
Under review as a conference paper at ICLR 2021

NEW GCNN-BASED ARCHITECTURE FOR SEMI-
SUPERVISED NODE CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

The nodes of a graph existing in a specific cluster are more likely to connect to
each other than with other nodes in the graph. Then revealing some information
about the nodes, the structure of the graph (the graph edges) provides this opportu-
nity to know more information about the other nodes. From this perspective, this
paper revisits the node classification task in a semi-supervised scenario by graph
convolutional neural network. The goal is to benefit from the flow of information
that circulates around the revealed node labels. For this aim, this paper provides
a new graph convolutional neural network architecture. This architecture bene-
fits efficiently from the revealed training nodes, the node features, and the graph
structure. On the other hand, in many applications, non-graph observations (side
information) exist beside a given graph realization. The non-graph observations
are usually independent of the graph structure. This paper shows that the pro-
posed architecture is also powerful in combining a graph realization and indepen-
dent non-graph observations. For both cases, the experiments on the synthetic and
real-world datasets demonstrate that our proposed architecture achieves a higher
prediction accuracy in comparison to the existing state-of-the-art methods for the
node classification task.

1 INTRODUCTION

Node classification in graphs is generally an unsupervised learning task which refers to cluster-
ing (grouping) nodes with similar features. Revealing the labels for a small proportion of nodes
transforms the unsupervised node classification task to a semi-supervised learning problem. Semi-
supervised node classification on a purely graphical observation (a graph realization) has been in-
vestigated in the literature on real-world networks by providing various methods. For a brief survey
see Section 2.

Under the transductive semi-supervised learning setting, the goal is to predict the labels of unlabeled
nodes given the adjacency matrix of a graph, the feature matrix containing a set of features for all
nodes, and a few revealed node labels. There exist various methods for inferring the unlabeled nodes
such as (Kipf & Welling, 2016; Veličković et al., 2017). Most of the prominent existing methods
use either graph-based regularization, graph embedding, or graph convolutional neural networks in
a node domain or a spectral domain.

The structure of a graph (graph edges) allows a graph convolutional neural network to use a set of
fixed training nodes to predict the unlabeled nodes. Increasing the number of fixed training nodes
improves the accuracy of the predictions. But in practice, a few training nodes are available in the
training set. In this paper, we comprehensively investigate the way that the predicted labels can be
effectively involved in the training procedure to increase the prediction accuracy.

On the other hand, in many applications, non-graph observations (side information) exist beside a
given graph realization and its node feature matrix. See (Saad & Nosratinia, 2018) and references
therein for a brief introduction about the effects of side information on the community detection for
generative models. In practice, the feature matrix is not independent of the graph structure, while
the non-graph observations may be independent. Combining the feature matrix with the non-graph
observations is important especially for the case in which the quality of side information is not
obvious for the estimator.

1

Under review as a conference paper at ICLR 2021

In this paper, we propose a novel graph convolutional neural network architecture that benefits from
the predicted unlabeled nodes and improves the accuracy of prediction. Our proposed architecture
is also able to combine the provided side information with the graph structure and its feature matrix.
This combination achieves higher accuracy in comparison to the existing state-of-the-art methods.
To the best of our knowledge, this is the first time that the predicted labels in a graph are revisited
by a graph convolutional neural network to improve the accuracy. In addition, this is the first time
that the performance of graph convolutional neural networks has been investigated in the presence
of independent non-graph observations (side information).

2 RELATED WORK

Graph-based semi-supervised methods are typically classified into explicit and implicit learning
methods. In this section, we review the related work in both classes while the focus of this paper is
mainly on the graph convolutional neural network which belongs to the latter.

2.1 EXPLICIT GRAPH-BASED LEARNING

In the graph-based regularization methods, it is assumed that the data samples are located in a low
dimensional manifold. These methods use a regularizer to combine the low dimensional data with
the graph. In the graph-based regularization methods, the objective function of optimization is a
linear combination of a supervised loss function for the labeled nodes and a graph-based regular-
ization term with a hyperparameter. The hyperparameter makes a trade-off between the supervised
loss function and the regularization term. Graph Laplacian regularizer is widely used in the litera-
ture: a label propagation algorithm based on Gaussian random fields (Zhu et al., 2003), a variant of
label propagation (Talukdar & Crammer, 2009), a regularization framework by relying on the local
or global consistency (Zhou et al., 2004), manifold regularization (Belkin et al., 2006), a unified
optimization framework for smoothing language models on graph structures (Mei et al., 2008), and
deep semi-supervised embedding (Weston et al., 2012).

Besides the graph Laplacian regularization, there exist other methods based on the graph embed-
ding: DeepWalk (Perozzi et al., 2014) that uses the neighborhood of nodes to learn embeddings,
LINE (Tang et al., 2015) and node2vec (Grover & Leskovec, 2016) which are two extensions of
DeepWalk using a biased and complex random walk algorithm, and Planetoid (Yang et al., 2016)
which uses a random walk-based sampling algorithm instead of a graph Laplacian regularizer for
acquiring the context information.

2.2 IMPLICIT GRAPH-BASED LEARNING

Graph convolutional neural networks have attracted increasing attention recently, as an implicit
graph-based semi-supervised learning method. Several graph convolutional neural network methods
have been proposed in the literature: a diffusion-based convolution method which produces tensors
as the inputs for a neural network (Atwood & Towsley, 2016), a scalable and shallow graph con-
volutional neural network which encodes both the graph structure and the node features (Kipf &
Welling, 2016), a multi-scale graph convolution (Abu-El-Haija et al., 2018), an adaptive graph con-
volutional networks (Li et al., 2018), graph attention networks (Veličković et al., 2017), a variant of
attention-based graph neural network for semi-supervised learning (Thekumparampil et al., 2018),
and dual graph convolutional networks (Zhuang & Ma, 2018).

3 PROPOSED SEMI-SUPERVISED NODE CLASSIFICATION ARCHITECTURE

In this section, we start by stating some quick intuitions to clarify how revealing some node labels
may help the estimator to classify other nodes. We define the graph convolutional neural network
semi-supervised problem and analyze our idea for revealed node labels. Then we propose our semi-
supervised node classification architecture. This section is finished by providing a technique for
extracting side information in the proposed architecture based on the adjacency matrix.

2

Under review as a conference paper at ICLR 2021

3.1 INTUITION

We start by a simple example to illustrate how revealed node labels may help an estimator to predict
the labels of unlabeled nodes. Assume in a given graph with k classes, the labels of all nodes are
revealed except for two nodes i and j. The goal is to classify node i. A Bayesian hypothesis testing
problem with k hypotheses is considered. Let Di be a vector of random variables such that l-th
element denotes the number of edges from node i to other nodes with revealed labels in the cluster
l. Also, let D′

i be a vector whose l-th element denotes the number of edges from node i to other
unlabeled nodes (node j in this example) in the cluster l. Since the estimator does not know that
node j belongs to which class, D′

i is also an unknown random variable. The random variable H
takes the values in the set {1, · · · , k}. For node i, we want to infer the value of H by observing a
realization of Di. Then we have to select the most likely hypothesis conditioned on Di, i.e.,

maximize
k

P(H = k|Di = di),

which is the Maximum A Posteriori (MAP) estimator. Let A denote the adjacency matrix of the
graph. With no prior distribution on H , when Aij = 0, the MAP estimator is reorganized as

maximize
k

P(Di = di|H = k), (1)

which can be solved by k − 1 pairwise comparisons. When Aij = 1,

P(H = k|Di = di) =
P(Di = di, H = k)

P(Di = di)
=

∑
d′
i∈S P(Di = di, D

′
i = d′i, H = k)

P(Di = di)
,

where S , {s = {0, 1}k : sT1 = 1}. Assume there exists no prior distribution on H . Then the
MAP estimator is reorganized as

maximize
k

∑
d′
i∈S

P(Di = di, D
′
i = d′i|H = k). (2)

A comparison between equation 1 and equation 2 shows that how revealing true node labels reduces
the complexity of optimum estimator.

3.2 PROBLEM DEFINITION & ANALYSIS

The focus of this paper is on the graph-based semi-supervised node classification. For a given graph
with n nodes, let A denote an n×n adjacency matrix and X denote an n×m feature matrix, where
m is the number of features. Under a transductive learning setting, the goal is to infer unknown
labels Yu, given the adjacency matrix A, the feature matrix X , and L revealed labels denoted by
Yl (fixed training nodes). Without loss of generality, assume the first L nodes of the graph are the
revealed labels. Then Y , [Yl, Yu] denotes the vector of all node labels (labeled and unlabeled
nodes). On the other hand, assume there exists a genie that gives us a vector of side information Ys
with length n such that conditioned on the true labels, Ys is independent of the graph edges. Without
loss of generality, it is assumed that the entries of Ys are a noisy version of the true labels. In this
paper, we suppose that the feature matrix X depends on the graph, conditioned on the true labels.
To infer the unlabeled nodes, the Maximum A Posteriori (MAP) estimator for this configuration is

P(Y |A,X, Ys, Yl) =
P(A,X, Ys, Yl|Y)P(Y)

P(A,X, Ys, Yl)
∝ P(A,X, Yl|Y)P(Ys|Y),

where Y is drawn uniformly from the set of labels, i.e., there is no prior distribution on node labels.
Then we are interested in the optimal solution of the following maximization:

f , maximize
Y

logP(A,X, Yl|Y) + logP(Ys|Y).

Assume Ŷ and Ỹ are the primal optimal solutions of maximizing logP(A,X, Yl|Y) and
logP(Ys|Y), respectively. Then,

logP(A,X, Yl|Ỹ) + logP(Ys|Ỹ) ≤ f ≤ logP(A,X, Yl|Ŷ) + logP(Ys|Ỹ),

3

Under review as a conference paper at ICLR 2021

or equivalently

logP(A,X, Yl|Ỹ) ≤ f − logP(Ys|Ỹ) ≤ logP(A,X, Yl|Ŷ).

For squeezing f − logP(Ys|Ỹ) from above and below, it suffices to provide an algorithm to make Ŷ
and Ỹ as close as possible by changing the entries of training labels Yl. Recall the assumption that
there exists a genie that provides an independent graph side information. This assumption can be
relaxed and the side information can be extracted from either the feature matrix or the adjacency ma-
trix of a graph. Note that extracting side information from both the feature matrix and the adjacency
matrix makes the side information completely dependent on both inputs of a graph convolutional
neural network.

3.3 PROPOSED MODEL

In this paper, the side information either is given directly or generated from the feature or the adja-
cency matrix. Figure 1 shows our proposed architecture with three blocks.

GCN

Correlated
Recovery

Decision
Maker

A

X

Z

Ŷ

S

Ys

Ẑg

Figure 1: The block diagram of the proposed architecture.

The GCN block is a variant of classical graph convolutional neural network (Kipf & Welling, 2016)
that takes X and A as inputs and returns Ẑg which is an n × k matrix, where k is the number of
classes. Note that Ẑg(i, j) determines the probability that the node i belongs to the class j in the
graph. The correlated recovery block is applied when the side information is not given directly.
In community detection, the correlated recovery refers to the recovering of node labels better than
random guessing. The input of the correlated recovery is either the feature matrix X or a function
of the adjacency matrix A. The output of the correlated recovery block is Ys which is a vector with
length n. The decision maker decides how to combine the provided side information Ys and the
output of the GCN block Ẑg . The decision maker returns the predicted labels Ŷ which is a vector
with length n and a set of node indices S that are used for defining the loss function. Then the loss
function for this architecture is defined as

L(Ys, Ŷ , S) ,
1

|S|
∑
i∈S

L0(Ys(i), Ŷ (i)),

where L0(·, ·) is the cross-entropy loss function, and the index i in Ŷ (i) and Ys(i) refers to i-th
entry.

LetE index the epochs during the training procedure andEu denote the epoch in which the decision
maker starts to make a change in the number of training nodes.

• Phase (1): when E < Eu, the decision maker embeds the fixed training labels Yl inside
the side information Ys, resulting in Ys(i) = Yl(i) for all i ∈ {fixed training node indices}.
The decision maker returns Ŷ and the set of training nodes S.

• Phase (2): when E ≥ Eu, the decision maker first embeds the fixed training labels Yl
inside the side information Ys. Then the decision maker uses Ẑg and determines a set of
nodes S1 such that each element of S1 belongs to a specific class with a probability at least
Pth. Note that Pth is a threshold that evaluates the quality of the selected nodes. On the
other hand, the decision maker obtains a set of nodes S2 such that for each element of
S2 both the corresponding side information and the prediction of the graph convolutional
neural network refer to the same class. Then,

S , (S1 ∩ S2) ∪ {fixed training node indices}.

4

Under review as a conference paper at ICLR 2021

Phase (2) continues until the prediction accuracy for the fixed training nodes be grater than
Fth; Otherwise, the training continues based on the last obtained set S. In this procedure,
Eu, Pth, and Fth are three hyperparameters that should be tuned.

Assume at epoch Eu, the optimal solution for maximizing P(A,X, Yl|Y) is Ŷ Eu
g which is extracted

from Ẑg . The decision maker uses Ẑg and Ys to obtain a set of nodes S that is used for the next
training iteration. Also, since the neural networks are robust to the noisy labels (Rolnick et al.,
2017; Hendrycks et al., 2018; Ghosh et al., 2017), the selected nodes will have enough quality
to be involved in the training process by choosing an appropriate value for Pth. Note that the
hyperparameter Pth determines the quality of the selected nodes. Then at epoch Eu+1, the training
is based on a new training set Y Eu

l , {Ys(i) : i ∈ S} which includes the fixed training labels in Yl.
Let Ŷ Eu+1

g be the optimal solution for maximizing P(A,X, Y Eu

l |Y). Note that the side information
Ys is more similar to Y Eu

l than Yl. Then Ỹ is more similar to Ŷ Eu+1
g than Ŷ Eu

g and the idea follows.

3.4 EXTRACTING SIDE INFORMATION

For extracting side information that is as much as possible independent from the output of the GCN
block, the side information is extracted either from the given feature matrix or the adjacency matrix
of the graph. Define the r-neighborhood matrix Ar as

[Ar]ij ,
|Ni(r) ∩Nj(r)|
|Ni(r) ∪Nj(r)|

,

where Ni(r) is the set of nodes that are in a distance with radius r of node i. For extracting side
information from the adjacency matrix, a classifier is trained by the r-neighborhood matrix and
the training nodes, while r is a hyperparameter that must be tuned. A similar idea is represented
in (Abbe & Sandon, 2015) in which the authors use a variant of r-neighborhood matrices and solve
a set of linear equations to theoretically determine whether a pair of nodes are in the same cluster or
not. On the other hand, for extracting side information from the feature matrix, a classifier is trained
directly based on the feature matrix X and the training nodes.

4 EXPERIMENTS

The proposed architecture in Section 3 is tested under a number of experiments on synthetic and
real-world datasets: semi-supervised document classification on three real citation networks, semi-
supervised node classification under the stochastic block models with a different number of classes,
and semi-supervised node classification in the presence of noisy labels side information which is
independent of graph edges for both the synthetic and real datasets.

4.1 DATASETS & SIDE INFORMATION

Citation Networks: Cora, Citeseer, and Pubmed are three common citation networks that have
been investigated in previous studies. In these networks, articles are considered as nodes. The
article citations determine the edges connected to the corresponding node. Also, a sparse bag-of-
words vector, extracted from the title and the abstract of each article, is used as a vector of features
for that node. Table 1 shows the properties of these real datasets in detail.

Table 1: The properties of the real datasets for the semi-supervised node classification.

Real Dataset Nodes Edges Classes Features Training Nodes

Cora 2708 5429 7 1433 140
Citeseer 3327 4732 6 3703 120
Pubmed 19717 44338 3 500 60

Stochastic Block Model (SBM): The stochastic block model is a generative model for random
graphs which produces graphs containing clusters. Here, we consider a stochastic block model with
n = 2000 nodes and k classes. Without loss of generality, assume the true label for each node is

5

Under review as a conference paper at ICLR 2021

drawn uniformly from the set {0, · · · , k − 1}. Under this model, if two nodes belong to the same
class then an edge is drawn between them with probability p; Otherwise, these nodes are connected
to each other with probability q. Table 2 summarizes the properties of the stochastic block models
in our experiments. Also, Figure 2 shows three realizations of the described generative model with
the parameters in Table 2. In this paper, a realization of the stochastic block model, based on the
parameters in Table 2 with k classes, is briefly called k-SBM dataset.

Table 2: The properties of the synthetic dataset for the semi-supervised node classification.

Synthetic Dataset Nodes Classes p q Training Nodes

k-SBM n = 2000 k ∈ {3, 4, 5} 5× logn
n

1× logn
n

20k

(a) k = 3 (b) k = 4 (c) k = 5

Figure 2: Three realizations of k-SBM with 2000 nodes and a various number of classes.

Noisy Labels Side Information: We consider a noisy version of the true label for each node as
synthetic side information. This information is given to the decision maker to investigate the effect
of a non-graph observation which is completely independent of the graph edges. Under the noisy
labels side information, the decision maker observes the true label of each node with probability α;
Otherwise, the decision maker observes a value that is drawn uniformly from the incorrect labels.

4.2 EXPERIMENTAL SETTINGS

For the GCN block in Figure 1, a two-layer graph convolutional neural network is trained with ReLu
and softmax activation functions at the hidden and output layers, respectively. For real datasets,
we exactly follow the same data splits in (Kipf & Welling, 2016) including 20 nodes per class
for training, 500 nodes for the validation, and 1000 nodes for the test. For k-SBM datasets, we
follow a data splitting similar to the one used for the real datasets. Then it is randomly considered
20 nodes per class for the training, 500 nodes for the validation, and 1000 nodes for the test. The
weights of the neural networks are initialized by the Glorot initialization in (Glorot & Bengio, 2010).
Adam (Kingma & Ba, 2014) optimizer with specific learning rates for phase (1) and phase (2) is
applied. Also, the cross-entropy loss is used for all datasets. Table 3 summarizes the values of
hyperparameters that are picked for each dataset in the experiments.

Table 3: Hyperparameters for the proposed architecture experiments.

Hyperparameters Cora Citeseer Pubmed k-SBM

Pth 0.55 0.80 0.70 0.50
Fth 0.99 0.80 1.00 0.50
Eu 50 80 80 150
Neurons 128 128 64 16
Maximum Epochs 250 200 200 300
L2 Regularization Factor 8× 10−5 8× 10−5 4× 10−4 5× 10−5

Learning Rate for Phase 1 0.01 0.01 0.01 0.01
Learning Rate for Phase 2 0.005 0.05 0.002 0.01
Correlated Recovery Input(s) A4 X A1 A,A1

Correlated Recovery Classifier GBC GBC GBC GCNN

6

Under review as a conference paper at ICLR 2021

Throughout this paper, a gradient boosting classifier and a graph convolution neural network clas-
sifier are used for real and synthetic datasets, respectively, as a classifier in the correlated recovery
block.

4.3 BASELINES

For the synthetic dataset either with or without the synthetic side information, the proposed ar-
chitecture is compared with the architecture in (Kipf & Welling, 2016). When the synthetic side
information is not available, our architecture benefits from correlated recovery to extract the side in-
formation. For the real datasets, the architecture is compared with several state-of-the-art methods.
These methods have been listed in Table 7 including graph Laplacian regularized methods (Brandes
et al., 2007; Zhu et al., 2003; Zhou et al., 2004; Yang et al., 2016) and deep graph embedding meth-
ods (Veličković et al., 2017; Zhuang & Ma, 2018; Du et al., 2017; Abu-El-Haija et al., 2018). The
comparisons are based on the reported prediction accuracy in each paper for each dataset.

5 RESULTS

In this section, we report the average prediction accuracy on the test set for the proposed architecture
by running 100 repeated runs with random initializations for each dataset. The presented results have
three parts: investigating the effect of various classifiers (in the correlated recovery block) on the
accuracy performance of the proposed architecture, showing the merit of the presented method in
dealing with a non-graph observation which is independent of the graph edges, and expressing the
superiority of the proposed architecture in comparison to the existing methods. Unless otherwise
noted, the experiments in this section follow the hyperparameters represented in Table 3.

Table 4 compares the prediction accuracy of various classifiers in the correlated recovery block in
Figure 1. In Table 4, for each dataset, either the r-neighborhood matrix Ar or the feature matrix
X is considered as the classifier input. For each classifier and each dataset, Ar and other classifier
hyperparameters have been chosen appropriately to maximize the accuracy on the validation set.
Note that for k-SBM datasets the feature matrix does not exist, i.e., X = I. Then the extracted side
information only based on the feature matrix is not reliable.

Table 4: Prediction accuracy (in percent) of the proposed architecture using various classifiers in the
correlated recovery.

Classifier Input(s) Cora Citeseer Pubmed k-SBM

k = 3 k = 4 k = 5

Neural Network X 80.3 56.9 78.5 66.9 39.7 25.8
Neural Network Ar 83.4 74.0 79.8 99.1 94.9 83.4
Gradient Boosting X 83.5 74.8 79.5 33.3 24.8 19.8
Gradient Boosting Ar 84.7 73.0 81.0 99.1 95.1 84.8
Graph Convolution Network X,A 83.1 74.2 79.5 93.8 82.4 64.3
Graph Convolution Network Ar, A 83.4 73.5 80.4 99.3 96.8 91.2

Table 5 summarizes the results which compare the proposed method with the GCN (Kipf & Welling,
2016) for both real and synthetic datasets. The results show that without independent side infor-
mation, the accuracy of the proposed method outperforms the traditional GCN method because it
benefits from the extracted side information. Also, Table 5 makes a comparison between the qual-
ity of the extracted side information and synthetic noisy labels side information with various noise
parameters α.

Note that in Table 5, the synthetic side information is not combined with the feature matrix because it
is assumed that the quality of the side information is unknown. If the synthetic side information has
enough and acceptable quality, it can be embedded in the feature matrix. This embedding improves
the accuracy of both the classical GCN and the proposed architecture. But if the side information
does not have enough quality, embedding reduces the accuracy of both methods dramatically. Con-
sidering this fact, Table 6 shows the results when the synthetic side information is combined with
the feature matrix for both classical GCN and the proposed architecture. Then we need to create a

7

Under review as a conference paper at ICLR 2021

Table 5: Prediction accuracy (in percent) of the proposed architecture and GCN (Kipf & Welling,
2016) in the presence of extracted or synthetic side information.

Method Synthetic
Side Information Cora Citeseer Pubmed k-SBM

k = 3 k = 4 k = 5

GCN (Kipf & Welling, 2016) without 81.5 70.3 79.0 96.5 86.9 75.1
Active GCN (ours) without 84.7 74.8 81.0 99.3 96.7 90.6
Active GCN (ours) α = 0.7 85.8 75.3 80.9 99.4 97.2 93.0
Active GCN (ours) α = 0.5 85.1 74.9 80.3 99.2 96.7 90.8
Active GCN (ours) α = 0.3 84.1 73.9 79.4 99.0 95.5 86.3

new feature matrix by combining the side information with the feature matrix X . Therefore, for real
datasets, the new feature matrix is created by stacking the one-hot representation of synthetic side
information to the given feature matrix. Also, for synthetic datasets, the one-hot representation of
side information is used as a newly created feature matrix instead of the identity matrix.

Table 6: Prediction accuracy (in percent) of the proposed architecture and GCN (Kipf & Welling,
2016) in the presence of synthetic side information embedded in the feature matrix.

Method Synthetic
Side Information Cora Citeseer Pubmed k-SBM

k = 3 k = 4 k = 5

GCN (Kipf & Welling, 2016) α = 0.7 86.4 76.4 82.7 98.4 96.0 92.4
Active GCN (ours) α = 0.7 88.7 80.6 83.3 98.6 96.2 92.9
GCN (Kipf & Welling, 2016) α = 0.5 83.6 72.6 74.7 87.1 84.2 78.7
Active GCN (ours) α = 0.5 86.7 77.7 74.5 83.5 83.2 78.6
GCN (Kipf & Welling, 2016) α = 0.3 81.0 68.8 66.8 32.1 42.0 44.4
Active GCN (ours) α = 0.3 84.0 74.0 60.9 29.1 37.3 43.1

Finally, the accuracy of the proposed architecture is compared with the reported accuracy of several
state-of-the-art methods. The results are summarized in Table 7. The proposed architecture achieves
higher accuracy in comparison to all existing methods for Cora, Citeseer, and Pubmed datasets. The
results verify the proposed idea in Section 3 that improves the prediction accuracy by revealing more
node labels and allowing the nodes of a graph to access more information about the other nodes.

Table 7: Prediction accuracy (in percent) of various semi-supervised node classification methods.

Method Cora Citeseer Pubmed

Modularity Clustering (Brandes et al., 2007) 59.5 60.1 70.7
SemiEmb (Weston et al., 2012) 59.0 59.6 71.1
DeepWalk (Zhou et al., 2004) 67.2 43.2 65.3
Gaussian Fields (Zhu et al., 2003) 68.0 45.3 63.0
Graph Embedding (Planetoid) (Yang et al., 2016) 75.7 64.7 77.2
DCNN (Atwood & Towsley, 2016) 76.8 - 73.0
GCN (Kipf & Welling, 2016) 81.5 70.3 79.0
MoNet (Monti et al., 2017) 81.7 - 78.8
N-GCN (Abu-El-Haija et al., 2018) 83.0 72.2 79.5
GAT (Veličković et al., 2017) 83.0 72.5 79.0
AGNN (Thekumparampil et al., 2018) 83.1 71.7 79.9
TAGCN (Du et al., 2017) 83.3 72.5 79.0
DGCN (Zhuang & Ma, 2018) 83.5 72.6 80.0
LSM-GAT (Ma et al., 2019) 82.9 73.1 77.6
SBM-GCN (Ma et al., 2019) 82.2 74.5 78.4

Active GCN (ours) 84.7 74.8 81.0

8

Under review as a conference paper at ICLR 2021

REFERENCES

Emmanuel Abbe and Colin Sandon. Community detection in general stochastic block models:
Fundamental limits and efficient algorithms for recovery. In 2015 IEEE 56th Annual Symposium
on Foundations of Computer Science, pp. 670–688. IEEE, 2015.

Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee. N-gcn: Multi-scale graph
convolution for semi-supervised node classification. arXiv preprint arXiv:1802.08888, 2018.

James Atwood and Don Towsley. Diffusion-convolutional neural networks. In Advances in neural
information processing systems, pp. 1993–2001, 2016.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. Journal of machine learning research, 7
(Nov):2399–2434, 2006.

Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Gorke, Martin Hoefer, Zoran Nikoloski,
and Dorothea Wagner. On modularity clustering. IEEE transactions on knowledge and data
engineering, 20(2):172–188, 2007.

Jian Du, Shanghang Zhang, Guanhang Wu, José MF Moura, and Soummya Kar. Topology adaptive
graph convolutional networks. arXiv preprint arXiv:1710.10370, 2017.

Aritra Ghosh, Himanshu Kumar, and PS Sastry. Robust loss functions under label noise for deep
neural networks. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864, 2016.

Dan Hendrycks, Mantas Mazeika, Duncan Wilson, and Kevin Gimpel. Using trusted data to train
deep networks on labels corrupted by severe noise. In Advances in neural information processing
systems, pp. 10456–10465, 2018.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive graph convolutional neural
networks. In Thirty-second AAAI conference on artificial intelligence, 2018.

Jiaqi Ma, Weijing Tang, Ji Zhu, and Qiaozhu Mei. A flexible generative framework for graph-based
semi-supervised learning. In Advances in Neural Information Processing Systems, pp. 3276–
3285, 2019.

Qiaozhu Mei, Duo Zhang, and ChengXiang Zhai. A general optimization framework for smoothing
language models on graph structures. In Proceedings of the 31st annual international ACM SIGIR
conference on Research and development in information retrieval, pp. 611–618, 2008.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5115–
5124, 2017.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

9

Under review as a conference paper at ICLR 2021

David Rolnick, Andreas Veit, Serge Belongie, and Nir Shavit. Deep learning is robust to massive
label noise. arXiv preprint arXiv:1705.10694, 2017.

Hussein Saad and Aria Nosratinia. Community detection with side information: Exact recovery
under the stochastic block model. IEEE Journal of Selected Topics in Signal Processing, 12(5):
944–958, 2018.

Partha Pratim Talukdar and Koby Crammer. New regularized algorithms for transductive learning.
In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp.
442–457. Springer, 2009.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale
information network embedding. In Proceedings of the 24th international conference on world
wide web, pp. 1067–1077, 2015.

Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li. Attention-based graph neural
network for semi-supervised learning. arXiv preprint arXiv:1803.03735, 2018.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. Deep learning via semi-
supervised embedding. In Neural networks: Tricks of the trade, pp. 639–655. Springer, 2012.

Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning
with graph embeddings. arXiv preprint arXiv:1603.08861, 2016.

Dengyong Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard Schölkopf. Learn-
ing with local and global consistency. In Advances in neural information processing systems, pp.
321–328, 2004.

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the 20th International conference on Machine
learning (ICML-03), pp. 912–919, 2003.

Chenyi Zhuang and Qiang Ma. Dual graph convolutional networks for graph-based semi-supervised
classification. In Proceedings of the 2018 World Wide Web Conference, pp. 499–508, 2018.

10

	Introduction
	Related Work
	Explicit Graph-Based Learning
	Implicit Graph-Based Learning

	Proposed Semi-Supervised Node Classification Architecture
	Intuition
	Problem Definition & Analysis
	Proposed Model
	Extracting Side Information

	Experiments
	Datasets & Side Information
	Experimental Settings
	Baselines

	Results

