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Abstract

In follow-up CT examinations of cancer patients, therapy success is evaluated by estimat-
ing the change in tumor size. This process is time-consuming and error-prone. We present
a pipeline that automates the segmentation and measurement of matching lesions, given
a point annotation in the baseline lesion. First, a region around the point annotation is
extracted, in which a deep-learning-based segmentation of the lesion is performed. After-
ward, a registration algorithm finds the corresponding image region in the follow-up scan
and the convolutional neural network segments lesions inside this region. In the final step,
the corresponding lesion is selected. We evaluate our pipeline on clinical follow-up data
comprising 125 soft-tissue lesions from 43 patients with metastatic melanoma. Our pipeline
succeeded for 96% of the baseline and 80% of the follow-up lesions, showing that we have
laid the foundation for an efficient quantitative follow-up assessment in clinical routine.
Keywords: Soft-tissue lesion, follow-up, CT, Lesion Tracking, Lesion Segmentation, Image
Registration

1. Introduction

Measurement of metastatic tumors on longitudinal computer tomography (CT) scans is
essential to evaluate the efficacy of cancer treatment. The current guideline of metastatic
tumor evaluation on CT scans is called response evaluation criteria in solid tumors (RE-
CIST) (Eisenhauer et al., 2009). Manual measurement of the tumors for the RECIST
criteria is often time-consuming and error-prone. However, the diameter-based RECIST
criteria also undergo continuous changes. Automated approaches might significantly speed
up response evaluation and help to handle the ever-growing mass of image-based staging
and follow-up evaluations (Moawad et al., 2020).
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Furthermore, radiomics is currently one of the most important topics in radiology. High-
throughput extraction of quantitative features resulting in the conversion of medical images
into minable data and the subsequent analysis promise new insights into therapy response
and hold the potential to revolutionize medical image-based evaluation techniques (Gillies
et al., 2016). Both fields have a huge clinical impact due to rising demand for fast and reliable
therapy response evaluations. They, however, share a common bottleneck: automated lesion
segmentation. Only if this obstacle is overcome, clinicians will use the mentioned techniques
accordingly in a daily manner.

Metastatic malignant melanoma is the perfect entity to implement a pipeline for full-
body lesion segmentation. Besides lung and liver, metastatic lesions of melanoma can be
found in almost every organ or tissue, such as lymph nodes, adrenal glands, cerebrum, bone,
spleen, and soft tissue (Schadendorf et al., 2018). Whole-body cross-sectional imaging is
part of the standard diagnostic work-up for staging, response assessment, and follow-up in
patients with advanced melanoma according to current international guidelines. Malignant
melanoma has been increasing fast in the last decades and represents a public health matter
in several countries due to its high mortality rates (Ward and Farma, 2017).

Among melanoma metastases, soft-tissue lesions provide a particular hurdle. They can
arise in a variety of locations (cutaneous, subcutaneous, muscular, retroperitoneal) and
shapes (round, multilobular, well defined, invasive), are often primarily small and, if not
surrounded by fatty tissue, extremely hard to distinguish. A sufficient segmentation pipeline
for soft-tissue metastases in malignant melanoma patients would therefore provide a valuable
foundation for further steps towards a full-body lesion segmentation pipeline, that could be
transferred to other entities.

To the best of our knowledge, no work has been presented until now that tackles the
problem of soft-tissue lesion segmentation in longitudinal CT image series. Lesion segmen-
tation in other anatomical regions, however, has been studied extensively. For example,
promising results have been accomplished for liver (Bilic et al., 2019) and kidney lesions
(Heller et al., 2021) in challenges. Currently, the most general and successful avilable ap-
proach is the nnU-Net framework of (Isensee et al., 2020), which has shown impressive
results for several organ segmentation tasks such as liver, spleen, kidney, pancreas, heart,
or aorta segmentation and also outperforms most methods segmenting different lesion types
such as pancreas, liver, lung, kidney, or MS lesions. nnU-Net (Isensee et al., 2020), initially
based on U-Net (Ronneberger et al., 2015), automatically configures itself, including pre-
processing, network architecture, training and post-processing—making it an ideal baseline
to build a lesion tracking pipeline.

However, as the lesion segmentation experiments in (Isensee et al., 2020) focus only on
segmenting lesions in one organ in one scan, it cannot be used “as is” and requires some
modifications. Only few works have been presented on lesion tracking (Cai et al., 2020)
and on lesion tracking and segmentation in longitudinal image scans (e.g. (Xu et al., 2011;
Moltz et al., 2012; Folio et al., 2013). In this work, we tackle the problem of longitudinal
tracking and segmentation of soft-tissue lesions in whole-body CT scans.
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Figure 1: Schematic representation of the proposed pipeline for lesion tracking and segmen-
tation.

2. Method

In our proposed pipeline, soft-tissue lesions are first identified by a radiologist with one click
inside the lesion in the baseline CT scan. This step is introduced to avoid annotation of
false positive lesions. We then apply our algorithm to automatically segment and measure
the diameter in the baseline and follow-up image. This is done by (1) extracting the region
of interest (ROI) around the point annotation of the radiologist and applying our CNN
to segment the lesion; (2) registering the baseline to the follow-up image; (3) propagating
the region of interest to the follow-up image to constrain the search region and applying
the CNN on the propagated region of interest in the follow-up image; and (4) selecting the
corresponding lesion in the output of the CNN. Figure 1 shows an overview of our proposed
algorithm. In the following, we describe each step in more detail.

2.1. Lesion Segmentation

To generate the training data, we select for each lesion a bounding box around the point
annotation of the radiologist with a size of 100 mm, which is clamped by the image region.
Then, we use the nnU-Net framework of (Isensee et al., 2020) to train a 3d full resolution
model which consists of a U-Net-like (Ronneberger et al., 2015) architecture. The main
settings are shown in Table 1 in the appendix. The trained network is applied to segment
the lesion in the baseline and follow-up image on the test dataset.

2.2. Registration

Propagation of lesion segmentations into follow-up images of the same patient allows for
a higher degree of automation because the location and approximate appearance of the
lesions are already known. In this scenario, registration algorithms can be employed to find
the corresponding image region (Moltz et al., 2012). For metastatic melanoma, typically
full-body or thorax-abdomen CT scans are acquired, which can easily exceed image sizes
of 512 x 512 x 1000, which can be a challenge in terms of memory usage and runtime.
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The registration has to align the global structures but at the same time be locally accurate
enough so that the lesion propagation is precise enough. Therefore, we adopted a three-step
approach to automatically register the baseline to the follow-up image, which consists of the
following steps: (1) a translational alignment; (2) a rigid registration; and (3) a deformable
registration. Hereby, the registration pipeline starts with robust methods with fewer degrees
of freedom and moves on to more precise, but less robust methods, which require better
starting points due to their higher degrees of freedom.

(1) Translational Alignment The translational prealigment is based on a brute force
grid search method named FASTA (Fast Translation Alignment), which evaluates a differ-
ence measure (here Sum-of-Squared-Distances (SSD), the squared ¢2 norm of the difference
image) on a grid of possible translations. Finer grids allow for more precise translation es-
timation at the expense of increased computational cost. For faster processing, the moving
image is resampled to a maximal image size of 128 x 128 x 128. The fixed image is resampled
to the same image resolution as the moving image. For the grid generation, we choose a
sampling rate of 3, 3, and 51 in x, y, and z-direction respectively. Since the CT scans are
centered around the body center, only the z-translation is used for prealignment.

(2) Rigid Registration The translational prealignment in z-direction is used as a start-
ing point for a rigid multi-level registration using the SSD distance measure. The method
uses a Gauss-Newton optimization scheme to solve the optimization problem.

(3) Deformable Registration The final step is the matrix-free deformable registration
of (Konig et al., 2018). The deformation is defined as a minimizer of the cost function

min DY (F, M(y)) + aR™™ (), (1)
with the normalized gradient field distance measure DNGF (Haber and Modersitzki, 2006)
that focuses on the alignment of image gradients of the fixed image F and the deformed
moving image M(y). The second-order curvature regularizer R (Fischer and Moder-
sitzki, 2003) enforces smooth deformation by penalizing spatial derivatives. The parameter
« is a weighting factor. The method uses the limited-memory Broyden-Fletcher-Goldfarb-
Shannon (L-BFGS) optimization scheme to solve the optimization problem and is embedded
in a multi-level scheme.

2.3. Lesion Tracking

We use the registration to propagate the baseline contour to the follow-up scan. While
this propagated contour may not be accurate enough due to size changes under therapy, it
provides a good initial correspondence. To compensate for registration errors, we enlarge
the search region by 50 mm in every direction to ensure that the corresponding lesion is
inside this selected region and to include enough information for the CNN.

2.4. Lesion Selection

The CNN is not constrained to segment only one lesion inside the selected region in the
follow-up scan. Therefore, we select the lesion whose center is closest to the center of the
propagated lesion. To avoid annotation of wrong lesions close by in the case of vanishing
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lesions under therapy, we only accept a lesion annotated by the network if the Euclidean
distance of its center is smaller than 25 mm to the propagated lesion center.

3. Experiments and Results

3.1. Dataset

The dataset consists of 206 baseline and follow-up CT scan pairs of patients with metastatic
melanoma (Stage IV, AJCC) treated at the Center for Dermato-Oncology at the University
Hospital Tuebingen, Germany. All patients received either mono (Nivolumab or Pem-
brolizumab) or combined (Nivolumab-+Ipilimumab) immunotherapy or targeted therapy
(Vemurafenib +Cobimetinib or Dabrafenib+Trametinib) before the follow-up scan. The
patients were split into 163 training and validation cases and 43 test cases with overall
2408 and 125 manual annotated soft-tissue lesions in the baseline images. Training was
performed exclusively on baseline images, whereas testing was done on both baseline and
follow-up scans. Therefore, we selected patients with lower lesion counts for the test set in
order to obtain a diverse set of lesions while keeping the annotation effort feasible. For the
test cases, 25 of the 125 lesions are gone in the follow-up image.

3.2. Baseline Segmentation

To show the advantage of training the network only on a small region of interest around
the lesions, we compare our approach to a network trained on the whole images. However,
for the evaluation, we use the closest lesion to the point annotation for both approaches,
and therefore, false-positive annotations are not taken into account.

Since the network is not forced to segment anything in the region of interest, we evaluate
the percentage of correctly annotated lesions. A lesion counts as correctly annotated if there
is an overlap with the segmentation mask. To evaluate the performance of our segmentation
network, we use Dice coefficient, average surface distance (ASD), and Hausdorff distance
(HD) if the network segmented the correct lesion. Moreover, we evaluate the Surface Dice
(Nikolov et al., 2018) with a threshold of 1 mm, which is a good approximation for the
correction effort given an imperfect segmentation mask of a relatively small structure.

When the nnU-Net is trained only on the small region of interest around the point
annotation, the network segments the correct lesion in 96%, whereas with training on the
whole image, only 37.6% of the lesions are annotated. On the correctly annotated lesions,
the network trained on the ROI achieves on average a better Dice Score (0.79 vs. 0.60),
Surface Dice (0.88 vs. 0.68), and average surface distance (1.40 mm vs. 1.77 mm) but a
slightly worse Hausdorff distance (5.09 mm vs. 4.59 mm). Note that the number of included
lesions for the calculation differs depending on the training mode. Taking all lesions into
account the advantage increases to 0.76 vs. 0.23 for the Dice Score and 0.85 vs. 0.26 for the
Surface Dice. Figure 2 summarizes the quantitative results and Fig. 3 shows several visual
examples of the results produced by our network.

3.3. Registration Accuracy

We measure the registration accuracy using the center point matching (CPM) accuracy as
in (Cai et al., 2020), which represents the percentage of correctly matched lesions. A match
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Figure 2: Comparison of the evaluation metrics for all baseline lesions (upper row) and
follow-up lesions (lower row) in which the correct lesion was annotated with the
underlying training mode. Therefore, the number of included lesions for the
calculations varies depending on the training mode. For the follow-up lesions, the
lesion results by the registration propagated are shown in yellow. The boxplots
show the median line and the mean as a white circle.

counts as correct when the Euclidean distance between the center of the propagated baseline
lesion and the center of the manually annotated follow-up lesion is smaller than a threshold.
Since in this application whole-body CT scans are registered and large volume changes of
the lesion happen due to therapy, we set the threshold to 25 mm. For this evaluation, only
the lesions which are visible in the follow-up image are taken into account and therefore the
number of lesions reduces to 100.

In 95 of the 100 cases, the Euclidean distance was less than the threshold with a mean
Fuclidean distance of 7.66 mm. The average absolute offset between the center of the
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propagated baseline lesion and the center of the manually annotated follow-up lesion is
3.79 mm, 3.16 mm and 4.49 mm in x-, y- and z-direction, respectively. A histogram of the
offset is shown in Fig. 8 in the appendix.

3.4. Follow-Up Segmentation

We evaluate the follow-up segmentation in the same way as the baseline segmentation.
However, the successful segmentation of the follow-up lesion depends not only on the seg-
mentation accuracy itself but the whole pipeline. For the cases in which the lesion was not
propagated accurately enough, segmentation by the nnU-Net was not possible. To evaluate
the whole pipeline, those lesions are counted as not correctly annotated lesions. Further-
more, in the 25 cases in which the lesion was fully regressive in the follow-up image, we
expect the nnU-Net not to annotate anything.

In 80% of the lesions, our pipeline successfully annotates the lesion in the follow-up
scan with an average Dice Score of 0.80 and an average Surface Dice of 0.89. The lesion
propagated by the registration has an overlap to the manual annotation in 77.5% with an
average Dice score of 0.51 and a Surface Dice of 0.56. All quantitative results are summarized
in Fig. 2. All failure cases are visualized in the appendix. In 17 of the 25 cases in which the
lesion has disappeared in the follow-up image, the nnU-Net correctly not segment anything.

4. Discussion and Conclusion

This paper presents a pipeline that automates the segmentation of matching lesions in
follow-up CT examinations of cancer patients, given a one-click point annotation in the
baseline lesion. We have validated our pipeline on the challenging task of whole-body soft-
tissue lesion tracking and segmentation. Our pipeline succeeded for 96% of the baseline
lesions and for 80% of the follow-up lesions with an average Dice Score of 0.79 and 0.80,
respectively. Furthermore, our pipeline achieves an average Surface dice of 0.88, which
shows that the required correction effort is very low.

All failure cases in the follow-up image are visualized in Fig. 6 in the appendix showing
that the pipeline fails due to different reasons. For some cases, the registration was not
accurate enough and therefore a wrong or no lesion was selected even though the correct
one was segmented. Other lesions are hard to distinguish from surrounding tissue or they
have an untypical shape that might cause problems. In some cases, the lesion split into two
smaller lesions in the follow-up scan after the patient received therapy and the nnU-Net
segmented both, but just one lesion was selected. In some of these cases, it is also difficult
for a radiologist to identify and segment the lesion correctly. Our pipeline has still some
limitations which have to be addressed before it could be used in the clinic. Lesions can split
or merge over time, however, our pipeline assumes that every lesion in the baseline has zero
or one corresponding lesion in the follow-up image. This does not always have to be true.
Moreover, lesions that are very close to each other could be wrongly assigned in the follow-up
scan. These problems will be solved in future work by integrating consistency rules. Besides,
our pipeline is not yet capable of detecting new lesions in the follow-up scan. Furthermore,
the current pipeline does not take the appearance of the baseline lesion into account. There
are different approaches to integrate this information into the model. The transformed
baseline image and the corresponding lesion mask could be used as an additional input for
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Figure 3: Visual examples of results produced by our method. Each example includes the
baseline and follow-up lesion and therefore consists of two images (left baseline,
right follow-up). On the baseline image, the manual annotation (red curve m)
and the nnU-Net annotation trained on the ROI (blue curve m) and trained on
the whole image (pink curve m) are shown. On the follow-up image, the manual
annotation (red curve m), the propagated lesion (yellow curve ) and the results
of the presented pipeline (blue curve m) are visualized.

the follow-up model. However, this would mean that two models have to be trained; one
for segmenting the baseline image and one for the follow-up images. To train the follow-up
network, a sufficient number of lesion annotations has to be available. Unfortunately, we
only have the annotations that we used for the evaluations and therefore this approach
is not suitable. Another approach is a joint-segmentation-registration algorithm as in (Li
et al., 2019). We will explore this approach in future work.

We have trained and evaluated our method on soft-tissue lesions, which are particularly
challenging due to their diverse appearance and location. Our promising results suggest that
we will be able to extend our approach to other lesion types as well. Additionally, for use
in clinical routine, it is sufficient to extract the largest diameter from the segmentation, so
that detailed corrections will not be necessary. With our work, we have laid the foundation
for an efficient automated follow-up assessment according to the RECIST standard and
implementation of automated segmentation for Radiomics analysis in clinical routine.
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Appendix A. Dataset
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Figure 5: Example coronal slices extracted from three deformation fields to give an impres-
sion of the smoothness.
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Appendix C. nnUNet settings

Table 1: Main settings chosen by the nnUNet framework to train the segmentation network

name

description

chosen parameter

net_pool_per_axis
base_num_features
conv_per_stage
optimizer
learning rate
max_num_epochs
num_batches_per_epoch
batch_size
patch_size
normalization_schemes

number of pooling operations in z,x,y direction
number of features after first conv

maximal number of epochs
number of batches used in every epoch
number of images per batch
z,y,z direction
see (Isensee et al., 2020) for details on CT scheme

35,5
32
2
SGD
~ 0.00235
1000
250
5
56 128 128
(0,CT")

12



WHOLE-BoDY SOFT-TISSUE LESION TRACKING AND SEGMENTATION

Appendix D. Failure cases

Baseline Follow-Up Baseline Follow-Up Baseline Follow-Up

Figure 6: All cases in which our pipeline fails to segment the lesion in the follow-up image.
Each example includes the baseline and follow-up lesion and therefore consists of
two images (left baseline, right follow-up). On the baseline image, the manual
annotation (red curve m) and the nnU-Net annotation trained on the ROI (blue
curve m) are shown. On the follow-up image, the manual annotation (red curve
m), the propagated lesion (yellow curve ) and the results of the presented pipeline
(blue curve m) are visualized. For these cases, we do not apply the lesion selection
and therefore some lesions seem to be correctly segmented, however, they are
not selected using our criteria. There are different reasons for these failures. In
some cases, the registration was not accurate enough and therefore a wrong or
no lesion was segmented. Some lesions are hard to distinguish from surrounding
tissue (e.g. last column), but also an untypical shape can be a problem.

13
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Appendix E. Diameter Error
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Figure 7: Cumulative distribution of diameter error between the manual segmentation and
the nnU-Net segmentation. Please note, that in clinical routine the diameter
would not be calculated from a segmentation but measured directly which might
also introduce some errors. The dotted lines visualize the 90th percentiles of the
error, which are 3.6 mm for all lesions, 4.1 mm for the baseline lesions and 3.6 mm
for the follow-up lesions.
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Appendix F. Registration Accuracy
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Figure 8: Histogram of Euclidean distance and the absolute offset between the center of the
propagated lesion and the center of the manually annotated follow-up lesion..
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