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Abstract

Influence functions efficiently estimate the effect of removing a single training data
point on a model’s learned parameters. While influence estimates align well with
leave-one-out retraining for linear models, recent works have shown this alignment
is often poor in neural networks. In this work, we investigate the specific factors
that cause this discrepancy by decomposing it into five separate terms. We study
the contributions of each term on a variety of architectures and datasets and how
they vary with factors such as network width and training time. While practical
influence function estimates may be a poor match to leave-one-out retraining for
nonlinear networks, we show that they are often a good approximation to a different
object we term the proximal Bregman response function (PBRF). Since the PBRF
can still be used to answer many of the questions motivating influence functions
such as identifying influential or mislabeled examples, our results suggest that
current algorithms for influence function estimation give more informative results
than previous error analyses would suggest.

1 Introduction

The influence function [Hampel, 1974, Cook, 1979] is a classic technique from robust statistics that
estimates the effect of deleting a single data example (or a group of data examples) from a training
dataset. Formally, given a neural network with learned parameters θ⋆ trained on a dataset D, we are
interested in the parameters θ⋆

−z learned by training on a dataset D − {z} constructed by deleting
a single training example z from D. By taking the second-order Taylor approximation to the cost
function around θ⋆, influence functions approximate the parameters θ⋆

−z without the computationally
prohibitive cost of retraining the model. Since Koh and Liang [2017] first deployed influence
functions in machine learning, influence functions have been used to solve various tasks such as
explaining model’s predictions [Koh and Liang, 2017, Han et al., 2020], relabelling harmful training
examples [Kong et al., 2021], carrying out data poisoning attacks [Koh et al., 2022], increasing
fairness in models’ predictions [Brunet et al., 2019, Schulam and Saria, 2019], and learning data
augmentation techniques [Lee et al., 2020].

When the training objective is strongly convex (e.g., as in logistic regression with L2 regularization),
influence functions are expected to align well with leave-one-out (LOO) or leave-k-out retraining [Koh
and Liang, 2017, Koh et al., 2019, Izzo et al., 2021]. However, Basu et al. [2020a] showed that
influence functions in neural networks often do not accurately predict the effect of retraining the
model and concluded that influence estimates are often “fragile” and “erroneous”. Because of the
poor match between influence estimates and LOO retraining, influence function methods are often
evaluated with alternative metrics such as the detection rate of maliciously corrupted examples using
influence scores [Khanna et al., 2019, Koh and Liang, 2017, Schioppa et al., 2021, K and Søgaard,
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Figure 1: Comparison of test loss differences computed by influence function (IF), leave-one-out (LOO)
retraining, and our proximal Bregman response function (PBRF). Each point corresponds to the individual effect
of removing one training example. Influence estimates align well with true retraining for (left) logistic regression
(LR) but poorly for (middle) multilayer perceptrons (MLP). While influence functions in neural networks do not
accurately predict the effect of retraining the model, they are still a good approximation to (right) the PBRF.

2021]. However, these indirect signals make it difficult to develop algorithmic improvements to
influence function estimation. If one is interested in improving certain aspects of influence function
estimation, such as the linear system solver, it would be preferable to have a well-defined quantity
that influence function estimators are approximating so that algorithmic choices could be directly
evaluated based on the accuracy of their estimates.

In this work, we investigate the source of the discrepancy between influence functions and LOO
retraining in neural networks. We decompose the discrepancy into five components: (1) the difference
between cold-start and warm-start response functions (a concept elaborated on below), (2) an implicit
proximity regularizer, (3) influence estimation on non-converged parameters, (4) linearization, and
(5) approximate solution of a linear system. This decomposition was chosen to capture all gaps and
errors caused by approximations and assumptions made in applying influence functions to neural
networks. We empirically evaluate the contributions of each component on binary classification,
regression, image reconstruction, image classification, and language modeling tasks and show that,
across all tasks, components (1–3) are most responsible for the discrepancy between influence
functions and LOO retraining. We further investigate how the contribution of each component
changes in response to the change in network width and depth, weight decay, training time, damping,
and the number of data points being removed.

Moreover, we show that while influence functions for neural networks are often a poor match to LOO
retraining, they are a much better match to what we term the proximal Bregman response function
(PBRF). Intuitively, the PBRF approximates the effect of removing a data point while trying to keep
the predictions consistent with those of the (partially) trained model. From this perspective, we
reframe misalignment components (1–3) as simply reflecting the difference between LOO retraining
and the PBRF. The gap between the influence function estimate and the PRBF only comes from
sources (4) and (5), which we found empirically to be at least an order of magnitude smaller for most
neural networks. As a result, on a wide variety of tasks, influence functions closely align with the
PBRF while failing to approximate the effect of retraining the model, as shown in Figure 1.

The PBRF can be used for many of the same use cases that have motivated influence functions, such
as finding influential or mislabeled examples [Schioppa et al., 2021] and carrying out data poisoning
attacks [Koh and Liang, 2017, Koh et al., 2022], and can therefore be considered an alternative
to LOO retraining as a gold standard for evaluating influence functions. Hence, we conclude that
influence functions applied to neural networks are not inherently “fragile” as is often believed [Basu
et al., 2020a], but instead can be seen as giving accurate answers to a different question than is
normally assumed.

2 Related Work

Instance-based interpretability methods are a class of techniques that explain a model’s predictions in
terms of the examples on which the model was trained. Methods of this type include TracIn [Pruthi
et al., 2020], Representer Point Selection [Yeh et al., 2018], Grad-Cos and Grad-Dot [Charpiat
et al., 2019, Hanawa et al., 2021], MMD-critic [Kim et al., 2016], unconditional counterfactual
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explanations [Wachter et al., 2018], and of central focus in this paper, influence functions. Since its
adoption in machine learning by Koh and Liang [2017], multiple extensions and improvements upon
influence functions have also been proposed, such as variants that use Fisher kernels [Khanna et al.,
2019], higher-order approximations [Basu et al., 2020b], tricks for faster and scalable inference [Guo
et al., 2021, Schioppa et al., 2021], group influence formulations [Koh et al., 2019, Basu et al., 2020b],
and relative local weighting [Barshan et al., 2020]. However, many of these methods rely on the same
strong assumptions made in the original influence function derivation that the objective needs to be
strongly convex and influence functions must be computed on the optimal parameters.

In general, influence functions are assumed to approximate the effects of leave-one-out (LOO)
retraining from scratch, the parameters of the network that are trained without a data point of interest.
Hence, measuring the quality of influence functions is often performed by analyzing the correlation
between LOO retraining and influence function estimations [Koh and Liang, 2017, Basu et al.,
2020a,b, Yang and Chaudhuri, 2022]. However, recent empirical analyses have demonstrated the
fragility of influence functions and a fundamental misalignment between their assumed and actual
effects [Basu et al., 2020a, Ghorbani et al., 2019, K and Søgaard, 2021]. For example, Basu et al.
[2020a] argued that the accuracy of influence functions in deep networks is highly sensitive to network
width and depth, weight decay strength, inverse-Hessian vector product estimation methodology, and
test query point by measuring the alignment between influence functions and LOO retraining. Because
of the inherent misalignment between influence estimations and LOO retraining in neural networks,
many works often evaluate the accuracy of the influence functions on an alternative metric, such as
the recovery rate of maliciously mislabelled or poisoned data using influence functions [Khanna et al.,
2019, Koh and Liang, 2017, Schioppa et al., 2021, K and Søgaard, 2021]. In this work, instead of
interpreting the misalignment between influence functions and LOO retraining as a failure, we claim
that it simply reflects that influence functions answer a different question than is typically assumed.

3 Background

Consider a prediction task from an input space X to a target space T where we are given a finite
training dataset Dtrain = {(x(i), t(i))}Ni=1. Given a data point z = (x, t), let y = f(θ,x) be the
prediction of the network parameterized by θ ∈ Rd and L(y, t) be the loss (e.g., squared error or
cross-entropy). We aim to solve the following optimization problem:

θ⋆ = argmin
θ∈Rd

J (θ) = argmin
θ∈Rd

1

N

N∑
i=1

L(f(θ,x(i)), t(i)), (1)

where J (·) is the cost function. If the regularization (e.g., L2 regularization) is imposed in the cost
function, we fold the regularization terms into the loss function. We summarize the notation used in
this paper in Appendix A.

3.1 Downweighting a Training Example

The training objective in Eqn. 1 aims to find the parameters that minimize the average loss on all
training examples. Herein, we are interested in studying the change in optimal model parameters
when a particular training example z = (x, t) ∈ Dtrain is removed from the training dataset, or more
generally, when the data point z is downweighted by an amount ϵ ∈ R. Formally, this corresponds to
minimizing the following downweighted objective:

θ⋆
−z,ϵ = argmin

θ∈Rd

Q−z(θ, ϵ) = argmin
θ∈Rd

J (θ)− L(f(θ,x), t)ϵ. (2)

When ϵ = 1/N, the downweighted objective reduces to the cost over the dataset with the example z
removed, up to a constant factor. To see how the optimum of the downweighted objective responds to
changes in the downweighting factor ϵ, we define the response function r⋆−z : R → Rd by:

r⋆−z(ϵ) = argmin
θ∈Rd

Q−z(θ, ϵ), (3)

where we assume that the downweighted objective is strongly convex and hence the solution to
the downweighted objective is unique given some factor ϵ. Under these assumptions, note that
r⋆−z(0) = θ⋆ and the response function is differentiable at 0 by the Implicit Function Theorem [Krantz
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and Parks, 2002, Griewank and Walther, 2008]. Influence functions approximate the response function
by performing a first-order Taylor expansion around ϵ0 = 0:

r⋆−z,lin(ϵ) = r⋆−z(ϵ0) +
dr⋆−z

dϵ

∣∣∣∣
ϵ=ϵ0

(ϵ− ϵ0) = θ⋆ + (∇2
θJ (θ⋆))−1∇θL(f(θ⋆,x), t)ϵ. (4)

We refers readers to Van der Vaart [2000] and Appendix B for a detailed derivation. The optimal
parameters trained without z can then be approximated by plugging in ϵ = 1/N to Eqn. 4.

Influence functions can further approximate the loss of a particular test point ztest = (xtest, ttest) when
a data point z is eliminated from the training set using the chain rule [Koh and Liang, 2017]:

L(f(r⋆−z,lin (1/N) ,xtest), ttest)

≈ L(f(θ⋆,xtest), ttest) +
1

N
∇θL(f(θ⋆,xtest), ttest)

⊤ dr⋆z
dϵ

∣∣∣∣
ϵ=0

= L(f(θ⋆,xtest), ttest) +
1

N
∇θL(f(θ⋆,xtest), ttest)

⊤(∇2
θJ (θ⋆))−1∇θL(f(θ⋆,x), t).

(5)

3.2 Influence Function Estimation in Neural Networks

Influence functions face two main challenges when deployed on neural networks. First, the influence
estimation (shown in Eqn. 4) requires computing an inverse Hessian-vector product (iHVP). Unfor-
tunately, storing and inverting the Hessian requires O(d3) operations and is infeasible to compute
for modern neural networks. Instead, Koh and Liang [2017] tractably approximate the iHVP using
truncated non-linear conjugate gradient (CG) [Martens et al., 2010] or the LiSSA algorithm [Agarwal
et al., 2016]. Both approaches avoid explicit computation of the Hessian inverse (see Appendix G for
details) and only require O(Nd) operations to approximate the influence function.

Second, the derivation of influence functions assumes a strongly convex objective, which is often not
satisfied for neural networks. The Hessian may be singular, especially when the parameters have not
fully converged, due to non-positive eigenvalues. To enforce positive-definiteness of the Hessian, Koh
and Liang [2017] add a damping term in the iHVP. Teso et al. [2021] further approximate the Hessian
with the Fisher information matrix (which is equivalent to the Gauss-Newton Hessian [Martens,
2014] for commonly used loss functions such as cross-entropy) as follows:

r⋆−z,damp,lin(ϵ) ≈ θ⋆ + (J⊤
yθ⋆Hy⋆Jyθ⋆ + λI)−1∇θL(f(θ⋆,x), t)ϵ, (6)

where Jyθ⋆ is the parameter-output Jacobian and Hy⋆ is the Hessian of the cost with respect to the
network outputs both evaluated on the optimal parameters θ⋆. Here, G⋆ = J⊤

yθ⋆Hy⋆Jyθ⋆ is the
Gauss-Newton Hessian (GNH) and λ > 0 is a damping term to ensure the invertibility of GNH.
Unlike the Hessian, the GNH is guaranteed to be positive semidefinite as long as the loss function is
convex as a function of the network outputs [Martens et al., 2010].

4 Understanding the Discrepancy between Influence Function and LOO
Retraining in Neural Networks

In this section, we investigate several factors responsible for the misalignment between influence
functions and LOO retraining. Specifically, we decompose the misalignment into five separate terms:
(1) the warm-start gap, (2) the damping gap, (3) the non-convergence gap, (4) the linearization error,
and (5) the solver error. This decomposition captures all approximations and assumption violations
when deploying influence functions in neural networks. By summing the parameter (or outputs)
differences introduced by each term we can bound the parameter (or outputs) difference between
LOO retraining and influence estimates. We use the term “gap” rather than “error” for the first
three terms to emphasize that they reflect differences between solutions to different influence-related
questions, rather than actual errors.

For all models we investigate, we find that the first three sources dominate the misalignment,
indicating that the misalignment reflects not algorithmic errors but rather the fact that influence
function estimators are answering a different question from what is normally assumed. All proximal
objectives are summarized in Table 1 and we provide the derivations in Appendix B.
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4.1 Warm-Start Gap: Non-Strongly Convex Training Objective

initialization

cold-start
response function

warm-start
response function

Figure 2: Cold-start (initialized from black
star) and warm-start (initialized from blue
star) response functions for quadratic cost
function. Each contour represents the cost
function at some ϵ. Because gradient de-
scent converges to a minimum-norm solution,
the warm-start and cold-start optima are not
equivalent.

By taking a first-order Taylor approximation of the re-
sponse function at ϵ0 = 0 (Eqn. 4), influence functions
approximate the effect of removing a data point z at a
local neighborhood of the optimum θ⋆. Hence, influence
approximation has a more natural connection to the re-
training scheme that initializes the network at the current
optimum θ⋆ (warm-start retraining) than the scheme that
initializes the network randomly (cold-start retraining).
The warm-start optimum is equivalent to the cold-start
optimum when the objective is strongly convex (where
the solution to the response function is unique), making
the influence estimation close to the LOO retraining on
logistic regression with L2 regularization.

However, the equivalence between warm-start and cold-
start optima is not typically guaranteed in neural net-
works [Vicol et al., 2022a]. Particularly, in the over-
parametrized regime (N < d), neural networks exhibit
multiple global optima, and their converged solutions de-
pend highly on the specifics of the optimization dynam-
ics [Lee et al., 2019, Arora et al., 2019, Bartlett et al.,
2020, Amari et al., 2020]. For quadratic cost functions,
gradient descent with initialization θ0 converges to the
optimum that achieves the minimum L2 distance from θ0 [Hastie et al., 2022]. This phenomenon
of the converged parameters being dependent on the initialization hinders influence functions from
accurately predicting the effect of retraining the model from scratch as shown in Figure 2. We denote
the discrepancy between cold-start and warm-start optima as warm-start gap.

4.2 Proximity Gap: Addition of Damping Term in iHVP

In practical settings, we often impose a damping term (Eqn. 6) in influence approximations to ensure
that the cost Hessian is positive-definite and hence invertible. As adding a damping term in influence
estimations is equivalent to adding L2 regularization to the cost function [Martens et al., 2010], when
damping is used, influence functions can be seen as linearizing the following proximal response
function at ϵ0 = 0:

r⋆−z,damp(ϵ) = argmin
θ∈Rd

Q−z(θ, ϵ) +
λ

2
∥θ − θ⋆∥2. (7)

See Appendix B.2 for the derivation. Note that λ > 0 is a damping strength and our use of “proximal”
is based on the notion of proximal equilibria [Farnia and Ozdaglar, 2020]. Intuitively, the proximal
objective in Eqn. 7 not only minimizes the downweighted objective but also encourages the parameters
to stay close to the optimal parameters at ϵ0 = 0. Hence, when the damping term is used in the iHVP,
influence functions aim at approximating the warm-start retraining scheme with a proximity term
that penalizes the L2 distance between the new estimate and the optimal parameters. We call the
discrepancy between the warm-start and proximal warm-start optima the proximity gap.

Interestingly, past works have observed that for quadratic cost functions, early stopping has a similar
effect to L2 regularization [Vicol et al., 2022a, Ali et al., 2019]. Therefore, the proximal response
function can be thought of as capturing how gradient descent will respond to a dataset perturbation if
it takes only a limited number of steps starting from the warm-start solution.

4.3 Non-Convergence Gap: Influence Estimation on Non-Converged Parameters

Thus far, our analysis has assumed that influence functions are computed on fully converged parame-
ters θ⋆ at which the gradient of the cost is 0. However, in neural network training, we often terminate
the optimization procedure before reaching the exact optimum due to several reasons, including
having limited computational resources or to avoid overfitting [Bengio, 2012]. In such situations,
much of the change in the parameters from LOO retraining simply reflects the effect of training for
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Figure 3: Decision boundaries for a partially trained binary classifier. We consider removing a data point located
at right-bottom corner denoted as ⋆. While the influence estimation makes a local change on the data point
of interest, the (warm-start) LOO retraining globally updates the parameters to better fit other data points (a
nuisance from the perspective of understanding influence).

Error Objective Init

Cold-start J (θ)− L(f(θ,x), t)ϵ θ0

+ Warm-start J (θ)− L(f(θ,x), t)ϵ θs

+ Proximity J (θ)− L(f(θ,x), t)ϵ+ λ
2 ∥θ − θs∥2 θs

+ Non-Convergence 1
N

∑N
i=1 DL(i)(f(θ,x(i)), f(θs,x(i)))− L(f(θ,x), t)ϵ+ λ

2 ∥θ − θs∥2 θs

+ Linearization 1
N

∑N
i=1 DL(i)

quad
(flin(θ,x

(i)), f(θs,x(i)))−∇θL(f(θs,x), t)⊤θϵ+ λ
2 ∥θ − θs∥2 θs

Table 1: Summary of proximal objectives that influence functions aim to approximate when the network is
non-strongly convex, a damping term is used, and influence functions are computed on non-converged parameters.
The final linearization reflects the second-order approximation that influence functions utilize.

longer, rather than the effect of removing a training example, as illustrated in Figure 3. What we
desire from influence functions is to understand the effect of removing the training example; the
effect of extended training is simply a nuisance. Therefore, to the extent that this factor contributes to
the misalignment between influence functions and LOO retraining, influence functions are arguably
more useful than LOO retraining.

Since training the network to convergence may be impractical or undesirable, we instead modify
the response function by replacing the original training objective with a similar one for which the
(possibly non-converged) final parameters θs are optimal. Here, we assume the loss function L(·, ·)
is convex as a function of the network outputs; this is true for commonly used loss functions such as
squared error or cross-entropy. We replace the training loss with a term that penalizes mismatch to
the predictions made by θs (hence implying that θs is optimal). Our proximal Bregman response
function (PBRF) is defined as follows:

rb−z,damp(ϵ) = argmin
θ∈Rd

1

N

N∑
i=1

DL(i)(f(θ,x(i)), f(θs,x(i)))− L(f(θ,x), t)ϵ+ λ

2
∥θ − θs∥2,

(8)

where DL(i)(·, ·) is the Bregman divergence defined as:

DL(i)(y,ys) = L(y, t(i))− L(ys, t(i))−∇yL(ys, t(i))⊤(y − ys). (9)

The PBRF defined in Eqn. 8 is composed of three terms. The first term measures the functional
discrepancy between the current estimate and the parameters θs in Bregman divergence, and its
role is to prevent the new estimate from drastically altering the predictions on the training dataset.
One way of understanding this term in the cases of squared error or cross-entropy losses is that it
is equivalent to the training error on a dataset where the original training labels are replaced with
soft targets obtained from the predictions made by θs. The second term is the negative loss on the
data point z = (x, t), which aims to respond to the deletion of a training example. The final term is
simply the proximity term described before. In Appendix B.3, we further show that the influence
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function on non-converged parameters is equivalent to the first-order approximation of PBRF instead
of the first-order approximation of proximal response function for linear models.

Rather than computing the LOO retrained parameters by performing K additional optimization
steps under the original training objective, we can instead perform K optimization steps under the
proximal Bregman objective. The difference between the resulting parameter vectors is what we call
the non-convergence gap.

4.4 Linearization Error: A First-order Taylor Approximation of the Response Function

The key idea behind influence functions is the linearization of the response function. To simulate the
local approximations made in influence functions, we define the linearized PBRF as:

rb−z,damp,lin(ϵ) = argmin
θ∈Rd

1

N

N∑
i=1

DL(i)
quad

(flin(θ,x
(i)), f(θs,x(i)))

−∇θL(f(θs,x), t)⊤θϵ+
λ

2
∥θ − θs∥2,

(10)

where Lquad(·, ·) is the second-order expansion of the loss around ys and flin(·, ·) is the linearization
of the network outputs with respect to the parameters. The optimal solution to the linearized PBRF
is equivalent to the influence estimation at the parameters θs with the GNH approximation and a
damping term λ (see Appendix B.4 for the derivation).

As the linearized PBRF relies on several local approximations, the linearization error increases when
the downweighting factor magnitude |ϵ| is large or the PBRF is highly non-linear. We refer to the
discrepancy between the PBRF and linearized PBRF as the linearization error.

4.5 Solver Error: A Crude Approximation of iHVP

As the precise computation of the iHVP is computationally infeasible, in practice, we use truncated
CG or LiSSA to efficiently approximate influence functions [Koh and Liang, 2017]. Unfortunately,
these efficient linear solvers introduce additional error by crudely approximating the iHVP. Moreover,
different linear solvers can introduce specific biases in the influence estimation. For example, Vicol
et al. [2022b] show that the truncated LiSSA algorithm implicitly adds an additional damping term
in the iHVP. We use solver error to refer to the difference between the linearized PBRF and the
influence estimation computed by a linear solver.

Interestingly, Koh and Liang [2017] reported that the LiSSA algorithm gave more accurate results
than CG. We have determined that this difference resulted not from any inherent algorithmic advantage
to LiSSA, but rather from the fact that the software used different damping strengths for the two
algorithms, thereby resulting in different weightings of the proximity term in the proximal response
function.

5 PBRF: The Question Influence Functions are Really Answering

The PBRF (Eqn. 8) approximates the effect of removing a data point while trying to keep the
predictions consistent with those of the (partially) trained model. Since the discrepancy between the
PBRF and influence function estimates is only due to the linearization and solver errors, the PBRF
can be thought of as better representing the question that influence functions are trying to answer.
Reframing influence functions in this way means that the PBRF can be regarded as a gold-standard
ground truth for evaluating methods for influence function approximation. Existing analyses of
influence functions [Basu et al., 2020a] rely on generating LOO retraining ground truth estimates
by imposing strong L2 regularization or training till convergence without early stopping. However,
these conditions do not accurately reflect the typical way neural networks are trained in practice. In
contrast, our PBRF formulation does not require the addition of any regularizers or modified training
regimes and can be easily optimized.

In addition, although the PBRF may not necessarily align with LOO retraining due to the warm-start,
proximity, and non-convergence gaps, the motivating use cases for influence functions typically do not
rely on exact LOO retraining. This means that the PBRF can be used in place of LOO retraining for
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many tasks such as identifying influential or mislabelled examples, as demonstrated in Appendix D.3.
In these cases, influence functions are still useful since they provide an efficient way of approximating
PBRF estimates.

6 Experiments

Our experiments investigate the following questions: (1) What factors discussed in Section 4 con-
tribute most to the misalignment between influence functions and LOO retraining? (2) While influence
functions fail to approximate the effect of retraining, do they accurately approximate the PBRF? (3)
How do changes in weight decay, damping, the number of total epochs, and the number of removed
training examples affect each source of misalignment?

In all experiments, we first train the base network with the entire dataset to obtain the parameters
θs. We repeat the training procedure 20 times with a different random training example deleted. The
cold-start retraining begins from the same initialization used to train θs. All proximal objectives are
trained with initialization θs for 50% of the epochs used to train the base network. Lastly, we use the
LiSSA algorithm with GNH approximation to compute influence functions.

Since we are primarily interested in the effect of deleting a data point on model’s predictions, we
measure the discrepancy of each gap and error using the average L2 distance between networks’
outputs E(x,·)∼Dtrain [∥f(θ,x)− f(θ′,x)∥] on the training dataset. We provide the full experimental
set-up and additional experiments in Appendix C and D, respectively.

6.1 Influence Misalignment Decomposition

We first applied our decomposition to various models trained on a broad range of tasks covering
binary classification, regression, image reconstruction, image classification, and language modeling.
The summary of our results is provided in Figure 4 and Table 5 (Appendix E). Across all tasks, we
found that the first three sources dominate the misalignment, indicating influence function estimators
are answering a different question from what is normally assumed. Small linearization and solver
errors indicate that influence functions accurately answer the modified question (PBRF).

Logistic Regression. We analyzed the logistic regression (LR) model trained on the Cancer and
Diabetes classification datasets from the UCI collection [Dua and Graff, 2017]. We trained the
model using L-BFGS [Liu and Nocedal, 1989] with L2 regularization of 0.01 and damping term of
λ = 0.001. As the training objective is strongly convex and the base model parameters were trained
till convergence, in Table 5, we observed that each source of misalignment is significantly low. Hence,
in the case of logistic regression with L2 regularization, influence functions accurately capture the
effect of retraining the model without a data point.

Multilayer Perceptron. Next, we applied our analysis to the 2-hidden layer Multilayer Perceptron
(MLP) with ReLU activations. We conducted the experiments in two settings: (1) regression on the
Concrete and Energy datasets from the UCI collection and (2) image classification on 10% of the
MNIST [Deng, 2012] and FashionMNIST [Xiao et al., 2017] datasets, following the set-up from Koh
and Liang [2017] and Basu et al. [2020a]. We trained the networks for 1000 epochs using stochastic
gradient descent (SGD) with a batch size of 128 and set a damping strength of λ = 0.001.

As opposed to linear models, MLPs violate the assumptions in the influence derivation and we
observed an increase in gaps and errors on all five factors. We observed that warm-start, proximity,
and the non-convergence gaps contribute more to the misalignment than linearization and solver
errors. The average network’s predictions for PBRF were similar to that computed by the LiSSA
algorithm, demonstrating that influence functions are still a good approximation to PBRF.

Autoencoder. Next, we applied our framework to an 8-layer autoencoder (AE) on the full MNIST
dataset. We followed the experimental set-up from Martens and Grosse [2015], where the encoder
and decoder each consist of 4 fully-connected layers with sigmoid activation functions. We trained
the network for 1000 epochs using SGD with momentum. We set the batch size to 1024, used L2

regularization of 10−5 with a damping factor of λ = 0.001. In accordance with the findings from our
MLP experiments, the warm-start, proximity, and non-convergence gaps were more significant than
the linearization and solver errors, and influence functions accurately predicted the PBRF.
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Figure 4: Decomposition of the discrepancy between influence functions and LOO retraining into (1) warm-start
gap, (2) proximal gap, (3) non-convergence gap, (4) linearization error, and (5) solver error for each model
and dataset. The size of each component is measured by the L2 distance between the networks’ outputs on the
training dataset.

Model Cold-Start Warm-Start PBRF

P S P S P S

MLP -0.55 0.01 0.22 0.35 0.98 0.99
LeNet -0.19 0.12 0.32 0.25 0.93 0.52

AlexNet -0.16 -0.08 0.51 0.58 0.99 0.99
VGG13 0.45 -0.07 -0.28 -0.51 0.98 0.77

ResNet-20 0.09 -0.06 0.02 0.09 0.81 0.76

Table 2: Comparison of test loss differences computed
by influence function, cold-start retraining, warm-start
retraining, and PBRF on MNIST dataset. We show
Pearson (P) and Spearman rank-order (S) correlation
when compared to influence estimates.

Convolutional Neural Networks. To in-
vestigate the source of discrepancy on larger-
scale networks, we trained a set of convo-
lutional neural networks of increasing com-
plexity and size. Namely, LeNet [Lecun
et al., 1998], AlexNet [Krizhevsky et al., 2012],
VGG13 Simonyan and Zisserman [2014], and
ResNet-20 [He et al., 2015] were trained on
10% of the MNIST dataset and the full CI-
FAR10 [Krizhevsky, 2009] dataset. We trained
the base network for 200 epochs on both datasets
with a batch size of 128. For MNIST, we kept
the learning rate fixed throughout training, while
for CIFAR10, we decayed the learning rate by a factor of 5 at epochs 60, 120, and 160, follow-
ing Zagoruyko and Komodakis [2016]. We used L2 regularization with strength 5 · 10−4 and a
damping factor of λ = 0.001. Consistent with the findings from our MLP and autoencoder experi-
ments, the first three gaps were more significant than linearization and solver errors.

We further compared influence functions’ approximations on the difference in test loss when a
random training data point is removed with the value obtained from cold-start retraining, warm-start
retraining, and PBRF in Table 2. We used both Pearson [Sedgwick, 2012] and Spearman rank-order
correlation [Spearman, 1961] to measure the alignment. While the test loss predicted by influence
functions does not align well with the values obtained by cold-start and warm-start retraining schemes,
they show high correlations when compared to the estimates given by PBRF.

Transformer. Finally, we trained 2-layer Transformer language models on the Penn Treebank
(PTB) [Marcus et al., 1993] dataset. We set the number of hidden dimensions to 256 and the number
of attention heads to 2. As we observed that model overfits after a few epochs of training, we
trained the base network for 10 epochs using Adam. Notably, we observed that the non-convergence
gap had the most considerable contribution to the discrepancy between influence functions and
LOO retraining. Consistent with our previous findings, the first tree gaps had more impact on the
discrepancy compared to linearization and solver errors.

6.2 Factors in Influence Misalignment

We further analyzed how the contribution of each component changes in response to changes in
network width and depth, training time, weight decay, damping, and the percentage of data removed.
We used an MLP trained on 10% of the MNIST dataset and summarized results in Figure 5.

Width and Depth. As we increase the width of the network, we observe a decrease in the lineariza-
tion error. This is consistent with previous observations that networks behave more linearly as the
width is increased [Lee et al., 2019]. In contrast to the findings from Basu et al. [2020a], we did
not observe a strong relationship between the contribution of the components and the depth of the
network.

Training Time. Unsurprisingly, as we increase the number of training epochs, we observe a decrease
in the non-convergence gap. We hypothesize that, as we increase the training epoch, the cost gradient
reaches 0, resulting in better alignment between the proximal response function and PBRF.
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Figure 5: Ablations on how various factors affect the contribution of the gaps and errors to the discrepancy
between influence approximation and LOO retraining.

Weight Decay. The weight decay allows the training objective to be better conditioned. Consequently,
as weight decay increases, the training objective may act more as a strictly convex objective, resulting
in a decrease in overall discrepancy for all components. Basu et al. [2020a] also found that the
alignment between influence functions and LOO retraining increases as weight decay increases.

Damping. A higher damping term makes linear systems better conditioned, allowing solvers to find
accurate solutions in fewer iterations [Demmel, 1997], thereby reducing the solver error. Furthermore,
the higher proximity term keeps the parameters close to θs, reducing the linearization error. On the
other hand, increasing the effective proximity penalty directly increases the proximity gap.

Percentage of Training Examples Removed. As we remove more training examples from the
dataset the PBRF becomes more non-linear and we observe a sharp increase in the linearization error.
The cost landscape is also more likely to change as we remove more training examples, and we
observe a corresponding increase in the warm-start gap.

7 Conclusion

In this paper, we investigate the sources of the discrepancy between influence functions and LOO
retraining in neural networks. We decompose this difference into five distinct components: the warm-
start gap, proximity gap, non-convergence gap, linearization error, and solver error. We empirically
evaluate the contributions of each of these components on a wide variety of architectures and datasets
and investigate how they change with factors such as network size and regularization. Our results
show that the first three components are most responsible for the discrepancy between influence
functions and LOO retraining. We further introduce the proximal Bregman response function (PBRF)
to better capture the behavior of influence functions in neural networks. Compared to LOO retraining,
the PBRF is more easily calculated and correlates better with influence functions, meaning it is an
attractive alternative gold standard for evaluating influence functions. Although the PBRF may not
necessarily align with LOO retraining, it can still be applied in many of the motivating use cases
for influence functions. We conclude that influence functions in neural networks are not necessarily
“fragile”, but instead are giving accurate answers to a different question than is normally assumed.
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