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Abstract001

With the advent of highly capable instruction-002
tuned neural language models, benchmarking003
in natural language processing (NLP) is in-004
creasingly shifting towards pairwise compari-005
son leaderboards, such as LMSYS Arena, from006
traditional global pointwise scores (e.g., GLUE,007
BIG-bench, SWE-bench). This paper empiri-008
cally investigates the strengths and weaknesses009
of both global scores and pairwise comparisons010
to aid decision-making in selecting appropriate011
model evaluation strategies. Through computa-012
tional experiments on synthetic and real-world013
datasets using standard global metrics and the014
popular Bradley–Terry model for pairwise com-015
parisons, we found that while global scores016
provide more reliable overall rankings, they017
can underestimate strong models with rare, sig-018
nificant errors or low confidence. Conversely,019
pairwise comparisons are particularly effective020
for identifying strong contenders among mod-021
els with lower global scores, especially where022
quality metrics are hard to define (e.g., text gen-023
eration), though they require more comparisons024
to converge if ties are frequent.025

1 Introduction026

Modern natural language processing (NLP) bench-027

marks are often represented as pairwise compar-028

ison leaderboards, as seen in projects like LM-029

SYS Arena (Chiang et al., 2024) and AlpacaEval030

(Dubois et al., 2024). This trend has emerged due031

to the development of highly capable instruction-032

tuned large language models (LLMs) that output033

textual rather than categorical responses on open-034

ended questions. Earlier methods could be reason-035

ably evaluated using static datasets or individual036

benchmarks. However, modern methods require037

up-to-date benchmarks that incorporate live feed-038

back from both humans and machines (Faggioli039

et al., 2024). Previous benchmarks, such as GLUE040

(Wang et al., 2019), BIG-bench (Srivastava et al.,041

2023), and SWE-bench (Jimenez et al., 2024) or042

its live-benchmark versions, relied on global point- 043

wise scores, prompting further research into the 044

best approach for NLP benchmarking. But what 045

method is most effective, and in which cases? 046

In this work, we empirically examine the 047

strengths and weaknesses of pairwise comparisons 048

and global scores. The goal of this study is to 049

aid decision-making in selecting the appropriate 050

model evaluation approach, which leads to the two 051

following research questions: 052

RQ1. What are the strengths and limitations of 053

global and pairwise evaluation criteria? 054

RQ2. Which approach is more suiTable for clas- 055

sification problems with binary outputs and 056

for problems where decision values (logits) or 057

textual outputs are available? 058

To address these research questions, we con- 059

ducted a series of computational experiments using 060

both synthetic and realistic datasets, including Jig- 061

saw by Google (Adams et al., 2017),1 Stanford Sen- 062

timent Treebank (Socher et al., 2013) aka SST-5, 063

and CEval (Nguyen et al., 2024). For global eval- 064

uation scores, we selected metrics that are widely 065

used in natural language processing and other ma- 066

chine learning tasks. These include accuracy, F- 067

score, and the area under the receiver operating 068

characteristic curve (ROC AUC) for classification 069

tasks, as well as character-level F-score (Popović, 070

2015, chrF), edit distance (ED) aka Levenshtein 071

distance, and word error rate (WER) for text gener- 072

ation tasks. For pairwise comparisons, we used the 073

widely-known Bradley and Terry (1952) ranking 074

model. 075

Our findings show that while global scores pro- 076

vide more reliable rankings of models, they tend to 077

underestimate strong models that make rare but sig- 078

nificant errors or have modest confidence in their 079

1https://jigsaw.google.com/
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responses. In contrast, pairwise comparisons are080

particularly effective for identifying strong mod-081

els among those with relatively low overall scores,082

especially in cases where the quality metric is dif-083

ficult to define—such as in text generation, which084

has been popularized since the release of highly-085

capable generative models like GPT-3 (Brown et al.,086

2020) and more advanced models.087

The remainder of the paper is organized as fol-088

lows. In Section 2, we review the related work.089

In Section 3, we outline the background of our090

study and formulate the problem. In Section 4, we091

describe the datasets used in our study. In Sec-092

tion 5, we examine the scoring stability of pairwise093

comparisons in the case of similar model outputs094

(RQ1). In Section 6, we analyze scoring stabil-095

ity in extreme cases of model confidence (RQ2).096

In Section 7, we summarize our findings and pro-097

vide recommendations for using global scores and098

pairwise comparisons in model selection. Finally,099

in Section 8, we conclude with final remarks and100

present a flowchart to guide decision-making. Ap-101

pendices A, B, and C contain supplementary infor-102

mation about the model scores in different settings103

that we tried in our work.104

2 Related Work105

Earlier work by Fürnkranz and Hüllermeier (2003)106

was focused on using pairwise comparisons (rank-107

ings) to train binary classifiers for ranking tasks,108

while Broomell et al. (2011) explored the use of109

pairwise model comparisons to identify groups of110

tasks where each model performs best. Maystre111

and Grossglauser (2017) shown that an optimal112

ranking of models can be achieved in a linearithmic113

number of comparisons, inspired by the quicksort114

algorithm. Nariya et al. (2023) specifically exam-115

ined the use of pairwise comparisons for small116

datasets and studied how individual outliers and117

confounders impact performance estimates.118

These studies had neither addressed potential119

challenges nor compared the effectiveness of pair-120

wise comparisons across different task types. In121

contrast, our work aimed to identify specific scenar-122

ios in which pairwise rankings failed or behaved123

inconsistently, as well as cases in which they pro-124

vided valuable insights.125

3 Problem Formulation126

Suppose we are given a set of models M and127

an evaluation dataset X , where for each element128

xi ∈ X , the ground truth labels G and the model 129

predictions Mi(xi) are known in advance. Our ob- 130

jective is to establish a partial order on M . As 131

is common in NLP, this can be done using either 132

global scores or pairwise comparisons. Examples 133

of global scores include widely-used evaluation 134

metrics such as accuracy, ROC AUC, and F-score, 135

while examples of pairwise comparison methods 136

include Bradley and Terry (1952), Elo (1978), New- 137

man (2023), and others. We are interested in under- 138

standing the reasons behind differences in rankings 139

produced by various methods, so we can effectively 140

leverage the strengths of these metrics. 141

Global Scores. For global scores, a function 142

f(Mi, G) → R, called an evaluation score, assigns 143

a numerical score to each model, and the ranking 144

is determined by a permutation P such that 145

f(Mp1 , G) ≥ f(Mp2 , G) ≥ · · · ≥ f(Mpm , G). 146

Note that we conducted our experiments on 147

global scores using evaluation measures imple- 148

mented in scikit-learn (Pedregosa et al., 2011), edit 149

distance and word error rate from JiWER (Mor- 150

ris et al., 2004), and chrF from sacreBLEU (Post, 151

2018) libraries for Python. 152

Pairwise Comparisons. For pairwise compar- 153

isons, a function f(T ) → P derives a ranking from 154

a sequence of pairwise comparisons (Mi,Mj , w), 155

where w indicates whether Mi wins, Mj wins, or 156

the comparison results in a tie. In our case, each test 157

sample xt provides
(
m
2

)
pairs of models through an 158

auxiliary function 159

g(Mi(xt),Mj(xt), G(xt)) → {Mi,Mj , 0}, 160

and the resulting comparisons are aggregated into 161

the global score, usually indicating the probability 162

of each model winning against the others. 163

We focus on the Bradley and Terry (1952) aka 164

BT model due to its popularity and simplicity, 165

though we consider each tie as a half-win and half- 166

lose for both compared items. BT is a probabilis- 167

tic model that estimates a set of latent parameters 168

p1, . . . , pm such that the probability that model Mi 169

outperforms model Mj is given by 170

P (Mi ≻ Mj) =
pi

pi + pj
. 171

We define Mi ≻ Mj to mean that the output of 172

i-th model is closer to the correct answer than that 173

of the j-th model. In our work, we used the im- 174

plementation of the model from the Evalica library 175

(Ustalov, 2025). 176
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Dataset Response # of examples # of methods # of pairs

Jigsaw (Adams et al., 2017) Categorical 63,812 9 2,297,232
SST-5 (Socher et al., 2013) Categorical 2,210 8 61,880
CEval (Nguyen et al., 2024) Textual 488 6 7,320

Table 1: Descriptive statistics of the datasets used in our study; note that Jigsaw and SST-5 are classification datasets
and CEval is a text generation dataset. Numbers of examples and methods are taken from the original test datasets
and the corresponding baselines. The number of generated pairs is added by us.

4 Datasets177

We conducted experiments on two classification178

benchmarks, Jigsaw and SST-5, and one textual179

benchmark, CEval (Table 1). All of these datasets180

are publicly available; below, we provide technical181

details. We used only test subsets of all datasets.182

In addition, we ran a series of trials on synthetic183

and mixed datasets combining both synthetic and184

real labels. We selected these datasets because185

they provide model outputs for individual examples186

(including decision-function values) and are widely187

used in the research community.188

For each test instance, we compared the outputs189

of m different models in a pairwise fashion, yield-190

ing
(
m
2

)
model pairs. For each pair, we then drew191

12m log(m) comparisons at random with replace-192

ment,2 or else used all available test instances if193

their count was smaller. Finally, we applied these194

sampled comparisons to build a Bradley–Terry195

ranking of the models.196

Jigsaw. We derived a dataset from a popular bi-197

nary classification dataset for detecting text toxicity198

called Jigsaw (Adams et al., 2017). We collected199

the submission files for nine different models from200

the leaderboard published by their authors.3 Since201

the authors did not provide ground-truth responses202

for the test subset of the dataset, we reconstructed203

them by taking the majority vote from the model-204

generated responses. These models included the205

winning method (TTA + PL), DistilBERT, JMTC-206

20, NB-SVM, XGBoost, XLM-R Conv1D, XLM-207

R, XLM-RoBERTa Bayesian, and XLM-RoBERTa.208

Appendix A contains scores exhibited by these209

models in several variations of this dataset that we210

2We adopted the linearithmic sampling strategy of Maystre
and Grossglauser (2017) and found through prototyping that a
multiplier of 12 gave the best performance. We will release
our code and data under a permissive license upon acceptance.

3https://www.kaggle.com/competitions/jigsaw-
toxic-comment-classification-challenge/code?
competitionId=8076&sortBy=scoreDescending&
excludeNonAccessedDatasources=true

created for our experiments. Although the Jigsaw 211

suite of benchmarks contained other tasks than tox- 212

icity detection, e.g., classification bias detection,4 213

we found similar results on them during prototyp- 214

ing. Thus, we decided not to include them in our 215

study. 216

SST-5. We used the Stanford Sentiment Treebank 217

dataset (Socher et al., 2013, SST-5),5 a multi-class 218

benchmark for reviews spanning five sentiment cat- 219

egories. To obtain model predictions, we followed 220

the methodology of Gösgens et al. (2021) and re- 221

ran eight open-source baselines.6 These baselines 222

included: dictionary-based methods VADER and 223

TextBlob, traditional machine learning methods 224

like logistic regression and support vector machine 225

(SVM), fastText classifier (Joulin et al., 2017), and 226

deep learning classifiers: BERT and ELMo with 227

Flair (Akbik et al., 2019) and fine-tuned BERT with 228

Hugging Face (Wolf et al., 2020). Appendix B con- 229

tains the exhibited scores. 230

CEval. For a dataset featuring textual outputs 231

evaluated by non-classification metrics, we em- 232

ployed the CEval benchmark for counterfactual 233

text generation (Nguyen et al., 2024),7 which mea- 234

sured models’ ability to generate text that reversed 235

the emotional tone of the original English input. In 236

this context, we evaluated six models from the orig- 237

inal benchmark: Crest, Crowd, GDBA, LLaMA, 238

Llama 2, and MICE. Appendix C presents the ob- 239

served scores. 240

4https://www.kaggle.com/competitions/jigsaw-
unintended-bias-in-toxicity-classification/
code?competitionId=12500&sortBy=scoreDescending&
excludeNonAccessedDatasources=true

5https://nlp.stanford.edu/sentiment/
6https://github.com/prrao87/fine-grained-

sentiment
7https://github.com/aix-group/CEval-

Counterfactual-Generation-Benchmark
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Measure Acc AUC BT F1 BTbin

Acc 1.00 0.90 −0.23 0.77 0.93
AUC 0.90 1.00 0.03 0.87 0.83
BT −0.23 0.03 1.00 0.22 −0.28
F1 0.77 0.87 0.22 1.00 0.83

BTbin 0.93 0.83 −0.28 0.83 1.00

Table 2: Spearman (1904) correlations between model
scores in Jigsaw (Adams et al., 2017).

5 Sensitivity to Distributions of Decision241

Values242

Our first point of interest was focused on the sen-243

sitivity of aggregated pairwise comparisons com-244

pared to global scores (RQ1). How can we estimate245

the sensitivity of these evaluations? What occurs246

when the models exhibit similar performance?247

We investigated this by running experiments on248

the Jigsaw dataset (binary classification) and on249

SST-5 (multi-class classification). We then exam-250

ined the decision values of models and used the251

class with the highest decision value as the model’s252

output.253

Raw Decision Values. We compared the nine254

Jigsaw models using accuracy (Acc), ROC AUC255

(AUC), Bradley–Terry (BT) and F1 scores. For256

SST-5, we measured F1, accuracy and pairwise257

comparisons, treating the model with the higher258

confidence score in each pairing as the winner. Ta-259

ble 2 showed that the global scores (Acc, AUC,260

F1) yielded consistent, highly correlated rankings,261

as indicated by the Spearman (1904) correlation262

coefficient.263

On Jigsaw, we found that the anomalous BT264

ranking resulted from some models, such as XG-265

Boost, outputting only decision values of 0 or 1.266

This caused them to win disproportionately in pair-267

wise comparisons and thus distorted the BT order-268

ing. We observed the same effect on SST-5: SVM269

rose to the top of the Bradley–Terry ranking due to270

its more extreme confidence scores, even though its271

F1 score lagged behind Flair-BERT, Flair-ELMo,272

or Transformer. Therefore, we recommend apply-273

ing pairwise comparisons only to models whose274

decision values share a similar domain.275

Binarized Decision Values. To evaluate our rec-276

ommendation, we transformed the score-based out-277

puts from Jigsaw and SST-5 into binary values278

by assigning 1 to each model’s most confident re-279

sponse and 0 to all others, i.e., by rounding each280

Measure Acc BT F1 BTdv

Acc 1.00 0.90 0.83 0.69
BT 0.90 1.00 0.93 0.55
F1 0.83 0.93 1.00 0.71

BTdv 0.69 0.55 0.71 1.00

Table 3: Spearman (1904) correlations between model
scores in SST-5 (Socher et al., 2013).

output to the nearest integer. 281

This transformation yielded an 88% fraction of 282

ties on Jigsaw, which affected the rankings derived 283

from pairwise comparisons (denoted as BTbin in Ta- 284

ble 2), but did not change any of the rankings build 285

using global scores. On SST-5, we observed strong 286

correlations among accuracy, F1, and BT rankings 287

(Table 3), and the ordering remained sTable across 288

different random samples of pairs. Unlike Jigsaw, 289

the larger number of classes on SST-5 produced a 290

high proportion of ties (about two-thirds of all com- 291

parisons), which in turn contributed to the stability 292

of the pairwise rankings. From these experiments, 293

we concluded that pairwise comparisons were 294

sensitive to the distributions of decision values 295

across the compared models. 296

6 Instability with Overly Confident 297

Models 298

Our second point of interest focused on the stabil- 299

ity of pairwise comparisons given varying model 300

confidence in the positive class (RQ2). Instead of 301

calculating accuracy, we computed the mean abso- 302

lute error (MAE) between the binary label of the 303

target class and the model’s decision value. 304

Binarized Decision Values. We inflated the con- 305

fidence of model decision values in the Jigsaw 306

dataset through binarization to assess its impact on 307

model rankings. A good evaluation score should 308

distinguish the original models from the binarized 309

ones, ideally ranking the originals at the top and 310

Measure Binary AP Penalized AP

MAE 0.38 0.86
AUC 0.90 0.94
BT 0.34 0.65
F1 0.50 0.50

Table 4: Performance metrics on the adjusted decision
functions in the Jigsaw dataset (Adams et al., 2017).
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Measure ED WER chrF BT

ED 1.00 0.94 0.94 0.94
WER 0.94 1.00 1.00 0.89
chrF 0.94 1.00 1.00 0.89
BT 0.94 0.89 0.89 1.00

Table 5: Spearman (1904) correlations between model
scores in CEval (Nguyen et al., 2024).

the binarized models at the bottom.311

In the Jigsaw experiments, we observed that un-312

der MAE and AUC metrics, most binarized models313

fell in the rankings according to the average preci-314

sion score (Buckley and Voorhees, 2000). However,315

based on F1, the binarized models received identi-316

cal scores to the originals due to the binarization317

performed internally inside the models. In contrast,318

the Bradley–Terry rankings were disrupted by the319

inflated model confidences (see Table 4, Binary320

AP).321

Although increased model confidence might322

challenge the evaluation in text generation tasks,323

in practice it seems difficult to alter textual out-324

puts in a way that changed pairwise rankings325

without also affecting other evaluation metrics.326

In the CEval experiments, both WER and chrF327

scores remained correlated with the Bradley–Terry328

pairwise rankings, even after simple manipulations329

such as appending random strings to the outputs330

(see Table 5).331

Penalized Decision Values. In this experiment,332

we artificially perturbed the model outputs in the333

Jigsaw and CEval datasets using the ground-truth334

responses to generate a heavier tail of incorrect335

answers and to assess how the rankings responded336

to such perturbations.337

For the Jigsaw dataset, we binarized the decision338

value whenever the model made a mistake, simi-339

larly to the previous experiment; otherwise, we left340

the decision values unchanged. Hence, any mistake341

led to a model receiving worse scores, while mod-342

els without errors retained their original scores. We343

found that under MAE and AUC, most penalized344

models fell to the bottom of the rankings, whereas345

F1 produced results identical to those of the earlier346

experiment. The Bradley–Terry rankings did not347

correlate well with the other metrics; nevertheless,348

they correctly placed most original models above349

the penalized ones (see Table 4, Penalized AP).350

A similar pattern arose in the text-generation351

Figure 1: Dependency of the correlation between ab-
solute and pairwise rankings in a synthetic experiment
based on the CEval dataset. The results show that the
Bradley-Terry model produces reliable rankings even
with a large fraction of ties.

tasks. We appended random long strings to a ran- 352

dom 5% of model outputs in the CEval dataset, 353

which caused their distance-based global scores 354

(ED and WER) to decline, positioning them near 355

the bottom. However, the pairwise and chrF rank- 356

ings remained largely stable. Given that a 5% er- 357

ror rate can represent a substantial difference, we 358

recommend filtering out such extreme cases or em- 359

ploying multiple evaluation metrics, since pairwise 360

comparisons tend to be relatively insensitive to rare 361

but large deviations. 362

From this experiment, we concluded that pair- 363

wise comparisons can still favor promising mod- 364

els even when they commit rare but significant 365

errors. 366

7 Discussion 367

Draws in Comparisons. Bradley and Terry 368

(1952) rankings had performed poorly when a large 369

fraction of comparisons resulted in draws. They 370

produced indistinguishable results and required 371

a high number of observations to achieve a sTa- 372

ble ranking, which led to high computational costs. 373

Accuracy also tended to penalize models that made 374

rare but significant errors. In contrast, pairwise 375

comparisons identified such models effectively, al- 376

though they sometimes demanded additional mea- 377

sures to ensure correctness. Pairwise comparisons 378

proved particularly useful for tasks which are un- 379

easy to evaluate according the ground-truth data, as 380

had been confirmed by modern benchmarks (Chi- 381

ang et al., 2024; Dubois et al., 2024). 382

In text generation tasks, ties occurred far less fre- 383

quently than in classification, since evaluation met- 384

rics for generation rarely yielded identical scores. 385
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Using the CEval dataset as an example, we simu-386

lated the effect of introducing synthetic ties on the387

resulting rankings. Specifically, we measured the388

correlation between average rankings and pairwise389

chrF-based rankings for five models, varying the390

tie probability from 0 to 1 in increments of 0.01.391

For each probability level, we conducted 1,000 tri-392

als with 12n log n matches per model pair. The393

results demonstrated that the rankings maintained a394

strong correlation (0.8) even when ties represented395

up to 50% of outcomes (see Figure 1). However,396

we observed that this behavior generally depended397

on both the closeness of model performance and398

the total number of comparisons done.399

Binary Responses. We simulated a binary clas-400

sification task to examine how binary responses401

influenced pairwise comparisons and global scores.402

Three models each produced uniform random bi-403

nary outputs 1,000 times using different random404

seeds. An ideal evaluation metric would not have405

favored any model. We found that accuracy, ROC406

AUC and F1 each equaled 0.5, whereas aggre-407

gated pairwise comparisons systematically fa-408

vored one specific model due to its larger number409

of evaluated pairs. Spearman (1904) correlation410

among all global scores was 1, while the Bradley–411

Terry ranking exhibited a strong inverse correlation412

of −0.5. These results suggested that pairwise com-413

parison methods were ill-suited for distinguishing414

between highly similar (or identical) models.415

Scored Responses. We observed that, for binary416

classification tasks with an available decision func-417

tion, the F1 score was a viable alternative to accu-418

racy, as suggested by Gösgens et al. (2021). How-419

ever, ROC AUC and BT yielded more accurate420

results and recovered the true ranking. Nonethe-421

less, pairwise comparisons had to be conducted422

carefully to avoid favoring models that produced423

more confident predictions, e.g., decision values424

closer to the extremes, like logits near 0 or 1.425

Magnitude of Difference. As in the binary-426

response experiment described earlier, we investi-427

gated the magnitude of differences that aggregated428

pairwise comparisons could detect. Specifically,429

we examined how the probability of correct rank-430

ing depended on the difference between the deci-431

sion functions of the models, such as logits or class432

scores. We created a grid of score differences span-433

ning 0.9 to 1.0 in 100 steps. At each step, we sub-434

tracted the value from a randomly selected pair’s435
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Figure 2: Dependency of probability on difference in
a synthetic experiment: the larger the difference be-
tween model outputs, the better pairwise comparisons
can correctly rank the models.

scores and repeated this procedure 1,000 times. As 436

shown in Figure 2, pairwise comparisons per- 437

form best when the difference between model 438

outputs is non-negligible; for example, when there 439

was at least a 10% difference in class probability in 440

our synthetic example. 441

8 Conclusion 442

Our studies showed that pairwise comparisons iden- 443

tified potentially good models among those with 444

poor global scores. They performed well on prob- 445

lems where the quality measure was difficult to de- 446

fine, such as text generation (RQ2). However, when 447

a large fraction of comparisons ended in ties, the 448

algorithm required a large number of comparisons 449

to converge. In contrast, global scores performed 450

better on evaluation measures that were easier to 451

define and generally required smaller amounts of 452

data (RQ1). Nevertheless, global scores tended 453

to underestimate models that committed rare but 454

significant errors. These results were consistent 455

across synthetic datasets, multiple public datasets, 456

and their variations. 457

While our study was limited to experiments on 458

only three datasets, we believe the actionable rec- 459

ommendations we have discovered will advance 460

the state of benchmarking in NLP. In addition to 461

replicating our experiments on other datasets with 462

different sets of models, we also find it interesting 463

to explore which subset of the data each model 464

performs best on, where we expect pairwise com- 465

parisons to excel. Figure 3 illustrates the flowchart 466

for the model evaluation approach selection. 467
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Uneasy
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Global scores Pairwise comparisons

Figure 3: How to choose between global scores and pairwise comparisons, a flowchart.

Although our experiments had been limited to468

three datasets, we believe that the actionable recom-469

mendations we derived could advance the state of470

NLP benchmarking. Figure 3 showed the flowchart471

for selecting the model evaluation approach. For472

future work, it would have been useful to replicate473

our experiments on additional datasets with diverse474

model sets and to examine the specific data subsets475

on which each model performed best, anticipating476

that pairwise comparisons would have excelled in477

those scenarios.478
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A Jigsaw Rankings 643

We present below the scores of the described models from our Jigsaw-derived dataset (Adams et al., 2017). 644

A.1 Raw Jigsaw Dataset (Section 5) 645

Model Acc AUC BT F1 BTbin

TTA + PL 0.895 0.954 0.082 0.740 0.122
JMTC-20 0.895 0.955 0.083 0.739 0.121
XLM-R 0.889 0.952 0.093 0.714 0.115
XLM-RoBERTa 0.886 0.944 0.067 0.721 0.118
XLM-R Conv1D 0.883 0.943 0.167 0.731 0.117
XLM-RoBERTa Bayesian 0.849 0.501 0.029 0.171 0.110
DistilBERT 0.835 0.882 0.144 0.523 0.105
NB-SVM 0.821 0.866 0.071 0.367 0.102
XGBoost 0.754 0.745 0.264 0.572 0.089

646

A.2 Binarized Jigsaw Dataset (Section 6) 647

Model Accuracy ROC AUC BT F1

XGBoost 0.754 0.745 0.062 0.572
XLM-RoBERTa Bayes 0.797 0.501 0.008 0.171
NB-SVM 0.812 0.866 0.013 0.367
XLM-RoBERT 0.816 0.944 0.013 0.721
DistilBERT 0.819 0.882 0.021 0.523
XLM-R Conv1D 0.834 0.943 0.023 0.731
TTA + PL 0.846 0.954 0.015 0.740
JMTC-20 0.849 0.955 0.015 0.739
XLM-R 0.856 0.952 0.017 0.714
Binarized XGBoost 0.754 0.745 0.060 0.572
Binarized NB-SVM 0.821 0.612 0.079 0.367
Binarized DistilBERT 0.835 0.681 0.081 0.523
Binarized XLM-RoBERTa Bayes 0.849 0.499 0.089 0.171
Binarized XLM-R Conv1D 0.883 0.819 0.100 0.731
Binarized XLM-RoBERT 0.886 0.804 0.099 0.721
Binarized XLM-R 0.889 0.791 0.099 0.714
Binarized 1st Place 0.895 0.813 0.104 0.740
Binarized JMTC-20 0.895 0.811 0.101 0.739

648
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A.3 Penalized Jigsaw Dataset (Section 6)649

Model Acc AUC BT F1

XGBoost 0.754 0.745 0.142 0.572
XLM-RoBERTa Bayesian 0.797 0.501 0.017 0.171
NB-SVM 0.812 0.866 0.040 0.367
XLM-RoBERT 0.816 0.944 0.032 0.721
DistilBERT 0.819 0.882 0.079 0.523
XLM-R Conv1D 0.834 0.943 0.088 0.731
TTA + PL 0.846 0.954 0.042 0.740
JMTC-20 0.849 0.955 0.044 0.739
XLM-R 0.856 0.952 0.053 0.714
Penalized XLM-RoBERTa Bayesian 0.751 0.502 0.013 0.171
Penalized XGBoost 0.754 0.745 0.139 0.572
Penalized XLM-RoBERT 0.773 0.625 0.026 0.721
Penalized DistilBERT 0.787 0.385 0.065 0.523
Penalized NB-SVM 0.793 0.228 0.035 0.367
Penalized XLM-R Conv1D 0.793 0.656 0.072 0.731
Penalized 1st Place 0.812 0.638 0.034 0.740
Penalized JMTC-20 0.816 0.633 0.036 0.739
Penalized XLM-R 0.827 0.594 0.045 0.714

650

B SST-5 Rankings651

We present below the scores of the described models from the SST-5 dataset (Socher et al., 2013).652

B.1 Raw SST-5 Dataset (Section 5)653

Model Acc BT F1

TextBlob 0.284 0.067 0.255
VADER 0.316 0.084 0.315
Logistic Regression 0.409 0.135 0.383
SVM 0.414 0.126 0.401
fastText 0.434 0.120 0.384
Flair-ELMo 0.462 0.143 0.408
Transformer 0.491 0.162 0.486
Flair-BERT 0.511 0.162 0.491

654

B.2 SST-5 Dataset With Decision Function (Section 5)655

Model Acc BT F1

TextBlob 0.225 0.032 0.255
VADER 0.248 0.054 0.315
Logistic Regression 0.258 0.043 0.383
fastText 0.272 0.052 0.384
Flair-ELMo 0.344 0.155 0.408
Flair-BERT 0.353 0.124 0.491
Transformer 0.360 0.154 0.486
SVM 0.384 0.386 0.401

656
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C CEval Rankings 657

We present below the scores of the described models from the CEval dataset (Nguyen et al., 2024). 658

C.1 Raw CEval Dataset (Section 6) 659

Model ED WER chrF BT

Crowd 162.041 0.239 81.326 0.444
MICE 229.711 0.299 73.674 0.163
Llama 2 274.370 0.375 70.886 0.202
LLaMA 298.368 0.404 68.378 0.125
GDBA 333.184 0.540 55.427 0.017
Crest 362.584 0.477 63.324 0.049

660

C.2 Penalized CEval Dataset (Section 6) 661

Model ED WER chrF BT

Crowd 162.041 0.239 81.326 0.240
MICE 229.711 0.299 73.674 0.093
Llama 2 274.370 0.375 70.886 0.095
LLaMA 298.368 0.404 68.378 0.075
GDBA 333.184 0.540 55.427 0.025
Crest 362.584 0.477 63.324 0.023
Penalized Crowd 272.713 0.363 79.950 0.189
Penalized MICE 384.359 0.451 72.188 0.077
Penalized Llama 2 437.590 0.592 69.111 0.078
Penalized LLaMA 484.732 0.657 66.350 0.059
Penalized GDBA 475.117 0.698 54.434 0.022
Penalized Crest 458.033 0.589 62.539 0.022

662
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