average idleness of GPUs for GPT language
models with different numbers of layers, for different types of dynamic models. Load imbalance
manifests itself as bubbles that appear in the pipeline due to a stalling accelerator waiting to receive
work from its late neighboring worker(s). Since a pipeline is only as fast as its slowest stage, load
balancing becomes crucial for efficient resource utilization.

Production distributed training solutions typically implement a static load balance at the beginning
of training and maintain the same load distribution throughout the training. For instance, Megatron-
LM [Shoeybi et al.| (2019) evenly distributes all transformer layers across the accelerators. Deep-
Speed |Smith| (2023)) currently offers three partitioning methods for distributing model layers: Uni-
form, which balances the number of layers; param, which balances the number of parameters in each
stage; and regex, which balances layers whose names match a given regex pattern. However, this
approach operates on the assumption that the accelerators’ workloads remain roughly unchanged
throughout training. As a result, it fails to address the pipeline stalls introduced by dynamic models,
ultimately leading to a decrease in computational efficiency.

Considering the increasing importance of efficient MoEs/MoDs, sparse dynamic models, layer freez-
ing, and other dynamic training workloads, this work aims to mitigate the pipeline stalls introduced
by dynamic models. We introduce DYNMO, an elastic load-balancing framework designed for
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dynamic models, to ensure balanced pipeline stages during training. DYNMO dynamically re-
distributes the workload among accelerators whenever an imbalance arises during training, con-
sequently enhancing computational efficiency and leading to cost savings. DYNMO incorporates
two different dynamic balancers, both proven to converge to the optimal workload balance among
workers. Our experiments demonstrate that DYNMO incurs negligible overhead and can scale effec-
tively in both: a) single-node multi-GPU environments and b) multi-node multi-GPU environments
typically used for training LLMs with hybrid parallelism.

DYNMO not only enhances performance through dynamic load balancing but also offers the ca-
pability to elastically adapt GPU resources. Specifically, as the total workload decreases during
training due to gradual pruning or early exit, the load balancer consolidates the work onto fewer
GPUs —subject to memory capacity constraints— while maintaining performance. GPUs that are no
longer needed for training can then potentially be released back to the job scheduler.

DYNMO is the first work to study pipeline stalls caused by training dynamic models. Innovative
designs of dynamic models struggle to deliver practical impact, at large scale training, unless there is
a platform from which those models can be made efficient. DYNMO provides the essential platform
for achieving efficiency in these models. Additionally, considering the substantial costs required
for each training run of GPT-class models [Li| (2022); [Heim| (2022); Morgan| (2022), improving the
efficiency of dynamic models can result in significant cost savings.

Finally, we emphasize that DYNMO has no impact on model accuracy, as its role is solely to
redistribute workload, without interfering with the learning process or changing the learning
regime in any way, i.e., DYNMO functions as a complementary system software solution that op-
erates independently of the underlying strategies used for parameters pruning, early exist strategy,
layer freezing, experts routing etc. This makes DYNMO extendable and compatible with various
dynamic schemes. In principle, it can even be applied to models that undergo dynamic changes for
reasons other than the six example cases we list in this paper, such as manufacturing variability of
computing units Sinha et al.|(2022)). In short, our contributions are:

* We introduce DYNMO, which enables researchers to explore dynamic models and significantly
improves the end-to-end training efficiency of such models, making their practical application
more feasible. We invoke DYNMO to rebalance at regular intervals without prior knowledge of
dynamism, hence balancing the load in a fully automated and transparent manner. DYNMO is or-
thogonal to the underlying pipeline parallelism and dynamism scheme; it allows for compatibility
with various dynamic compute and model reduction schemes.

* We propose two load balancing algorithms proven to converge to optimal balancing in order to
alleviate the negative effects of dynamic models on pipeline utilization. We further introduce a
scheme for reducing the number of GPUs used during training by re-packing work to fewer GPUs.

* We show the benefits of the framework with six different example cases of dynamic models, in
both single-node and multi-node settings. DYNMO achieves 1.23x (MoEs), 3.18x (parameter
pruning), 2.23x (layer freezing), 4.02x (sparse attention), 4.52x (early exit), and 1.17x (MoDs)
speedups over (static) Megatron-LM on multi-node hybrid data and pipeline parallelism with up
to 720 H100 GPUs. We demonstrate that the re-packing strategy can be effective in reducing the
number of GPUs by up to half while sustaining comparable performance.

2  MOTIVATION AND BACKGROUND

2.1 BUBBLES IN PIPELINE PARALLELISM

There are two types of bubbles in pipeline parallelism: (i) inherent bubbles of the pipeline schedule
(e.g. bubbles in-between forward and backward passes in GPipe [Huang et al.| (2019)), and (ii)
bubbles introduced by the dynamic models during training (e.g. bubbles introduced by sparsification
during training). We aim to reduce the latter type of bubbles by carefully redistributing the layers
among stages to minimize the workload imbalance in the pipeline. Appendix B elaborates with
analysis of bubbles in pipeline parallelism.
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2.2 DYNAMIC MODELS

To reduce the compute and memory costs, training schemes that introduce dynamic training work-
loads are increasingly emerging. The irregular control-flow in those dynamics models lead in-
evitably to load imbalance. This leads to inefficiencies that often cause the dynamic model to be
slower than the baseline, hence defeating the purpose of using a dynamic model.

The load balancing problem considered can be formally defined as follows. Given a set of workers
N = {Ni,No,...,N,} and a set of tasks T = {t1,t2,...,t,,}, each task t; € T is associated
with a workload c;. The total workload is denoted by:

m

C = ZCJ‘.
j=1

Let A : T — N be aload assignment function that maps each task to a worker. The load of a worker
N; € N, denoted L;, is defined as the sum of the workloads of tasks assigned to it:

Li = Z Cj.

t,€EA-L(NG)

The objective of the load balancing problem is to minimize the maximum load among all workers:

mjn max L; = mjn max E c;j
ie{l,....n ie{l,....n
{ } { } LEATTA)

This optimization problem aims to distribute the tasks such that the workload is balanced across the
workers, minimizing the worst-case scenario in terms of load.

In the following we list the dynamic model example cases we examine in this paper.
Mixture of Experts

In Mixture of Experts (MoEs) |Shazeer et al. (2017b), the model capacity is increased by routing
input tokens selectively to specialized sub-networks known as experts, rather than processing all
tokens through the same feed-forward network. This design improves efficiency but introduces a
new source of load imbalance.

We define the load imbalance in MoEs as follows. Let £ = {eq, eq, ..., e} be the set of experts in
an MOoE layer, where each expert e; is assigned to a worker N; € A. During distributed training,
tokens are routed to these experts based on a routing function R : 7 — &, where each token t; € T
is sent to one (or more) experts.

The load of an expert e;, denoted L., , is defined as the total workload of the tokens assigned to it:

Lei = Z Cj.

tjeR—l(ei)

Ideally, the load should be balanced across all experts, i.e., L., ~ Le]. forall e;, e; € £. However, in
practice, the routing function R does not guarantee perfect balance due to the stochastic and learned
nature of the routing process, which often includes an auxiliary loss |Jiang et al.| (2024) or a linear

assignment problem [Lewis et al.| (2021D).

Let Liax and Ly, denote the maximum and minimum loads across the experts:

Lyax = max  Le,, Lypiyn= min L.
ie{l,....k} ie{l,....k}

The load imbalance AL is defined as the relative difference between the maximum and minimum
loads:
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o Lmax - Lmin
Ry a—
k Zi:l Le,

In practical scenarios, even for large batch sizes, this imbalance can be significant. For example,
empirical results from the Mixtral 8x7b model (2024) demonstrate up to 40% difference
between the busiest and least busy experts. This is consistent with the imbalance observed in token
choice routing reported by several others (e.g., [Zhou et al| (2022b); Raposo et al| (2024). This
discrepancy arises because the routing function R often includes a learned component, such as
an auxiliary loss attached to the MLPs or a linear assignment scheme, leading to suboptimal and
dynamic routing choices.

AL

This imbalance propagates through the training pipeline, causing bubbles in the communication
phase, particularly during the all_to_all collective operation, where tokens are returned to their orig-
inal workers. The result is inefficiency in GPU utilization and increased latency, highlighting the
importance of developing improved load balancing mechanisms for MoEs in distributed training
systems.

Parameter Pruning

Parameter pruning removes a subset of model parameters, resulting in a sparse network that can
maintain similar performance to the original dense model. However, pruning during training intro-
duces load imbalance due to non-uniform pruning across different layers.

Parameter pruning methods, such as global magnitude pruning[Hagiwaral (1993), selectively remove
parameters across the entire network based on their importance. Let £ = {ly,1ls,...,ls} be the set

of layers in the neural network, and each layer [; is assigned to a worker \; € N. During distributed
training, the workload of each layer may change dynamically as parameters are pruned.
(k)

Let p,”’ denote the fraction of parameters retained in layer /; at time step k. The effective workload

(k)

of layer [; at time step k, denoted ¢; "', is proportional to the number of remaining parameters:

) =),

where ¢; is the initial workload of layer /; before pruning. The total workload of the network at time
step k is:

d
C0 =3,
=1

Let A®) : £ — N be the load assignment function at time step k. The load of a worker \; € A,
denoted Lgk) , is defined as the sum of the effective workloads of the layers assigned to it:

(k) _ (k)
L = Z ¢

L e(AR))=L(NG)

Ideally, the load should be balanced across all workers, i.e., L;k) ~ L;’f) for all ./\/'j,,/\/'j/ € N. How-

ever, if the pruning method does not prune each layer uniformly (e.g., global magnitude pruning),
(k)

the fraction p;"’ may vary significantly across layers, leading to load imbalance.

Let Lgfgx and L(k) denote the maximum and minimum loads among the workers at time step k:

min

L% —  max L(-k) L(k.) = min L(-k).
T je{tny 7T MY efiiay )

The load imbalance AL*) at time step k is defined as the relative difference between the maximum
and minimum loads:
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Litex — L)

n k)’

In practice, non-uniform pruning introduces significant differences in layer workloads, causing im-
balances that lead to pipeline stalls or bubbles [Zhu & Gupta (2017); |[Frankle & Carbin| (2018));
Bellec et al|(2017). These bubbles occur because certain workers become idle while waiting for the
completion of tasks assigned to workers handling more heavily pruned layers. This dynamic load
imbalance emphasizes the need for adaptive load balancing strategies to efficiently handle pruned
models in distributed training scenarios. Appendix B elaborates on the factors that drive pruning:
pruning criteria, structure, schedule.

AL® =

Layer freezing

Layer freezing is a technique used to reduce computational costs during training by halting updates
to certain layers of an LLM once they have converged. While layer freezing can lead to significant
efficiency gains, it also introduces load imbalance when the frozen layers are unevenly distributed
among workers.

Let £ = {ly,13,...,ls} denote the set of layers in the DNN, where each layer /; is assigned to a
worker NV; € N. During training, earlier layers of the network often converge faster

(2022), leading to the possibility of freezing these layers to reduce computation. Let fi(k) € {0,1}
be an indicator variable for layer [; at time step k, where:

f(k) __ |1, iflayer [; is frozen at time step F,
i 10, otherwise.

(k)

4

The effective workload of a layer [; at time step &, denoted ¢
status:

, 1s adjusted based on its frozen

M =1 - ¢,

(k)

)

where ¢; is the initial workload of layer [; before freezing. If fi(k) = 1, then ¢
that the layer contributes no computational load.

= 0, indicating

The total workload at time step k is:

d
C® =3,
1=1

Let A% : £ — N be the load assignment function at time step k. The load of a worker w; €W,
denoted L§k), is defined as:

*) _ (k)
Ly = > ¢

LE(AM) =1 (wy)

Ideally, the load should be balanced across all workers, i.e., Lg.k) ~ Lg.lf) for all j\/j,j\/j/ c N.
However, if frozen layers are not evenly distributed among workers, this can lead to significant load
imbalance.

Let LS,’;ZX and L'*) " denote the maximum and minimum loads among the workers at time step k:

min

L¥ = max L, L = min P,
je{l,n} je{ln} 7

The load imbalance AL(*) at time step k is defined as:
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k k
AL(k) _ Ll('ngx B LEni)n

n (k)
%ZJ':l Lj

In practice, this imbalance occurs because the frozen layers often reside in the earlier parts of the net-
work, which may be unevenly assigned across workers. This uneven distribution can cause certain
workers to experience reduced computational load while others handle non-frozen, heavier work-

loads, resulting in pipeline stalls (2020). As a result, dynamic load balancing strategies
are needed to address the changing workload during training when using layer freezing.

Dynamic Sparse Flash Attention

Dynamic sparse flash attention is a recent technique that combines hash-based sparse attention with
FlashAttention |Dao et al.| (2024); [Pagliardini et al.|(2023)). This approach leverages dynamic spar-
sification to accelerate attention computations by restricting the attention matrix to specific blocks
determined by hash codes. However, the varying levels of sparsification across layers introduce
significant load imbalances during distributed training.

Let £ = {l1,la,...,ls} be the set of layers in the neural network, where each layer [, employs
a dynamic sparse attention mechanism. The workload of each layer depends on the sparsity level
induced by the hash-based attention mechanism, which varies dynamically during training.

Define sgk) as the sparsity factor of layer /; at time step k, where sgk) € [0, 1] represents the fraction

of non-zero elements in the attention matrix after sparsification. The effective workload of layer [;
(k)

at time step £, denoted ¢; ", is adjusted based on the sparsity factor:

cgk) = sgk) - ¢,

where ¢; is the initial workload of layer [; before applying dynamic sparsification. The total work-
load at time step k is:

d
c) = Z cl(.m.
i=1

Let A®) : £ — N be the load assignment function at time step k. The load of a worker Nj € A/,
denoted L§-k), is defined as:

(k) _ (k)
Lj = Z c; .

Li€(AR)=H(N;)

In an ideal scenario, the loads should be balanced across all workers, i.e., L;k) ~ L; for all

N, € N. However, due to the dynamic nature of hash-based sparse attention, the sparsi
N;,Nj € N. H due to the dy ture of hash-based sp ttention, the sparsity

factor sl(.k) can vary significantly across layers, causing discrepancies in the workloads assigned to

different workers.

k)

Let Lgfgx and L'¥) " denote the maximum and minimum loads among the workers at time step k:

min

L% —  max L(-k) L(k.) = min L(-k).
T je{tny 77 MY efiiay Y

The load imbalance AL*) at time step k is defined as:

k k
AL(k) _ Lgngx — Lr(ni)n )

n k
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In practice, the dynamic sparsification introduced by hash-based attention leads to varying levels of
computational effort among different layers and across different time steps |Pagliardini et al.| (2023)).
This variability results in significant load imbalances, as some workers may process layers with
higher sparsity (lower workload), while others handle layers with denser attention matrices. Conse-
quently, dynamic load balancing mechanisms are required to mitigate these imbalances and maintain
efficient utilization of distributed resources during training.

Early Exit

Early Exit is a technique that allows tokens to skip subsequent layers once they have reached a confi-
dent state. While this method, also known as token pruning, can significantly reduce computational
costs, it introduces a new form of load imbalance due to the uneven distribution of token processing
across layers.

Let £ = {ly,l2,...,lq} denote the set of layers in the neural network, where tokens can exit the
model early, skipping the remaining layers. Define t(*) as the total number of tokens being processed

at time step k, and let tl(-k) be the number of tokens processed by layer [; at time step k. In an Early
Exit scheme, tgk) generally decreases with the layer depth, as tokens exit before reaching deeper

layers |Schuster et al.| (2022); [Liu et al.| (2022b)).

The effective workload of layer [; at time step k, denoted cgk
tokens processed by that layer:

), is proportional to the number of

¢

(k)

(k) _
CZ‘ — + Gy,

~

where ¢; is the initial workload of layer /; before applying Early Exit. The total workload at time
step k is:

d
C0 =3 e®,
=1

Let A®) : £ — N be the load assignment function at time step k. The load of a worker \; € A/,
denoted L;k), is defined as:

(k) _ (k)
L=
Li€(AR)=H(N;)
Ideally, the loads should be balanced across all workers, i.e., Lgk) ~ Lg.lf) for all ./\fj,j\fj/ € N.
However, due to Early Exit, the number of tokens processed by deeper layers (tgk) for larger 7)
decreases significantly, leading to a reduced workload for workers handling these layers.

Let LS,’;ZX and L¥) " denote the maximum and minimum loads among the workers at time step k:

min

max ’ min

J J
The load imbalance AL*) at time step k is defined as:

k k
AL(k) _ Lgngx — Lr(ni)n )

n k

In practice, Early Exit schemes cause severe load imbalances as fewer tokens reach the deeper
layers, leading to underutilization of the workers responsible for these layers. The imbalance can be
exacerbated, resulting in increased bubble ratios (up to 5x) due to idle time Schuster et al.| (2022)).
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This makes Early Exit an ideal case for dynamic load balancing strategies, such as repacking layers
into fewer workers to sustain training throughput.

Mixture of Depths

Mixture of Depths(MoDs) [Raposo et al.|(2024) is a technique that generalizes the early exit scheme
by allowing tokens to skip not only the final layers but also intermediate ones. The version of MoDs
used in this paper is based on expert choice, leveraging Mixture of Experts (MoEs) for enhanced
performance. However, the dynamic nature of layer skipping and the inherent variability in expert
choice introduce significant load imbalances during distributed training.

Let £ = {ly,l2,...,lq} be the set of layers in the neural network, and t(®) be the total number of
tokens being processed at time step k. In the Mixture of Depths scheme, tokens can skip intermediate
layers based on expert predictions, leading to a varying number of tokens processed at each layer.

Let tgk) denote the number of tokens processed by layer /; at time step k.

Define rgk) as the routing weight for layer /;, determined by an auxiliary MLP predictor that esti-

mates whether a token should bypass that layer or not. The effective workload of layer [; at time
(k)

step k, denoted ¢;"’, is then:

cgk) = ’I“Ek) -tz(-k) - Cq,
where ¢; is the initial workload of layer [; before applying the MoD scheme. The total workload at
time step k is:

d
O =3 ),
1=1

Let A®) : £ — A be the load assignment function at time step k. The load of a worker \j € W,
denoted Lgk), is defined as:

(k) _ (k)
Ly = > Ci -

LE(A®) 1))

In an ideal scenario, the loads would be balanced across all workers, i.e., L;k) ~ Lyf) for all
wj,w; € VY. However, two main factors contribute to load imbalance in the MoD scheme:

1. **Prediction Inaccuracies**: The auxiliary MLP predictor used to route tokens can misesti-

mate whether a token will be among the top-k selected for the next layer. These inaccuracies lead

to fluctuations in rgk), causing variability in the token distribution across layers. 2. **Integration

with MoEs**: The MoD implementation leverages Mixture of Experts (MoEs) for improved perfor-
mance, which introduces additional variability in token routing. Since the MoE layers dynamically
(k)

select experts based on token features, the effective workload c;

expected workload, amplifying the imbalance.

may differ significantly from the

Let me and L(k) denote the maximum and minimum loads among the workers at time step k:

™o L® — min LM,
! je{t ) 7

k) __ m
LSn;Zx . ax
je{l,...,n}

The load imbalance AL(*) at time step k is defined as:

L, — k)

n k)’

Empirically, we observe imbalances of up to 18% in the MoD scheme due to the combined effects
of routing prediction errors and the inherent variability in expert selection in MoEs [Raposo et al.

AL® =
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Algorithm 1 End-to-end Training of Dynamic LLMs with DYNMo

Input: model, train_iters, rank, workers
Input: dynamism_args, balance_args, pack_args
1: dynamism_rat, dynamism_region, dynamism_freq <— dynamism_args
2: is_load_balance, balancer <— balance_args
3: is_pack, num_workers_to_pack <— pack_args
4: dynamism_idx < 0
5: dynamism_iter <— NULL
6
7
8

: profile +— 0
: for iter <— O to train_iters do
train_step(model, profile)
9: if iter in dynamism_region AND iter % prune_freq == 0 then

10: worker_ dynamism(model, dynamism_rat[dynamism_idx], rank) > Algo. 2 in Appendix C
11: dynamism_idx +=1

12: dynamism_iter = iter

13: if is_load_balance then

14: profile = 1

15: end if

16: end if

17: if is_load_balance AND iter == dynamism_iter + 1 then

18: load_balance(model, balancer) > Algo. 3 in Appendix C
19: profile < 0

20: end if

21: if is_pack AND iter == dynamism_iter + 1 then

22: pack_workload(model, num_workers_to_pack) > Algo. 4 in Appendix C
23: end if

24: end for

(2024). These imbalances result in uneven workloads across workers, necessitating adaptive load
balancing strategies to maintain efficient training throughput.

3 DYNMO: ELASTIC AND BALANCED END-TO-END TRAINING OF DYNAMIC
LLMS

3.1 OVERVIEW

In this work, we use six example cases of dynamic models for which current (static) distributed
training systems are not ready to handle efficiently. Even though we show the efficiency of our load
balancing system for dynamic LLMs with these example cases, they can be a basis for expanding to
other forms of dynamic models.

Algorithm[T|shows the overall flow of operations of DYNMO with model dynamism. The dynamism
function (line 10) depends on the target case. For instance, if the target case is parameter pruning,
the dynamism function would apply global pruning on different worker. The algorithm takes as in-
put a model, the number of training iterations, the rank of the accelerator, and several arguments for
managing the dynamism, balancing, and packing the model’s workloads. We start the training with
the original model and train it until a user-specified dynamism to apply is reached. The frequency
varies by the target case, in layer freezing it is as frequent as every 50 iterations, while in parameter
tuning the pruning frequency is in the range of 3000-7000 iterations. The model or control flow
is altered only if the training is in the dynamism stage. In this stage, the model is adjusted every
dynamism_freq iteration, where the model (or control flow inside the model) is modified until it
meets the specified stopping criteria (lines 9-16). The first iteration after each dynamism operation
is used for profiling the time it takes to execute each layer in the altered model and the memory
usage of all workers (accelerators) in the pipeline. Next, DYNMO collects the profiling information
and decides on balancing the workload by moving layers across pipeline stages based on the execu-
tion times of individual layers to minimize the pipeline stalls, subject to the constraints of memory
capacity per worker (line 17-20). DYNMO also attempts to re-pack the total workload into fewer
number of GPUs if the re-packing feature is enabled by the end user (line 21-23). Once the training
is out of the dynamism region, the balanced pipeline continues to execute with the model. Figure

10



Under review as a conference paper at ICLR 2025

E] Pipeline O Train for n iters @ Dynamism MoEs, Pruning Layer Freezing etc

Update
ov*
wur | (EEEEHEEEE) ) p} )

E] Profiling Imbalanced Pipeline E] Load Balancing
S e ... & [ Gather Profiling } . )[ Minimize Work\oad - P2P Layer
P SlGl->m- [ - Al Transfers Scatts ~ Local Transfe
ol (@B =g (ohmm) -2 = ctor J- oot T2
iR 2 "o
: s P2P Layer
GPU1 i}->[)>[E] G]-5[E)->
] (BB = EEE)

NO IF PACK
@ Balanced Pipeline @ Balanced Pipeline Packed Into Fewer GPUs

GPUO Immwﬂ [} >z=->[a}->m ‘ >“[|m o] >m Ls] [>|m>ﬂ>ﬂ>im] Emﬂ!m E)@ [} ->mm H
B4

GPU1 I [lﬁ)ﬂ & m}E@)ﬂ)ﬂm] ‘

V

/re%

Figure 2: Overview of DYNMoO. The flow in the figure (top to bottom) is repeated until training is
completed. Each yellow and orange rectangle represents a transformer layer. The size of a rectangle
illustrates the amount of work in a layer. (1) shows the pipeline before the model starts to change
due to dynamism. (2) some action (dynamically) changes the model, or the flow of work inside
the model. (3) profiles the pipeline to check if there is any imbalance between stages, (4) performs
load balancing based on the profiling results, (5) trains the balanced pipeline until the next time to
rebalance, optionally it reduces the number of resources (GPUs) used in training by re-packing.

[]illustrates the overview of DYNMO with all its steps. The implementation of individual steps of
model (or control-flow) altering, load balancing, and re-packing can be found in their respective
sections.

3.2 PROFILING THE DYNAMISM

To use DYNMO with different example cases of dynamic models, we profile the dynamism mecha-
nism for each example case. By large, the mechanism for measuring the load balance, redistributing
the load, and re-packing (when possible) does not vary from case to case. DYNMO operates as a
black-box approach where the load balancing happens at regular fixed intervals, without any knowl-
edge of whether the model has changed or not. As will be shown in the results section, the very low
overhead allows DYNMO to be invoked even at the granularity of each iteration. More details on
the dynamism in the example use cases, and the dynamic reconfiguration of the pipeline available in
Appendix F.

3.3 LOAD BALANCING

DYNMo implements two load balancing algorithms, and can be extended to support other algo-
rithms. The first is centralized parameter-based partitioning that balances partitions based on the
number of parameters. The load balancing algorithm is built on top of DeepSpeed’s load balanc-
ing utility functions for partitioning in model parallelism [Smith| (2023)). The second algorithm is
an iterative decentralized diffusion-based algorithm that aims to minimize the variance between the
workload of each rank by attempting to move layers from overloaded workers to underloaded ones
in an iterative way. The workload cost can be described by either the layer execution times, or the
parameter counts as in the centralized partitioning method.

The diffusion-based load balancing algorithm achieves ideal load balancing by iteratively minimiz-
ing workload imbalances using a Lyapunov-inspired approach. The potential function ¢, defined as
the sum of workload gaps between workers, serves as a measure of imbalance in the system. Each
iteration of the algorithm reduces ¢ by redistributing tasks from overloaded to underloaded workers,
prioritizing layer transfers that yield the largest reductions in imbalance while satisfying memory
constraints. The algorithm’s probabilistic analysis guarantees that ¢ decreases towards a conver-
gence threshold +, with the rate of convergence bounded by O(N? log(SN /7)log '), where N/
is the number of workers and S is the total pipeline size. This systematic reduction ensures that
workload imbalances, quantified by the bubble ratio, are minimized, driving the system towards
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an optimally balanced state. The theoretical guarantees of convergence and imbalance reduction
underpin the algorithm’s robustness in dynamic environments.

We demonstrate that the two load balancing schemes (used in Algorithm [T) meet the goals for
optimal load balancing by using the following lemmas. Lemmas proofs presented in Appendix C.

Lemma 1. A centralized load balancer L. over N' workers satisfies maximum reduction in the
imbalance N if and only if N; reduces the bubble ratio to minimum.

Lemma 2. An iterative decentralized diffusion based load balancer Ly over N* workers satisfies
maximum reduction in the imbalance N if and only if N reduces the bubble ratio to minimum.
Also the load balancer is guaranteed to converge to the maximum reduction in imbalance in the
following number of rounds

S. SN 1
0 (min {J\/Qlog (N) log V, j\/og_/\/})
v g
where v € R+ ¢ is the convergence factor and € R+ is the total number of stages in the pipeline.

3.4 RE-PACKING DYNAMIC MODELS TO FEWER WORKERS

Workload re-packing is the process of merging the total workload into a smaller number of work-
ers (GPUs) with the purpose of using the available resources more efficiently, i.e. unused GPUs
are released when the overall amount of work in training drops. This can be achieved with simple
algorithms (in small scale) such as first-fit, best-fit, and round-robin as well as complex optimiza-
tion heuristics. Workload re-packing aims to increase the worker utilization and reduce the overall
number of workers employed to continue the training process. For long training schedules that are
common in LLM training, workload packing can result in substantial cost savings. It may also pro-
vide improved performance due to reduction in the number of cross-worker communication calls,
and smaller pipeline bubbles.

Re-packing Definition Re-packing occurs when the total workload C'*) decreases below a thresh-
old 7. At this point, the model layers (tasks) are redistributed across a smaller subset of workers to
optimize resource utilization. Let N'*) C A denote the active set of workers after re-packing at
time step k, where [N ()| < n.

The load assignment function after re-packing is denoted by A®) : 7 — A(*)_ The load of an
active worker N; € N/ (%) is defined as:

(k) _ (k)
L, = Z ¢l
t; €(AMR))=1(N;)

The objective after re-packing is to minimize the maximum load across the active workers:

. k
min max L,E ).
AR N Ge{l,.. ,N®} -~

Re-packing Condition Re-packing is triggered if:

C® <7 and |IN®|<n.

The aim of re-packing is to reduce the number of active workers |A(¥)|, while ensuring that the
maximum load remains balanced:

(k)
max L(-k) o~

ie{1,. JIN®I} ' IN )|
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We use a first-fit algorithm for workload consolidation. The goal of this algorithm is to reduce the
number of active workers (subject to memory capacity constraints). When the combined memory
usage of every pair of workers is less than the memory capacity of a single worker, we migrate the
layers in order to free one of the GPUs. This repeats in an iterative fashion for every two pairs until
no more GPUs can be eliminated. Appendix C elaborates on our algorithm for efficient re-packing.

When possible, repacking is an additional advantage to load balancing. We implement repacking in
DYNMO at the load balancer level to enable the release of GPUs. To ensure the GPUs are released
in a practical manner, we use the NCCL communicator splitting functionality to allow idle GPUs to
be used by a concurrent communicator of the new job without the risk of deadlock. We elaborate
on our method for releasing GPUs and list other alternative methods in Appendix C. DYNMO’s
task ends at releasing the GPUs; reclamation of the released GPUs and assigning them new jobs
by the middleware or scheduler is outside the scope of this paper. That being said, it is worth
noting that in single-node multi-GPU systems, Nvidia Multi-Instance GPU (MIG) |[Nvidia| (2023)
supports node partitioning for multi-tenancy. GPUs that have been released can be returned to MIG
for allocation to other tenants. In multi-node environments, cloud schedulers have the ability to
acquire released resources and reassign them to other jobs, often leveraging technologies like elastic
Kubernetes [Elastic| (2023).

3.5 OVERHEAD OF DYNMO AND FREQUENCY OF DYNAMISM

The overhead of DYNMO is negligible. For all the results we show in this paper, for all model
sizes and different dynamism example cases, the percentage of overhead is a few single digits at
its highest; this includes the complete overhead of DYNMO: profiling data collection, rebalancing
algorithm, and layers migration between GPUs. The evaluation section reports the load balancing
overheads.

As a basic rule, we apply the rebalancing (via DYNMO) every time the model or the control flow
changes. Since the overhead of DYNMO is very low, we could apply it as frequently as needed,
based on the requirements of the applications. For example in gradual pruning the typical frequency
of dynamism (i.e. model changes requiring load rebalancing) is in the order of 1,000s of iterations.
On the other hand, for MoEs and MoDs the rebalancing in every iteration since the imbalance
is unpredictable and dependent on point the routing decision is taken, i.e., in the forward pass at
each FFN. For MoEs and MoDs we rebalance in the back propagation phase where we attach the
movement of layers to the pipeline parallelism scheme (i.e. we migrate the layers as we propagate
the gradients back down the pipeline from the last layer to the first layer).

3.6 LIMITATIONS

We focus on dynamism for LLMs and currently do not support other types of DNNs. Our method
cannot automatically detect imbalance in a way that is transparent to the training process, i.e., we
apply DYNMO at a fixed frequency regardless of whether the model has changed or not. We also
allow the user to set the frequency. As future work, a background light weight tracker can be used
to identify the dynamism pattern. Another alternative would be training our method to forecast the
imbalance during training.

4 EVALUATION

This section contains empirical results and analysis of DYNMO’s effectiveness. Elaborate details on
the software, hardware, and training environment in Appendix A.

We conducted experiments using two dynamic load balancing algorithms, each with two different
configurations. These algorithms were employed consistently the experiments for all six example
cases of dynamic models. The first algorithm, referred to as Partition: by Param, is based on a
DeepSpeed |Rajbhandari et al.|(2020) API. It uses a combination of binary search and linear probing
to determine the optimal partitioning based on the parameter counts of the decoder layers. Another
variation of this algorithm, called Partition: by Time, employs execution times of decoder layers as
input. The second algorithm is a decentralized iterative diffusion-based load balancing approach,
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Figure 3: Throughput of end-to-end training for six different example cases. DYNMO rebalances
at regular intervals w/o prior knowledge of dynamism. MoE, Sparse Attn., and MoDs: invoke
DYNMO every iteration. Pruning, layer freezing, and early exit: invoke DYNMO every 100s to
1,000s iterations. Speedup we report is the highest among balancing by number of parameters or
layer execution time, divided by the highest among static Megatron-LM and DeepSpeed (or SoTA
baseline, when available). MoEs and MoDs: we use 128 GPUs (16 nodes each with 4x H100s) in
a hybrid of §-way data parallel + 16-way pipeline). For gradual pruning, layer freezing, dynamic
sparse attention, and early exit we use a total of 720 H100 GPUs (90 nodes each with 4x H100s) in
a hybrid of 30-way data parallel + 24-way pipeline.

which iteratively minimizes load variances among workers. Similar to DeepSpeed, this balancer has
two variants: Diffusion: by Param and Diffusion: by Time.

4.1 END-TO-END TRAINING THROUGHPUT AND SPEEDUP

All our throughput and speedup results include the load balancing overhead, unless specified other-
wise. We trained GPT models |Radford et al.|(2018) having different numbers of layers to determine
the training throughput and speedup over static Megatron-LM and DeepSpeed (or SoTA baseline,
when available). Figure [3]for MoEs, gradual pruning, and MoDs presents the highest throughput of
two static and four dynamic load balancers. The first static balancer, Megatron-LM |Shoeybi et al.

(2019), evenly distributes layers across accelerators. The second static balancer, DeepSpeed Mi-|
crosoft| (2023), balances the number of parameters before training begins. In contrast, each of the
two the dynamic load balancers (Partition and Diffusion) has two variants to redistribute the layers
after each dynamism step: redistribute based on number of parameters or based on the layer exe-
cution time. Parameter-based balancers require profiling after the pruning step for memory usage
information, while time-based balancers require profiling for memory usage and layer execution
time information. We report the highest among both. Figure 3] for layer freezing, dynamic sparse
attention, and early exit compare the two dynamic load balancers (Partition and Diffusion) over
SoTA baseline that exists for those example cases. We observed that the use of layer execution time
for dynamic load balancing, such as diffusion or partitioning, consistently outperforms parameter
count-based implementations across all scales. In every scale, execution time-based dynamic bal-
ancers surpass the baseline static balancers. As seen in the figure, most of the speedup reported
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Figure 4: Re-packing the layers of GPT models into fewer GPUs as the model gets smaller due to
dynamism. X-axis: Number of GPUs in pipeline parallelism using 90 nodes and up to 8 GPUs per
node. Left Y-axis: throughput/number of GPUs shown with yellow bars. Right Y-axis: through-
put (tokens/sec) shown with blue squares. Below: we show the average number of GPUs needed
throughout the gradual pruning training at which we dynamically re-pack (total 10,000 iterations).
Right: load balancing overhead for example cases. The overhead reported includes: profiling (in

-), DYNMO load balancing algorithm (in -), and migration of layers between GPUs (in
).

is attributed to balancing the load by redistributing the, and not due to the reduced communication
when we re-pack: the speedup gain from re-packing is between 4 11% of the entire speedup gain. In
other words, even if we do not re-pack at, the speedup gain remains almost the same. Hence we treat
re-packing as just a way to be efficient by using less GPUs, and not as a way to speed up imbalanced
dynamic training. Additional experiments demonstrating the effect of network bandwidth, vertical
scaling, and weak scaling are provided in Appendix E.

Mixture of Experts MoEs requires find-grained dynamism since the load vary from iteration to
iteration. DYNMO shows more than 1.21x improvement on Mixtral 8x7b and LLaMA-MoE-3.5B in
continual training. We do not change any of the hyperparameters from the original implementations.
In addition to the Megatron-LM and DeepSpeed baselines, we also compare a highly MoE-tailored
system: Tutel Hwang et al.|(2022). DYNMO significantly outperforms Tutel: 1.18x on Mixtral 8x7b
and 1.21x on LLaMA-MoE-3.5B.

The improvement margins on MoEs and MoDs are in fact among the top in all six use cases, relative
to how much for the bubble ratio was eliminated. DYNMO reduces the bubble ratios of MoEs
and MoDs from 25% to 8% and 18% to 4%, respectively. As a result, the end-to-end training of
two production models improve 1.21x on Mixtral 8x7b and 1.23x on LLaMA-MoE-3.5B. Those
improvements would translate to significant cost savings, considering the huge cost of training those
models (and other similar models).

Gradual Pruning The pruning region starts from iteration 3000 and continues until iteration 7000
and the model is pruned every 1000 iterations until the 90% target sparsity is reached. This corre-
sponds to sparsity levels of 52%, 79%, and 90% after each pruning step. All other hyperparameters
are the same as Megatron-LM. Using layer execution time for diffusion or partitioning dynamic load
balancing outperforms the parameter count-based implementations in each scale, for up to 3.18x.

Layer Freezing DYNMO ourperforms the SoTA layer freezing tool Egeria Wang et al.| (2022)). We
can observe two main points. First, the speedups of different load balancing algorithms over static
algorithms are largely similar. This is mainly because the different algorithms tend to arrive at
similar load balancing solutions when entire layers are frozen. Second, DYNMO shows increased
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speedup as the number of layers increases, particularly with diffusion, primarily because Egeria’s
overhead grows fast with the number of layers, while DYNMO overhead remains almost flat.

Dynamic Sparse Attention DYNMO achieves between 2.71x-4.02x speedup over the baseline
dense attention (w/o sparsification). Dynamic sparse attention is the example case where DYNMO
is most efficient at removing the pipeline bubbles. That is since using layer time execution, which
fluctuates a lot in dynamic sparse attention, enables effective redistribution of the layers.

Early Exit DYNMO achieves more than 4x on average over the baseline w/o exit, i.e. when all
tokens pass through the entire model. Similar to dynamic sparse attention, early exit benefits the
most from DYNMO due to the big variance in load between earlier and later layers.

Mixture of Depths Like MoEs, MoDs layer loads vary from iteration to iteration. DYNMO shows
1.17x improvement on the baseline in continual training. We suspect MoDs will in the future be
able to benefit more from custom load balancers that leverage the knowledge of how MoEs is used
in hybrid with MoDs.

4.2 OVERHEAD OF LOAD BALANCING

Figure[d](right) reports the load balancing overheads. This includes both the load balancing decision
and the actual transfer of the parameters and other data of the layers to be sent or received, e.g., row
offsets and column indices in CSR format for gradual pruning, and gradients in the case of MoEs and
MoDs. The overhead is generally negligible, hence giving the opportunity for the use of DYNMO in
other forms of dynamic models, and not just the six example cases in this paper.

4.3 RE-PACKING MODELS TO FEWER GPUs

In the re-packing experiments, the training starts with 8 GPUs per node in pipeline parallelism. After
a dynamism step, DYNMO attempts to re-pack the total workload into fewer GPUs while satisfying
the memory capacity constraints. Figure ] reports the throughput/number of GPUs for each model
size where the model is packed into 6, 4, and 2 GPUs. The 8 GPU setting for each model size serves
as a baseline where there is no re-packing. This measurement also corresponds to the performance
per dollar metric as the cost is directly proportional to the number of GPUs used in training.

We observe that in all model scales, re-packing can allow the training to be continued with fewer
GPUs which may result in significant cost savings. For example, in gradual pruning we reduce the
GPU count from 8 to an average of 5.8 GPUs while sustaining the training throughout.

5 CONCLUSION

DYNMOo is a load-balancing system for dynamic models where the loads of the workers change
during training. DYNMO provides better load balance than state-of-the-art static load balancing
approaches, which results in better efficiency and faster end-to-end training time. Empirical results
for LLMs with six example cases of dynamic models show that DYNMO significantly improves the
training throughput over the counterparts. We foresee that dynamic models will be more prominent
in the future and dynamic load distribution will be of utmost importance.
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A SOFTWARE, HARDWARE, AND TRAINING ENVIRONMENTS

Experiments were mainly conducted on a supercomputer at which each of the compute nodes con-
tains 2x AMD EPYC 9654 96-Core/2.4GHz processors, and 4x NVIDIA H100 SXM5 (80GB)
GPUs. The GPUs in the same node communicate with CPUs using PCle Gen5 x16 per GPU,
and NVSwitch amongst the GPUs (NVLink34 x6). The compute nodes are connected by InfiniBand

NDR200 200Gbps x 4. We used CUDA 12.1, OpenMPI 4.0.7, and PyTorch 2.3.1 with NCCL 2.17.1
distributed backend.

We train the models on the Wikipedia dataset Foundation| (2023)). for Mixtral 7bx8 and LLaMA-
MoE-3.5B we do continual training. All models used for training have a sequence length of 2048, a
hidden size of 1024, 32 attention heads, and the models are trained with a micro-batch size of 2 and
batch size of 64 for 10,000 iterations, unless specified otherwise. For the multi-node experiments,
as we increase the number of workers (GPUs), we also increase the batch size to fix the number of
micro batches to four times the number of GPUs in the pipeline, as suggested in|Huang et al.|(2019)
to achieve good pipeline utilization.

B BUBBLE RATIO IN THE STATIC MODEL

In this Section we describe the theoretical bubble ratio that appears in the static model. The bubble
ratio refers to the ratio of the idle time of devices when different workers (GPUs) stall while waiting
for work to be available. Additional bubbles appear in the pipeline when the model become dynamic
(due to the load imbalance). The bubble ratio for the almost zero bubble pipeline scheme Qi et al.
(2024) we use in the paper is:

(3(5—P)+oP—2(5 -P)/P-8)To+2(5 — P) T 0
(3P2 — 2P) T + (2P? — 2P) Ty + P21y

where S is the number of pipeline stages, B is the number of micro-batches (chunks) in a single
iteration, P is the number of workers used in the pipeline, T is the time cost for a complete forward
pass (all forward stages added together) divided by P, T's is the time cost for a complete backward
pass (all backward stages added together) divided by P, and T is the communication time for
moving a from a worker to its neighbor for the un-overlappable portion of communication.

The bubble ratio is derived from the un-overlappable portions of communication 7 and forward
pass T’z (numerator of Equation [I)) from the entire end-to-end span of the pipeline (denominator of

Equation, where (%2 — P) is the gaps/stalls in the pipeline due to lack of components to overlap
after the forward and backward passes of the two duplicate models have been overlapped.

Figure [3] illustrates how the bubbles attributed to the dynamic sparsification adds up to, and is dif-
ferent from, the inherent bubbles that are observed in the pipeline scheme.
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Figure 5: Illustration of bubble types in the almost zero bubble pipeline scheme |Qi et al.| (2024)
with 8 microbatches. Each row represent a GPU’s pipeline stages over time. Inherent bubbles in the
pipeline are shown in gray and bubbles introduced by dynamicity (e.g. sparsity) are shown in red.
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C PRUNING, LOAD BALANCING, AND PACKING

C.1 NEURAL NETWORKS PRUNING

There are three main considerations that need to be taken into account when applying network
pruning: criterion, structure, and schedule of the pruning.

Pruning Criterion: Every pruning scheme needs to define a criterion to choose which parameters to
prune. A non-exhaustive list of pruning criteria used in the literature includes: weight magnitude |Li
et al.[(2016));|Renda et al.[(2020), gradient magnitude Cun et al.|(1990); Mozer & Smolensky|(1989),
Bayesian statistics-based criteria|Dai et al.|(2018); Molchanov et al.|(2017), and reinforcement learn-
ing based criteria|Lin et al.|(2017); |He et al.| (2018])). These criteria can be applied either locally (i.e.
considering each layer’s weights separately) or globally (i.e. considering weights in all layers).

Pruning Structure: Parameters in a model can be removed in a structured or unstructured way.
Structured sparsity |Kruschke & Movellan| (1991) enforces a pattern to be applied while choosing
the parameters to be pruned. This can range from removing filters in a convolution layer to remov-
ing attention heads in a multi-headed attention layer. On the other hand, unstructured sparsity |Han
et al.| (2015) is not under the constraint of a pattern (i.e parameters can be freely removed), hence,
offers a finer granularity. Even though unstructured sparsity offers better flexibility, structured spar-
sity is more prevalent since it is difficult to implement efficient kernels for sparse data structures
in unstructured sparsity and deep learning frameworks have limited support for sparse computa-
tions. However, it has been shown that the enforcement of a certain structure for the pruning of
parameters can result in significant degradation in model quality compared to unstructured sparsity
Kalchbrenner et al. (2018)); [Elsen et al. (2020)).

Pruning Schedule: After choosing the criterion and the structure of the pruning, one must decide
when to prune and how often to prune. The most popular schedule in the literature consists of
pruning after training is over, and then fine-tune the model to recover the loss introduced by the
pruning Han et al.|(2015). Another effective approach is to remove a certain percentage of weights
progressively during the training until the target sparsity is reached [Zhu & Guptal (2017), which
eliminates the fine-tuning process. There are also schedules that enforce a constant rate of sparsity
throughout the training Mocanu et al.| (2018).

For a more comprehensive analysis of various sparsification procedures which are applied in deep
learning, we refer the reader to |Hoefler et al.|(2021).

C.2 GRADUAL GLOBAL MAGNITUDE PRUNING

For our pruning design, we use the gradual pruning schedule proposed in|Zhu & Gupta(2017) which
is formulated as:

t—to

Si=Sp+(Si =S - —

)3, t € {to,to+ At,...,t +nAt} )

where S;, Sy, n, to, and At are initial sparsity, final sparsity, number of pruning steps, initial pruning
step, and pruning frequency, respectively. The aim of this schedule is to prune the model rapidly in
the initial pruning steps since there are many irrelevant connections, then reduce the pruning rate as
the number of parameters in the network gets smaller.

We employed an unstructured magnitude pruning technique as opposed to a structured one since
unstructured magnitude pruning typically retains better accuracy under high sparsity rates [Prasanna
et al.|(2020). Unstructured magnitude pruning is applied globally (taking all parameters in the model
into account) instead of locally since it has been empirically shown that global pruning yields better
accuracy under high compression ratios |Blalock et al.| (2020)).

To our knowledge, there is no deep learning framework that supports global pruning on a distributed
model at the time of this writing (support is only for undistributed models). Thus we implemented
our own global pruning algorithm as shown in Algorithm 2] The global pruning method takes three
arguments, namely the model, target sparsity, and the rank of the device. Note that each rankﬂ has

>We use one MPI rank per GPU.
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Algorithm 2 Dynamism (Global Pruning as an Example)

Input: model, sparsity, rank
Output: model
params <— concat_params(model)
k < num_params x (1 - sparsity)
local_topk, local_topk_indices <— topk(abs(params), k)
topk_values <— gather(local _topk)
if rank == O then

global_topk_indices < topk(abs(topk_values), k)
end if
indices_to_keep < scatter(global _topk_indices)
model = compress_model(model, indices_to_keep)
return model

SYRIIUN R

Ju—

only its own portion of the model. First, each rank finds its own local top-k parameters in terms of
magnitude (line 3). Then, rank O gathers the top-k parameters of each rank (line 4). When rank 0
receives all top-k parameters, it calculates the indices of global top-k parameters to keep (line 6),
and sends the indices that belong to each rank (line 8). Finally, after each rank receives its indices
to keep, they prune (discard) parameters with all other indices in their local parameters (line 9).

C.3 LoAD BALANCING

DYNMOoO implements two load balancing algorithms, and can be extended to support other algo-
rithms. The first one is a centralized parameter-based partitioning method that balances partitions
based on the number of parameters. We also implemented a version where the same algorithm is
used for balancing partitions based on the layer execution times instead of the number of parame-
ters. This algorithm with two variants is built on top of DeepSpeed’s load balancing utility functions
for partitioning in model parallelism [Smith| (2023)). The second algorithm is an iterative decentral-
ized diffusion-based algorithm that aims to minimize the variance between the workload of each
rank by attempting to move layers from overloaded ranks to underloaded ranks in an iterative way.
The workload can either be the layer execution times or the parameter counts as in the DeepSpeed-
based algorithms. The number of iterations to decide on the final load distribution is a user-defined
parameter.

Algorithm [3] shows the pseudo-code for the diffusion-based load balancing algorithm. At the start
of the balancing process, each worker evaluates their workload. A worker is deemed overloaded if
their total workload exceeds the average workload across all workers and underloaded otherwise.
Overloaded workers aim to offload some tasks to underloaded workers to achieve a more balanced
distribution.

The balancing process unfolds iteratively. In each iteration, overloaded workers identify a task that
contributes the least to their workload (e.g., a computational layer with minimal execution time).
This task is then considered for transfer to the underloaded worker with the lightest workload. For
every potential transfer, the algorithm computes the new workload distribution and evaluates the
variance. A transfer is accepted if it reduces the variance and satisfies the memory constraints of the
receiving worker. Accepted transfers are tracked, ensuring that tasks are redistributed efficiently.

By iteratively reducing workload variance through these localized decisions, the algorithm ensures a
progressively balanced distribution. After the balancing phase, the transfer information is distributed
to all workers, who update their local task assignments accordingly. This iterative and decentralized
approach allows for effective load balancing in dynamic, distributed systems.

We elaborat on the details of the algorithm in this paragraph. After rank O gathers the loads (i.e.
layer execution times or the number of parameters for each layer) from all ranks, it discovers all
layer transfers between ranks by calling a diffusion re-balance function. The number of iterations
to minimize the variance is an argument that can be tuned according to the workload. For each
iteration of balancing, the total load of each rank, variance, and average load are calculated (lines
3-5). Then, each rank is assigned a status: overloaded or underloaded (lines 6-7). After the status of
each rank is assigned, each overloaded rank attempts to send its least loaded layer to the least loaded
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Algorithm 3 Diffusion-based Load Balancing Algorithm

Input: loads, num_ranks, max_iters, times, mem_info
Output: transfers (list)

1: transfers < []

2: for iter < 0 to max_iters do

3: total_loads < [sum(?) for ¢ in times]

4: avg_load <— average(total_loads)
5: var < variance(total_loads)
6: status <— [’Overloaded” if [ > avg_load
7: else "Underloaded” for [ € loads]
8: for src <+ 0 to num_ranks do
9: if status[src] == ”Overloaded” then
10: dst <— get_least_loaded_rank(loads)
11: lyr_idx < get_least_loaded_layer(src, times)
12: new_loads < update_loads(src, dst, lyr_idx, loads)
13: new_total_loads <— [sum(]) for [ € new_loads]
14: new_var <— variance(new_total _loads)
15: mem_req = sum(mem_info[dst]) +
16: mem_info[src][lyr_idx]
17: if new_var < var && mem_req < MAX_MEM then
18: var <— new._var
19: loads < new _loads
20: update_mem_info(src, dst, lyr_idx, mem_info)
21: transfers.append((src, dst, lyr_idx))
22: end if
23: end if
24: end for
25: end for

26: return transfers

rank (lines 7-24). Every time an overloaded rank attempts to send a layer to an underloaded rank,
new loads and variance are calculated (lines 12-14). If the new variance is smaller than the current
variance and it satisfies the memory constraints of the destination rank, the transfer is accepted and
added to the transfers list in the format of (source, destination, layer id) (lines 17-22). When rank
0 discovers all layer transfers from source ranks to destination ranks, it distributes the information
to other ranks and the sparse format data structures, CSR, of the layers to be transferred are sent to
their new destinations.

We now demonstrate that the two load balancing schemes (used in Algorithm [3) meet the goals for
optimal load balancing by using the following lemmas. Detailed proofs on the lemmas are presented
in the supplementary material.

C.3.1 PROOF OF LEMMA 1

Lemma 1. A centralized load balancer L. over N' workers satisfies maximum reduction in the
imbalance N; if and only if N; reduces the bubble ratio to minimum.

Proof. We will prove by contradiction. Suppose a centralized load balancer L. over N workers satis-
fies maximum reduction in the imbalance A; when A; has a bubble ratio higher then the minimum.
By the definition of maximum reduction in load balance, L. must preserve minimum differential
between the loads of workers AV; and AV, which ; and ; have the minimum load and maximum
loads in N, respectively. Consequently, increasing the bubble ratio of \; changes the difference
of loads between A; and ;. This is in contradictory of L. achieving the maximum reduction on
imbalance. [

C.3.2 PROOF OF LEMMA 2

Lemma 2. An iterative decentralized diffusion based load balancer Ly over N workers satisfies
maximum reduction in the imbalance N if and only if N; reduces the bubble ratio to minimum.
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Also the load balancer is guaranteed to converge to the maximum reduction in imbalance in the
following number of rounds

0 (min {N210g (S;\/) log NV, W})

where v € R+ is the convergence factor and S € R+ is the total number of stages in the pipeline.

Proof. We leverages core ideas from Lyapunov optimization. We first define a potential function, ¢,
that measures at each round the total magnitude of workload gaps in the system:

Vr>0:¢(r)= Z |2 (1) — @0 (7)]

u,veV

Similar to a Lyapunov function, ¢ maps the system state (in this case, a vector of workloads for
N workers) at any given round to a non-negative scalar value that describes the desirability of the
current system state. As ¢ decreases toward 0, the system state becomes more desirable; i.e. the
workload is balanced across V. As in a standard Lyapunov optimization, we show below that the
modifications to a system state caused by executing a single round of our max neighbor algorithm
will drift the value of ¢ toward zero in a non-decreasing manner. We establish a probabilistic lower
bound for the amount of drift in a given round to obtain our time bounds.

For a given round 7 > 0 and node pair u,v € V, we define d, ,(r) = |z, (r) — 2,(r)| to describe
the gap between u and v’s workload at the end of that round. For each such r, we also define:
{{u, v} |u and v connected and averaged their workloads in round }, i.e., the set of node pairs that
connect and average in r, and D, = Zu,veAr dy o (r — 1), i.e., the sum of gaps averaged in 7.
Finally, we define t,,44(r) = maxy sev {dun(r)} to describe the largest gap between any two
nodes at the end of round . From the above analysis that ¢(r) decreases by at least D, in each
round r, we proceed to prove the converge time complexity bound.

For a maximum number of rounds to converge to the minimum imbalance:
S. SN 1
0 (min {N%g (N) log 7, SV 108 N })
Y Y

Note that these two bounds essentially coincide at O(N?) with v = ©(S/n), where the notation O
hides logarithmic factors. In other words, if we want all nodes to have the same workload up to a
constant factor, the max neighbor strategy uses O(N?) rounds. We first note that if we arrive at a
round r in which ¢(r) < =, then the system ends this round «-converged, i.e. the sum of the gaps is
at most 7, and thus clearly any individual gap is at most 7. Since ¢ is monotonically non-increasing,
it follows that every round r’ > r is also ~y-converged. So we just need to show that with high
probability, ¢ will decrease to +y in the time bound stated by the theorem statement.

For each » > 1, we call r “good” if and only if ¢p(r — 1) — ¢(r) > Spmaa(r — 1)/(60 In(2n)). We
next calculate how many good rounds guarantee that ¢ falls below . To do so, we first note that,
non-good rounds cannot increase ¢, so we are safe to focus only on reductions generated by good
rounds in calculating our bound.

By the definition of ¢, for each 7 > 1 we know that ¢(7) < Spmaz(r)n?. It follows that if  is a good

round, then it decreases ¢(r — 1) by a multiplicative factor less than (1 — m). Finally, we

also observe that $,,,,(0) < S and therefore ¢(0) < Sn?. Leveraging these observations, to find
the number of good rounds needed to decrease ¢ below 7, we just need to find the minimum s time
steps such that

1
2l ———) <
on ( 6On2ln(2n)> =7

A simple calculation implies that s.., = 60n2In(2n)in(Sn?y~1) is sufficient to satisfy this in-
equality. We have now established that after s.,,, good rounds the system will be y-converged for
all future rounds. We are left to bound the number of rounds required to generate s.,, good rounds
with high probability.
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Algorithm 4 Re-pack Layers into Fewer Workers

Input: active_workers, mem_usage
Input: target_num_workers, num_layers
Output: transfers (list)

1: transfers < []

2: for src in range(num_ranks) do

3: for dst in range(src + 1, num_ranks) do

4: if mem_usage[src] + mem _usage[dst] < MAX_MEM
5: && sum(active_workers) > target_num_workers then
6: active_workers[src] =0

7: for lyr_idx in range(num _layers[src]) do

8: transfers.append((src, dst, lyr_idx))

9: end for
10: mem_usage[dst] += mem_usage[src]
11: num_layers[dst] += num_layers[src]
12: end if
13: end for
14: end for

15: return transfers

For each round r, let X,. be the random indicator variable that evaluates to 1 if round r is good and
otherwise evaluates to 0. We know a given round r is good with probability at least 1/, regardless
of the history of the execution through the round » — 1. We cannot, however, directly leverage this
observation to calculate (and concentrate) the expected sum of X variables for a given execution
length, as the distribution determining a given X, might depend in part on the outcome of previous
experiments. To overcome this issue, we define for each round r, a trivial random indicator variable
X, that evaluates to 1 with independent probability 1/N and otherwise evaluates to 0. Note that for
each r, X, stochastically dominates )A(,», and therefore foreach s > 0,Y, = Z‘::l X, stochastically

dominates s > 0, Ys = Zf:l XT. It follows for any s > 0, if )A/s > Scon With some probability p
then Yy > s.,,, with probability at least p.

A Chernoff bound applied to Y, for s = ¢.Scon (Where ¢ > 1is a sufficiently large constant
defined with respect to the constants in s.,, and the constants in the Chernoff form used), provides

that K > Scon With high probability, and therefore so is Y;. To conclude the proof, we note that
C.Scon € O (N 2log(%)log./\/ ) , as required by the theorem y statement. [J

C.4 RE-PACKING DYNAMIC MODELS TO FEWER WORKERS

Workload re-packing is the process of merging the total workload into a smaller number of worker
(GPUs) with the purpose of using the available resources more efficiently, i.e. unused resources
can be released. This can be achieved with simple algorithms (in small scale) such as first-fit, best-
fit, and round-robin as well as complex optimization problems (for large scale) such as ant colony
optimization |Dorigo et al| (2006) or genetic algorithms |Dasgupta et al.| (2013). Workload packing
aims to increase GPU utilization and reduce the overall number of GPUs employed to continue the
training process. For long training schedules that are common in LLM training, workload packing
can result in substantial cost savings. It may also provide improved performance due to reduction in
the number of cross-GPU communication calls, and smaller pipeline bubbles.

Algorithm ] shows a first-fit algorithm that we used for workload consolidation. We iterate over all
the available GPUs (lines 2-3) and check if the combined memory usage of the two GPUs is less
than the maximum memory capacity of a single GPU, and the number of active GPUs is greater than
the target number of GPUs target_num_gpus for packing (lines 4-5). If that is the case, we transfer
all layers of the source GPU to the destination GPU (lines 7-8). Then, it updates the memory
usage and the number of layers on the destination GPU accordingly. This process continues until
all the available GPUs have been checked and processed. The goal of this algorithm is to reduce
the number of active GPUs to the target_num_gpus, while also ensuring that the total memory usage
remains within device limits.
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C.5 RELEASING UNUSED GPUS AFTER RE-PACKING

The NCCL communicator cannot be resized, and there is no support for having more than one NCCL
rank per GPU in the same communicator. Solutions around that include:

* The solution implemented and used in DYNMo: While the NCCL communicator can not
be resized, NCCL supports splitting the communicator (using the ncclCommSplit ()
function) into multiple sub-partitions, or even creating a single communicator with fewer
ranks [Nvidia. The GPUs to which the model is re-packed can be split to their own sub-
communicator, while the sub-communicator of the idle GPUs can be assigned to a different
concurrent communicator of the new job to which they will be assigned (concurrent com-
municator are allowed in NCCL |Nvidia)). Since the released GPUs would never be used in
the sub-communicator of the repacked GPUs, there is no risk or need to mitigate deadlocks
of multiple concurrent communicators.

* Since large-scale full training runs for a long time (days and weeks) and MTBF (Mean
Time Before Failure) in large scale training is typically in the order of hours, restarting
from checkpoints becomes inevitable. On restarting the training from a checkpoint, the
size of the communicator could be set to the new number of fewer GPUs.

¢ Different NCCL communicators can be used in a hierarchical fashion (and it is often the
case). To allow for repacking, one could use a hierarchy of communicators with the inten-
tion to repack to one branch of hierarchy, and then assign a new job to the GPUs in the idle
branch of the hierarchy.

Finally, we would like to emphasize that the primary focus of the paper is load balancing to make the
end-to-end training process faster. Re-packing (when possible) is an additional advantage to load
balancing. We implement repacking in DYNMO at the load balancer level to enable the release of
GPUs. We would like to point out that DYNMO’s task ends at releasing the GPUs: reclamation of
the released GPUs and assigning them new jobs by the middleware or scheduler is outside the scope
of this paper.

D IMPLEMENTATION

The DYNMO load balancing system was developed on top of NVIDIA Megatron Core O.5.(ﬂ Each
component of DYNMO, namely hooking to dynamism point in model training, load balancing, and
re-packing is implemented in a separate package for ease of use and extension.

One particular challenging case in the six example cases is gradual pruning. The reminder of other
example cases did not require hard codes changes to be able to use DYNMo. We elaborate more on
gradual pruning. Unstructured pruning requires a sparse storage format to compactly store, train, and
transfer the pruned model. One of the most commonly used sparse formats is the compressed sparse
row (CSR) format. Using a sparse matrix format requires dense matrix multiplication (DMM) oper-
ations to be converted to sparse counterparts (SpMM). Since PyTorch does not support computing
the derivative of SpMM operations for backpropagation on a CSR tensor, we evaluated CSR-based
SpMM implementations available for use on GPUs, namely cuSPARSE by Nvidia and Sputnik Gale
et al.| (2020). Figure [6] shows the performance of cuSPARSE and Sputnik against the dense coun-
terpart (cuBLAS). The SpMM kernel of Sputnik outperforms cuSPARSE in all sparsity levels. This
is mainly because Sputnik kernels were implemented by specifically considering the deep learning
workloads, unlike cuSPARSE kernels that mainly target the HPC workloads, which often have more
than 99% sparsity. It is also worth noticing that Sputnik starts to outperform cuBLAS after 75%
sparsity.ﬂThus, for sparse operations, we implemented PyTorch bindings for the CUDA kernels of
Sputnik

The gather and scatter operations in global pruning were implemented by employing NCCL Peer-to-
Peer (P2P) send-receive operations instead of collective communication operations since the sizes
of the objects to be sent (local_topk) and received (indices_to_keep) from each rank are different and
other ranks do not have this size information to participate in the collective call.

*https://github.com/NVIDIA/Megatron-LM/releases/tag/core_v0.5.0
“The Sputnik bindings are made available at the following link: https://anonymous.4open.
science/r/Torch-Sputnik-E926/README .md}
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Figure 6: Sparse (Sputnik |Gale et al.| (2020) and cuSPARSE) vs Dense (cuBLAS) matrix multipli-
cation performance comparison for M=N=K=4096 on Nvidia H100. Starting at 75% sparsity level,
sparse kernels using Sputnik gives performance advantages over dense kernels.

Multi-Node End-to-End Training Performance: 720 H100 GPUs
Network Delay injected: 30-way data parallel + 24-way pipeline
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Figure 7: Multi-node end-to-end early exit training throughput of GPT models for a network with
unstable bandwidth. We inject network delays up to 4x modeled by a normal distribution (as sug-
gested by Sukhov et al. [Sukhov & Kuznetsova) (2009)). The intended delay is achieved by inflating
the MPI message sizes based on the delay model.

The necessary information for load balancers such as layer execution times and memory usage
comes from the profiling iteration after each pruning iteration. The execution time profiling is im-
plemented by extending the built-in timers of Megatron-LM. The memory consumption of each
pipeline stage is gathered with PyTorch’s memory statistics for CUDA.

E ADDITIONAL RESULTS AND ABLATION

E.1 EFFECT OF CHANGE IN NETWORK BANDWIDTH ON LOAD BALANCING

In fact DYNMO’s load balancing algorithm is desgined to, indirectly, handle variability/instability
in the network. That is since we define our diffusion load balancing algorithm to consider the gaps
between workers to include the total time until work arrives to node B from neighboring node A, i.e.
we include the amount of time that A spent on work plus the time it takes to transfer the activations
of the layers over the network. In intuitive terms, if worker B is stalling due to delay from neighbor
A (in part due to a slow network connection between A and B), the load balancer would push more
work to worker B until the amount of work in A plus the time it takes to transfer the activations over
the network is roughly equal to the amount of work on B.
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Table 1: Vertical scaling experiments show the throughputs (samples/sec) of baseline Megatron-
LM, and time-based algorithms, namely Diffusion by Time and Partition by Time for dynamic sparse
attention. The speed is calculated for the best-performing balancer in each case. The benefits of
dynamic load balancing increase as the number of GPUs in the pipeline increases. The number of
GPUs listed are the GPUs in plpehne parallelism (in a 90-way data parallelism)

# Megatron Diff Part Speed
Layers GPUs LM by Time | by Time Up
24 2 10.67 12.38 12.88 1.20x
4 20.23 24.86 24.82 1.22x
8 37.253 46.939 | 45.071 | 1.26x
32 2 8.28 10.35 10.12 1.25x
4 15.69 19.06 19.76 1.26x
8 30.809 39.899 | 37.933 | 1.29x
40 2 7.14 8.84 9.13 1.28x
4 12.84 16.11 16.82 1.31x
8 26.425 35.262 | 33.296 | 1.33x
48 2 OOM OOM OOM | OOM
4 10.89 14.7 14.54 1.35x
8 23.126 31.724 | 29.711 | 1.37x
56 2 OOM OOM OOM | OOM
4 OOM OOM OOM | OOM
8 19.126 26.724 | 25.711 | 1.39x

Figure[/|shows results in a multi-node setting where we inject up to 4x delay in exchange of layers
between neighbor nodes to demonstrate the robustness of DYNMO load balancing w.r.t. fluctuations
in the network bandwidth. In fact the improvement of speedup of DYNMO over the baseline static
model increases since the static model suffers from higher stalling when the network bandwidth
fluctuates due to contention for instance.

E.2 VERTICAL SCALING

In single-node multi-GPU vertical scaling experiments, the number of layers in the model and the
number of GPUs used in the pipeline are changed. In Table |1} we report throughputs of the static
baseline balancer (Megatron-LLM) and the best-performing dynamic load balancers from end-to-end
training experiments (Diffusion by Time and Partition by Time). The dynamic load balancers speed
up the training in various degrees up to 1.39x for different numbers of GPUs.

One important observation is that as the number of GPUs used in the pipeline increases, the speed-
up gained by the usage of a dynamic balancer builds up. This suggests that the importance of load
balancing increases as the pipeline gets deeper because the additional bubbles that are introduced by
the dynamic nature of the model affect the efficiency of the pipeline more. This is important when
considering the fact that the model size of large language models doubles approximately every 3.9
months |Zhang et al.|(2022) which leads to deeper pipelines.

E.3 WEAK SCALING

For multi-nodes with multi-GPUs weak scaling experiments, we trained the GPT models having
different numbers of layers and batch sizes (with work volume proportional to the number of GPUs)
on up to 240 nodes, each of which contains 4x H100 GPUs. The pruning region starts from itera-
tion 30 and continues until iteration 70 and the model is pruned every 10 iterations until the 90%
target sparsity is reached. The pruning and load balancing over-heads are excluded from the mea-
surements since the number of iterations to do this scaling experiment is not sufficient enough to
amortize the overheads; in actual training (1000s to 10,000s iterations) the pruning and load balanc-
ing overheads would be negligible (elaborate overhead analysis in Appendix E.1). Figure [§] shows
that the pipeline that is dynamically balanced with Partition by Time algorithm of DYNMO reaches
higher throughputs in all scales and it provides speedups over baseline Megatron-LM up to 2.12x.
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Multi-node Weak Scaling
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Figure 8: Gradual pruning weak scaling throughput (tokens/sec) comparison of baseline static load
balancing with Megatron-LM and dynamic load balancing with Partition by Time algorithm of
DyNMo.

E.4 DYNAMIC MINIBATCH/MICROBATCH SIZE

In cases where the total load of the pipeline decreases such as gradual sparsification, dynamic sparse
attention, early exit, and freeze training, carefully changing the minibatch and microbatch size ac-
cording to the needs of the new pipeline after load balancing may increase the efficiency of the
training. For instance, GPipe Huang et al.[(2019) suggests the number of micro batches to be greater
than four times the number of GPUs in the pipeline for optimal overlapping. Since the packing
decreases the number of GPUs in the pipeline, adjusting the number of micro batches in the pipeline
after packing could be beneficial. In addition, minibatch size can be increased after the pruning
operations since the memory requirement for execution is less after the pruning. DYNMO currently
does not support this feature, which if supported would further improve the speedup gains.

F DyNAMISM

F.1 DYNAMIC RECONFIGURATION OF THE PIPELINE

DeepSpeed’s PipelineModule Microsoft| currently offers three partitioning strategies for distributing
model layers, which can be set using the partition_method () keyword argument passed to
the PipelineModule. This allows us to move the layers between GPUs, when needed. When a
layer is migrated from GPU A to GPU B, the memory allocated for the layer (weights, activation,
gradients, optimizers) is released on GPU A and allocated on GPU B. As the training resumes (after
the layers are migrated), the underlying pipeline scheme starts to pass the new mini-batches along
the new distribution of layers in the pipeline.

F.2 MIXTURE OF EXPERTS

We build on Mixtral 8x7b weights from Hugging Face Mistral|(2024) and LLaMA-MoE-3.5B [Team
(2024) in continual training by monitoring the imbalance between layers w.r.t. number of assigned
tokens. We used both the auxiliary load balance scheme adopted in Mixtral 8x7b|Jiang et al.|(2024)
and the S-BASE load balancer [Lewis et al.[(2021a)). Since the imbalance is dependent on the point
the routing decision is taken, i.e., in the forward pass at each FFN, we rebalance in the back propa-
gation phase where we attach the movement of layers to the pipeline parallelism scheme.

F.3 GRADUAL GLOBAL MAGNITUDE PRUNING

For our pruning design, we use the gradual pruning schedule proposed in|Zhu & Gupta)(2017)) which
is formulated as:

t—to

Si=Sp+(Si—Sp(1 -

)3, t € {to,to + At,...,t +nAt} (3)
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To our knowledge, there is no deep learning framework that supports global pruning on a distributed
model at the time of this writing (support is only for undistributed models). Appendix C elaborates
on the unstructured magnitude pruning scheme we implemented in PyTorch.

F.4 LAYER FREEZING

DYNMO sits on top of layer freezing solutions. More specifically, we build on Wang et al. [Wang
et al.| (2022)) Egeria solution by monitoring the rate by which the training loss changes, freezing
layers when they reach the convergence criterion, and drop frozen layers from in both the back
propagation phase and gradient exchange when data parallelism is used. It is important to note that
Egeria periodically updates the reference model (on the CPU) to drive the layer freezing, yet does
not actively try to remedy the load imbalance caused by layer freezing. The effect of load imbalance
is particularly pronounced since earlier layers tend to be more frozen than later layers, i.e. the
layer freezing is not uniformly occurring across the model. In comparison, DYNMO load balances
dynamically, and in an orthogonal fashion, the spread of layers on GPUs every time the reference
model that drives the freezing is updated.

F.5 DYANMIC SPARSE ATTENTION

We build on Pagliardini et al. dynamic sparse attention |Pagliardini et al.|(2023) in continual training
by implementing a binding from PyTorch to the CUDA kernel provided by authors of the paper. The
hash-based attention makes the causal attention mask irregular, i.e., we get blocked sparsity that is
then leveraged by the Flash Attention. The irregular causal structures caused by the hashing lead to
different amount of blocks/tiles in different layers.

F.6 EARLY EXIT

We adapt the early exit methods CALM [Schuster et al.| (2022) and ADPC [Liu et al.[ (2022b) to
observe the imbalance by peaking into the confidence measure prediction of CALM and ADPC.
Since early exit happens at the later layers, we start our observation from the first layer at which
tokens start to exit, and we assume all layers before than to have the same load. Early exit in
particular benefits greatly from re-packing, and that since the change in control flow of the model
happens in the later layers.

F.7 MIXTURE OF DEPTHS

We build on the MoDs work by Raposo et al. Raposo et al.| (2024) by including in our GPT models
we use in testing the small auxiliary MLP predictor that predicts whether that token will be among
the top-k or not in the sequence. Similar to the case of MoEs, since the imbalance is dependent on
the point the router takes the decision, i.e. in the forward pass, we rebalance in the back propagation
phase where we attach the movement of layers to the pipeline parallelism scheme. Since the routing
happens around the entire block, i.e., the routing applies to both to both forward MLPs and multi-
head attention, we treat the skipped layers to be shadow layers when redistributing the layers on
workers.

G RELATED WORK

G.1 LOAD BALANCING MODEL-PARALLEL DEEP NEURAL NETWORKS
G.1.1 LAYER-WISE LOAD BALANCING

Layer-wise balancing techniques work on layer granularity instead of operators. DeepSpeed |Mi-
crosoft| (2023) offers three partitioning methods to balance the workload of stages: parameters,
uniform, and regex. While the parameters method is trying to balance the number of parameters in
each stage, the uniform aims to distribute the layers evenly. Regex only distributes the layers that
match the given regex (e.g. transformer layers). Similar to the parameters method of DeepSpeed, He
et al. He et al.[(2021) balance the stages based on the number of parameters in each stage. Narayanan
et al. Narayanan et al.[(2021]) assign each stage the same number of transformer layers to balance the
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load. None of the aforementioned studies use the actual execution time of the layers to decide on the
distribution of layers. DYNMO supports DeepSpeed’s partitioning scheme with both parameters and
layer execution times to guide load balancing, as well as a diffusion-based load balancing algorithm
out of the box.

G.1.2 LOAD BALANCING VIA GRAPH PARTITIONING

Graph partitioning-based load balancing schemes find atomic operations in the model and consider
them as nodes in a directed acyclic graph (DAG). Edges in the graph represent the dependencies be-
tween operations. Tanaka et al. Tanaka et al.[(2021)) partition the DAG in three phases at which they
first find atomic operations, then group these operations into blocks according to their computation
times, and finally, they combine blocks into final partitions by using a dynamic programming-based
algorithm. Qararyah et al.|Qararyah et al.|(2021) create disjoint clusters from the nodes of the graph
by finding critical paths and mapping these clusters to devices based on a mapping algorithm that
takes both critical-communication minimization and temporal load balancing into account. Both
studies perform profiling before the actual training and partition the graph once.

G.1.3 LOAD BALANCING IN MIXTURE OF EXPERTS MODELS

The mixture of experts (MoE) [Jacobs et al.| (1991)) models contain many sub-networks (experts)
where a router allocates inputs to top-k experts. At scale, experts are distributed across devices.
Lepikhin et al. Lepikhin et al.| (2020) defines an expert’s capacity to limit the maximum number of
tokens that can be processed by an expert to achieve workload balance. Fedus et al. |[Fedus et al.
(2022) route each token to only one expert and use the same expert capacity for restrictions. Lewis
et al. Lewis et al.| (2021a) employ an auction algorithm Bertsekas|(1992) to solve the token-to-expert
assignment problem. This line of work is different from ours in the sense that their aim is to balance
workload in the feed-forward network while our work aims to balance all layers of the transformer
model.

G.2 PACKING

In dynamic neural network models, packing the total workload into fewer number accelerators can
provide significant cost-saving benefits. PipeTransformer|He et al.|(2021) offers an elastic pipelining
system for freeze training where some of the layers of the model are frozen during the training.
PipeTransformer packs the remaining active layers into fewer GPUs and creates pipeline replicas
if possible. When PipeTransformer receives a notification for layer freezing, it attempts to divide
the number of GPUs by 2 subject to the memory capacity constraints. On the other hand, our work
DYNMO can pack to an arbitrary number of GPUs specified by the user. Another difference between
the packing mechanism of DYNMO and PipeTransformer is that PipeTransformer uses the parameter
size as a proxy to estimate the memory usage while DYNMO uses the actual memory usage from the
profiling step before load balancing. Finally, PipeTransformer is only capable of packing layers to
fewer GPUs, and not load balancing. DYNMO, on top of being capable of re-packing when deemed
beneficial, it can also redistribute the workload to achieve a better load balance.

G.3 DYNAMIC PRUNING

Model pruning is a fast-paced research area. Since the optimization problem has many dimensions,
there are many approaches to prune a model. We mainly focus on the schedule of the pruning rather
than the decision of how to prune (e.g. magnitude pruning, variational dropout etc.) and what kind
of structure (e.g. unstructured pruning, structured pruning) to be applied while pruning.

One of the commonly used sparsification technique is sparsification during training (i.e. gradual
pruning) where the pruning starts before the model is trained until convergence. While some stud-
ies [Wortsman et al.|(2019); [Lin et al.| (2020) use a binary mask to specify whether a parameter is
pruned, which enables them to apply better weight regrowth or selection, others |Gale et al.| (2020)
delete the pruned parameters to reduce the memory usage and number of operations. There are also
many works on how fast to prune. For instance, Zhu and GuptaZhu & Gupta (2017)) prune the model
rapidly in the first pruning steps when there are many abundant parameters in the model, and then
reduce the pruning ratio as the number of parameters in the model are getting less and less. Dai et
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al.Dai et al.|(2019) employ a three phase schedule (birth-brain, baby-brain, and adult-brain) similar
to the human brain development. Mostafa et al. Mostafa & Wang|(2019) uses magnitude pruning as
criterion to prune the parameters and regrows parameters to comply with the training budget.
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