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ABSTRACT

Multimodal Large Language Models (MLLMs) have achieved remarkable suc-
cess in vision understanding, reasoning, and interaction. However, the inference
computation and memory increase progressively with the generation of output
tokens during decoding, directly affecting the efficacy of MLLMs. Existing meth-
ods attempt to reduce the vision context redundancy to achieve efficient MLLMs.
Unfortunately, the efficiency benefits of the vision context reduction in the pre-
fill stage gradually diminish during the decoding stage. To address this prob-
lem, we proposed a dynamic vision-language context sparsification framework
Dynamic-LLaVA, which dynamically reduces the redundancy of vision context
in the prefill stage and decreases the memory and computation overhead of the
generated language context during decoding. Dynamic-LLaVA designs a tailored
sparsification inference scheme for different inference modes, i.e., prefill, decoding
with and without KV cache, to achieve efficient inference of MLLMs. In practice,
Dynamic-LLaVA can reduce computation consumption by ∼75% in the prefill
stage. Meanwhile, throughout the entire generation process of MLLMs, Dynamic-
LLaVA reduces the ∼50% computation consumption under decoding without
KV cache, while saving ∼50% GPU memory overhead when decoding with KV
cache, due to the vision-language context sparsification. Extensive experiments
also demonstrate that Dynamic-LLaVA achieves efficient inference for MLLMs
with negligible understanding and generation ability degradation or even perfor-
mance gains compared to the full-context inference baselines. Code is available at
https://github.com/Osilly/dynamic_llava .

1 INTRODUCTION

Large Language Models (LLMs) have achieved outstanding performance and made a significant
impact in real-world applications (Zheng et al., 2023; Team, 2023; Touvron et al., 2023a;b; Achiam
et al., 2023; Jiang et al., 2024). In particular, within the vision-language multimodal fields, the LLaVA
paradigm (Liu et al., 2024b;a; Bai et al., 2023; Zhu et al., 2023; Zhao et al., 2024) has emerged as the
mainstream approach of Multimodal Large Language Models (MLLMs). This paradigm involves
mapping visual data, through feature extractors and projecting embeddings, into the same feature
distribution of LLMs for processing. It has shown notable success in enabling general capabilities in
vision understanding, reasoning, and interaction.

However, LLMs often adopt the decoder-only Transformer as the base architecture and typically
contain an extremely large number of parameters. As output tokens are generated during decoding,
the computational consumption progressively increases, leading to a substantial computational
burden (Vaswani, 2017). To alleviate this issue, modern LLMs frequently employ the KV cache
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Figure 1: The entire generation process of MLLMs. As generation progresses, the primary resource
overheads of MLLMs under decoding with and without KV cache modes are GPU memory overhead
and computation consumption, respectively. Previous vision context sparsification methods achieved
initial inference efficiency through vision context sparsification. However, these benefits gradually
diminish as decoding continues. The results are measured in one A100 (80G) and the batch size is
fixed to 8. “OOM” means the generation process has failed due to the out of GPU memory.

technique during decoding, which accelerates inference speed by storing previously computed KV
activations and reusing them in subsequent decoding steps. It helps reduce redundant computations
but introduces significant GPU memory overhead to store activated intermediate variables (Luohe
et al., 2024; Radford et al., 2019). Moreover, the GPU memory overhead gradually increases in the
decoding progresses. This problem becomes even more pronounced in MLLMs within the LLaVA
paradigm, which is often combined with LLM, requiring significant resources for inference.

To achieve efficient MLLMs, recent works attempted to reduce the number of image tokens pro-
cessed by LLMs, which decreases computation and memory overhead while maintaining model
performance (Jin et al., 2024). One category of these methods (Chen et al., 2024a; Shang et al.,
2024; Ye et al., 2024; Arif et al., 2024; Song et al., 2024) selects a subset of image tokens feeding
to LLMs, e.g., FastV (Chen et al., 2024a) uses the full-context attention matrix to determine which
image tokens feed to LLMs. We refer to this approach as vision context sparsification. Another
category (Li et al., 2024a; Kar et al., 2024; Li et al., 2024b) modifies the vision feature extractors
or projectors to generate few number of image tokens. We refer to this strategy as efficient vision
encoders/projectors. However, reducing image tokens primarily accelerates the prefill stage. We
argue that the efficiency benefits of the image token reduction in the prefill stage gradually diminish
during the decoding stage. As shown in Fig. 1, the previous state-of-the-art (SoTA) methods with
image token reduction, e.g., FastV (Chen et al., 2024a), significantly reduce the number of image
tokens during the prefill stage, leading to substantial resource savings. Unfortunately, as decoding
progresses, the actual benefits of this reduction diminish. This is because, in the decoding stage, the
computation cost increasingly shifts towards the autoregressive generation of the output text tokens,
where the reduced image tokens have less impact on the overall efficiency. As a result, the initial
speedup from fewer image tokens becomes less dominant as decoding progresses. This phenomenon
is discussed in detail in Sec. 3.2.

To address the above problem, we propose a novel dynamic vision-language context sparsification
framework, named Dynamic-LLaVA. Specifically, we introduce two learnable predictors to sparsify
the vision and language contexts in both prefill and decoding of MLLM, respectively (Sec. 3.3.1).
The tailored sparsification inference scheme is designed for different inference modes within MLLMs,
i.e., prefill, decoding without KV cache and with KV cache (Sec. 3.3.2). During the training process,
the proposed Dynamic-LLaVA employees masked softmax to isolate the influence of non-essential
tokens on the important tokens and the Gumbel-Softmax (Jang et al., 2016) with Straight-Through
Gradient Estimator (Bengio et al., 2013) to avoid the gradient flow problem, which enables end-to-end
optimization (Sec. 3.3.3). Last but not least, we further develop the batch-parallel strategy for the
sparsification inference of the Dynamic-LLaVA framework, which fully leverages GPU hardware
advantage under batch parallel inference conditions (Sec. A.1). Our framework can be easily
integrated into MLLMs (e.g., LLaVA (Liu et al., 2024b;a)) and efficient vision encoder/projector
methods for MLLMs (e.g., TokenPacker (Li et al., 2024a)) to achieve more efficient inference.

Extensive experiments conducted on the vision understanding benchmarks and the generation ability
evaluations demonstrate that the proposed Dynamic-LLaVA framework achieves efficient inference
throughout the entire MLLM generation process with negligible performance degradation.In prac-
tice, the computation consumption of the prefill stage is reduced by ∼75% via the vision context

2



Published as a conference paper at ICLR 2025

sparsification. Meanwhile, during the entire MLLM generation process, through the comprehensive
vision-language context sparsification, the proposed Dynamic-LLaVA reduces computation cost by
∼50% when decoding without KV cache, while saving ∼50% GPU memory overhead with KV
cache. To the best of our knowledge for efficient MLLMs, Dynamic-LLaVA is the first framework
which attempts simultaneous sparsification of both vision and language contexts. We believe that our
work can inspire new insights for the research community.

2 RELATED WORK

2.1 TOKEN REDUCTION FOR EFFICIENT MLLMS

The existing vision context sparsification (Chen et al., 2024a; Shang et al., 2024; Ye et al., 2024; Arif
et al., 2024; Song et al., 2024) and efficient vision encoder/projector (Li et al., 2024a; Kar et al., 2024;
Li et al., 2024b; Bai et al., 2023; Cha et al., 2024; Chen et al., 2024b; Chu et al., 2024) methods have
attempted to reduce the image token to accelerate the prefill stage. However, with the decoding of
MLLMs, the efficiency benefits gradually diminish during the decoding. Our proposed Dynamic-
LLaVA framework achieves consistently efficient inference throughout the entire generation phase via
the vision-language context sparsification. The detailed discussions are presented in Appendix A.3.1.

2.2 KV CACHE COMPRESSION FOR EFFICIENT LLMS

Some previous works (Zhang et al., 2024b; 2023; Li et al., 2024c; Xiao et al., 2023; Ge et al., 2023;
Han et al., 2023; Yang et al., 2024; Zhang et al., 2024a) compress KV cache in order to reduce the
GPU memory overhead of LLM inference during decoding, which has a similar goal to our Dynamic-
LLaVA when considering decoding with KV cache. However, these methods typically necessitate
using the subset of past generated KV cache to facilitate the selection of critical activations for
participation during inference. In other words, it is imperative to obtaion the generated KV cache to
make the decision for which activations should be removed during LLM inference. Dynamic-LLaVA,
when decoding with KV cache, can be regarded as “online KV cache compression”, i.e., it utilizes
the features of the current output text token to determine whether to retain the generated activations
without relying on past KV cache. This capability is crucial, as it enables Dynamic-LLaVA to enhance
efficiency during the stages of prefill and decoding without KV cache, which do not involve KV
cache utilization. Moreover, the additional efficiency gained in prefill and decoding without KV
cache modes is of comparable importance for MLLMs (Liu et al., 2024b; Li et al., 2024d; Chen et al.,
2024a; Huang et al., 2024a; Cha et al., 2024; Leviathan et al., 2023; Chen et al., 2023a; Liu et al.,
2023a). A detailed discussion of the proposed Dynamic-LLaVA framework and traditional LLM KV
cache compression methods is provided in Appendix A.3.2.

3 METHOD

3.1 PRELIMINARIES AND NOTATIONS

Multimodal large language model (MLLM), e.g., LLaVA (Liu et al., 2024b), continues the autore-
gressive model paradigm (Radford et al., 2019; Liu et al., 2024a) and typically includes prefill and
decoding stages during inference. In the prefill stage, features from different modalities are mapped
into the same feature distribution as the input embeddings of large language model (LLM). These
multimodal features, in conjunction with text tokens, are simultaneously processed by LLM to gener-
ate the initial output text token. During the decoding stage, the tokens in the prefill stage, together
with all subsequently generated output text tokens, are used in an autoregressive manner to predict the
next output text token. In the context of LLM with L Transformer decoder layers, we denote distinct
index sets for various types of tokens processed across the stages of the model. Specifically, the index
set for image tokens during prefill is denoted as II = {1, 2, · · · , N I

l }, for text tokens during prefill
as IT = {1, 2, · · · , NT

l }, while for output text tokens during decoding as IOT = {1, 2, · · · , NOT
l },

where N I
l , NT

l and NOT
l are the counts of image tokens, text tokens and output text tokens of

l-th decoder, respectively. The sets of image tokens, text tokens, and output text tokens processed
by the l-th LLM decoder layer are denoted as SI

l = {tIl,i|∀i ∈ II}, ST
l = {tTl,i|∀i ∈ IT } and

SOT
l = {tOT

l,i |∀i ∈ IOT }, respectively, where tIl,i, t
T
l,i, t

OT
l,i ∈ Rd denotes the i-th token of the
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different token sets for the l-th decoder. The sets of all tokens and the corresponding size are defined
as Sl = SI

l ∪ST
l ∪SOT

l and Nl = N I
l +NT

l +NOT
l , respectively.

Considering the computation of the standard LLM (Touvron et al., 2023a), the prefill stage of the l-th
decoder is simply described as follows:

SP
l+1 = FFN(MHA(SP

l , SP
l , SP

l )), (1)

where SP
l = SI

l ∪ST
l . MHA(· , · , ·) and FFN(·) denote the Multi-Head Attention Block and the

Feed-Forward Networks in l-th LLM decoder layer (Vaswani, 2017).

During the decoding stage, there are typically two methods available, i.e., decoding without and with
KV cache. First, we consider decoding without KV cache as an extension of the prefill stage. The
one-pass decoding is computed as follows:

SP
l+1∪SOT

l+1 = FFN(MHA(SP
l ∪SOT

l , SP
l ∪SOT

l , SP
l ∪SOT

l )). (2)

For the decoding with KV cache, we further split the MHA operation as follows:

Q , K , V = {WQ
l SOT

l,NOT
l

} , {WK
l SOT

l,NOT
l

} , {WV
l SOT

l,NOT
l

},

SK
l = SK

l ∪K , SV
l = SV

l ∪V,

O = WO Attention(Q , SK
l , SV

l ),

SOT
l+1,NOT

l+1
= FFN(O),

(3)

where WQ
l , WK

l , WV
l and WO

l are the linear layers to obtain the activation sets Q, K, V and O in
l-th LLM decoder layer. Attention(· , · , ·) is the Scaled Dot-Product Attention operation (Vaswani,
2017). And SOT

l,NOT
l

is the last output text token (NOT
l -th output text token) in the l-th decoder layer

during decoding, while SK
l and SV

l are KV cache of the l-th decoder layer.

The primary computation cost of the prefill and decoding without KV cache operations involve
processing various sets of tokens and most overhead is in the activation of linear layers. Specifically,
the cost of l-th deocder layer during the prefill stage is dictated by the combined size of the image and
text token sets, denoted as Computation(Prefill)l ∝ |SI

l ∪ST
l |, where | · | denotes the number of

tokens. For the decoding stage without KV cache, the computation overhead is determined by the sum
of the aforementioned components plus the size of the generated output text tokens, represented as
Computation(Decodingw/o cache)l ∝ |SI

l ∪ST
l ∪SOT

l |. Unlike the previous two methods, decoding
with KV cache operation requires only the last output text token to be activated. This decoding
method yields lower computation overhead compared to decoding without KV cache. However, it
needs additional GPU memory to store the the activated intermediate variables, thereby introducing
a higher GPU memory cost (Luohe et al., 2024). The GPU memory overhead of l-th KV cache
is also determined by the quantity of the token sets, defined as Memory(Decodingw/ cache)l ∝
|SI

l ∪ST
l ∪SOT

l |. Given a l-th LLM decoder layer, reducing the sizes |SI
l |, |ST

l | and |SOT
l | results in

a corresponding reduction in the number of tokens for layers beyond the l-th decoder layer (Huang
et al., 2024b). This reduction decreases the computation consumption and GPU memory overhead
during the prefill and decoding stage of LLM.

3.2 MOTIVATION

As mentioned above, the token number affects the computation consumption and GPU memory
overhead, while the previous works (Chen et al., 2024a; Shang et al., 2024; Li et al., 2024a; Ye et al.,
2024; Arif et al., 2024; Song et al., 2024) focus on reducing the image token set SI

l . However, the
reduction in the number of image tokens often primarily accelerates the prefill stage and gradually
diminishes in benefit during the decoding stage.

Computation(Prefill)l ∝ |SI
l ∪ST

l |,

Computation(Decodingw/o cache)l ∝ |SI
l ∪ST

l ∪SOT
l | ≈ |SOT

l |,

Memory(Decodingw/ cache)l ∝ |SI
l ∪ST

l ∪SOT
l | ≈ |SOT

l |,

where, |SOT
l | → ∞.

(4)

As shown in Eq. 4 and Fig. 1, with the generation of output text tokens during the decoding stage, the
computation consumption and GPU memory overhead increase progressively. Meanwhile, the prefill
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Figure 2: The sparsification inference modes for MLLMs. In the prefill stage, only image tokens are
dropped based on the decisions of the learnable image predictor. For decoding without KV cache, we
reduce both the image tokens and output text tokens to maintain consistent inference efficiency. When
decoding with KV cache, the output predictor determines whether the activations generated by the
current output text token should be added to KV cache and thereby discard part of the activations to
reduce the size of KV cache. Note that the decision regarding the activations of the current output text
token will be shared across all subsequent layers beyond the l-th layer. Meanwhile, the “Yes” branch
means the decision to keep the token or its activations to participate in subsequent calculations.

stage typically computes only once during the generation process of LLM. Therefore, the benefits
gained from reducing the number of image tokens diminish over the course of the entire generation
process, as their impact becomes less significant during the later stages of decoding. Inspired by this,
we propose the Dynamic-LLaVA framework to sparsify both vision context SI

l and language context
SOT
l involved in LLM generation to achieve the consistently Efficient MLLM.

3.3 DYNAMIC VISON-LANGUAGE CONTEXT SPARSIFICATION

3.3.1 OVERVIEW

To compress the image token set and output token set, we use two binary masks MI and MOT

to determine whether their tokens should be retained or discarded in l-th decoder layer, where
MI = {mi|mi ∈ {0, 1} ∧ ∀i ∈ II} and MOT = {mi|mi ∈ {0, 1} ∧ ∀i ∈ IOT }. The reduced
image token set and output text token set are defined as SI∗

l = {Sl,i|MI
i = 1 ∧ ∀i ∈ II} and

SOT∗
l = {Sl,i|MOT

i = 1 ∧ ∀i ∈ IOT }, respectively, where |SI∗
l | ≤ |SI

l | and |SOT∗
l | ≤ |SOT

l |. In
this way, the computation consumption and GPU memory overhead in both the prefill and decoding
stages, as described in Eq. 4, are simultaneously reduced. Such optimization contributes to efficient
resource utilization during the entire generation process of LLM. In particular, Dynamic-LLaVA
uses two learnable predictors P I and POT to generate the binary masks MI and MOT , respectively.
The learnable predictors are applied only once, after the l-th decoder layer of the MLLM. Specifically,
once the predictor makes the decisions on tokens, this decisions are shared across all subsequent
layers. This one-time token reduction strategy circumvents the need for complex adjustments to
sparsity ratios of MLLM decoders. In practice, we follow the work (Chen et al., 2024a) and set l
to 2. The ablation study for l is presented in Tab. 6. Note that the learnable predictors consist of
lightweight, multi-layer neural networks that introduce only marginal additional computation costs
(less than 1% of the total). The detailed real GPU latency and memory of the Dynamic-LLaVA
framework are shown in Tab. 4 and Tab. 14. Detailed architectures are shown in Appendix A.4.1.

In the following sections, we introduce how to perform the sparsification inference in the prefill and
decoding stages of MLLMs in Sec. 3.3.2. We also introduce the end-to-end training for the learnable
predictors in Sec. 3.3.3.

3.3.2 SPARSIFICATION INFERENCE

As shown in Fig. 2, we apply different sparsification strategies tailored to specific generation stages
of MLLMs. For the token sets SI

l and ST
l processed by l-th decoder layer in the prefill stage, we

consider the reduction of the image tokens. The image predictor leverages the features of image
tokens and predicts the binary mask to select the tokens that participate in the prefill computation.
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Specifically, we consider the set SI
l ∈ RNI

l ×d as 2D matrices and the pipeline is defined as:

DI = P I(SI
l ) ∈ RNI

l ×2,

MI = argmaxj(DI),

SI∗
l = {SI

l,i|MI
i = 1 ∧ ∀i ∈ II},

(5)

where P I(·) is the forward propagation of the image predictor, DI is a feature sampling decision
generated by P I , and argmaxj indicates that we sample values of DI along the second dimension.
This indicates that a token should be kept if the second value is greater than the first value in the
second dimension of DI . Then we replace the reduced token set SP∗

l = SI∗
l ∪ST

l with SP
l in Eq. 1

to perform the prefill stage.

For the decoding stage, we first consider decoding without KV cache. This operation is similar to
the prefill stage except that the last output token generates the next output token during decoding.
Thus we use the pipeline in Eq. 5 with SOT

l and POT , while keeping MOT
NOT

l
= 1 to obtain SOT∗

l ,

where MOT
NOT

l
is the NOT

l -th value of the mask MOT . We further replace the above SP∗
l and SOT∗

l

with SP
l and SOT

l in Eq. 2 to conduct the decoding stage. Note that in both the prefill and decoding
without KV cache stages, after the predictors reduce the token set Sl to S∗

l , all subsequent layers use
this reduced token set for computation, i.e., the length of computed token sets is smaller to introduce
the computation efficiency.

For decoding with KV cache, our primary goal is to reduce the sizes of KV cache, specifically SK
l

and SV
l , to achieve GPU memory savings during the decoding process. We use the last output token

SOT
l,NOT

l
and POT to get a binary decision MOT

NOT
l

∈ {0, 1} by Eq. 5 and the decoding operation in
Eq. 3 is modified to the following operation:

Q , K , V = {WQ
l SOT

l,NOT
l

} , {WK
l SOT

l,NOT
l

} , {WV
l SOT

l,NOT
l

},

O = WO Attention(Q , SK
l ∪K , SV

l ∪ V ),{
SK
l = SK

l ∪K , SV
l = SV

l ∪V, if MOT
NOT

l
= 1,

SK
l = SK

l ∪∅ , SV
l = SV

l ∪∅, otherwise,

SOT
l+1,NOT

l+1
= FFN(O),

(6)

where the binary mask MOT
NOT

l
determines whether KV activations of the current output text token

should be added to KV cache. Meanwhile, the decision to add the current token’s activations to the
KV cache is also propagated to subsequent layers, and the size of the KV cache for subsequent layers
is reduced accordingly. Note that we still include this token in the current attention computation,
regardless of whether it will be discarded in subsequent calculations. This ensures that this token
contributes to the attention mechanism immediately, even if it does not persist in KV cache for future
decoding steps.

3.3.3 END-TO-END SPARSIFICATION TRAINING

Unlike the sparsification inference phase, where the token sets are directly reduced, we employ the
full-token sets along with binary masks to optimize the predictors and LLM in an end-to-end training
process, as inspired by (Veit & Belongie, 2018; Herrmann et al., 2020; Rao et al., 2021; Lin et al.,
2023). This approach ensures the model dynamically adjusts and learns which tokens are essential
during training while maintaining the full set of tokens for comprehensive optimization. The details
of the end-to-end sparsification training are presented in Fig. 3 and Appendix A.2.

Given the binary masks of the token sets, we need to use these masks to isolate the influence of
non-essential tokens on the important tokens during the LLM training computation. One native
idea is to directly set the values of the unnecessary tokens to zero vectors. However, this method
introduces a problem: when we sparsify output text tokens during the parallel training of LLM,
discarding the value of an output text token will prevent it from autoregressively predicting the next
output text token, making it impossible to compute the loss. This “hard training” result is presented
in Tab. 7. To address this, we apply the masks to the Softmax(·) operation in Attention(·) during
training. Specifically, we firstly obtain a binary mask of the full-token set M = MI∪{1}NT

l ∪MOT .
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Then we use the full-token set mask to get the binary mask matrix G = {M}Nl ∈ RNl×Nl and let
diag(G) = 1. The Softmax(·) is changed to MaskedSoftmax(· , ·) operation during training:

MaskedSoftmax(Xi,j , G) =
exp(Xi,j)Gi,j∑Nl

k=1 exp(Xi,k)Gi,k

, (7)

where X ∈ RNl×Nl is the input of Softmax(·) operation. Eq. 7 allows our framework to maintain
parallelism in training while ensuring that the non-essential tokens do not influence the output,
without breaking the autoregressive process essential for loss calculation. Note that this form of
masking and predictors maintains uniformity between training and inference. Specifically, during
training, the presence of the causal attention mask (Brown, 2020) ensures that each token focuses
only on prior context information, while the use of MLP in the output predictor P I ensures that
decisions are based solely on its own features, consistent with the process used during decoding.

In addition to the issues mentioned above, we have the gradient flow problem in the backward
propagation of training. The argmax(·) operation we performed to obtain MI and MOT is non-
differentiable and impedes end-to-end training. Thus we use the Gumbel-Softmax (Jang et al., 2016)
with Straight-Through Gradient Estimator (Bengio et al., 2013) to avoid the gradient flow problem.
Taking the reduction of the image token set as an example and the argmax(·) in Eq. 5 is modified to
the differentiable operation during training. The forward propagation is formulated as follows:

DI† = GumbelSoftmaxj(DI , τ),

MI = argmaxj(D
I†),

(8)

where τ is the temperature of the Gumbel-Softmax function. When τ becomes smaller, DI† smoothly
approaches the discrete distribution. Following the work (Lin et al., 2023), Dynamic-LLaVA employ
the exponential decay for τ from 1 to 0.1 during training. Meanwhile, in the backward propagation,
we propagate the gradient flow from MI to DI†:

∂L
∂DI† =

∂L
∂MI

, (9)

where L is the objective loss function.

Furthermore, we incorporate a constraint regularization term to constrain binary masks according
to a pre-defined keep rate for token sets. This constraint ensures that the predictors retains a certain
proportion of tokens, adhering to the desired sparsification strategy. It is worth noting that we found
that applying sparsification to SOT

l on samples with short output tokens during training lead to
instability training and performance degradation. To avoid this problem, we apply SOT

l sparsification
only to samples where output text tokens exceed a pre-defined length LENOT ∈ N0, where N0

denotes the set of non-negative integers. The constraint regularization term R can be defined as:

R = ∥ sum(MI)/|SI
l | − rI∥F +

{
∥ sum(MOT )/|SOT

l | − rOT ∥F , if |SOT
l | ≥ LENOT ,

0, otherwise,
(10)

where sum(·) is the summation operation and ∥ · ∥F denotes the Frobenius norm. rI and rOT are
the pre-defined keep rates of SI

l and SOT
l , respectively. We directly add this term to the original

objective loss function, with a hyper-parameter λ used to control its weight. The trade-off analysis
of vision context (rI ) and language context (rOT ) are presented in Tab. 5, while the ablation study
of the sample used for training should have a minimum output text token length (LENOT ) and the
weight of the regularization term (λ) are shown in Tab. 6.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets, Benchmarks, and Metrics. During training, we use the instruction-tuning dataset 656K
Mixture Dataset, as in LLaVA-1.5 (Liu et al., 2024a). For vision understanding evaluations, we use the
commonly used vision understanding benchmarks to evaluate the performance similar as LLaVA-1.5,
such as VQAv2 (Goyal et al., 2017), GQA (Hudson & Manning, 2019), VizWiz (Gurari et al., 2018),
SciQA (Lu et al., 2022), TextVQA (Singh et al., 2019), POPE (Li et al., 2023b), MMBench (en) (Liu
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Table 1: Comparison with SoTA vision context sparsification methods on vision understanding bench-
marks. The best results are bolded and the second best results are underlined in all following tables.
The sign “I” and “I|T ” mean only the vision sparsification and the vision-language sparsification of
Dynamic-LLaVA in all following tables, respectively. “TFLOPs” is only the computation consump-
tion of the image tokens. Dynamic-LLaVA achieves the best performance in most benchmarks using
a similar number of image tokens. The “Free” column indicates whether a method is training-free.

Method Free Image (prefill) VQAv2 GQA SciQA TextVQA POPE MME MMBench SEED MMVP RealWorldQA CVBench-2D
Token TFLOPs

LLaVA-1.5-7B − 576 10.1 78.5 62.0 66.8 58.2 85.9 1510.7 64.3 66.1 29.3 53.7 58.5

(Arxiv24) LLaVA-PruMerge+ ✗ 146 (-75%) 2.5 (-75%) 76.8 (-1.7) − 68.3 (+1.5) 57.1 (-1.1) 84.0 (-1.9) 1462.4 (-48.3) 64.9 (+0.6) − − − −
(ECCV24) LLaVA-FastVk=3,r=0.75 ✓ 144 (-75%) 3.2 (-68%) 75.1 (-3.4) 57.5 (-4.5) 68.7 (+1.9) 56.2 (-2.0) 81.0 (-4.9) 1458.9 (-51.8) 63.5 (-0.8) 62.8 (-3.3) 24.0 (-5.3) 53.7 (-0.0) 56.7 (-1.9)
†(ECCV24) LLaVA-FastVk=3,r=0.75 ✗ 144 (-75%) 3.2 (-68%) 74.2 (-4.3) 56.6 (-5.4) 64.0 (-2.8) 54.3 (-3.9) 82.7 (-3.2) 1292.2 (-218.5) 58.6 (-5.7) 58.4 (-7.7) 16.7 (-12.6) 49.8 (-3.9) 44.7 (-13.8)

(Arxiv24) VoCo-LLaMA ✗ 128 (-78%) 2.2 (-78%) 76.9 (-1.6) 59.8 (-2.2) − − − − 61.0 (-3.3) 59.1 (-7.0) − − −
(Arxiv24) LLaVA-HiRED ✓ 115 (-80%) 2.0 (-80%) 74.7 (-3.8) − 66.4 (-0.4) 44.2 (-14.0) − − − − − − −

Dynamic-LLaVA-7BI (Ours) ✗ 115 (-80%) 2.5 (-75%) 78.0 (-0.5) 61.4 (-0.6) 69.1 (+2.3) 57.0 (-1.2) 85.0 (-0.9) 1479.8 (-30.9) 65.4 (+1.1) 64.6 (-1.5) − − −
Dynamic-LLaVA-7BI|T (Ours) ✗ 115 (-80%) 2.5 (-75%) 77.9 (-0.6) 61.3 (-0.7) 68.6 (+1.8) 56.5 (-1.7) 85.9 (+0.0) 1501.0 (-9.7) 64.1 (-0.2) 65.0 (-1.1) 26.3 (-3.0) 57.0 (+3.3) 58.3 (-0.2)

‡LLaVA-1.5-7B+H2Or=0.5 ✓ 576 10.1 − − − 11.6 (-46.6) 50.5 (-30.4) 500.5 (-1010.2) − − − − −
‡LLaVA-1.5-7B+H2Ok=10,r=0.5 ✓ 576 10.1 77.9 (-0.6) 61.0 (-1.0) 41.9 (-16.3) 55.9 (-2.3) 86.9 (+1.0) 1458.4 (-52.3) 1.4 (-62.9) 26.8 (-39.3) 0 (-29.3) 42.3 (-11.4) 49.7 (-8.8)

LLaVA-1.5-13B − 576 19.6 80.0 63.3 71.6 61.3 85.9 1531.3 67.7 68.2 30.7 55.3 62.3

(Arxiv24) LLaVA-PruMerge+ ✗ 146 (-75%) 4.9 (-75%) 77.8 (-2.2) − 71.0 (-0.6) 58.6 (-2.7) 84.4 (-1.5) 1485.5 (-45.8) 65.7 (-2.0) − − − −
(ECCV24) LLaVA-FastVk=3,r=0.75 ✓ 144 (-75%) 6.0 (-69%) 77.0 (-3.0) 60.1 (-3.2) 72.8 (+1.2) 59.0 (-2.3) 83.2 (-2.7) 1470.3 (-61.0) 66.9 (-0.8) 65.4 (-2.8) 28.0 (-2.7) 52.8 (-2.5) 58.9 (-3.4)

Dynamic-LLaVA-13BI (Ours) ✗ 115 (-80%) 4.7 (-76%) 79.1 (-0.9) 62.7 (-0.6) 72.2 (+0.6) 59.5 (-1.8) 86.8 (+0.9) 1554.1 (+22.8) 68.3 (+0.6) 66.6 (-1.6) − − −
Dynamic-LLaVA-13BI|T (Ours) ✗ 115 (-80%) 4.7 (-76%) 78.8 (-1.2) 62.5 (-0.8) 72.4 (+0.8) 59.6 (-1.7) 86.5 (+0.6) 1563.3 (+32.0) 66.9 (-0.8) 66.5 (-1.7) 31.3 (+0.6) 53.3 (-2.0) 60.7 (-1.6)
‡LLaVA-1.5-13b+H2Ok=10,r=0.5 ✓ 576 19.6 78.9 (-1.1) 62.3 (-1.0) 48.5 (-23.1) 57.5 (-3.8) 87.3 (+1.4) 1448.3 (-83.0) 4.7 (-59.6) 32.3 (35.9) 0 (-30.7) 43.9 (-11.4) 50.8 (-11.5)

† It means that we apply one additional epoch sparsification training for FastV. For a fair comparison, the settings are the same as for Dynamic-LLaVA. The details are presented in Appendix A.4.2.
‡ It means that we directly apply the LLM KV cache compression method H2O to MLLMs. Note that H2O cannot provide the significant computation efficiency in the prefill stage of MLLMs. The details are presented in Appendix A.4.2.

Table 2: Comparison with SoTA efficient vision projector methods on vision understanding bench-
marks. Dynamic-LLaVA uses the original vision projector and achieves competitive performance.

Method Projector Image (prefill) MMBench MM-Vet VQAv2 GQA POPE VizWiz Avg.
Res. Token TFLOPs

LLaVA-1.5-7B MLP 336 576 10.1 64.3 31.1 78.5 62.0 85.9 50.0 62.0

(Arxiv23) LLaVA-Resampler-7B Resampler 336 144 2.5 63.1 29.2 75.1 58.4 84.7 51.9 60.4
(CVPR24) LLaVA-C-Abstractor-7B C-Abstractor 336 144 2.5 63.1 29.4 74.6 59.2 84.6 49.2 60.0
(Arxiv24) LLaVA-Pixel-Shuffle-7B Pixel-Shuffle 336 144 2.5 64.0 29.7 76.2 60.1 85.9 48.8 60.8

(Arxiv24) LLaVA-LDP-v2-7B LDP-v2 336 144 2.5 66.2 28.7 77.3 61.1 86.1 47.6 61.2
Dynamic-LLaVA-7BI (Ours) MLP 336 115 2.5 65.4 29.5 78.0 61.4 86.2 50.2 61.8

Dynamic-LLaVA-7BI|T (Ours) MLP 336 115 2.5 64.1 32.2 77.9 61.3 85.9 51.2 62.1

LLaVA-TokenPacker-7B-144Token TokenPacker 336 144 2.5 65.1 31.7 77.9 61.8 87.0 52.0 62.6

(Arxiv24) LLaVA-TokenPacker-7B-64Token TokenPacker 336 64 1.1 (-56%) 64.1 − 77.2 61.1 86.3 50.7 −
(ECCV24) LLaVA-TokenPacker-FastV-7Bk=3,r=0.5 TokenPacker 336 72 1.4 (-44%) 65.0 32.0 76.6 60.8 85.2 51.4 61.8

Dynamic-LLaVA-TokenPacker-7BI (Ours) TokenPacker 336 57 1.1 (-56%) 65.1 32.1 77.8 61.9 85.9 51.2 62.3
Dynamic-LLaVA-TokenPacker-7BI|T (Ours) TokenPacker 336 57 1.1 (-56%) 63.5 31.9 77.6 61.7 86.0 51.2 62.0

LLaVA-TokenPacker-13B-144Token TokenPacker 336 144 4.9 68.0 34.6 78.9 62.5 87.4 55.6 64.5

(Arxiv24) LLaVA-TokenPacker-13B-64Token TokenPacker 336 64 2.2 (-55%) 66.2 − 78.1 62.0 87.3 52.9 −
(ECCV24) LLaVA-TokenPacker-FastV-13Bk=3,r=0.5 TokenPacker 336 72 2.6 (-47%) 66.8 34.5 77.5 61.5 86.3 54.9 63.6

Dynamic-LLaVA-TokenPacker-13BI (Ours) TokenPacker 336 57 2.1 (-57%) 67.4 34.8 78.3 62.5 86.7 56.4 64.4
Dynamic-LLaVA-TokenPacker-13BI|T (Ours) TokenPacker 336 57 2.1 (-57%) 66.8 37.1 78.3 62.1 86.3 54.8 64.2

et al., 2023b), SEED (image) (Li et al., 2023a) and MM-Vet (Yu et al., 2023). Furthermore, we
also use the vision-centric vision understanding benchmarks, such as MMVP (Tong et al., 2024b),
RealWorldQA (xAI, 2024) and CVBench-2D (Tong et al., 2024a). We employ the same evaluation
metrics of the above benchmarks to assess the results.

Specially, to evaluate the generation ability of MLLM before and after the generated language context
sparsification. We constructed LVIS-VQA single- and multi-round Benchmarks based on the subset of
LVIS-Instruct4V (Wang et al., 2023). Meanwhile, we constructed a single-round long generation text
benchmark ShareGPT4V-VQA by ShareGPT4V dataset (Chen et al., 2023b). Details of these datasets
are presented in Appendix A.4.3 and A.4.4. To ensure a fair comparison, none of the images selected
for our benchmarks were included in the training set of the base MLLMs and Dynamic-LLaVA. We
evaluate the fluency of the generated responses of MLLMs using the Perplexity Metric (PPL) (Jelinek
et al., 1977), and the similarity of the generated answers to the standard answers using the Metric for
Evaluation of Translation with Explicit ORdering (METEOR) (Banerjee & Lavie, 2005).

Implementations. All of the methods are trained on 8 NVIDIA A100 (80G) using Pytorch (Paszke
et al., 2019). For fair comparisons, we utilize the open-source MLLMs weights available in the
official GitHub repositories and continue one-epoch instruction-tuning for MLLMs and learnable
predictors. The hyper-parameters of which decoder layer to sparsify the tokens (l), the sample
used for training should have a minimum output text token length (LENOT ) and the weight of the
regularization term (λ) are set to 2, 50 and 100 in all experiments, respectively. The details are
presented in Appendix A.4.2.

4.2 MAIN RESULTS

Vision understanding. As demonstrated in Tab. 1, our proposed Dynamic-LLaVA frame-
work achieves superior performance compared to SoTA vision context sparsification methods
in most benchmarks while reducing image tokens by approximately 80%. Additionally, the
Dynamic-LLaVA framework reduces FLOPs by more than 70% for official LLaVA-1.5 base-

8



Published as a conference paper at ICLR 2025

Table 3: Comparison of generation ability benchmarks. “Total→Computing” means the total gener-
ated token number and the maximum number of tokens involved in decoding. “a/b” means the results
in experiments of PPL/METEOR. “TFLOPs” and “Mem.” in “Text (decoding)” are measured under
decoding w/o and w/ KV cache, respectively, while “Mem.” means maximum GPU memory of KV
cache. Dynamic-LLaVA achieves significant inference efficiency during the decoding stage with
negligible generation ability drop when sparsifying both vision and language.

Benchmark Method Image (prefill) Text (decoding) PPL↓ METEOR↑
TFLOPs Total→Computing TFLOPs Mem. (M)

LVIS-VQA
(single-round)

LLaVA-1.5-7B 10.1 159/173→159/173 2.75/2.99 103/91 4.59 0.3103

LLaVA-FastV-7Bk=3,r=0.75 3.2 (-68%) 159/172→159/172 2.75/2.99 103/89 4.67 0.3074
Dynamic-LLaVA-7BI (Ours) 2.5 (-75%) 159/174→159/174 2.75/3.02 102/89 4.70 0.3099

Random 10.1 159/570→79/285 2.67/4.98 62 (-40%)/157 11.52 0.2080
Structure 10.1 159/603→79/302 2.68/5.72 63 (-39%)/166 9.69 0.1865
H2Or=0.5 10.1 159/589→79/295 − 62 (-40%)/158 78.95 0.0388

†FastV-7Bk=3,r=0.75+H2Or=0.5 3.2 (-68%) 159/168→79/84 − 61 (-41%)/58 (-36%) 5.62 0.3071
Dynamic-LLaVA-7BI|T (Ours) 2.5 (-75%) 159/181→84/90 1.52 (-45%)/1.57 (-47%) 63 (-39%)/46 (-49%) 4.90 0.3108

LLaVA-1.5-13B 19.6 159/174→159/174 5.36/5.88 149/143 4.39 0.3148

LLaVA-FastV-13Bk=3,r=0.75 6.0 (-69%) 159/176→159/176 5.36/5.88 152/143 4.46 0.3118
Dynamic-LLaVA-13BI (Ours) 4.7 (-76%) 159/178→159/178 5.36/6.01 148/144 4.55 0.3148

Random 19.6 159/262→79/131 2.67 (-50%)/4.43 88 (-41%)/113 10.47 0.2774
Structure 19.6 159/330→79/165 2.68 (-50%)/5.60 88 (-41%)/145 8.39 0.2393
H2Or=0.5 19.6 159/152→79/76 − 86 (-43%)/62 (-57%) 41.44 0.0428

†FastV-13Bk=3,r=0.75+H2Or=0.5 6.0 (-68%) 159/168→79/84 − 84 (-44%)/89 (-38%) 5.30 0.3151
Dynamic-LLaVA-13BI|T (Ours) 4.7 (-76%) 159/179→84/88 2.95 (-44%)/3.06 (-48%) 90 (-40%)/72 (-50%) 4.76 0.3151

LVIS-VQA
(multi-round)

LLaVA-1.5-7B 10.1 351/461→351/461 6.12/8.08 222/236 2.97 0.4227

LLaVA-FastV-7Bk=3,r=0.75 3.2 (-68%) 351/463→351/463 6.12/8.12 227/242 3.06 0.4159
Dynamic-LLaVA-7BI (Ours) 2.5 (-75%) 351/491→351/491 6.12/8.61 223/251 3.08 0.4222

Random 10.1 351/1160→176/580 3.04 (-50%)/10.35 141 (-38%)/328 5.96 0.3290
Structure 10.1 351/951→176/475 3.04 (-50%)/8.47 141 (-38%)/270 5.40 0.2820
H2Or=0.5 10.1 351/503→99/175 − 133 (-41%)/149 (-38%) 42.6 0.0892

†FastV-7Bk=3,r=0.75+H2Or=0.5 3.2 (-68%) 351/482→175/240 3.04 (-50%)/4.19 (-48%) 140 (-38%)/128 (-47%) 3.57 0.4049
Dynamic-LLaVA-7BI|T (Ours) 2.5 (-75%) 351/522→182/260 3.33 (-45%)/4.38 (-46%) 144 (-35%)/140 (-41%) 3.17 0.4251

LLaVA-1.5-13B 19.6 351/497→351/497 11.92/16.97 331/405 2.88 0.4240

LLaVA-FastV-13Bk=3,r=0.75 6.0 (-69%) 351/501→351/501 11.92/17.11 326/399 2.96 0.4193
Dynamic-LLaVA-13BI (Ours) 4.7 (-76%) 351/507→351/507 11.92/17.30 328/405 2.98 0.4221

Random 19.6 351/600→175/300 5.92 (-50%)/10.23 195 (-41%)/265 (-35%) 5.40 0.3900
Structure 19.6 351/671→176/335 5.93 (-50%)/11.48 194 (-41%)/303 (-25%) 4.67 0.3627
H2Or=0.5 19.6 351/144→99/72 − 183 (-45%)/283 (-30%) 18.62 0.0493

†FastV-13Bk=3,r=0.75+H2Or=0.5 6.0 (-69%) 351/493→175/247 − 186 (-44%)/197 (-51%) 3.45 0.4127
Dynamic-LLaVA-13BI|T (Ours) 4.7 (-76%) 351/494→181/242 6.40 (-46%)/8.27 (-51%) 196 (-41%)/202 (-50%) 3.07 0.4243

ShareGPT4V-VQA
(single-round)

LLaVA-1.5-7B 10.1 1555/100→1555/100 28.70/1.75 1024/50 2.52 ‡0.0540

Random 10.1 1555/450→779/224 13.97 (-51%)/3.95 664 (-35%)/120 6.07 ‡0.0560
Structure 10.1 1555/531→777/266 13.93 (-51%)/4.68 644 (-37%)/144 30.7 ‡0.0484
H2Or=0.5 10.1 1555/392→777/196 − 607 (-41%)/107 25.54 ‡0.0185

†FastV-7Bk=3,r=0.75+H2Or=0.5 3.2 (-68%) 1555/112→777/56 − 604 (-41%)/27 (-46%) 3.56 ‡0.0537
Dynamic-LLaVA-7BI|T (Ours) 2.5 (-75%) 1555/102→784/51 14.97 (-47%)/0.95 (-46%) 625 (-39%)/28 (-44%) 3.14 ‡0.0551

LLaVA-1.5-13B 19.6 1555/103→1555/103 55.40/3.49 1489/83 2.43 ‡0.0523

Random 19.6 1555/192→777/97 27.01 (-51%)/3.30 875 (-41%)/265 5.32 ‡0.0589
Structure 19.6 1555/285→777/142 27.04 (-51%)/4.88 876 (-41%)/126 21.10 ‡0.0489
H2Or=0.5 19.6 1555/72→777/36 − 840 (-43%)/29 10.51 ‡0.0131

†FastV-13Bk=3,r=0.75+H2Or=0.5 6.0 (-79%) 1555/115→777/57 − 835 (-44%)/45 (-46%) 3.41 ‡0.0507
Dynamic-LLaVA-13BI|T (Ours) 4.76 (-76%) 1555/100→763/50 27.96 (-49%)/1.78 (-49%) 854 (-43%)/44 (-46%) 3.10 ‡0.0524

† It means that we use FastV to reduce the token set of prefill, while using H2O to only compress generated KV cache during decoding. The details are presented in Appendix A.4.2.
‡ In long text generation tasks, the substantial discrepancy between lengths of text generated by MLLMs and the label text leads to a significant degradation of the METEOR metric.

Table 4: Total time and maximum GPU memory overhead during MLLMs’ generation. “2K/4K”
means the number of the generated output text tokens. “×” means the generation process has failed
due to the OOM. The results are measured in one A100 (80G) and the batch size is fixed to 8.

Method Prefill Decoding w/o KV cache Decoding w/ KV cache

1K 2K 4K 1K 2K 4K

Time Time Time Time Mem. Mem. Mem.

LLaVA-1.5-13B 0.83s 1453s 4117s 13368s 46G 58G ×
LLaVA-FastV-13Bk=3,r=0.75 0.43s 1079s 3462s × 41G 53G 77G

Dynamic-LLaVA-13BI|T 0.37s 838s 2382s 6184s 35G 42G 56G
† We apply the Parallel Sparsification Inference for FastV to achieve the batch-parallel inference.

lines in the prefill stage, with only minimal performance degradation across most benchmarks.
Especially, for the LLaVA-1.5 with 7B and 13B parameters, the Dynamic-LLaVA even shows
performance improvements on the SciQA, POPE, MME, and MMBench benchmarks. For in-
stance, on the SciQA benchmark, the 7B and 13B Dynamic-LLaVA models achieve perfor-
mance gains of +2.3% and +0.8%, respectively, compared to the original LLaVA-1.5. More
comparison of SoTA vision context sparsification methods are presented in Appendix A.5.1.
Table 5: Trade-off of the keep
rates of vision context (rI ) and
language context (rOT ).

Context Rate
Token Benchmark

Vision Language VQAv2 GQA MMVP LVIS (single)

PPL↓ MET.↑

Vision
20% 115 84/90 77.9 61.3 26.3 4.90 0.3108
50% 288 83/86 78.8 62.3 26.3 4.88 0.3107
80% 461 83/85 78.9 62.5 26.2 4.88 0.3090

Language
20% 115 41/39 77.6 61.4 26.0 5.53 0.2592
50% 115 84/90 77.9 61.3 26.3 4.90 0.3108
80% 115 129/138 78.0 61.6 26.0 4.76 0.3116

LLaVA-7B 100% 576 159/173 78.5 62.0 29.3 4.59 0.3103

As shown in Tab. 2, for efficient vision projector methods for
MLLMs, Dynamic-LLaVA exclusively utilizes the original MLP of
LLaVA-1.5 as the vision projector. This approach surpasses those
that modify the vision projector across most benchmarks, achieving
an average performance that exceeds the best alternative methods
by 0.9%. Furthermore, our Dynamic-LLaVA framework can be in-
tegrated with other efficient vision projector methods. For instance,
our combination with the TokenPacker projector, Dynamic-LLaVA-

TokenPacker, achieves significant reductions in vision tokens by an additional 60% on top of the
already reduced count by efficient vision projector methods, with only a minimal loss in performance.
Compared to the official LLaVA-TokenPacker method, our Dynamic-LLaVA-TokenPacker incurs
only a minimal performance loss of 0.3% and 0.1% (for 7B and 13B models) while using fewer
vision tokens (57 vs. 144). Moreover, we observe that the sparsification of the output text tokens does
not impede the comprehension ability of MLLMs. This finding is supported by comparisons between
Dynamic-LLaVAI and Dynamic-LLaVAI|T , as detailed in last two rows of Tab. 1 and Tab. 2.

9



Published as a conference paper at ICLR 2025

Table 6: Hyper-parameter ab-
lation for l, LENOT and λ.

Hyper Value Benchmark

VQAv2 GQA POPE

l
1 77.6 61.3 85.7
2 77.9 61.3 85.9
4 77.9 61.4 85.8

LENOT
0 77.4 61.0 85.5
50 77.9 61.3 85.9

100 77.8 61.2 86.1

λ
10 77.9 61.2 85.8

100 77.9 61.3 85.9
1000 77.7 61.3 85.7

Generation ability. To evaluate the impact of vision-language
context sparsification on generation ability, we utilize the LVIS-
VQA (single-round) and LVIS-VQA (multi-round) as benchmarks.

To demonstrate the advantages of Dynamic-LLaVA in dynamically
sparsifying the language context, we compare it against traditional
static methods, “Random” and “Structure”. “Random” refers to
randomly discarding ∼50% output text tokens, while “Structure”
involves discarding every alternate output text token.

As shown in Tab. 3, Dynamic-LLaVA maintains nearly unchanged
generation fluency (by PPL) and quality (by METEOR) when only the vision context is sparsified.
When sparsifying both vision and language contexts, Dynamic-LLaVA exhibits a slight increase
in PPL (less than 0.3) and a minor improvement in METEOR score compared to full-context
baselines, while also reducing ∼50% FLOPs (decoding without KV cache) and GPU memory
overhead (decoding with KV cache) of the output text tokens. In comparison with the traditional
static methods under the same condition of discarding ∼50% output text tokens, both “Random”
and “Structure” methods significantly underperform in terms of fluency and quality of generation
compared to Dynamic-LLaVA’s language context sparsification. Furthermore, compared to methods
only focusing on the image token reduction, Dynamic-LLaVA achieves additional inference efficiency
during the decoding stage while maintaining nearly consistent generation ability. Meanwhile, the
LLM KV cache compression method H2O, directly discarding historical KV cache does not adapt
well to mixed-modality contexts, causing a significant performance degradation. We enhance the
generation ability by integrating FastV with H2O. Despite these reductions, Dynamic-LLaVA still
maintains a slight advantage in generation ability.

Practical inference efficiency. As presented in Tab. 4, we measured the practical inference time
and GPU memory usage of MLLMs. The proposed Dynamic-LLaVA framework can perform
parallel inference with mini-batch samples, due to the Parallel Sparsification Inference strategy in
Appendix A.1. Vision token reduction methods provide noticeable inference benefits during the
prefill stage and play a role in subsequent generations. However, the proportion of this efficiency
gradually decreases throughout the entire generation process. Dynamic-LLaVA not only achieves
significant inference speed improvements during the prefill stage but also reduces generation time
by ∼50% when decoding without KV cache and significantly lowers GPU memory overhead when
decoding with KV cache. Moreover, we further report the practical inference lantency of the decoding
stage with KV cache, which are presented in Appendix A.5.2.

4.3 ABLATION STUDY

Trade-off. We respectively adjust the keep rates of vision context (rI ) and language context (rOT )
during training, as mentioned in Sec. 3.3.3. As in Tab. 5, we observe that increasing the value of rI ,
i.e., retaining more image tokens during inference, significantly enhances the vision understanding
performance of Dynamic-LLaVA. On the other hand, adjusting the value of rOT has negligible effects
on vision understanding but impacts the generation ability of Dynamic-LLaVA. By tuning the values
of rI and rOT during training, it is possible to achieve a balance between performance and efficiency
tailored to specific requirements. More detailed results are presented in Appendix A.5.4.

Hyper-parameters. Tab. 6 provides an analysis of which decoder layer to sparsify the tokens (l) and
the sample used for training should have a minimum output text token length (LENOT ), as mentioned
in Sec. 3.3. This analysis enables the Dynamic-LLaVA framework to be easily integrated into
various MLLMs. For l and λ, Dynamic-LLaVA shows relative insensitivity in vision understanding
performance. We follow the work (Chen et al., 2024a) and let l = 2, while λ = 100. For LENOT ,
sparsifying output text tokens of all samples significantly reduces the understanding performance of
Dynamic-LLaVA. Incrementally increasing the threshold of LENOT results in diminishing returns.

5 CONCLUSION

In this paper, we proposed a dynamic vision-language context sparsification framework, termed
Dynamic-LLaVA. This framework is designed with tailored sparsification inference strategies for the
inference modes of MLLMs and can be integrated into MLLMs’ training in an end-to-end manner.
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Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through
stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph representations with global
structural information. In Proceedings of the 24th ACM international on conference on information
and knowledge management, pp. 891–900, 2015.

Junbum Cha, Wooyoung Kang, Jonghwan Mun, and Byungseok Roh. Honeybee: Locality-enhanced
projector for multimodal llm. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 13817–13827, 2024.

Charlie Chen, Sebastian Borgeaud, Geoffrey Irving, Jean-Baptiste Lespiau, Laurent Sifre, and John
Jumper. Accelerating large language model decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023a.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
language models. arXiv preprint arXiv:2403.06764, 2024a.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua
Lin. Sharegpt4v: Improving large multi-modal models with better captions. arXiv preprint
arXiv:2311.12793, 2023b.

Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhangwei Gao, Erfei Cui, Wenwen Tong, Kongzhi
Hu, Jiapeng Luo, Zheng Ma, et al. How far are we to gpt-4v? closing the gap to commercial
multimodal models with open-source suites. arXiv preprint arXiv:2404.16821, 2024b.

Xiangxiang Chu, Limeng Qiao, Xinyu Zhang, Shuang Xu, Fei Wei, Yang Yang, Xiaofei Sun, Yiming
Hu, Xinyang Lin, Bo Zhang, et al. Mobilevlm v2: Faster and stronger baseline for vision language
model. arXiv preprint arXiv:2402.03766, 2024.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms. arXiv preprint arXiv:2310.01801, 2023.

11



Published as a conference paper at ICLR 2025

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 6904–6913, 2017.

Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
Jeffrey P Bigham. Vizwiz grand challenge: Answering visual questions from blind people. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3608–3617,
2018.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-infinite: Simple
on-the-fly length generalization for large language models. arXiv preprint arXiv:2308.16137,
2023.

Charles Herrmann, Richard Strong Bowen, and Ramin Zabih. Channel selection using gumbel
softmax. In European conference on computer vision, pp. 241–257. Springer, 2020.

Kai Huang, Hao Zou, Ye Xi, BoChen Wang, Zhen Xie, and Liang Yu. Ivtp: Instruction-guided visual
token pruning for large vision-language models. 2024a.

Wenxuan Huang, Yunhang Shen, Jiao Xie, Baochang Zhang, Gaoqi He, Ke Li, Xing Sun, and Shaohui
Lin. A general and efficient training for transformer via token expansion. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15783–15792, 2024b.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 6700–6709, 2019.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Fred Jelinek, Robert L Mercer, Lalit R Bahl, and James K Baker. Perplexity—a measure of the
difficulty of speech recognition tasks. The Journal of the Acoustical Society of America, 62(S1):
S63–S63, 1977.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Yutao Jiang, Qiong Wu, Wenhao Lin, Wei Yu, and Yiyi Zhou. What kind of visual tokens do we need?
training-free visual token pruning for multi-modal large language models from the perspective of
graph. arXiv preprint arXiv:2501.02268, 2025.

Yizhang Jin, Jian Li, Yexin Liu, Tianjun Gu, Kai Wu, Zhengkai Jiang, Muyang He, Bo Zhao, Xin
Tan, Zhenye Gan, et al. Efficient multimodal large language models: A survey. arXiv preprint
arXiv:2405.10739, 2024.
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A APPENDIX

A.1 PARALLEL SPARSIFICATION INFERENCE OPTIMIZATION

In this section, we introduce the parallel inference optimization for the sparsification inference
described in Sec. 3.3.2. We denote the mini-batch form of SP

l and SOT
l in the l-th decoder layer

as SPl and SOT
l , respectively. We treat these as matrices, thus SPl = {SP (b)

l |∀b ∈ {1, 2, · · · , B}} ∈
RB×(NI

l+N
T
l )×d and SOT

l = {SOT (b)
l |∀b ∈ {1, 2, · · · , B}} ∈ RB×NOT

l ×d, where B represents the
mini-batch size, and SP (b)

l and SOT (b)
l refer to the token set for the b-th sample within the batch.

For the prefill stage, we pad the indefinite length mini-batch image token sets and use one-pass parallel
inference of the predictor for the padded mini-batch image token set SIl = {LPadding(SI(b)

l )|∀b ∈
{1, 2, · · · , B}} ∈ RB×max(NI

l)×d to obtaion the reduced token set SP∗
l for prefill, where NI

l is the
sizes of the mini-batch image token set, max(NI

l ) denotes the maximum size of the image token
sets within the mini-batch and LPadding(·) represents the operation of padding zero values in the
left of the input token set, extending its size to match the maximum size max(NI

l ). Considering the
computation parallelization, we directly select the tokens with high predictor scores to retain, and the
pipeline in Eq. 5 is modified as:

DI = P I(SI
l ) ∈ RB×max(NI

l )×2,

SI∗(b)
l = {SI(b)

l,i |∀i ∈ TopkArgmax⌊rI |SI(b)
l

|⌋(D
I(b)
∗,2 )},

SP∗
l = {LPadding(SI∗(b)

l ∪ST (b)
l )|∀b ∈ {1, 2, · · · , B}} ∈ RB×max(NP∗

l )×d,

(11)

where TopkArgmaxk(·) the top argmax opeartion with the number of k tokens and ⌊·⌋ is a floor
function. DI(b)

∗,2 represents the extraction of all the second values along the last dimension of DI(b),

serving as the predictor score, with DI(b)
∗,2 ∈ Rmax(NI

l ). It allows us to retain a fixed proportion rI

of the image tokens for each batch’s image token set, while simultaneously enabling batch-parallel
processing for both the predictor’s predictions and the subsequent computations within LLM.

For the decoding without KV cache, we use SOT
l to get SOT∗

l for computation parallelization:

DOT = POT (SOT
l ) ∈ RB×max(NOT

l )×2,MOT (b) = argmaxj(DOT (b)),

SOT∗(b)
l = {SOT (b)

l,i |MOT (b) = 1 ∧ ∀i ∈ IOT },

SOT∗
l = {LPadding(SOT∗(b)

l )|∀b ∈ {1, 2, · · · , B}} ∈ RB×max(NOT∗
l )×d.

(12)

Meanwhile, considering the decoding with KV cache, we store a KV cache for the each batch token set
and the mini-batch KV cache set can be define as {{SK(b)

l ,SV (b)
l }|∀b ∈ {1, 2, · · · , B}}. We apply a

similar operation as in Eq. 12 to each last output text token SOT (b)

l,NOT
l

, resulting in the batch-wise binary

decision MOT (b)

NOT
l

∈ {0, 1}, which determines whether to add the activations to {SK(b)
l ,SV (b)

l } as
outlined in Eq. 6. For the computation in the Attention(· , · , ·) operation, we utilize the padded
KV cache sets {SKl ,SVl } = {{LPadding(SK(b)

l )|∀b ∈ {1, 2, · · · , B}}, {LPadding(SV (b)
l )|∀b ∈

{1, 2, · · · , B}}}. In this way, we reduce the activations stored in KV cache, and use these reduced ac-
tivations to participate in the computation of Attention(· , · , ·). Note that |SOT∗

l | = max(NOT∗
l ) ≈

rOT |SOT
l | due to we use Eq. 10 to constrain the number of the output text token set during training,

and ensures that each batch SOT∗(b)
l adheres to a close keep rate of rOT during inference.

A.2 DETAILED PIPELINE OF END-TO-END SPARSIFICATION TRAINING

The mask generation pipeline of the MaskedSoftmax operation is presented in the above figure
of Fig. 3. Specifically, we use the mask generated by the predictors to create a matrix for the
MaskedSoftmax operation, somewhat analogous to the attention mask in the Multi-Head Attention
Block. When values in this matrix are zero, they engage the MaskedSoftmax to set corresponding
attention scores in the attention matrix produced by Q and K to zero. This effectively isolates the
influence of non-essential tokens on essential tokens during training.
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Figure 3: The detailed training pipeline of Dynamic-LLaVA. Above Figure: the mask for Masked-
Softmax operation during training. We utilize the predictors to generate the binary mask M and
subsequently form a binary mask matrix G. This generated binary mask matrix is employed in the
Multi-Head Attention Block within the MaskedSoftmax operation to isolate the influence of non-
essential tokens on essential tokens during training. Bottom Figure: the pipeline of predictors during
training. In the forward propagation, we use GumbelSoftmax function to relax the decision matrix
DI and DOT to obtain DI† and DOT†, respectively. Then, we use argmax operation to generate the
binary mask M for the token set. During back propagation, we utilize the STE technique Bengio
et al. (2013) to directly estimate the gradient of DI and DOT through the binary mask M, bypassing
the non-differentiable argmax operation to avoid the gradient flow problem.

Table 7: Effect on the MaskedSoftmax operation.

Method POPE VQAv2 GQA

LLaVA-1.5-7B 85.9 78.5 62.0

Dynamic-LLaVA-7BI|T (Ours) 85.9 77.8 61.3
Dynamic-LLaVA-7BI|T w/o MaskedSoftmax 84.5 76.7 59.8

As shown in the bottom figure of Fig. 3, we display the pipeline of predictors during training. Simply
put, during the forward propagation of training, we relax the decision matrix generated by the
predictors. In the backward propagation, we employ the Straight-Through Estimator (STE) (Bengio
et al., 2013) technique to circumvent the gradient problem, thus enabling end-to-end training of the
predictors.

Furthermore, as shown in Tab. 7, we analyzed the rationale for using the MaskedSoftmax operation
instead of directly employing selective approaches during training. It is evident that directly setting
the values of unnecessary tokens to zero vectors leads to a significant performance degradation, as
observed in VQAv2, GQA, and POPE, where there was a performance loss of over 1%.
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Table 8: Benchmark statistics of average token length (rows 2-5) and the total number of tokens that
participated in computation during inference (the last 3 rows).

Dataset VQAv2 VizWiz SciQA LVIS-VQA (single) LVIS-VQA (multi) ShareGPT4V-VQA (single)

Avg. image token length 576 576 576 576 576 576
Avg. text token length 8 10 15 56 205 51

Avg. output text token length 2 3 6 159 351 1555

Avg. token length 586 589 597 794 1132 2182

LLaVA-1.5-13B 586 589 597 794 1132 2182

LLaVA-13B-FastVk=3,r=0.75 154(-74%) 157 (-73%) 165 (-72%) 359 (-55%) 700 (-38%) 1750 (-20%)
Dynamic-LLaVA-13BI|T 125 (-79%) 128 (-78%) 136 (-77%) 255 (-68%) 501 (-56%) 929 (-57%)

A.3 MORE DETAILED DISCUSSION

A.3.1 INFERENCE EFFICIENCY OF DYNAMIC-LLAVA AND TOKEN REDUCTION METHODS

To further quantify the improvements of inference efficiency that Dynamic-LLaVA brings by the
output text token lengthens, we have presented statistics on the token length for three vision under-
standing benchmarks and generation ability benchmarks in Table 8. Additionally, we compare the
total token lengths of Dynamic-LLaVA and FastV, including both the prefill and decoding stages.

The results indicate that as the output length increases, Dynamic-LLaVA progressively exhibits a
significant advantage in terms of token reduction percentage compared to FastV, which only reduces
image tokens during the prefill stage.

It should be noted that the vision understanding benchmarks (VQAv2, VizWiz, SciQA) generally need
the model responding to multiple-choice questions or providing brief answers. However, real-world
scenarios often require MLLMs to provide more detailed and extensive responses, which aligns with
our constructed LVIS-VQA and ShareGPT4V-VQA benchmarks. Therefore, the improvement in
inference efficiency that Dynamic-LLaVA provides is particularly significant on these two generation
ability benchmarks compared to previous MLLM token reduction methods (e.g., FastV Chen et al.
(2024a)), which have longer output text lengths. Additionally, Dynamic-LLaVA also demonstrates
superior performance in terms of generation fluency and quality.

A.3.2 DISCUSSION FOR LLM KV CACHE COMPRESSION METHODS AND DYNAMIC-LLAVA

We further discuss the core distinctions between Dynamic-LLaVA and LLM KV cache compression
methods as follows.

First, considering the complete generation process of MLLMs with KV cache. The key distinction
between Dynamic-LLaVA and other LLM KV cache compression methods lies in its approach.
Dynamic-LLaVA implements a “online” decision-making process to determine whether to add KV
activations of the current token to KV cache, rather than removing KV activations from the historical
KV cache. As presented in Fig. 4, we show the differences between a commonly used LLM KV
cache compression method, H2O (Zhang et al., 2023), and our method. A significant distinction is
highlighted between the two methods. In the left figure, H2O computes the attention scores between
the current token’s query Q and all past KV cache, removing useless KV cache based on their
attention scores (e.g., KV cache corresponding to tokens with an attention score of 0.05). While our
method (in the right figure) does not decide how to retain historical KV cache. Instead, it calculates
KV activations (by Wk and Wv) for the current token and applies an output predictor (on the current
token’s embedding) to decide whether to add the current token’s corresponding KV activations into
KV cache (as shown in the “Yes” branch) or not to add them (as shown in the “No” branch).

Second, Dynamic-LLaVA is an MLLM inference acceleration framework that considers the distinct
properties of different modalities and incorporates tailored sparsification strategies accordingly. We
have implemented the H2O method in conjunction with LLaVA, and the results are presented in Tab. 1
and Tab. 3. We configured the hyperparameters of H2O to retain 50% KV cache in each of the prefill
and decoding stages. However, H2O, performs poorly in multimodal scenarios involving vision and
language contexts. Our analysis suggests that H2O’s strategy of discarding historical KV cache based
on attention scores does not adapt well to mixed-modality contexts. To get more comparable results,
in the vision understanding benchmarks of Tab. 1, we modified the layer configuration for H2O’s
KV cache compression to enhance the performance. The first 10 layers do not conduct KV cache
compression, and H2O is applied only beyond the 10-th layer. In the generation ability tasks presented
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Figure 4: KV cache compression pipeline (H2O (Zhang et al., 2023) vs. Dynamic-LLaVA (when
decoding with KV cache). Left Figure: the KV cache compression pipeline of H2O involves
calculating the attention score between the current Q and past KV cache during the decoding stage.
The KV activations corresponding to the minimal attention score is subsequently dropped from
historical KV cache. Right Figure: The workflow of Dynamic-LLaVA when decoding with KV
cache. Our approach evaluates each current token’s features by an output predictor to determine
whether its activations which through WK and WV should be added to the KV cache.

in Tab. 3, we combined H2O with FastV (Chen et al., 2024a). The enhanced H2O implementation on
MLLM shows some performance improvements. However, its performance still falls short compared
to Dynamic-LLaVA.

Third, Dynamic-LLaVA introduces a tailored sparsification inference scheme specific to various
inference modes. In the above discussion, we have extensively discussed the core design of our
method and its distinctions from other approaches in the context of decoding with KV cache.
However, it is important to emphasize that we have designed efficient inference methods tailored for
different scenarios, i.e., prefill, decoding with KV cache, and decoding without KV cache. Decoding
with KV cache can be seen as “online KV cache compression”. For the scenarios of prefill and
decoding without KV cache, although KV cache activations are not involved, Dynamic-LLaVA
can still substantially enhance the computational efficiency of MLLMs. This enhancement is an
advantage that traditional KV cache compression methods do not provide, demonstrating the broader
applicability and effectiveness of our method across various inference modes within MLLMs.

Moreover, enhancing computational efficiency during the prefill and decoding without KV cache
stages is equally critical for MLLMs Liu et al. (2024b); Li et al. (2024d); Chen et al. (2024a); Huang
et al. (2024a); Cha et al. (2024); Leviathan et al. (2023); Chen et al. (2023a); Liu et al. (2023a).

There is a positive correlation between the vision understanding performance of MLLMs and image
resolution Liu et al. (2024b); Li et al. (2024d). While achieving improved performance, the increased
number of image tokens significantly adds to the computation burden during the MLLM’s prefill stage,
which includes a rise in computation budgets such as longer image token sequences and increased
inference latency Chen et al. (2024a); Huang et al. (2024a); Cha et al. (2024). This challenge
echoes the importance of structural information compression in graph representation learning, where
methods like GraRep Cao et al. (2015) reduce complexity via low-dimensional embeddings. Similar
graph-based approaches, such as compressing image tokens via graph sparsity Jiang et al. (2025),
further enable efficient MLLM acceleration. Therefore, reducing the number of image tokens to
accelerate MLLMs is crucial. However, existing LLM KV cache compression methods typically
do not accelerate the computation in the MLLM prefill stage, thus limiting their applicability in
MLLMs.
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Table 9: Results of Dynamic-LLaVA with text context sparsification during the prefill stage on 3
vision understanding benchmarks.

Method POPE VQAv2 GQA

LLaVA-1.5-7B 85.9 78.5 62.0

Dynamic-LLaVA-7BI|T (Ours) 85.9 77.8 61.3
Dynamic-LLaVA-7BI|T +30% text context sparsification 85.1 75.3 60.2

For decoding without KV cache, this inference mode still retains advantages over those using KV
cache Vaswani (2017). For instance, decoding without KV cache does not require the storage of
extensive KV activations for subsequent decoding use, which significantly reduces the memory
overhead during the MLLM inference process. Accelerating the inference speed of decoding without
KV cache also has potential applications in commonly used speculative sampling strategies Leviathan
et al. (2023); Chen et al. (2023a); Liu et al. (2023a). These strategies utilize preliminary decoding
by smaller LLMs to parallelize the autoregressive decoding of larger LLMs, also enhancing the
efficiency of MLLMs in practical deployments. Our Dynamic-LLaVA facilitates this by reducing the
number of tokens processed in parallel during decoding, thereby accelerating the parallel decoding of
large MLLMs and further improving the inference benefits of speculative sampling strategies.

A.3.3 ADDITIONAL DISCUSSION FOR SPARSIFYING TEXT CONTEXT DURING PREFILL

In the current design of Dynamic-LLaVA, we only apply sparsification to the image tokens during
the prefill stage. Naturally, it is also feasible to perform sparsification on text tokens during the prefill
stage. Therefore, we also conduct experiments with sparsifying text tokens during the prefill stage,
reducing 30% text tokens. The results on 3 vision understanding benchmarks are presented in Tab. 9.
Unfortunately, sparsifying text tokens during the prefill stage resulted in a noticeable performance
degradation. Across the three benchmarks presented in the table, the performance dropped by an
average of 1.45% compared to sparsifying only the image tokens during the prefill stage. These
results imply that text tokens during the prefill stage are crucial in the current multimodal scenarios,
necessitating a more refined sparsification design. This will also serve as an important direction for
our future works.

A.4 IMPLEMENTATION DETAILS

A.4.1 DETAILS OF PREDICTOR ARCHITECTURE

Figure 5: Overviews of the image predictor (a) and the output text predictor (b).

The architectues of the image predictor and the output text predictor are presented in Fig. 5. Both the
image predictor and the output text predictor employ a linear layer to reduce the input dimension from
MLLMs to 512, thereby decreasing computational demands. The image predictor utilizes two vision
transformer blocks (Dosovitskiy, 2020; Touvron et al., 2021) and a dimension-reducing three-layer
MLP (512 → 256 → 128 → 2). The structure of the output text predictor is similar to that of the
image predictor, except it does not use vision transformer blocks. This design choice ensures that
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Table 10: The detailed calculation formula for FLOPs.
Model Name Calculation

LLaVA-1.5-7B 32 × (32 × 1 × 576 × 4096 × 4096 × 1 + 4 × 1 × 576 × 4096) = 10.1T

LLaVA-PruMerge+ 32 × (32 × 1 × 146 × 4096 × 4096 × 1 + 4 × 1 × 146 × 146 × 4096) = 2.5T

LLaVA-FastV 3 × (32 × 1 × 576 × 4096 × 4096 + 4 × 1 × 576 × 576 × 4096) + 29 × (32 × 1 × 144 ×
4096 × 4096 + 4 × 1 × 144 × 144 × 4096) = 3.2T

VoCo-LLAMA 32 × (32 × 1 × 128 × 4096 × 4096 × 1 + 4 × 1 × 128 × 128 × 4096) = 2.2T

LLaVA-HiRED 32 × (32 × 1 × 115 × 4096 × 4096 × 1 + 4 × 1 × 115 × 115 × 4096) = 2.07T

Dynamic-LLaVA 2× (32× 1× 576× 4096× 4096 + 4× 1× 576× 4096) + 30× (32× 1× 115× 4096×
4096 + 4 × 1 × 115 × 115 × 4096) = 2.5T

LLaVA-1.5-13B 40 × (32 × 1 × 576 × 5120 × 5120 + 4 × 1 × 576 × 576 × 5120) = 19.6T

LLaVA-PruMerge+ 40 × (32 × 1 × 146 × 5120 × 5120 + 4 × 1 × 146 × 146 × 5120) = 4.9T

LLaVA-FastV 3 × (32 × 1 × 576 × 5120 × 5120 + 4 × 1 × 576 × 576 × 5120) + 37 × (32 × 1 × 144 ×
5120 × 5120 + 4 × 1 × 144 × 144 × 5120) = 6.0T

VoCo-LLaMA 40 × (32 × 1 × 128 × 5120 × 5120 + 4 × 1 × 128 × 128 × 5120) = 4.3T

LLaVA-HiRED 40 × (32 × 1 × 115 × 5120 × 5120 + 4 × 1 × 115 × 115 × 5120) = 3.9T

Dynamic-LLaVA 2 × (32 × 1 × 576 × 5120 × 5120 + 4 × 1 × 576 × 576 × 5120) + 38 × (32 × 1 × 115 ×
5120 × 5120 + 4 × 1 × 115 × 115 × 5120) = 4.7T

LLaVA-TokenPacker-7B-144Token 32 × (32 × 1 × 144 × 4096 × 4096 + 4 × 1 × 144 × 144 × 4096) = 2.5T

LLaVA-TokenPacker-7B-64Token 32 × (32 × 1 × 64 × 4096 × 4096 + 4 × 1 × 64 × 64 × 4096) = 1.1T

LLaVA-TokenPacker-FastV-7B 3 × (32 × 1 × 144 × 4096 × 4096 + 4 × 1 × 144 × 144 × 4096) + 29 × (32 × 1 × 72 ×
4096 × 4096 + 4 × 1 × 72 × 72 × 4096) = 1.4T

Dynamic-LLaVA-TokenPacker-7B 2 × (32 × 1 × 144 × 4096 × 4096 + 4 × 1 × 144 × 144 × 4096) + 30 × (32 × 1 × 57 ×
4096 × 4096 + 4 × 1 × 57 × 57 × 4096) = 1.1T

LLaVA-TokenPacker-13B-144Token 40 × (32 × 1 × 144 × 5120 × 5120 + 4 × 1 × 144 × 144 × 5120) = 4.9T

LLaVA-TokenPacker-13B-64Token 40 × (32 × 1 × 64 × 5120 × 5120 + 4 × 1 × 64 × 64 × 5120) = 2.2T

LLaVA-TokenPacker-FastV-13B 3 × (32 × 1 × 144 × 5120 × 5120 + 4 × 1 × 144 × 144 × 5120) + 37 × (32 × 1 × 72 ×
5120 × 5120 + 4 × 1 × 72 × 72 × 5120) = 2.6T

Dynamic-LLaVA-TokenPacker-13B 2 × (32 × 1 × 144 × 5120 × 5120 + 4 × 1 × 144 × 144 × 5120) + 38 × (32 × 1 × 57 ×
5120 × 5120 + 4 × 1 × 57 × 57 × 5120) = 2.1T

Table 11: Comparison with more SoTA vision context sparsification methods on vision understanding
benchmarks.

Method Free Image (prefill) VQAv2 GQA SciQA TextVQA POPE MME MMBench SEED MMVP RealWorldQA CVBench-2D
Token TFLOPs

LLaVA-1.5-7B − 576 10.1 78.5 62.0 66.8 58.2 85.9 1510.7 64.3 66.1 29.3 53.7 58.5

(Arxiv24) LLaVA-PruMerge+ ✗ 146 (-75%) 2.5 (-75%) 76.8 (-1.7) − 68.3 (+1.5) 57.1 (-1.1) 84.0 (-1.9) 1462.4 (-48.3) 64.9 (+0.6) − − − −
(ECCV24) LLaVA-FastVk=3,r=0.75 ✓ 144 (-75%) 3.2 (-68%) 75.1 (-3.4) 57.5 (-4.5) 68.7 (+1.9) 56.2 (-2.0) 81.0 (-4.9) 1458.9 (-51.8) 63.5 (-0.8) 62.8 (-3.3) 24.0 (-5.3) 53.7 (-0.0) 56.7 (-1.9)

(Arxiv24) VoCo-LLaMA ✗ 128 (-78%) 2.2 (-78%) 76.9 (-1.6) 59.8 (-2.2) − − − − 61.0 (-3.3) 59.1 (-7.0) − − −
(ECCV24) IVTP ✗ − 4.7 (-53%) 77.8 (-0.7) 60.4 (-1.6) 67.8 (+1.0) 58.2 (+0.0) 85.7 (-0.2) − 66.1 (+1.8) 54.6 (-11.5) − − −
(Arxiv24) TRIM ✗ 455 (-21%) − 76.4 (-2.1) 61.4 (-0.6) 48.1 (-18.7) 53.7 (-4.5) 85.3 (-0.6) 1461.3 (-49.4) 67.4 (+3.1) − − − −

(Arxiv24) SparseVLM ✓ 449 (-22%) − 73.8 (-4.7) 56.0 (-6.0) 67.1 (+0.3) 54.9 (-3.3) 80.5 (-5.4) 1696 (+185.3) 60.0 (-4.3) − − − −
(Arxiv24) LLaVA-HiRED ✓ 115 (-80%) 2.0 (-80%) 74.7 (-3.8) − 66.4 (-0.4) 44.2 (-14.0) − − − − − − −

Dynamic-LLaVA-7BI (Ours) ✗ 115 (-80%) 2.5 (-75%) 78.0 (-0.5) 61.4 (-0.6) 69.1 (+2.3) 57.0 (-1.2) 85.0 (-0.9) 1479.8 (-30.9) 65.4 (+1.1) 64.6 (-1.5) − − −
Dynamic-LLaVA-7BI|T (Ours) ✗ 115 (-80%) 2.5 (-75%) 77.9 (-0.6) 61.3 (-0.7) 68.6 (+1.8) 56.5 (-1.7) 85.9 (+0.0) 1501.0 (-9.7) 64.1 (-0.2) 65.0 (-1.1) 26.3 (-3.0) 57.0 (+3.3) 58.3 (-0.2)
LLaVA-1.5-7b+H2Or=0.5,k=10 ✓ − 10.1 77.9 (-0.6) 61.0 (-1.0) 41.9 (-16.3) 55.9 (-2.3) 86.9 (+1.0) 1458.4 (-52.3) 1.4 (-62.9) 26.8 (-39.3) 0 (-29.3) 42.3 (-11.4) 49.7 (-8.8)

decisions during decoding with KV cache are solely based on the features from the current output
text token.

A.4.2 DETAILS OF SETTINGS

For Dynamic-LLaVA presented in Tab. 1, we use LLaVA-1.5 (Liu et al., 2024a) as the base model and
performing an additional one-epoch of instruction-tuning on its open-source weights. During training,
we freeze the vision encoder and projector, updating only the parameters of LLM and predictors.
The initial learning rates for LLM and predictors are set at 5e-6 and 2e-4, respectively, with a fixed
global batch size of 64. We use the same 656K Mixture Dataset of LLaVA-1.5 for instruction-tuning,
exclusively employing data containing images to train the predictors. All the other settings remain
consistent with LLaVA-1.5.

For Dynamic-LLaVA-Tokenpacker presented in Tab. 2, we utilize the open-source weights of LLaVA-
TokenPacker (Jin et al., 2024) as the base model. All settings remain identical to those described for
Dynamic-LLaVA above.

We make adjustments only to the learning rates of the original MLLMs, applying uniform learning
rates across all weights and the experiments are conducted on 8 NVIDIA A100 (80G).

For LLaVA-FastVk=3,r=0.75 presented in Tab. 1 and Tab. 3, we use FastV to perform token pruning
starting from the 3-rd layer of the model, applying FastV to tokens only during the prefill stage.

For †LLaVA-FastVk=3,r=0.75 presented in Tab. 1, we further train LLaVA-FastVk=3,r=0.75 for 1
epoch based on the open-source codes. The learning rate and batch size are same as Dynamic-LLaVA,
and the discarded tokens are set to 0.
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Table 12: More comparison with SoTA vision context sparsification methods on vision understanding
benchmarks.

Method LLM Image (prefill) VizWiz LLaVA-Wild MM-Vet
Res. Token TFLOPs

LLaVA-1.5-7B Vicuna-7B 336 576 10.1 50.0 65.8 31.7

(Arxiv24) LLaVA-PruMerge+ Vicuna-7B 336 146 (-75%) 2.5 (-75%) − − −
(ECCV24) LLaVA-FastVk=3,r=0.75 Vicuna-7B 336 144 (-75%) 3.2 (-68%) 51.9 (+1.9) 66.7 (+0.9) 28.1 (-3.6)

(Arxiv24) VoCo-LLaMA Vicuna-7B 336 128 (-78%) 2.2 (-78%) − − −
(Arxiv24) LLaVA-HiRED Vicuna-7B 336 115 (-80%) 2.0 (-80%) − − −

Dynamic-LLaVA-7BI (Ours) Vicuna-7B 336 115 (-80%) 2.5+0.01 (-75%) 50.2 (+0.2) 67.3 (+1.5) 29.5 (-2.2)
Dynamic-LLaVA-7BI|T (Ours) Vicuna-7B 336 115 (-80%) 2.5+0.01 (-75%) 51.2 (+1.2) 68.7 (+2.9) 32.2 (+0.5)

LLaVA-1.5-13B Vicuna-13B 336 576 19.6 53.6 72.5 36.6

(Arxiv24) LLaVA-PruMerge+ Vicuna-13B 336 146 (-75%) 4.9 (-75%) − − −
(ECCV24) LLaVA-FastVk=3,r=0.75 Vicuna-13B 336 144 (-75%) 6.0 (-69%) 54.7 (+1.1) 74.2 (+1.7) 34.5 (-2.1)

Dynamic-LLaVA-13BI (Ours) Vicuna-13B 336 115 (-80%) 4.7+0.01 (-76%) 53.3 (-0.3) 73.4 (+0.9) 37.3 (+0.7)
Dynamic-LLaVA-13BI|T (Ours) Vicuna-13B 336 115 (-80%) 4.7+0.01 (-76%) 53.0 (-0.6) 70.1 (-2.5) 34.6 (-2.0)

Table 13: Additional results of Dynamic-LLaVA with the TokenPacker projector on generation ability
benchmarks. Dynamic-LLaVA achieves significant inference efficiency during the decoding stage
with negligible generation ability drop when both sparsify vision and language.

Benchmark Method Image (prefill) Text (decoding) PPL↓ METEOR↑
TFLOPs Total→Computing TFLOPs Mem. (M)

LVIS-VQA
(single-round)

LLaVA-TokenPacker-7B-144Token 2.5 159/175→159/175 2.75/3.03 102/89 4.60 0.3114

Dynamic-LLaVA-TokenPacker-7BI (Ours) 1.1 (-56%) 159/178→159/178 2.75/3.08 111/101 4.72 0.3127
Dynamic-LLaVA-TokenPacker-7BI|T (Ours) 1.1 (-56%) 159/182→83/90 1.51/1.59 68 (-33%)/54 (-39%) 4.91 0.3120

LLaVA-TokenPacker-13B-144Token 4.9 159/176→159/176 5.36/5.94 148/142 4.40 0.3166

Dynamic-LLaVA-TokenPacker-13BI (Ours) 2.1 (-57%) 159/178→159/178 5.36/6.03 152/149 4.55 0.3149
Dynamic-LLaVA-TokenPacker-13BI|T (Ours) 2.1 (-57%) 159/178→84/88 2.95/3.08 87 (-41%)/73 (-49%) 4.78 0.3131

LVIS-VQA
(multi-round)

LLaVA-TokenPacker-7B-144Token 2.5 351/499→351/499 6.12/8.76 222/257 2.97 0.4220

Dynamic-LLaVA-TokenPacker-7BI (Ours) 1.1 (-56%) 351/507→351/507 6.12/8.90 245/270 3.09 0.4223
Dynamic-LLaVA-TokenPacker-7BI|T (Ours) 1.1 (-56%) 351/519→181/258 3.32/4.48 142 (-36%)/145 (-44%) 3.20 0.4245

LLaVA-TokenPacker-13B-144Token 4.9 351/514→351/514 11.92/17.57 321/409 2.89 0.4232

Dynamic-LLaVA-TokenPacker-13BI (Ours) 2.1 (-57%) 351/514→351/514 11.92/17.90 346/426 2.97 0.4222
Dynamic-LLaVA-TokenPacker-13BI|T (Ours) 2.1 (-57%) 351/517→179/253 6.33/8.54 189(-41%)/207 (-49%) 3.07 0.4230

For H2O in vision understanding benchmarks presented in Tab. 1, LLaVA-1.5-7/13B+H2Or=0.5 in
Tab. 1 means that we directly implement H2O on LLaVA, which retains 50% KV cache in each of
the prefill and decoding stages. And LLaVA-1.5-7/13B+H2Ok=10,r=0.5 means that we still retain
50% KV cache in each of the prefill and decoding stages, but the first 10 layers do not conduct KV
cache compression, and H2O is applied only beyond the 10-th layer.

For H2O in generation ability benchmarks presented in Tab. 3. H2Or=0.5 means that we directly
implement H2O on LLaVA, which retains 50% KV cache in each of the prefill and decoding stages.
Fastv-7/13Bk=3,r=0.5+H2Or=0.5 means that we use FastV to reduce tokens of the prefill stage, and
use H2O to reduce KV cache (retain ratio = 50%) only for the decoding stage.

A.4.3 DETAILS OF LVIS-VQA BENCHMARKS

We use the LVIS-Instruct4V Dataset (Wang et al., 2023) to build the generation ability benchmarks.

The LVIS-Instruct4V Dataset contains 220,000 visually aligned and context-aware instructions
generated by prompting the advanced GPT-4V model with images sourced from the LVIS database.
We created the LVIS-VQA (single-round) Benchmark by selecting 1,000 instances from the LVIS-
Instruct4V dataset, specifically focusing on single-round Visual Question Answering (VQA) scenarios
where the answer lengths exceed 100 words. Additionally, we constructed the LVIS-VQA (multi-
round) Benchmark from another subset of 1,000 multi-round VQA instances. The average answer
length in this benchmark exceeds 300 words, with interactions spanning more than seven rounds.
Examples from the LVIS-VQA benchmark we constructed can be found in Fig. 6 and Fig. 7.

A.4.4 DETAILS OF SHAREGPT4V-VQA BENCHMARKS

To evaluate the generation ability of the model in long-text context scenarios, we use the ShareGPT4V
dataset (Chen et al., 2023b), extracting VQA samples with long-text caption to construct our
ShareGPT4V-VQA benchmark. The original ShareGPT4V dataset consists of 100K VQA samples,
with an average caption length of 900 characters. To construct the long generation text benchmark
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Table 14: The latency of the model during the entire generation stage with KV cache. For decoding,
we report the average latency per token when batch size = 1 and the number of total generation tokens
= 1000. The results are measured in one A100 (80G).

Method Prefill latency (ms) Decoding latency (ms)

LLaVA-1.5-13B 124.52 28.42
†LLaVA-1.5-13B+H2Or=0.5 111.84 37.71

Dynamic-LLaVA-13BI|T 72.51 26.85
† H2O requires an additional attention computation process to obtain the attention scores,

due to the efficient inference operator implicitly handling attention operations.

Table 15: Training time of Dynamic-LLaVA on 8 A100 (80G).

Method Training time (h)

Dynamic-LLaVA-7BI|T ∼13
Dynamic-LLaVA-13BI|T ∼24

and obtain the benchmark ShareGPT4V-VQA of the ShareGPT4V dataset (total of 178 samples), we
selected the samples with captions containing no less than 300 words, while the average output text
length of this benchmark is more than 1,000 tokens.

A.4.5 DETAILS OF CALCULATION EQUATION OF FLOPS

For the prefill FLOPs presented in Tab. 1, Tab. 2 and Tab. 3, We adopt the equation below to calculate:

FLOPs = 32BNC2 + 4BN2C, (13)

where B, N and C denote the input batch size, the number of image tokens, and the dimensionality
of MLLMs (Liu et al., 2024b;a) utilizing the LLaMA architecture (Touvron et al., 2023a;b; Llama,
2024), respectively. The first term in Eq. 13 represents the computation consumption of the MHA
layer, while the second term corresponds to the overhead of the MLP layer. Specific calculations are
detailed in Tab. 10. Note that we only calculate the FLOPs of the image tokens for prefill stage of
MLLMs.

A.5 ADDITIONAL RESULTS

A.5.1 ADDITIONAL BENCHMARK RESULTS

Vision understanding. Due to constraints on the length of the main text, we have included the
remaining experimental results for the three vision understanding benchmarks in Tab. 12. Dynamic-
LLaVA achieved competitive results on these three benchmarks. In comparison with other methods
that only sparsify vision tokens, Dynamic-LLaVA is capable of significantly reducing the number of
tokens involved in the computation process.

We further compare the vision understanding performance with more current SoTA and recent
token reduction methods, including IVTP (Huang et al., 2024a), TRIM (Song et al., 2024), and
SparseVLM (Zhang et al., 2024c). The results in Tab. 11 are based on evaluations conducted with
LLaVA-1.5-7B. Compared to other token reduction methods, Dynamic-LLaVAI|T not only reduces
80% of image tokens in the prefill stage but also decreases 50% of output text tokens during decoding,
consistently outperforming both training-free and training-required methods in most cases.

Generation ability of Dynamic-LLaVA with TokenPacker projector. To further demonstrate
the comprehensiveness of our proposed method, we present the results of Dynamic-LLaVA using
TokenPacker as the vision projector on the LVIS-VQA benchmarks in Tab. 13. As shown in Tab. 13,
compared to LLaVA-TokenPacker, Dynamic-LLaVA that sparsifies both vision and language contexts,
significantly reduces computational costs with only a slight compromise in performance. Specifically,
Dynamic-LLaVA-TokenPacker-7B/13BI|T can reduce up to ∼50% TFLOPs and 37.75% GPU
memory overhead on average, while the PPL increases by a maximum of 0.38 and on average only
by 0.275; METEOR decreases by a maximum of 0.0035, and in most cases, the results are improved.
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Table 16: More trade-off results of the rates of vision context sparsification and language context
sparsification.

Context Rate Benchmark

SciQA TextVQA POPE MME MMBench SEED

Vision
20% 68.6 56.5 85.9 1501.0 64.1 65.0
50% 68.8 57.2 85.5 1487.0 65.7 65.5
80% 69.7 57.3 86.1 1469.3 65.9 65.9

Language
20% 68.7 54.9 86.3 1483.3 64.6 64.5
50% 68.6 56.5 85.9 1501.0 64.1 65.0
80% 69.4 56.9 86.6 1473.9 64.8 64.4

baseline 100% 66.8 58.2 85.9 1510.7 64.3 66.1

Table 17: Trade-off of the rates of vision context sparsification and language context sparsification
on generation ability benchmarks. Baseline indicates LLaVA-1.5-7B. Note that the definition of
“Total→Computing”, “TFLOPs”, “Mem. (M)” and “a/b” are same as Tab. 3.

Context Rate LVIS (single-round) LVIS (multi-round)

Total→Computing TFLOPs Mem. (M) PPL↓ MET.↑ Total→Computing TFLOPs Mem. (M) PPL↓ MET.↑

Vision
20% 159/181→84/90 1.52/1.57 63/46 4.90 0.3108 351/522→182/260 3.33/4.38 144/140 3.17 0.4251
50% 159/173→83/86 1.52/1.53 65/202 4.88 0.3107 351/478→178/234 3.27/4.34 138/125 3.15 0.4264
80% 159/171→83/85 1.51/1.56 66/284 4.88 0.3090 351/480→179/238 3.29/4.40 139/124 3.16 0.4258

Language
20% 159/170→41/39 0.84/0.82 44/22 5.53 0.2592 351/487→84/108 1.74/2.28 95/69 3.47 0.4236
50% 159/181→84/90 1.52/1.57 63/46 4.90 0.3108 351/522→182/260 3.33/4.38 144/140 3.17 0.4251
80% 159/172→129/138 2.26/2.43 85/70 4.76 0.3116 351/484→281/387 4.98/6.86 190/203 3.10 0.4226

baseline 100% 159/173→159/173 2.75/2.99 103/91 4.59 0.3103 351/461→351/461 6.12/8.08 222/236 2.97 0.4227

A.5.2 ADDITIONAL PRACTICAL INFERENCE EFFICIENCY ANALYSIS

We further report the practical inference latency with KV cache in Tab. 14. We measure the average
generation latency per token when the generation length is 1000. The proposed Dynamic-LLaVA
framework exhibits an average improvement of 1.57 ms per token in generation latency compared
to LLaVA when decoding with KV cache. This result demonstrates that, the learnable lightweight
predictors add a negligible increase to inference latency (less than 1%). Meanwhile, for traditional
“attention-based” KV cache compression methods (e.g., H2O), the requirement for attention scores
during decoding to perform KV cache compression poses a challenge in practical engineering
implementations. In many cases, the attention operations of efficient inference operators are implicit,
thus requiring an additional computation step to obtain attention scores during inference. This can
impact inference speed, especially when dealing with excessively long KV caches. In contrast,
Dynamic-LLaVA relies solely on the features of the current token for prediction when decoding with
KV cache, thereby avoiding this issue.

A.5.3 TRAINING TIME

Same as LLaVA-PruMerge (Shang et al., 2024), Dynamic-LLaVA requires one epoch instruction-
tuning based on pretrained LLaVA-1.5. We report the training time of Dynamic-LLaVA in Tab. 15,
our training time is similar to the original LLaVA-1.5. Notably, Dynamic-LLaVA achieves efficient
inference with superior performance compared to other token sparsification methods that require
training (Shang et al., 2024; Song et al., 2024; Huang et al., 2024a; Ye et al., 2024).

A.5.4 ADDITIONAL TRADE-OFF ANALYSIS

Trade-off analysis on vision understanding tasks. We further illustrate in Tab. 16 the performance
across more vision understanding tasks when adjusting the keep rates of vision context (rI ) and
language context (rOT ) during training. Across most datasets, setting higher keep rates leads
to better results but also entails greater computational expense. Under the current settings, i.e.,
rI = 20%, rOT = 50%, Dynamic-LLaVA can achieve a balance between computational costs and
performance. Additionally, we did not observe sharp fluctuations in performance when adjusting rI

and rOT , suggesting that Dynamic-LLaVA has robustness to the keep rates variations.

Trade-off analysis of generation ability. Same as vision understanding tasks, we also analysis the
trade-off of rI and rOT on LVIS-VQA (single-round) and LVIS-VQA (multi-round).As shown in
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Figure 6: Visual representation of dynamic token reduction for LVIS-VQA (single-round). The gray
color means the contexts reduced by Dynamic-LLaVA-13BI|T . Note that the reduction of the
language context does not imply the texts are not generated. Rather, it refers to the subsequent
computational exclusion of these output text tokens to improve inference efficiency. Dynamic-
LLaVA-13BI|T is able to reduce the vision and language contexts that are not crucial for generating
the next token.

Table 17, when adjusting rI , the performance and computational costs of Dynamic-LLaVA remain
consistent; whereas, when adjusting rOT , a small rOT leads to a significant decrease in computational
expenses, along with a decline in generative ability. Setting rOT = 50 achieves a balance between
performance and computation costs. Although a smaller rOT significantly lowers computational
costs, it concurrently yields a considerable decrease in the model’s generative ability. While a larger
rOT leads to higher computational costs, it only results in a slight improvement in performance.
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Figure 7: Visual representation of dynamic token reduction for LVIS-VQA (multi-round). The gray
color means the contexts reduced by Dynamic-LLaVA-13BI|T . Dynamic-LLaVA-13BI|T is able
to reduce the vision and language contexts that are not crucial for generating the next token. Note
that the reduction of the language context does not imply the texts are not generated. Rather,
it refers to the subsequent computational exclusion of these output text tokens to improve
inference efficiency. Dynamic-LLaVA-13BI|T is able to reduce the vision and language contexts
that are not crucial for generating the next token.

A.6 VISUALIZATION

Visualization of LVIS-VQA. Fig. 6 shows the dynamic token reduction process of Dynamic-LLaVA
on LVIS-VQA (single-round), while Fig. 7 illustrates the same process in LVIS-VQA (multi-round).
In Fig. 6, a user asks a question to Dynamic-LLaVA, and the associated input image is shown, with
regions marked in gray indicating the dynamically reduced token patches determined by Dynamic-
LLaVA. Drawing from the identified mask and the provided input information, the model produces a
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Figure 8: Visualization of the vision token patches for COCO. The gray color means the contexts
reduced by Dynamic-LLaVA-13BI|T . The first and third columns are the original images, and the
second and fourth columns are the reduced vision token patches by Dynamic-LLaVA-13BI|T .

textual mask, with the obscured words or affixes similarly exhibited in gray. This procedure boosts
the inference efficiency of the model and ensures effective focus on relevant information for a fast
response generation.

Fig. 7 further shows this process by illustrating the example of multi-round dialogue interaction in
LVIS-VQA (multi-round). In this scenario, the model not only considers the current user query and
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image but also incorporates context from previous rounds of dialogues. The dynamically masked
areas in both the image and text are both shown in gray, emphasizing how the model dynamically
adjusts its focus based on the ongoing interaction. This enables the model to maintain coherence and
context across multiple exchanges while boosting response generation speed.

Visualization of COCO. In Fig. 8, we show the visualization results of the vision token patches
in COCO Dataset (Lin et al., 2014). We set the instruction as “Describe this image” for Dynamic-
LLaVA. Notably, the patches focus primarily on the foreground elements of the images, effectively
highlighting important features and discarding irrelevant background details. This demonstrates the
capability of Dynamic-LLaVA to isolate and retain essential visual features for further process.
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