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Abstract
We consider learning underlying laws of dynam-
ical systems governed by ordinary differential
equations (ODE). A key challenge is how to dis-
cover intrinsic dynamics across multiple environ-
ments while circumventing environment-specific
mechanisms. Unlike prior work, we tackle more
complex environments where changes extend be-
yond function coefficients to entirely different
function forms. For example, we demonstrate
the discovery of ideal pendulum’s natural motion
α2 sin θt by observing pendulum dynamics in dif-
ferent environments, such as the damped environ-
ment α2 sin(θt)− ρωt and powered environment
α2 sin(θt) + ρ ωt

|ωt| . Here, we formulate this prob-
lem as an invariant function learning task and pro-
pose a new method, known as Disentanglement
of Invariant Functions (DIF), that is grounded
in causal analysis. We propose a causal graph
and design an encoder-decoder hypernetwork
that explicitly disentangles invariant functions
from environment-specific dynamics. The dis-
covery of invariant functions is guaranteed by our
information-based principle that enforces the in-
dependence between extracted invariant functions
and environments. Quantitative comparisons with
meta-learning and invariant learning baselines on
three ODE systems demonstrate the effectiveness
and efficiency of our method. Furthermore, sym-
bolic regression explanation results highlight the
ability of our framework to uncover intrinsic laws.
Our code has been released as part of the AIRS
library (https://github.com/divelab/AIRS/).

1. Introduction
Deep neural networks (Goodfellow et al., 2016) have been
widely used for predicting dynamical systems (Aussem,
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1999; Singh et al., 2012; Wang et al., 2016; Lusch et al.,
2018; Yeo & Melnyk, 2019; Giannakis, 2019). Numerous
efforts (Kirchmeyer et al., 2022; Wang et al., 2022; Mouli
et al., 2024) have focused on modeling dynamical systems
by forecasting future states from past observations, often
emphasizing rapid adaptation to new systems or improved
model architectures. However, an important scenario in
scientific discovery has been overlooked, i.e., , which aims
to identify shared motion patterns across dynamical systems
observed in multiple environments. This task not only facil-
itates scientific equation discovery but also holds potential
for advancing the understanding and extraction of physical
laws from observational data, such as images and videos,
where physical laws are highly entangled. As the first step
in invariant function learning, this paper focuses on ordinary
differential equation (ODE) systems.1

The need for invariant function learning arises because data
collected is often observed under varying environments and
entangled with multiple factors. For instance, the oscilla-
tion of a simple pendulum (Yin et al., 2021b) is commonly
influenced by air friction; a prey-predator system (Ahmad,
1993) can be affected by limited resources. These factors
significantly hinder deep models from learning the true and
invariant dynamics. Instead of capturing invariant dynam-
ical patterns, deep models tend to be sensitive to trivial
information and spurious correlations, leading to failures in
identifying the true and isolated mechanisms. In light of this
challenge, we explore an innovative setting called invariant
function learning, which aims to extract intrinsic mecha-
nisms from data observed in multiple environments. Unlike
prior work, we aim to tackle broader and more complex
environments where changes extend beyond function coef-
ficients to entirely different function forms. For example,
we target the discovery of ideal pendulum’s natural motion
α2 sin θt by observing pendulum dynamics in different envi-
ronments such as the damped environment α2 sin(θt)−ρωt

and powered environment α2 sin(θt) + ρ ωt

|ωt| , as shown in
our motivation example 1.

1This work introduces a new perspective and focuses only on
ODE systems. While the method has the potential to be extended
to PDE systems, it is not directly applicable to them due to their
continuous nature and the absence of multi-environment datasets
designed by domain experts currently. Please refer to Appx. B for
frequently asked questions.
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Figure 1: Multi-environment Pendulum ODE systems. In this example, ODEs with different coefficients and function
forms are used to extract their corresponding invariant functions (green).

Invariant function learning presents two key challenges.
Firstly, invariant mechanisms are not isolated entities, and
being intertwined with varying initial conditions, system
parameters, and time makes them difficult to define or disen-
tangle. Secondly, existing invariant learning techniques (Ar-
jovsky et al., 2019; Lu et al., 2021a; Rosenfeld et al., 2020;
Peters et al., 2016), which are primarily designed for cate-
gorical tasks, do not extend effortlessly to dynamical sys-
tems, requiring the design of new invariant principles. To
overcome these challenges, we formulate our invariant func-
tion learning framework as a causal graph where functions
are parameterized and isolated to be learned and disentan-
gled. Furthermore, we propose an invariant function learn-
ing principle and the implementation of an encoder-decoder
hypernetwork (Ha et al., 2016) to identify the true invari-
ant mechanism. Specifically, our contributions are listed
as follows. (1) We introduce a new task, invariant function
learning, aimed at scientific discovery. (2) We formulate its
framework with causal foundations. (3) We propose an in-
variant function learning principle to identify true invariant
mechanisms and design a method, Disentanglement of In-
variant Function (DIF), with hypernetwork implementation.
(4) To facilitate comprehensive benchmarking, we propose
multi-environment ODE datasets and design several new
baselines by adapting existing meta-learning and invariant
learning techniques to our function learning framework.

2. Invariant Function Learning for Dynamical
System

In this section, we first provide the background on ODEs,
followed by the introduction and formulation of our invari-
ant function learning task, along with the causal analyses
that underpin our proposal.

2.1. Ordinary Differential Equation Dynamical System

We describe a dynamical system using an ordinary differen-
tial equation (ODE) as:

dxt

dt
= f(xt), (1)

where xt ∈ X ⊆ Rd includes d hidden states of the system
at time t. f ∈ F : X 7→ TX is the derivative function of the
dynamical system mapping the hidden states to their tangent
space, where F is the function space containing functions
that describe all dynamical systems with d hidden states.

Given proper time discretization, we consider T time
steps denoted as t = t0, t1, . . . , tT−1. The correspond-
ing T -length trajectory can be written as a matrix X =
[xt0 ,xt1 , . . . ,xtT−1

] ∈ Rd×T . Given the system hid-
den states before a certain time step Tc ∈ N, denoted as
Xp = X:,0:Tc

= [xt0 , . . . ,xtTc−1
] ∈ Rd×Tc , the forecast-

ing task aims to predict the future trajectory X:,Tc:T =
[xtTc

, . . . ,xtT−1
]. For theoretical analysis, we represent

random variables in boldface, e.g., the matrix-valued ran-
dom variable corresponding to X is denoted as X; the func-
tion f is a realization of the function variable f from a given
function space. Full notations are detailed in Tab. 3.

2.2. Invariant Function Learning

In this paper, we introduce a new task, invariant function
learning (IFL). Specifically, given the prior distribution of
trajectories, denoted as p(X), we consider a scenario where
trajectories are observed under multiple environments. The
trajectories observed in an environment e ∈ E are sampled
from the conditional distribution p(X|e = e). Given a tra-
jectory X from environment e, our goal is to discover its

2
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Table 1: Comparison of environments with previous works in the pendulum ODE system. We list examples from 2
environments, the pendulum states and coefficients distribution within one environment, and inference time targets. The
blue factors are changing across different environments. Full function environments are provided in Appx. D.

Type Environment e = 1 Environment e = 2 Distribution Inference

Coefficient environment f1 = −α2
1 sin(θt)− ρ1ωt f2 = −α2

2 sin(θt)− ρ2ωt p(θ0,ω0) f3 = −α2
3 sin(θt)− ρ3ωt

Function environment f1 = −α2 sin(θt)−ρωt f2 = −α2 sin(θt)+ρ ωt

|ωt| p(θ0,ω0,α,ρ) fc = −α2 sin(θt)

invariant function fc, which generates the invariant trajec-
tory Xc. fc and Xc only include the shared mechanisms
across all environments, thus capturing the underlying natu-
ral laws unaffected by environmental factors. For instance,
as illustrated in Fig. 1, in the case of a pendulum system with
varying environmental effects such as frictions or power, the
goal is to extract the natural motion of an ideal pendulum
when excluding these external influences. A set of specific
examples for the task is provided below, more examples are
available in Appx. D.

Function environments. The environments in this paper
are different from those defined in CoDA (Kirchmeyer et al.,
2022), LEAD (Yin et al., 2021a), and MetaphysiCa (Mouli
et al., 2024). As shown in Tab. 1, the environments/tasks
used in previous works, namely, coefficient environments,
are defined by the changes on the function coefficients α and
ρ, i.e., each environment contains only one function while
different environments include functions with different co-
efficients. In contrast, we consider more complex cases
and define environments as the interventions on function
forms, i.e., each environment can contain functions with the
same function form and different coefficients, while differ-
ent environments differ in function forms. Specifically, in
Tab. 1, while coefficient environment 1 consists of a single
function f1, our function environment 1 includes all the
functions in form of −α2 sin(θt)− ρωt where α ∼ p(α),
ρ ∼ p(ρ). Here, we model these functions as a function
random variable f1.

Challenges. However, extracting such invariant dynam-
ics presents two significant challenges. Firstly, invariant
mechanisms are intertwined with varying initial conditions,
system parameters, and time, making them particularly dif-
ficult to isolate or define. Secondly, in dynamical systems,
state values and their derivatives evolve over time, meaning
that there is no single invariant representation fixed across
time steps. This requires defining invariant factors in a
function space, where functions can cover dynamical states.
Conventional invariant learning techniques are not directly
applicable in this context, as they are typically not designed
to capture invariance in function spaces. These challenges
necessitate the development of new function representations
and the development of a novel invariant learning principle
tailored to dynamical systems.
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Xc Causal mapping

Function generation Trajectory generation
(Forecasting)

Function prediction

Figure 2: Structural causal model. The causal data gener-
ation process includes two phases: function generation and
trajectory generation, which correspond to our two learn-
ing phases in parentheses, namely, function prediction and
forecasting. The gray nodes in the causal graph indicate
observable variables.

2.2.1. CAUSALITY-BASED DEFINITIONS

First challenge: causal formulation. In light of the first
challenge, we aim to formulate the invariant function learn-
ing and the dynamical system forecasting problem from a
causal perspective. As shown in Fig. 2, we formulate the
trajectory data generation process as a Structural Causal
Model (SCM) (Pearl, 2009), where c, e, and X0 are ex-
ogenous variables. All endogenous variables, except the
function composition step fc, fe → f, are generated with
extra random noises to model complex real-world scenarios.
Please refer to Appx. C.1 for more details. The optimization
goal of the forecasting task is to estimate the true distri-
bution p(X). As can be observed from the causal graph,
our function learning framework can be considered as two
phases, namely, function prediction and forecasting. For the
function prediction phase, similar to inverse problems (Lu
et al., 2021b), given the observed trajectory Xp, the target is
to reversely infer the invariant derivative function f that can
represent the dynamics of the system, i.e., fitting p(f|Xp).
Intuitively, taking Fig. 1 as an example, this phase aims at
the reasoning of the function basis sin(θt), −ωt, ωt

|ωt| , and
the coefficients α, ρ. After obtaining the derivative function
f̂, the forecasting phase feeds it into a numerical integrator
with the initial condition X0 for the X forecasting, which
can be demonstrated as p(X|̂f,X0). Note that the bold
font variables are random variables instead of individual
realizations.
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ẑe
<latexit sha1_base64="mtTIMkcdWZnnyvO0QcvdsFukpKU=">AAAB/nicbVDLSgNBEOyNrxhfUY9eFoPgKeyKRI8BLx4jmAckS5idzCZDZmaXmV4hLgF/wavevYlXf8WrX+Ik2YMmFjQUVd1UU2EiuEHP+3IKa+sbm1vF7dLO7t7+QfnwqGXiVFPWpLGIdSckhgmuWBM5CtZJNCMyFKwdjm9mfvuBacNjdY+ThAWSDBWPOCVopXZvRDB7nPbLFa/qzeGuEj8nFcjR6Je/e4OYppIppIIY0/W9BIOMaORUsGmplxqWEDomQ9a1VBHJTJDN3526Z1YZuFGs7Sh05+rvi4xIYyYytJuS4MgsezPxXy+US8kYXQcZV0mKTNFFcJQKF2N31oU74JpRFBNLCNXc/u7SEdGEom2sZEvxlytYJa2Lql+r1u4uK/XLvJ4inMApnIMPV1CHW2hAEyiM4Rle4NV5ct6cd+djsVpw8ptj+APn8wcUaZZu</latexit>

ẑ
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Figure 3: DIF framework. ê denotes outputs of the discriminator gϕ introduced in Sec. 3.2.1.

Second challenge: function disentanglement. To handle
the second challenge of extracting invariant mechanisms
in dynamical systems, we aim to define invariant represen-
tation in the function space, which requires the access to
intermediate functions and the disentanglement formula-
tions. With the two-phase function prediction to forecasting
process, we explicitly expose the derivative function, al-
lowing us to isolate the function prediction process and
disentangle the learning of invariant functions. In the invari-
ant function learning problem, we decompose the exposed
function variable f into an invariant function variable fc and
an environment-specific function variable fe, as in Fig. 2.
These two functions are caused by the exogenous factors c
and e, respectively. Intuitively, the c variable includes the
common and invariant mechanism, while e is the environ-
ment variable determined by the observational environment
of the trajectory, e.g., the pendulum dynamics can be ob-
served in different mediums (environments), such as air and
water.

Formally, the invariant function learning target is the dis-
covery of fc, which eliminates the effect of environments
and obtains the invariant mechanism. However, from the
d-separation perspective (Pearl, 2009), since Xp is the de-
scendent of the collider f of fc and fe, given Xp, fc and fe are
correlated/biased and not distinguishable, preventing the di-
rect fitting of fc given Xp. Therefore, we aim to identify this
intermediate hidden variable by characterizing the unique
properties of the prior distribution of p(fc). Theoretically,
since f is the collider between fc and e, fc is expected to be
independent of e. In addition, among all the functions that
are independent of e, fc should be the most informative with
respect to the observed trajectories, which will be proved in
Thm. 3.1. This forms the foundation of invariant function
learning.

3. Disentanglement of Invariant Function
Following the two-phase function learning framework, we
now propose the first method for IFL, Disentanglement of
Invariant Function (DIF), with hypernetwork-based imple-
mentations of the two corresponding networks. For the

forecasting network, similar to traditional representation
learning tasks, we aim to learn a function f ∈ F : Rd 7→ Rd.
For the function prediction, however, it requires learning
a function that returns a function, h ∈ H : Rd×Tc 7→ F ,
i.e., learning a hyper-function, which is enabled using a
hypernetwork.

3.1. Hypernetwork Design

Function prediction. To quantify the objective of the hyper-
function, we approximate its output function as a neural net-
work with m parameters. The function space F consists of
all possible neural networks with m parameters, and a func-
tion f ∈ F can be represented as a vector in Rm. Thus this
parameterization process introduces a hypernetwork struc-
ture (Ha et al., 2016) into the implementation, as shown
in Fig. 3. Note that since our parameterization transfers
functions into the real number space, it is now possible to
apply invariant learning techniques such as IRM (Arjovsky
et al., 2019) and VREx (Krueger et al., 2021), where invari-
ant (function) representations need to be extracted. In the
following sections, we use F and omit Rm for simplicity.

Practically, since the number of parameters in a network
is generally large, we propose to compress the invariant
function representations into hidden representations, thus
forming an encoder-decoder framework. Specifically, as
shown in the Fig. 3, the trajectory encoder is a transformer-
based network with positional embedding design, denoted
as hθenc : Rd×Tc 7→ Z . Given the hidden representation
from the encoder, we further encode an invariant function
embedding ẑc ∈ Z and an environment function embedding
ẑe ∈ Z using two multilayer perceptrons (MLPs), denoted
as hθinv and hθenv , respectively. Then, aligning with our
causal graph as Fig. 2, we combine ẑc and ẑe by summing
them as the function representation ẑ ∈ Z , which can be
used for full dynamics prediction. Finally, we learn an
decoder MLP hθdec to decode the function representation
into m-dimensional neural network parameters, i.e., f̂c, f̂ ∈
F .

To facilitate theoretical analysis, we simplify the notations
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and denote the function prediction process in the hypernet-
work as two functions f̂ = hθ(Xp) and f̂c = hθc(Xp),
where hθ, hθc : Rd×Tc 7→ F ; θ = {θenc, θinv, θenv, θdec};
θc = {θenc, θinv, θdec}. In addition, we slightly abuse the
notations of hθ and hθc on random variables Xp for simplic-
ity, producing f̂ = hθ(Xp) and f̂c = hθc(Xp), respectively.

Forecasting. Given the produced neural network function f̂ ,
we apply a numerical integrator as our forecastor, a function
gint that takes a derivative function f̂ and initial states X0

as inputs, to obtain X̂ = gint(f̂ , X0) + ϵ where ϵ is sam-
pled from a Gaussian noise N

(
X; 0, σ2I

)
introduced by

calculation deviations. This forecasting formulation enables
the following probability modeling, where we obtain the
forecasting given realizations X0 and f̂ as a Gaussian dis-
tribution N

(
X; gint(f̂ , X0), σ

2I
)

denoted as p(X|f̂ , X0).

Therefore, in probability modeling, X̂ is sampled from
p(X|f̂ , X0). It is worth noting that unlike in inference time
and analyses, it is time-consuming to use numerical integra-
tors during training; therefore, we follow (Mouli et al., 2024)
and train the model by fitting the derivative ˆdXt

dt = f̂(Xt)
with numerical derivatives from the ground-truth X instead.
For simplicity, we denote f̂(·) as a neural network based
derivative function with parameters f̂ ∈ Rm.

3.2. Discovery of Invariant Function

With the above hypernetwork design, we can now propose
the discovery of the invariant function fc. Following the
independence and information properties of fc discussed in
Sec. 2.2.1, we achieve invariant function learning with the
following theorem, which is our main theoretical result.
Theorem 3.1 (Invariant function learning principle). Given
the causal graph in Fig. 2, and the predicted function ran-
dom variable f̂c = hθc(Xp), it follows that the true in-
variant function random variable fc can be inferred from
hθ∗

c
(Xp), where the optimal solution θ∗c is obtained through

the following optimization:

θ∗c = argmax
θc

I(hθc(Xp); f|X0) s.t. hθc(Xp) ⊥⊥ e, (2)

where I(·; ·) is mutual information that measures the in-
formation overlap between the predicted invariant function
random variable hθc(Xp) and the true full-dynamics func-
tion random variable f.

The proof in Appx. C.2 shows that the optimal solution is
both necessary and sufficient to identify the true invariant
function variable available2. Therefore, Thm. 3.1 establish
guarantees and conditions for the function output f̂c of the
hypernetwork to be the invariant function fc, fulfilling the
goal of the IFL task.

2In the theorem, we consider any possible function h under our
causal assumption instead of a specific neural network realization.

3.2.1. IMPLEMENTATION OF INVARIANT FUNCTION
LEARNING PRINCIPLE

Following Thm. 3.1, next we introduce the implementation
and optimization process of our proposed networks. We first
train the encoder and decoder of our hypernetwork by ap-
proximating the trajectory distribution p(X), parameterized
as p(X|hθ(Xp),X0), where we apply the cross-entropy
minimization. Given that our supervision signals only come
from the ground-truth trajectories, we introduce a simple
lemma for our optimization processes. The proof is pro-
vided in Appx. C.3.

Lemma 3.2 (ODE cross-entropy minimization). Given fore-
casting model p(X|hθ(Xp),X0), it follows that the cross-
entropy minimization between the data distribution p(X)
and p(X|hθ(Xp),X0) is equivalent to minimizing mean
square error minθ EX∼p∥X − X̂∥22, where X̂ is sampled
from p(X|hθ(Xp), X0).

In order to discover invariant functions, we apply the invari-
ant function learning principle, which requires maximizing
the conditional mutual information between the predicted
function random variable f̂c = hθc(Xp) and f. Based on the
derivation of Lemma 3.2, we have the following proposition.

Proposition 3.3 (ODE conditional mutual information max-
imization). Given forecasting model p(X|hθc(Xp), X0), it
follows that the conditional mutual information maximiza-
tion maxθc I(hθc(Xp); f|X0) is equivalent to minimizing
mean square error minθc EX∼p∥X − X̂c∥22, where X̂c is
the predicted trajectory sampled from p(X|hθc(Xp), X0).

The proof is provided in Appx. C.4. Lemma 3.2 and
Prop. 3.3 essentially transfers the mutual information maxi-
mization of Thm. 3.1 into an implementable optimization
of mean square error (MSE) loss, enabling the practical use
of the invariant function learning principle. In addition, the
independence constraint in Thm. 3.1 requires that the ex-
tracted functions should not be over-informative or contain
biased information from environments e. This indepen-
dence constraint can be implemented in an adversarial way,
where we require the environment prediction P (e|̂fc) to be
as less informative as possible, i.e., minimizing the mutual
information of I(e; f̂c). Thus we introduce an environment
discriminator gϕ, a.k.a., Pϕ(e|̂f), which aims to distinguish
the environment of any function from F . The hypernetwork
is trained adversarially to enforce f̂c as indistinguishable as
possible. The theoretically analysis of this independence
training is provided in Appx. C.5.

Objective. The overall optimization objective can be ob-
tained with three training strategies. First, the training of
the discriminator is conducted on both f̂c and f̂e to fully
capture environment patterns. Second, we use the corre-
sponding hidden representations of f̂c and f̂e, ẑc and ẑe, as
the input of the discriminator. Third, as we mentioned in
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Sec.3.1, during training, we fit derivatives instead of using
an integrator.

min
θ

EX∼p

∑
t

∥∥∥∥dXt

dt
− f̂(Xt)

∥∥∥∥2
2

+ λc ·min
θc

EX∼p

∑
t

∥∥∥∥dXt

dt
− f̂c(Xt)

∥∥∥∥2
2

+ λdis ·
[
min
ϕ

−EX∼p log gϕ(ẑc) + min
ϕ,θ̄e

−EX∼p log gϕ(ẑe)

]
+ λadv ·max

θ̄c
−EX∼p log gϕ(ẑc)

(3)

where we denote θ̄e = {θenc, θenv}; θ̄c = {θenc, θinv}.
Please refer to Appx. E.2.2 for more details.

Efficient hypernetwork implementation. Last but not
least, one of the major challenges that limits the usage of hy-
pernetworks is the implementation complexity. In this work,
we propose a reference-based hypernetwork implementation
to accelerate the running speed using only PyTorch (Paszke
et al., 2019) without re-implementing basic neural networks.
The speedup compared to the naïve implementation and
the vectorized functional implementation are 16.8x and 2x,
respectively. Please refer to Appx. G for implementation
and experimental details.

4. Related Work
This work is inspired by the ideas and limitations of previous
research in dynamical system forecasting, meta-learning,
and invariant learning.

Deep learning models are widely applied in many physi-
cal applications (Lusch et al., 2018; Yeo & Melnyk, 2019;
Kochkov et al., 2021; Chen et al., 2018; Becker et al., 2023;
d’Ascoli et al., 2023; Seifner et al., 2024) including par-
tial differential equations (PDEs) with the focus on the
multi-scale (Li et al., 2020; Stachenfeld et al., 2021), multi-
resolution (Kochkov et al., 2021; Wu et al., 2022), and
long-term stability (Li et al., 2021; Lippe et al., 2023) issues.
Operator learning and neural operators (Gupta et al., 2021;
Kovachki et al., 2023) are popular for PDE estimations. Al-
though the ODE dynamical system does not contain the
multi-scale problem that Fourier neural operator (Kovachki
et al., 2023) tried to solve, our framework can be considered
as a kind of operator learning.

Meta-learning methods (Finn et al., 2017; Rusu et al., 2018;
Li et al., 2017; Zintgraf et al., 2019; Perez et al., 2018) aim
to learn meta-parameters that can be used across multiple
tasks, where the meta parameters are generally learned to
make rapid adaptations. In previous meta-learning stud-
ies on dynamical systems (Kirchmeyer et al., 2022; Wang
et al., 2022; Yin et al., 2021a), the objective was to find
a meta-function that could quickly adapt to multiple new

systems, where hypernetworks are only employed as low-
rank adaptors for new dynamical system trajectories, similar
to the idea of LoRA (Hu et al., 2021). Our work differs
from these in two key ways. First, we focus on discover-
ing invariant functions rather than quickly adaptable ones
or static scalar (Auzina et al., 2023). Second, while meta-
learning methods seek to learn a single meta-function, our
framework learns multiple functions, represented by an in-
variant function random variable fc. This distinction stems
from our more complex environment definition, detailed in
Sec. 2.2. From another aspect, learning an invariant function
distribution instead of a single function can be considered as
generalized meta-learning with an invariant function learn-
ing goal.

Current invariant learning methods (Arjovsky et al., 2019;
Lu et al., 2021a; Rosenfeld et al., 2020; Krueger et al., 2021;
Sagawa et al., 2019) follow the framework of invariant risk
minimization (IRM) (Arjovsky et al., 2019), which was
inspired by invariant causal predictor (Peters et al., 2016).
This invariant learning framework aims to learn a hidden in-
variant representation or invariant causal mechanism (Pearl,
2009) that generalizes across multiple environments, ensur-
ing out-of-distribution performance. However, this approach
cannot work on dynamical forecast tasks due to the lack of
invariant function definition and the violation of the categor-
ical data assumption (see Appx. B). To address the issues,
we introduce the causal assumption (see Fig. 2) that defines
the invariant function space, and propose the corresponding
invariant function learning principle and implementation.

Symbolic regression methods (Brunton et al., 2016; Cran-
mer, 2023) and its extensions discover closed-form ODEs
by fitting sparse combinations of basis functions. Recent
symbolic discovery works add neural inductive biases for
graph-structured systems(Cranmer et al., 2020; Shi et al.,
2022). Amortised approaches push scalability further, learn-
ing to output symbolic expressions for hybrid systems in
one forward pass (Liu et al., 2024). Mechanistic neural
networks adopt a different framework to learn ODE repre-
sentations (Pervez et al., 2024; Chen et al., 2025). However,
all of these methods aim to find a separate symbolic equation
for each individual system; in contrast, our goal is to learn
components of the dynamics that remain invariant across
systems and environments, a complementary but distinct
objective.

5. Experiments
We conduct experiments to address the following research
questions (RQs) and supplementary analyses (SAs). RQ1:
Are existing meta-learning and invariant learning techniques
effective for extracting invariant functions? RQ2: Can the
proposed invariant function learning principle outperform
baseline techniques? SA1: How do the full functions f and
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the invariant functions fc differ in performance? SA2: Are
the extracted invariant functions explainable and aligned
with the true invariant mechanisms? SA3: How will perfor-
mance change given different lengths of inputs and types
of environments? (See Appx. F.2) SA4: Is the proposed
hypernetwork implementation more efficient than previous
implementations? (See Appx. G)

5.1. Datasets

In our experiments, we introduce three multi-environment
(ME) datasets, ME-Pendulum, ME-Lotka-Volterra, and ME-
SIREpidemic. These three datasets are generated by simula-
tors modified from the DampedPendulum (Yin et al., 2021b),
Lotka-Volterra (Ahmad, 1993), and SIREpidemic (Wang
et al., 2021). Specifically, each of the dataset’s training sets
includes four environments with 200 samples for each envi-
ronment. Specifically, each environment corresponds to one
specific environmental effect. ME-Pendulum contains three
types of friction and one effect with external energy. ME-
Lotka-Volterra modified the common predatory relationship
into four modified relationships, e.g., adding resource limits.
ME-SIREpidemic produces four conceptual epidemiology
models with the same susceptible population to infected
population relationship. In addition to the training set, we
generate 200 samples with 50 samples for each environment
as an in-distribution test set. Please refer to Appx. D for
more details.

5.2. Experimental Setup

To quantitatively evaluate the invariant function extraction
performance, we need to remove the environment-related
effects to generate invariant trajectories Xc as the invariant
function ground-truth, e.g., we simulate new data by elimi-
nating −ρωt from −α2 sin(θt)− ρωt in the ME-Pendulum
dataset (Fig. 1). To be more specific, a generated invariant
trajectory Xc, aligning the causal graph, has the same sys-
tem parameters as the corresponding biased trajectory X for
the invariant part controlled by c, i.e., they have the same α
in the pendulum example. This invariant trajectory genera-
tion is being done on the in-distribution test set so that each
trajectory X in this test set has its special corresponding
invariant trajectory ground truth Xc.

This test set design enables us to mimic the situation of scien-
tific discoveries, where we only observe environment-biased
data but are required to find and evaluate invariant function
candidates. Specifically, given the biased Xp, the hyper-
network is supposed to predict the corresponding invariant
derivative function f̂c. Then, with a numeral integrator,
the output of this invariant forecaster X̂c will be evaluated
by comparing with the corresponding invariant trajectory
ground truth Xc using normalized root mean square error
(NRMSE).

5.3. Proposed Meta-learning and Invariant Learning
Baselines

General dynamical system forecasting is different from in-
variant function learning significantly, where they focus on
how to adapt to new trajectories, which commonly requires
further optimization, e.g., test-time adaptation (Mouli et al.,
2024) or adaptations with meta information (Wang et al.,
2022; Kirchmeyer et al., 2022). Unfortunately, under our
scientific discovery setting, there is no extra information
provided at test time, making them inapplicable to this set-
ting. Therefore, we construct 4 new baseline settings by
transplanting the techniques of previous meta-learning and
invariant learning to our proposed framework detailed in
Appx. E.1.

We first adopt the meta-learning baseline MAML (Finn
et al., 2017), where we use its learned meta-parameters for
invariant learning to evaluate whether the fastest adapted
parameter is the invariant function parameter. Our second
meta-learning baseline is CoDA (Kirchmeyer et al., 2022),
where we replace its hypernetwork decoder with the full
encoder-decoder hypernetwork in our framework to fit in
our task. Aligning with the original CoDA paper, we set the
dimension of the hidden representation to be 2. Similar to
MAML, we eliminate the adaptation part and use only the
learned meta-parameter for invariant state prediction.

For invariant learning baselines, we adopted the two
most typical techniques, IRM (Ahuja et al., 2021) and
VREx (Krueger et al., 2021). These two techniques are
applied to the proposed framework, where IRM stands for
the most typical definition of invariant learning, while VREx
stands for the distributionally robust optimization baseline,
which can be considered as the generalization of Group-
DRO (Sagawa et al., 2019).

5.4. Quantitative Results

Similar to other scientific discovery tasks, such as drug
discovery, constructing a proper validation set is challenging.
Instead, with only observational data available, we generate
invariant function candidates that can be further validated
in real experimental settings, e.g., through the introduction
of interventions (Pearl, 2009).

To quantitatively compare these methods, we provide the
corresponding hyper-parameter search spaces for each tech-
nique in Appx. E and plot the results of random hyper-
parameter sampling as distributions using Boxen plots. As
shown in Fig. 4, we compare the quality of the invariant
function candidates based on their median, best result, and
quantiles. Specifically, the median performance of our pro-
posed method surpasses the middle candidates of all other
approaches. The performance gaps are particularly notable
on the ME-Pendulum and ME-SIR-Epidemic datasets. For
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Figure 4: Invariant trajectory prediction errors on 5 methods under 3 multi-environment ODE systems. For each method,
we provide model candidates with 80+ random hyper-parameter selections in their searching spaces, i.e., more than 1200
models in the figure.

(a) X predictions using f̂ (b) Xc predictions using f̂c

Figure 5: Visualization of trajectory predictions on ME-Pendulum

example, on ME-Pendulum, over 75% of our method’s can-
didates outperform the best results of MAML and CoDA,
and more than 93.75% candidates of IRM and VREx. On
ME-Lotka-Volterra, the median of our candidates still out-
performs nearly all candidates from other methods. In ad-
dition, as shown in the visualizations on ME-Pendulum 5,
our learned invariant function f̂c eliminates environmental
resistances from the original trajectory (Fig. 5a) and obtain
a simple pendulum motion without attenuation (Fig. 5b).
Both quantitative and visualization results demonstrate the
superior capability of our method in extracting invariant
functions (RQ2).

To address the first research question (RQ1), we observe
that the invariant learning techniques, IRM and VREx, are
generally more stable than the meta-learning baselines. Al-
though IRM and VREx do not surpass MAML on ME-
Lotka-Volterra, they outperform MAML on 2 out of 3
datasets and are consistently better than CoDA. However,
when compared to our proposed method, the best function
candidates from these invariant learning techniques are sub-
optimal. This confirms that the general invariant learning
principles fall short in the context of invariant function ex-
traction, aligning with the discussions in Sec. 4.

5.5. Full Function v.s. Invariant Function

To analyze SA1, we benchmark our best invariant function
learning models on the invariant state ground truth Xc and

the multi-environment state ground truth X, comparing their
results using the predicted invariant function f̂c and the full
function f̂. As shown in Tab. 2, the performance on Xc

using f̂c represents the core results of our invariant function
learning approach. In contrast, the predictions on Xc using
f̂ serve as a baseline for the ablation study, where no invari-
ant function learning principle is applied. Additionally, the
prediction error on X using f̂c implies the environmental
information eliminated by the invariant function learning
principle, while the NRMSEs on X using f̂ reflect stan-
dard in-distribution (ID) test errors. We observe that the
ME-Lotka-Volterra dataset is the most challenging, with
an NRMSE of 0.3881 in the ID test. This result is consis-
tent with general deep learning outcomes in (Mouli et al.,
2024), given that ME-Lotka-Volterra is more complex than
its original version.

As expected, f̂ performs well on X, while f̂c excels in pre-
dicting Xc. In our ablation study, we compare the perfor-
mance of invariant state predictions Xc across all datasets.
The predicted invariant functions f̂c significantly outperform
the full predicted functions f̂ in terms of NRMSE, validating
the effectiveness of the proposed invariant function learning
principle. Furthermore, we conduct more strict ablation
study with independent f̂ and f̂c training in Appx. F.1.
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Table 2: Invariant function validation and symbolic regression. NAN denotes that the result is not applicable or not of
interest.

Target Function ME-Pendulum ME-Lotka-Volterra ME-SIREpidemic

NRMSE SR Explanation NRMSE SR Explanation NRMSE SR Explanation

Xc

f̂c 0.3561

dθt
dt

= 0.99ωt

dωt

dt
= −0.97α2 sin (θt)

0.6194

dpt
dt

= 1.254pt − 0.38qtpt

dqt
dt

= 4.1pt − 0.30qt − γ

0.0652

dSt

dt
= −1.7StIt

dIt
dt

= 0.42StIt

dRt

dt
= −0.0088

f̂ 0.7884

dθt
dt

= ωt cos
(ωt

eα

)
dωt

dt
= θtα (−α+ ρ)

0.7919

dpt
dt

= −0.76pt

dqt
dt

=
pt
0.36

− γ

0.9867

dSt

dt
= −0.24βItSt − 1.2

dIt
dt

= 0.40St

dRt

dt
= 0.66γ

X
f̂c 0.7994 NAN 0.6912 NAN 0.7641 NAN

f̂ 0.1700 NAN 0.3881 NAN 0.0212 NAN

fc GT NAN

dθt
dt

= ωt

dωt

dt
= −α2 sin (θt)

NAN

dpt
dt

= αpt − βptqt

dqt
dt

= δptqt − γqt

NAN

dSt

dt
= −β

StIt
St + It +Rt

dIt
dt

= β
StIt

St + It +Rt

dRt

dt
= 0

5.6. Symbolic Regression Explanation

Furthermore, to address SA2, we analyze the extracted in-
variant functions f̂c by applying symbolic regression us-
ing PySR (Cranmer, 2023). As shown in Tab. 2, we com-
pare the symbolic regression (SR) explanations of the ex-
tracted invariant functions f̂c with the true invariant func-
tions fc. On the ME-Pendulum dataset, the frictionless pen-
dulum function is nearly perfectly extracted, with 0.99ωt

matching ωt and −0.97α2 sin (θt) closely approximating
the true −α2 sin (θt). Given the complexity of the ME-
Lotka-Volterra dataset, the extracted invariant functions f̂c
are non-trivial and significantly outperform the full func-
tion f̂. On the ME-SIREpidemic dataset, the near-perfect
NRMSE for the invariant state indicates that the invariant
function must have been correctly extracted. However, al-
though the expression for dRt

dt is correct, the extracted ex-
pressions for dSt

dt and dIt
dt do not precisely match the ex-

pected fc. Specifically, the coefficient from dSt

dt does not
equal the inverse of the coefficient from dIt

dt , though this dis-
crepancy should be constant. These mismatches attribute to
the limitations of PySR given the large number of variables
and samples.3 Future work could explore incorporating
stronger inductive biases, similar to physics-informed ma-
chine learning (PIML) methods (Mouli et al., 2024; Yin
et al., 2021b; Cranmer et al., 2020), to address these chal-
lenges. Please refer to Appx. F.3 for symbolic comparisons
with all baseline.

3Superior PySR explanations indicate great invariant function
learning results, but effective invariant function learning results
might not lead to good PySR explanations.

6. Limitations
While this work provides a foundation for invariant func-
tion learning in dynamical systems, several limitations and
opportunities for future exploration remain. These include
extending the framework to more complex entanglements,
exploring applications in PDE systems and developing com-
prehensive benchmarks. Additionally, broader applications
such as generalizable physics learning and foundational
model development represent exciting directions for further
research. Please refer to Appx. B for more discussions.

7. Conclusion
In this work, we target addressing the challenge of the in-
variant mechanism discovery in ODE dynamical systems by
extending invariant learning into function spaces. We intro-
duce a new task, invariant function learning, which aims to
extract the invariant dynamics across all environments with
different environment-specific function forms. We design
a causal analysis based disentanglement framework DIF to
expose the underlying invariant functions. Additionally, we
propose an invariant function learning principle with the-
oretical guarantees to optimize the framework and ensure
effective invariant function discovery. Our experiments, in-
cluding invariant trajectory validations, visualizations, abla-
tion studies, and symbolic regression analyses, demonstrate
the effectiveness of our method. Finally, as discussed in
Sec. 6, the introduced invariant function learning task has
wide application scenarios and many challenges remain to
be addressed. We expect that our work will shed light on
numerous future explorations in this field.
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A. Notations
For the ease of reading, we providing a table including major notations below for reference.

Table 3: Notation table

Notation Explanation

xt Dynamical system states at time t
X Dynamical system state space
TX Tangent state space
R Real number space
d The number of state
t Time
Tc The first future time step
X A trajectory; A state matrix with T-step states
Xp Past states before time step Tc

Xc An invariant trajectory
X̂, X̂p, X̂

c The predicted trajectory of X , Xp, and Xc (by a model)
X,Xp,X

c The matrix-valued random variable of X , Xp, and Xc

X̂, X̂p, X̂
c The predicted matrix-valued random variable of X , Xp, and

Xc

f A derivative function (of an underlying dynamical system)
fc An invariant derivative function
fe An environment derivative function
f̂ , f̂c, f̂e The predicted functions of f , fc, and fe (by a model)
f, fc, fe The derivative function random variable of f , fc, and fe
f̂, f̂c, f̂e The predicted derivative function random variable of f , fc,

and fe
F Function space/Functional vector space
ẑ/ẑc/ẑe A predicted full/invariant/environment hidden function rep-

resentation
Z Hidden function space/Hidden functional vector space
h A hypernetwork
H Hypernetwork function space
p(·) A probability distribution over a random variable
I(·; ·) Mutual information between random variables
H(X) Shannon entropy of the matrix-valued random variable X
EX∼P [f(X)] or Ef(X) Expectation of f(X) with respect to p(X)
X ∼ P Random variable X has distribution P
X ∼ p(X) X is sampled from distribution p(X)
EX∼P [f(X)] or Ef(X) Expectation of f(X) with respect to p(X)
{·} An assignment/A substitution rule
{α →} A symbol without an assigned value
{α → a} A symbol with an assigned value a
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B. FAQ & Discussions
To facilitate the reviewing process, we summarize the answers to the questions that arose during the discussion of an earlier
version of this paper.

The major updates of this version are reorganized theoretical studies, causal graph details, more experimental analyses. We
include more related field comparisons to distinguish different settings. We also cover the position of this paper in literature
and the main claims of this paper. Finally, we will frankly acknowledge the limitations of this paper, explain and justify the
scope of coverage, and provide possible future directions.

Q1: Can this method be applied to PDE systems?

A: While this method has the potential to be extended to PDE systems, three critical challenges currently prevent its direct
application:

1. Lack of multi-environment PDE datasets: Unlike domain adaptation and generalization tasks, multi-environment
datasets for PDE systems are not yet available. Although we constructed multi-environment datasets for ODE systems,
extending this to PDEs is significantly more complex and requires domain-specific expertise. Unfortunately, designing
such datasets is beyond the scope of this paper.

2. PDE-specific challenges: Due to the continuous nature of PDEs, applying invariant function learning to PDE systems
requires addressing multi-scale and multi-resolution problems. Scaling up to PDEs also introduces different training
dynamics, which may necessitate additional techniques to stabilize and accelerate training.

3. Interpretability challenges: As demonstrated in Appendix F.3, we employ symbolic regression to provide conceptually
understandable explanations for sanity checks. However, this approach does not extend naturally to PDE systems,
which would require the development of new interpretability methods tailored to invariant function learning in PDEs.

Q2: Is fc one deterministic true function? What is the difference between X and X; f and f?

A:

1. Is fc a deterministic function? No. fc is a random variable sampled from the structural causal model (SCM) (see
Fig. 6), obeying the Markov property of graphical causal models. Consequently, all information-theoretic analyses in
this work are non-trivial.

2. Difference between X and X; f and f. X ∈ Rd×T represents a single realization sampled from the matrix-shaped
random variable X, i.e., one trajectory. Similarly, f is a realization of the random function f.

3. Other notation-related questions. Our notation follows ICLR standards. Please refer to our notation table (Table 3).
It is crucial to distinguish between random variables and their realizations.

Q3: What are the differences between coefficient environments and function environments?

A: The primary difference lies in which factors vary across multiple environments.

1. Example: Consider the pendulum motion as an example. A coefficient environment includes only a single function.
Any change in the rope length or friction coefficient defines a new environment. In contrast, a function environment
encompasses all functions that share the same functional form but differ in parameters such as rope length and friction
coefficient. As long as these pendulums experience the same type of friction, they belong to the same function
environment.

2. Notation: Since a coefficient environment contains only one function, we use f to represent that function. Conversely,
a function environment consists of multiple functions. Theoretically, the number of functions within a function
environment is infinite. Thus, we use the random variable f to capture the function distribution within a function
environment.
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It is important to emphasize that a single function does not correspond to a single trajectory. Even with the same T -step
discretization, a function can generate infinitely many trajectories depending on different initial conditions.

Q4: Why don’t we fit trajectories with symbolic regressions and observe the invariant function?

A:

Regarding alternative strategies like find symbolic expression in different environments and then obtaining the same part fc
through observing, the most difficult part is observing. The reason is direct: the fitting of f tends to capture both invariant
and environment-specific aspects, which leads to spurious correlations, so that the final equation forms from different
environments look significantly different. That is, after extracting equations from different environments, it is challenging
to find the common part directly since the common parts are blended with environment parts and look like not disentangable.

Our DIF method explicitly enforces the separation of invariant dynamics from environment-specific factors, providing
a more reliable basis for scientific discovery. This advantage become especially important in scenarios with complex
environment effects or when specific invariant mechanisms need to be identified.

Q5: Why traditional invariant learning cannot be applied directly?

A:

Current invariant learning methods (Arjovsky et al., 2019; Lu et al., 2021a; Rosenfeld et al., 2020; Krueger et al., 2021;
Sagawa et al., 2019) follow the framework of invariant risk minimization (IRM) (Arjovsky et al., 2019), which was inspired
by invariant causal predictor (Peters et al., 2016). This invariant learning framework aims to learn a hidden invariant
representation or invariant causal mechanism (Pearl, 2009) that generalizes across multiple environments, ensuring out-
of-distribution performance. However, this approach cannot work on dynamical forecast tasks due to the lack of invariant
function definition and the violation of the categorical data assumption. To be more specific, first, invariant functions cannot
be naturally defined in the real number vector space. Second, invariant learning commonly assumes the prediction results are
categorical, where a single invariant representation can fully determine the corresponding label. However, this assumption is
violated in dynamical system forecasting, where the invariant mechanism is only partially responsible for the output. In
this case, the IRM principle can not hold even when the invariant function ground truth is provided. To address the issues,
we introduce the causal assumption (see Fig. 2) that defines the invariant function space, and propose the corresponding
invariant function learning principle and implementation.

Q6: What is the position of this paper? What can be covered by this paper?

A:

Position: This paper introduces the concept of invariant function learning, motivated by the function learning requirements
in physical systems.

Scope of this paper: The primary focus of this work is to establish invariant function learning in ODE systems from
multiple perspectives.

1. Model design: We propose the first invariant function learning method.

2. Theoretical analysis: This paper builds upon the well-known invariant learning principle. We establish the foundation
of invariant function learning, propose an ODE-based invariant learning structural causal model (SCM) with minimal
assumptions, and provide theoretical guarantees for invariant function discovery.

3. Function environments and datasets: We introduce the concept of function environments. To systematically evaluate
invariant function learning, we construct multiple multi-environment ODE systems.

4. Adapted baselines: We detail the design and implementation of adapted baselines from invariant learning and
meta-learning frameworks.

5. Empirical analysis: We conduct extensive empirical studies, including quantitative comparisons, visual analyses,
interpretability assessments, and multi-perspective ablation studies on ODE systems (see Appx. F).

Q7: What cannot be covered by this paper? What are the limitations of this paper?
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A: This paper aims to establish a solid foundation for invariant function learning from multiple perspectives, as described in
Q4. However, exploring invariant function learning is a complex and expansive task that cannot be fully addressed in a
single work. Below, we outline the key limitations of this paper to guide future research directions.

1. Invariant function learning in PDE systems: This work focuses solely on invariant function learning in ODE systems.
Extending this approach to PDE systems remains an open challenge. The reasons and current obstacles in this setting
have been elaborated in FAQ Q1.

2. High dimensional system with graph structures: One interesting direction considering graph-like interactions has
been partially explored by Shi et al. (2022); Cranmer et al. (2020). These systems are generally nosier and prone to
affected by environment effects. Therefore, extending our methods to this topic is a meaningful future direction.

3. Broader range of applications: Unlike meta-parameters, the learned invariant functions exhibit broader adaptabil-
ity. For instance, a discovered physical law can generalize across various systems. Future research could explore
applications of invariant function learning, such as extracting generalizable physics laws from videos or designing
physics-aware agents. Additionally, it would be interesting to investigate whether invariant function learning can
contribute to the development of foundational models in physics.

17
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Figure 6: Structural causal model.

C. Invariant Function Learning foundation
C.1. Structural Causal Model

In this section, we discuss the trajectory generation process under the Structural Causal Model (SCM) assumption in Fig. 6.
To begin with, this SCM is a directed acyclic graph (DAG) with the following components:

• Exogenous variables U = {c, e,X0, ϵc, ϵe, ϵp, ϵ} are not caused by any variables within the model and are from their
own independent distributions. Here ϵc, ϵe, ϵp, ϵ are noise terms introduced during the function generation and trajectory
integral.

• Endogenous variables V = {fc, fe, f,Xc,Xp,X} are caused by the causal mappings within the model.

• Structural equations define the direct causation in the model.

– fc := gc(c, ϵc)
– fe := ge(e, ϵe)
– f := gcomp(fc, fe)
– Xc := gint(fc,X0) + ϵ

– Xp := gTc
int(f,X0) + ϵp

– X := gint(f,X0) + ϵ

where gint is a T -step integrator, while gTc
int only applies integral for Tc steps. While gc, ge, gcomp are assumed to be

unknown, gint is assumed to be an ideal integrator with an extra random noise ϵ to model the real world situations.
Note that the cause of X can be written as fc and fe without side effects, so f is used for analytical purposes. Therefore,
gcomp is a conceptual function composition without introducing noises.

C.2. Proof of Invariant Function Learning Principle

Theorem C.1 (Invariant Function Learning Principle 3.1). Given the causal graph in Fig. 2 and the predicted function
random variable f̂c = hθc(Xp), the true invariant function random variable is fc = hθ∗

c
(Xp), where θ∗c is the solution to

the following optimization problem:

θ∗c = argmax
θc

I(hθc(Xp); f|X0) subject to hθc(Xp) ⊥⊥ e, (4)

where I(·; ·) denotes mutual information, which quantifies the informational overlap between the predicted invariant function
hθc(Xp) and the true full-dynamics function f.

Proof. Existence:

We first prove the existence of a solution θ∗c to the optimization problem, such that fc = hθ∗
c
(Xp). To establish this,

we proceed by contradiction. Assume no such θ∗c exists, implying that I(fc; f|X0) is not maximized. Then, there must
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exist some f′c such that f′c ⊥⊥ e and I(f′c; f|X0) > I(fc; f|X0). Given the mutual information expression I(fc; f|X0) =
H(f|X0)−H(f|fc,X0), this inequality implies:

H(f|fc) > H(f|f′c). (5)

Since X0 is independent of f and fc (as per Fig. 2), and given that f = gf(fc, fe) implies H(f|fc, fe) = 0, we derive:

H(f|fc) = H(fe). (6)

Similarly, for f′c, we have:
H(f|f′c) ≥ H(fe|f′c). (7)

Combining these results with Eq. 5, we obtain:

H(fe) > H(fe|f′c), (8)

which contradicts the independence condition f′c ⊥⊥ e, as this would require H(fe) = H(fe|f′c). Therefore, a solution θ∗c
exists, satisfying fc = hθ∗

c
(Xp).

Uniqueness: We now prove that for any solution θ∗c of the optimization process, it holds that fc = hθ∗
c
(Xp).

We use a proof by contradiction. Assume that there exists another solution f′c ̸= fc that satisfies the independence constraint
and achieves the maximum mutual information. By assumption, we have H(e) = H(e|f′c) and I(f′c; f|X0) = I(fc; f|X0),
which implies H(f|fc) = H(f|f′c).
Since f = gf(fc, fe), we expand the entropy terms:

H(f|fc) = H(fc, fe|fc) = H(fe), (9)

and
H(f|f′c) = H(fc, fe|f′c) = H(fc|f′c) +H(fe|f′c) = H(fc|f′c) +H(fe). (10)

Substituting H(f|fc) = H(f|f′c) into these equations, we find:

H(fc|f′c) = 0. (11)

Based on this, we now aim to prove that fc = f′c. First, given H(f′c|fc) ≥ 0, we need to show that H(f′c|fc) = 0. Assume that
H(f′c|fc) > 0. In this case, f′c can determine fc while containing more information than fc, all while remaining independent
of fe. This would imply that H(f′|f) > 0, where f′ = gf(f′, fe), which would in turn affect the corresponding prediction,
leading to H(X′|X) > 0. Such a situation would violate the MSE minimization condition.

Therefore, we must have both H(f′c|fc) = 0 and H(fc|f′c) = 0. This implies that fc and f′c are isomorphic functions, i.e.,
there exists a bijective function gb such that fc = gb(f′c).

Furthermore, since minimizing the MSE of X is equivalent to minimizing the MSE of dX
dt given X0, this minimization

ensures that, for the same fe, fc(X) = f′c(X) for all X . As a result, the bijective function gb must be the identity mapping,
and we conclude that f′c = fc in the support of p(X).

Thus, for any solution θ∗c of the optimization process, it follows that fc = hθ∗
c
(Xp).

C.3. Proof of ODE Cross-entropy Minimization

Lemma C.2 (ODE cross-entropy minimization 3.2). Given our forecasting model p(X|hθ(Xp),X0), it follows that the
cross-entropy minimization between the data distribution p(X) and p(X|hθ(Xp),X0) is equivalent to minimizing mean
square error minθ EX∼p∥X − X̂∥22, where X̂ is sampled from p(X|hθ(Xp), X0).
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Proof. The forecasting optimization goal is to use our framework to approximate the data distribution p(X), param-
eterized as p(X|hθ(Xp),X0), where we apply the cross-entropy minimization, i.e.,H(p(X), p(X|hθ(Xp),X0)) =
−EX∼p [log p(X|hθ(Xp), X0)]. Furthermore, this negative log-likelihood optimization can be further reduced to the
common mean squared error (MSE).

min
θ

EX∼p∥X − X̂∥22, (12)

where X̂ ∼ p(X|hθ(Xp), X0). Since the distribution p(X|hθ(Xp), X0) is modeled as a Gaussian
N
(
X; gint(hθ(Xp), X0), σ

2I
)

(Sec. 3.1), we have X̂ = µ+ ϵ, where ϵ ∼ N
(
0, σ2I

)
.

min
θ

−EX∼p[log p(X|hθ(Xp), X0)]

=min
θ

EX∼p

[
n

2
log(2πσ2) +

1

2σ2
∥X − µ∥22

]
=min

θ
EX∼p

[
1

2σ2
∥X − µ∥22

]
+

n

2
log(2πσ2)

(13)

Since n
2 log(2πσ2) is a constant, we ignore it in the minimization process.

min
θ

EX∼p

[
1

2σ2
∥X − µ∥22

]
+

n

2
log(2πσ2)

=min
θ

EX∼p

[
1

2σ2
∥X − (X̂ − ϵ)∥22

]
=min

θ
EX∼p

[
1

2σ2
∥X − X̂ + ϵ∥22

]
=min

θ
EX∼p

[
1

2σ2
(∥X − X̂∥22 + ∥ϵ∥22 + 2(X − X̂)T ϵ)

]
=min

θ
EX∼p

[
1

2σ2
∥X − X̂∥22

]
+

1

2σ2
Eϵ[∥ϵ∥22] +

1

σ2
EX∼p(X − X̂)TEϵ[ϵ]

(14)

Here, 1
2σ2EX∼p[∥ϵ∥22] is a constant; EX∼p

[
1
σ2 (X − X̂)T ϵ

]
= 1

σ2EX∼p(X − X̂)TEϵ[ϵ] = 0 since ϵ is independently
sampled with a zero mean. Therefore,

min
θ

EX∼p

[
1

2σ2
∥X − X̂∥22

]
+

1

2σ2
Eϵ[∥ϵ∥22] +

1

σ2
EX∼p(X − X̂)TEϵ[ϵ]

=min
θ

EX∼p

[
1

2σ2
∥X − X̂∥22

]
=min

θ
EX∼p

[
∥X − X̂∥22

] (15)

This reduction connects the information theory and the practical MSE optimization, which further helps us to transform the
mutual information maximization into a similar MSE optimization below.

C.4. Proof of ODE Conditional Mutual Information Maximization

Proposition C.3 (Proof of ODE conditional mutual information maximization 3.3). Given forecasting model
p(X|hθc(Xp), X0), it follows that the conditional mutual information maximization maxθc I(hθc(Xp); f|X0) is equiv-
alent to minimizing mean square error minθc EX∼p∥X − X̂c∥22, where X̂c is the predicted trajectory sampled from
p(X|hθc(Xp), X0).

Proof. According to Lemma 3.2, we can reduce a negative log-likelihood minimization
minθc −EX∼p log p(X|hθc(Xp), X0) to minθc EX∼p∥X − X̂c∥22.
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Therefore, we only need to prove the equivalence between the −EX∼p log p(X|hθc(Xp), X0) minimization and the
I(hθc(Xp); f|X0) maximization. It follows that

max
θc

I(hθc(Xp); f|X0)

=max
θc

H(f|X0)−H(f|hθc(Xp),X0).
(16)

Since H(f|X0) is a constant, we ignore it in the maximization process and obtain

max
θc

H(f|X0)−H(f|hθc(Xp),X0)

=max
θc

−H(f|hθc(Xp),X0)

=min
θc

H(f|hθc(Xp),X0).

(17)

Since X = gint(f,X0) + ϵ where ϵ is an indepedent random noise, H(X|hθc(Xp),X0, f) = H(ϵ|hθc(Xp)) = H(ϵ). Since
given specific θc, H(hθc(Xp)|X) = 0, with the conditional entropy chain rule, it follows that

min
θc

H(f|hθc(Xp),X0)

=min
θc

H(f,X|hθc(Xp),X0)−H(X|hθc(Xp),X0, f)

=min
θc

H(f,X|hθc(Xp),X0)−H(ϵ)

=min
θc

H(f,X|hθc(Xp),X0)

=min
θc

H(f|hθc(Xp),X0,X) +H(X|hθc(Xp),X0)

=min
θc

H(f|X0,X) +H(X|hθc(Xp),X0)

=min
θc

H(X|hθc(Xp),X0)

=min
θc

−EX,Xp,X0∼p log p(X|hθc(Xp), X0)

=min
θc

−EX∼p log p(X|hθc(Xp), X0)

(18)

where H(f|X0,X) is a constant. Here, we finish building the equivalence between the function conditional mutual
information maximization and the trajectory negative log-likelihood minimization. Using the proof in Lemma 3.2, our final
optimization goal can be reduced to

min
θc

EX∼p∥X − X̂c∥22. (19)

C.5. Theoretical Justification for Adversarial Training

To incorporate the independence constraint, we enforce the condition f̂c ⊥⊥ e, where f̂c = hθc(Xp) is the predicted function
random variable, not a realization. Since f̂c ⊥⊥ e is equivalent to I(e; f̂c) = 0, and I(e; f̂c) ≥ 0, the objective I(e; f̂c) reaches
its minimum when and only when f̂c ⊥⊥ e. This leads us to define minimizing I(e; f̂c) as our training criterion.

Definition C.4. The environment independence training criterion is

θ∗c = argmin
θc

I(e; f̂c). (20)

This training criterion can be used directly, since the mutual information I(e; f̂c) = E
[
log P (e|̂fc)

P (e)

]
while P (e|̂fc) is unknown.

Following Proposition 1 in GAN (Goodfellow et al., 2020), we introduce an optimal discriminator gϕ : F 7→ E with

parameters ϕ to approximate the unknown P (e|̂fc) as Pϕ(e|̂fc), minimizing the negative log-likelihood −E
[
logPϕ(e|̂fc)

]
.

We then have the following two propositions:
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Proposition C.5. For θc fixed, the optimal discriminator ϕ is

ϕ∗ = argmin
ϕ

−E
[
logPϕ(e|̂fc)

]
. (21)

This proposition can be proved straightforwardly by applying the cross-entropy training criterion.

Proposition C.6. Denoting KL-divergence as KL[·∥·], for θc fixed, the optimal discriminator ϕ is ϕ∗, such that

KL
[
P (e|̂fc)∥Pϕ∗(e|̂fc)

]
= 0. (22)

Proof. Given a fixed θc, both I(e; f̂c) and H(e) are constants. Therefore, we have:

ϕ∗ = argmin
ϕ

−E
[
logPϕ(e|̂fc)

]
= argmin

ϕ
I(e; f̂c)− E

[
logPϕ(e|̂fc)

]
−H(e)

= argmin
ϕ

KL
[
P (e|̂fc)∥Pϕ(e|̂fc)

]
.

(23)

Thus, minimizing the negative log-likelihood of Pϕ(e|̂fc) is equivalent to minimizing the KL divergence between P (e|̂fc) and

its approximation Pϕ(e|̂fc). Since KL divergence is bounded by 0, we have KL
[
P (e|̂fc)∥Pϕ∗(e|̂fc)

]
= 0. This concludes

the proof.

With these propositions, the mutual information can be computed with the help of the optimal discriminator ϕ∗. According
to Proposition C.6, we have:

I(e; f̂c) = E
[
logPϕ∗(e|̂fc)

]
+H(e) + KL

[
P (e|̂fc)∥Pϕ∗(e|̂fc)

]
= E

[
logPϕ∗(e|̂fc)

]
+H(e) + 0.

(24)

Thus, by disregarding the constant H(e), the training criterion becomes:

θ∗c = argmin
θc

I(e; f̂c)

= argmin
θc

E
[
logPϕ∗(e|̂fc)

]
= argmin

θc

{
max
ϕ

E
[
logPϕ(e|̂fc)

]}
,

(25)

where Pϕ(e|̂fc) is the probability modeling of gϕ. Therefore, the log-likelihood adversarial training can enforce the
independence hθc(Xp) ⊥⊥ e.
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D. Datasets
D.1. Basic Setup

We conduct experiments on the proposed three multi-environment datasets ME-Pendulum, ME-Lotka-Volterra, and ME-
SIREpidemic. Each of these datasets includes 1000 samples, where 800 and 200 samples are assigned to training set and test
set, respectively. Each training set has 4 environments where 200 samples are generated in each environment. Each sample
is observed over 10 units of time, and each time is discretized by regularly-spaced discrete time steps from t0 to tT , where
T = 99, i.e., there are 100 time intervals of 0.1 unit of time each. A sample generation process is controlled by a set of ODEs
with common parameters Wc ∼ U(W c

low,W
c
high) and environment-specific parameters We ∼ U(W e

low,W
e
high) sampled

from their uniform distributions, e.g., in the pendulum system, Wc = {α} and We = {ρ}, where α ∼ U(αlow, αhigh)
and ρ ∼ U(ρlow, ρhigh). Note that each environment has its specific function form with its environment-specific parameters
We.

The environment split is the same in the test set. The only difference is that in the test set each sample X has one additional
prediction target Xc with only the invariant dynamics. For example, the invariant trajectory Xc of the one generated by
−α2 sin θt − ρωt will be created by −α2 sin θt.

D.2. ME-Pendulum

ME-Pendulum is motivated by the DampedPendulum system (Yin et al., 2021b). The state Xt = [θt, ωt] ∈ R2 are the angle
and angular velocity of the pendulum at time t, where we have Wc = {α}, We = {ρ}, and TC = T

3 . The underlying
invariant ODE is dθt

dt = ωt,
dωt

dt = −α2 sin (θt). As shown in Tab. 4, this invariant ODE is entangled with different
environmental factors, forming four environments, namely, damped, powered, spring, air.

Table 4: ME-Pendulum ODEs with θ0 ∼ U(0, π
2 ) and ω0 ∼ U(−1, 0).

Environment ODE for θt ODE for ωt Distribution of Parameters

Damped dθt
dt = ωt

dωt

dt = −α2 sin (θt)− ρωt

α ∼ U(1.0, 2.0)
ρ ∼ U(0.2, 0.4)

Powered dθt
dt = ωt

dωt

dt = −α2 sin (θt) + ρ ωt

|ωt|
Spring dθt

dt = ωt
dωt

dt = −α2 sin (θt)− ρθt
Air dθt

dt = ωt
dωt

dt = −α2 sin (θt)− ρ|ωt|ωt

Invariant dθt
dt = ωt

dωt

dt = −α2 sin (θt)

D.3. ME-Lotka-Volterra

Motivated by the Lotka-Volterra system (Ahmad, 1993), the state Xt = [pt, qt] ∈ R2 are the population of preys and
predators at time t, where we have Wc = {α,β,γ, δ}, We = {α′,β′,γ′, δ′}, and TC = T

2 . The underlying invariant
ODEs are dp

dt = αp− βpq, dq
dt = δpq − γq. As shown in Tab. 5, these invariant ODEs are entangled in 4 environments, i.e.,

save, fight, resource, omnivore. The save environment ODEs simulate the decrease of food wastage along with the increase
of predators. The fight environment ODEs simulate the decrease of hunting efficiency along with the increase of predators.
The resource environment ODEs limit the increase rate of the prey population. In the omnivore environment ODEs, the
predators are omnivores that can build the population without preys under certain resource limits.

We plot the trajectories X in the training set, and the invariant trajectories Xc in the test set in Fig. 7.

We plot the trajectories X in the training set, and the invariant trajectories Xc in the test set in Fig. 8.

D.4. ME-SIREpidemic

In the SIREpidemic (Wang et al., 2021) system, the states Xt = [St, It, Rt] ∈ R3 are the susceptible, infected, and recovered
individuals at time t, respectively. In this adapted ME-SIREpidemic system, we have Wc = {β}, We = {γ}, and Tc =

T
2 .

The underlying invariant ODEs are dS
dt = −β SI

S+I+R , dI
dt = β SI

S+I+R , dR
dt = 0, where we only care about the S to I
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Figure 7: ME-Pendulum trajectories.

Table 5: ME-Lotka-Volterra ODEs with p0 ∼ U(1000, 2000) and q0 ∼ U(10, 20).

Environment ODE for pt ODE for qt Distribution of Parameters

Save dp
dt = αp− βpq − β′pq · 10 exp

(
− q

10

)
dq
dt = δpq − γq

α,α′ ∼ U(1.2, 2.4)
β,β′ ∼ U(6e− 2, 1.2e− 1)
γ,γ′ ∼ U(0.48, 0.96)
δ, δ′ ∼ U(4.8e− 4, 9.6e− 4)

Fight dp
dt = αp− βpq dq

dt = δpq + δ′pq · 10 exp
(
− q

10

)
− γq

Resource dp
dt = αp−α′ p2

2000 − βpq dq
dt = δpq − γq

Omnivore dp
dt = αp− βpq dq

dt = δpq + 20γ′ (1− q
100

)
− γq

Invariant dp
dt = αp− βpq dq

dt = δpq − γq

Figure 8: ME-Lotka-Volterra trajectories.

transformation relationship. As shown in Tab. 6, we introduce 4 environments, origin, enlarge, loop, negative. These four
environments describe four different models, where some of them are only for math modeling. The origin environment is the
same as the original SIREpidemic model. The enlarge environment ODEs expand the epidemic range. The loop environment
ODEs include deaths and second-time infections. The negative environment ODEs is a pure math model allowing negative
numbers.
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Table 6: ME-SIREpidemic ODEs with S0 ∼ U(9, 10), I0 ∼ U(1, 5), and R0 = 0.

Environment ODE for St ODE for It ODE for Rt Distribution of Parameters

Origin dS
dt = −β SI

S+I+R
dI
dt = β SI

S+I+R − γI dR
dt = γI

β ∼ U(4, 8)
γ ∼ U(0.4, 0.8)

Enlarge dS
dt = −β SI

S+I+R + γI dI
dt = β SI

S+I+R − γI dR
dt = γI

Loop dS
dt = −β SI

S+I+R + γI + γR dI
dt = β SI

S+I+R − 2γI dR
dt = γI − γR

Negative dS
dt = −β SI

S+I+R
dI
dt = β SI

S+I+R + γ log I dR
dt = −γ log I

Invariant dS
dt = −β SI

S+I+R
dI
dt = β SI

S+I+R
dR
dt = 0

We plot the trajectories X in the training set, and the invariant trajectories Xc in the test set in Fig. 9.

Figure 9: ME-SIREpidemic trajectories.

E. Experimental Details
We conduct experiments on 800-sample training sets with a training batch size of 32, which leads to 25 iterations per epoch.
For each run, we optimize the neural network with 2,000 epochs, which is equivalent to 50,000 iterations. Given fixed
learning iterations, the learning rate is selected from U(1e− 4, 1e− 3).

E.1. Baselines

In our experiments, we design four adapted baselines, since this new task has never been explored before. The selection of
baselines is based on the following two questions.

• As invariant learning has been successfully applied in many representation learning tasks, can general invariant learning
principle still work for invariant function learning?

• Meta-learning techniques has been well designed to solved problems in dynamical systems due to their quick adaptation
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characteristics. However, there is no evidence that the quick adaptable functions are the invariant function that shares
across environments. Are they?

For the first question, since our method is based on enforcing independence which shares a similar philosophy as domain
adversarial neural network (Ganin et al., 2016), we consider other invariant methods going different ways. There are many
methods well-known in the field of invariant learning, but considering our invariant function learning formulation, we found
the discovery of invariant function requires independence that is different from the most typical "well performed across
all environments" invariant learning requirements. Therefore, as a validation of our guess, we adapt two widely used and
known invariant learning methods, IRM (Arjovsky et al., 2019) and VREx (Krueger et al., 2021). These two techniques are
directly applied to our framework with the same architecture and their typical hyper-parameters searching spaces:

• λirm ∼ U(1e− 2, 1e2)

• λvrex ∼ U(1e− 1, 1e3)

As shown in our result plot 4, the results are not surprising. That means that the function can perform well across multiple
environments is not the invariant function.

For the second question, our initial guess is that meta-learning is very sensitive to the distribution of the training set. If
certain pattern exists in multiple environments (not all), the meta-learning methods are prone to capture it as a part of the
meta-function, which satisfies their quick adaptation goals. In our experiments, we choose MAML (Finn et al., 2017)
and CoDA (Kirchmeyer et al., 2022) as our adapted baselines. CoDA is adapted since it uses hypernetwork as a full
network adaptor which is similar to our framework. However, CoDA is applied on coefficient-environments and requires
test-time adaptation without a trajectory encoder, leading to significant architecture differences. Therefore, we apply CoDA
as meta-learning techniques focusing on its low-dimension (2-dimension) environment representation and regularization.
MAML is selected as the most typical meta-learning baseline, which does not require the use of hypernetwork, and only
learns a meta function used to predict invariant trajectories. Their typical hyper-parameters searching spaces are shown as
follows.

• λcoda ∼ U(1e− 5, 1e− 3)

• λmaml ∼ U(1e− 3, 1) (Meta learning rate)

E.1.1. BASELINE DETAILS

For fair comparisons, we tried our best to make baselines as similar to our architecture as possible. So all the performance
gains come from our IFL principle.

Architecture:

To better distinguish the baselines, let’s denote our DIF framework without ê predictions (Figure 3 and remove the gϕ MLP
and ê branch) as DIF-Base.

• MAML: Only Forecastor in the DIF-Base (with MAML optimization) since MAML does meta-learning at the
optimization level.

• CoDA: DIF-Base and set the dimension of ẑe = 2 (2 is the original paper setting).

• IRM: DIF-Base. IRM regularization is at the loss level so no architecture change.

• VREx: DIF-Base. VREx regularization is also at the loss level.

Inputs and Outputs:

• MAML takes Xp and outputs the forecasting trajectory directly.
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• CoDA, IRM, VREx take Xp as input and output function representations ẑc and ẑe, then finally output the forcasting
trajectory. The same as DIF.

Training:

• MAML: MAML optimization on Forcaster.

• CoDA, IRM, VREx the same as DIF.

Inference: (Decoding Xc for the baselines)

• MAML: use the Forcaster with meta-parameters.

• CoDA, IRM, VREx: the same as DIF: use the fc branch.

E.2. Disentanglement of Invariant Function Setup

E.2.1. ARCHITECTURE

Transformer. For the trajectory encoder in our hypernetwork, we apply a 6-layer 8-head 256-dimension FFN trans-
former (Vaswani, 2017) with frequency positional encoding (Gehring et al., 2017). We tried different architectures like
GRUs (Cho, 2014), but the transformer encoder can provide the best in-domain test performance easily. We also sweeped to
the depth, width, and number of heads, and found that 6-layer 8-head 256-dimension FFN transformer is strong enough for
our ODE systems without making training difficult.

Function embedding. In the hidden function embedding space, we select the function embedding dimension to be 32 or 64,
while these two selections perform quite similar. For the MLPs used to disentangle and decode hidden function embedding,
we use 3-layer MLPs with ReLU as the activations. While for the decoder, the last layer projects the hidden function
embedding to parameterized function space Rm where m is the number of parameters in the derivative neural network.

Derivative function network. The derivative neural network is a 4-layer or 5-layer MLP with width 16 or 32, which takes
Xt ∈ Rd as input and output dXt

dt ∈ Rd. This neural network is transformed to be a functional in our implementation.

Discriminator. Our discriminator is a 3 to 6 layer MLP with width 64 or 128. The size of discriminator can be easily
chosen since the main goal of it is to discriminate the environment information in the hidden function space. Therefore, the
simplest way to filter non-qualified discriminators is using the prediction entropy of Pϕ(e|̂fe), since f̂e should contain rich
environment information, different to the prediction from f̂c. Our experiments also validate that the failure to distinguish f̂e
will always cause the failure of invariant function discovery, which is natural, since the adversarial training is based on the
optimal discriminators (Goodfellow et al., 2020).

Note that for all our MLPs, we apply one LayerNorm before each activation.4

E.2.2. TRAINING OBJECTIVES

We restate our three additional strategies here. Firstly, the adversarial training of f̂c will cause the loss of environment
information in f̂c, leading to the training difficulty of the discriminator; therefore, this discriminator is not only trained on f̂c
but also on f̂e with the same hyper-parameter λdis, i.e., minϕ,θ −EX,e∼P

[
logPϕ(e|f̂e)

]
. Secondly, instead of using the

large f̂c and f̂e as the input of the discriminator, we input the the corresponding embeddings zc and ze. Thirdly, to avoid the
use of a numerical or neural integrator which causes long training time, we follow (Mouli et al., 2024) to fit derivatives only.
That is, instead of using the inference forecaster p(X|hθc(Xp), X0), we calculate the derivatives of X using f̂ and f̂c, and
replace the MSE over trajectory matrices with the MSE over derivative matrices. Note that this modification only eliminates
the use of integrator for stability during training and thus does not affect our analysis and optimization goal.

We introduce our hyper-parameter searching space as follows.

4The code will be released upon acceptance.
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Figure 10: Ablation study on 3 DIF variants under 3 multi-environment ODE systems. For each pipeline, we provide model
candidates with 50+ random hyper-parameter selections in their searching spaces, i.e., more than 450 models in the figure.

• λc ∼ U(1e− 7, 1e− 4)

• λdis ∼ U(1e− 1, 1)

• λ′
adv ∼ U(1e2, 1e6)

• λadv = λc · λ′
adv

The most critical hyper-parameters are λc and λadv which control the information overlap between fc and f. Conceptually,
λc controls the conditional mutual information (MI) maximization in our invariant function learning principle, while λadv

enforces the independence constraint. The intensity of the independence enforcing λadv is dependent on the intensity of MI
maximization λc; thus, we set λadv according to λc, leading to λadv = λc · λ′

adv .

λdis is only discriminator training, which is relatively trivial according to our discriminator descriptions in Appx. E.2.1.

E.2.3. METRIC

Root mean square deviation (RMSE) is a commonly used metric, but it suffers difficulties when comparing datasets with
different value scales. Therefore, we normalize it using its standard deviation.

NRMSE =

√
EX∼p∥X − X̂∥22

Std(X)
(26)

E.3. Software and Hardware

Our implementation is under the architecture of PyTorch (Paszke et al., 2019). The deployment environments are Ubuntu
20.04 with 48 Intel(R) Xeon(R) Silver, 4214R CPU @ 2.40GHz, 755GB RAM, and graphics cards NVIDIA RTX 2080Ti.

F. Supplementary Experiments
F.1. Ablation Study

As a complementary ablation study of Sec. 5.5, we train two models by eliminating two important components from
the original model, namely, f pipeline and fc pipeline. The f pipeline removes the discriminator and only output f̂ to
the forecasting, which neglects the disentanglement process. The fc pipeline prunes the f̂ output while maintaining the
adversarial training process. As shown in Fig. 10, both f and fc pipelines fail to perform valid invariant function learning
aligning with our theoretical results. Specifically, the f pipeline faces difficulties in extracting invariant functions without
environment information. The unsatisfactory performance of the fc pipeline is attributed to the discriminator’s training
failure. This is because the training of the discriminator requires the capture of environment information, but the elimination
of the f̂ part also removes the training of ẑe, the critical environment information captor. Therefore, the discriminator loses
the most important environment information input, leading to training failure.
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Figure 11: Trajectory input length study on models trained with different training input length factors under 3 multi-
environment ODE systems.

Figure 12: Environment analysis on models trained with different numbers of training environments under 3 multi-
environment ODE systems.

F.2. Input Length and Environment Analysis

In order to ensure fairness, we fix the input length and the number of environments in our experiments. However, it is
also interesting to figure out the effects of the input trajectory length Tc and the number of environments on the model
performance. Fig. 11 shows the performance of DIF given different input length factor lt, where Tc = T

lt
. The results

indicate the input length does not affect the performance significantly, where the only variances are attributed to the training
difficulty of the transformer given different input lengths. Therefore, a shorter input length can perform slightly better given
the same training steps.

For the environment analysis, in addition to evaluations on the full set of environments, we benchmark model performance
on datasets with three and two training environments. Specifically, we select [Powered, Air, Spring] and [Powered, Air]
for ME-Pendulum; [Save, Fight, Resource] and [Save, Fight] for ME-Lotka-Volterra; and [Negative, Origin, Enlarge] and
[Negative, Origin] for ME-SIREpidemic. While not all possible environment combinations are evaluated, these selections
provide intriguing insights. As illustrated in Fig. 12, changes in the set of environments weakly affect model performance
on ME-Lotka-Volterra. For ME-Pendulum, however, the inclusion of each additional environment consistently improves
model performance. On ME-SIREpidemic, the performance boost observed with "3 envs" underscores the critical role of
the environment Enlarge.

Two key observations regarding the ME-SIREpidemic are worth noting. First, the average performance degradation on "4
envs" suggests a reduced focus on the important environment Enlarge due to the addition of the final environment Loop.
Second, the improvement in the best performance candidate demonstrates the additional benefits of the environment Loop.
These findings illustrate that while adding environments can enhance the best possible discovery of invariant functions, it
also increases the average training complexity that may cause average performance degradations.
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Table 7: Symbolic regression explanation comparisons.

Method ME-Pendulum ME-Lotka-Volterra ME-SIREpidemic

NRMSE SR Explanation NRMSE SR Explanation NRMSE SR Explanation

MAML 0.9704

dθt
dt

= ωt −
0.036 (θt + ωt)

eωt

dωt

dt
=

sin (θt)

−0.67
− 0.48 sin ((θt + 0.68) sin (ωt))

0.6774

dpt
dt

= qt
1

pt + 0.63
(−0.022)

dqt
dt

=
pt

pt

0.17 − qt + qtqt
+ δ

0.2673

dSt

dt
=

−StIt − It + cos (St)

0.69
dIt
dt

= 0.49St + esin (0.45St) − 0.11

dRt

dt
= cos (It sin (St)) (−0.087)

CoDA 0.9695

dθt
dt

= ωtρ sin (θt + ωt + 0.94) + ωt + 0.074

dωt

dt
=

sin (−θt + ωt (−0.20) + 0.37)

0.49
− 0.57

0.7097

dpt
dt

= (1.1− ptpt) 0.54

dqt
dt

= (pt + pt) (pt + qt (−0.26))− 0.66

0.3184

dSt

dt
=

−St + sin (St · 0.44) (−2.1)

0.44
dIt
dt

=
3.5St

St +
It

St−0.54

+ 0.097

dRt

dt
=

St

It + It +
eSt

It

+ 0.029

IRM 0.7042

dθt
dt

= ωt · 0.93
dωt

dt
= −θtα+ ρ

0.6989

dpt
dt

= −0.012

dqt
dt

= 0.083

0.9768

dSt

dt
= e−St+sin (St) − 1.7

dIt
dt

= sin

(
St

St + St +
β
St

−−0.12

)
dRt

dt
= 0.33− 0.021St

VREx 0.7274

dθt
dt

= ωt · 0.92
dωt

dt
= α (−1.1) θt

0.6877

dpt
dt

= −0.032

dqt
dt

= 0.12

0.4652

dSt

dt
= St (−It − 0.10β)

dIt
dt

=
Stβ

St + St +
β
St

+ 0.078

dRt

dt
= 0.070 +

sin (β)

eIt

Ours 0.3561

dθt
dt

= 0.99ωt

dωt

dt
= −0.97α2 sin (θt)

0.6194

dpt
dt

= 1.254pt − 0.38qtpt

dqt
dt

= 4.1pt − 0.30qt − γ

0.0652

dSt

dt
= −1.7StIt

dIt
dt

= 0.42StIt

dRt

dt
= −0.0088

GT NAN

dθt
dt

= ωt

dωt

dt
= −α2 sin (θt)

NAN

dpt
dt

= αpt − βptqt

dqt
dt

= δptqt − γqt

NAN

dSt

dt
= −β

StIt
St + It +Rt

dIt
dt

= β
StIt

St + It +Rt

dRt

dt
= 0

F.3. Symbolic Regression Explanation Comparisons

To further evaluate the performance differences between the proposed method and the baselines, we apply PySR to the four
baseline methods and obtain analytical explanations, as summarized in Tab. 7. The symbolic regression results provide an
intuitive understanding of performance in relation to different NRMSE values. Specifically, when the NRMSE approaches
1, the resulting explanations are largely meaningless. As the NRMSE decreases to around 0.7, the explanations become
more interpretable but may sometimes converge to oversimplified expressions, such as the IRM and VREx results on
ME-Lotka-Volterra. When the NRMSE approaches zero, the expressions become more reasonable but are not always
ideal due to the inherent limitations of PySR. This suggests that strong model performance does not necessarily guarantee
high-quality explanations, highlighting the performance constraints of the explainer (PySR).

F.4. Extra Visualizations

In this section, we present visualization comparisons for ME-Lotka-Volterra (Fig. 13) and ME-SIREpidemic (Fig. 14). The
results for ME-SIREpidemic closely align with its quantitative findings. For the more challenging task of ME-Lotka-Volterra,
our method’s predicted trajectories remain closer to the ground truth. In the Xc predictions, where most methods fail,
our predicted trajectory has turning points closest to the ground truth in terms of timing, although there are deviations in
magnitude (Fig. 13b). The complexity of the ME-Lotka-Volterra task arises from several factors, including the introduction
of exponential functions within environments, the distribution of environments, and the limited number of samples in each
environment. Addressing these challenges requires carefully designed benchmarks by domain experts, which we will discuss
further in the limitations section.

G. Efficient Hypernetwork Implementation

30



Discovering Physics Laws of Dynamical Systems via Invariant Function Learning

(a) X predictions using f̂ (b) Xc predictions using f̂c

Figure 13: Visualization of trajectory predictions on ME-Lotka-Volterra

(a) X predictions using f̂ (b) Xc predictions using f̂c

Figure 14: Visualization of trajectory predictions on ME-SIREpidemic

One of the major challenges that limits the usage of hypernetworks is the implementation complexity. Most current
implementations requires either re-implementing basic neural networks (von Oswald et al., 2020) or assigning predicted
weights to the main function (forecaster) one by one for each forward pass (Ortiz et al., 2023; Sudhakaran, 2022; Kirchmeyer
et al., 2022). To overcome these issues, we propose a Reference-based hypernetwork implementation technique that uses
pure PyTorch without introducing any new modules or CUDA kernels. Our proposed technique does not require reassigning
weights for each sample in one forward pass, i.e., for any continuous N training iterations with batch size of B and a
forecaster with M parameter variables, our computation complexity is O(NM +BM), instead of O(BMN) as previous
implementations.

Specifically, for every forward pass, we create a function parameter vector buffer ∈ Rm with fixed storage space, instead of
reshaping and assigning the predicted function parameters with complexity O(BM). As shown in Fig. 15, we consider
the derivative neural network parameter variables as storage space pointers, i.e., the network stores references instead of
matrices. The fractions of function parameter vector buffer are pointed by these pointers; thus, once the buffer’s values
change by the predicted function parameters, e.g., f̂ , the derivative network’s parameters will be changed automatically
without any assignment operators. To maintain the buffer’s fixed storage space, several in-place operations are applied to
maintains computational graphs and gradients.

G.1. Efficiency Comparisons

To evaluate the efficiency of our hypernetwork implementation, we compare it against several common implementation
approaches. Specifically, we measure the forward pass time of our model over 200 continuous iterations in training

Table 8: Hypernetwork implementation efficiency comparisons

Implementation Vectorization Copy Reference First Step Time (s) Avg Time ± Std (s) Speedup

Non-vectorized ✗ ✓ ✗ 0.2466 0.1818 ± 0.0601 1x
Module-based ✓ ✓ ✗ 0.1768 0.1513 ± 0.0737 1.2x
Functional-based ✓ ✗ ✗ 0.2013 0.0198 ± 0.0007 9.2x
Ours ✓ ✗ ✓ 0.1805 0.0108 ± 0.0006 16.8x
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mode, recording both the time for the first iteration and the average time for the subsequent iterations. While the first
iteration typically takes a similar amount of time across all implementations, their performance diverges significantly in the
subsequent iterations. As shown in Tab. 8, the Non-vectorized implementation represents methods that do not vectorize the
derivative function and therefore must run different derivative functions sequentially. Approaches like CoDA (Kirchmeyer
et al., 2022) attempt to vectorize the model by employing group-based convolution networks. However, these module-based
implementations rely on stateful PyTorch modules, requiring the derivative function module to be replicated during each
forward pass, which slows down the process. While these Module-based implementations offer a slight improvement over
non-vectorized methods due to the vectorization benefits, the performance gain is limited.
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Figure 15: Reference-based hyper-
network implementation.

In contrast, our vectorized Functional-based implementation leverages PyTorch’s
functional methods, achieving 9.2x speedup by avoiding the overhead associated
with stateful modules. Note that vectorizing hypernetworks using libraries such
as hypnettorch (von Oswald et al., 2020) can deliver similar speedups. Finally, our
Reference-based implementation, which eliminates parameter assignment after
the first iteration, nearly doubles the forward pass speed (16.8x) compared to
implementations that require such assignments. Notably, this optimization remains
applicable for potential future CUDA-based parallel hypernetwork implementa-
tions.
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