

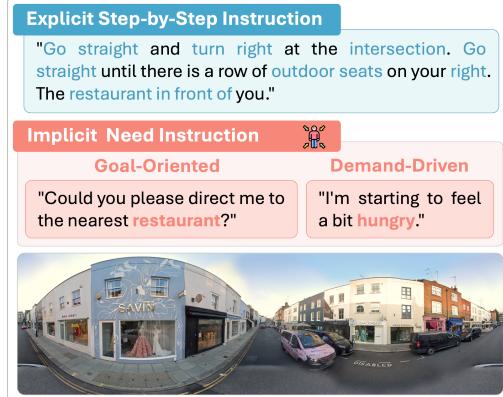
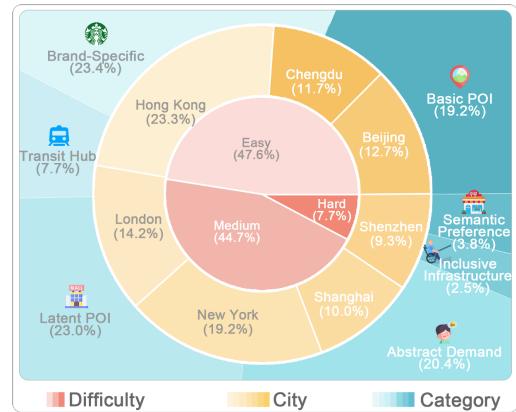
000 001 002 003 004 005 CITYSEEKER: HOW DO VLMs EXPLORE EMBODIED 006 URBAN NAVIGATION WITH IMPLICIT HUMAN NEEDS? 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

011 Vision-Language Models (VLMs) have made significant progress in explicit
012 instruction-based navigation; however, their ability to interpret *implicit human*
013 needs (e.g., “I am thirsty”) in dynamic urban environments remains underexplored.
014 This paper introduces **CitySeeker**, a novel benchmark designed to assess VLMs’
015 spatial reasoning and decision-making capabilities for exploring embodied urban
016 navigation to address implicit needs. CitySeeker includes 6,440 trajectories across
017 8 cities, capturing diverse visual characteristics and implicit needs in 7 goal-driven
018 scenarios. Extensive experiments reveal that even top-performing models (e.g.,
019 Qwen2.5-VL-32B-Instruct) achieve only 21.1% task completion. We find key
020 bottlenecks in error accumulation in long-horizon reasoning, inadequate spatial
021 cognition, and deficient experiential recall. To further analyze them, we investigate
022 a series of exploratory strategies—Backtracking Mechanisms, Enriching Spatial
023 Cognition, and Memory-Based Retrieval (BCR), inspired by human cognitive
024 mapping’s emphasis on iterative observation-reasoning cycles and adaptive path
025 optimization. Our analysis provides actionable insights for developing VLMs with
026 robust spatial intelligence required for tackling “last-mile” navigation challenges.
027

1 INTRODUCTION



042 Figure 1: Navigation Instructions indicating **explicit needs** (top) and **implicit needs** (bottom).

043 Figure 2: The statistics of **CitySeeker** with 6,440
044 trajectories in diverse scenarios.

045 Vision-Language Models (VLMs), with their advanced vision-grounded reasoning and language
046 generation capabilities, are increasingly being applied to complex tasks like **Embodied Urban**
047 **Navigation** (Zhang et al., 2024a). Autonomous embodied navigation in open urban environments is
048 a cornerstone for realizing a new generation of intelligent services, leading to a rising demand for
049 VLMs that can guide service robots, drones, or an AR assistant through urban settings. However,
050 the capabilities of VLMs in this domain remain underexplored, as recent advances have focused
051 on agents that follow explicit *step-by-step* instructions (e.g., “Proceed straight until the sculpture
052 fountain, turn right, then continue until reaching McDonald’s”). Such approaches, which we describe
053 as **explicit needs**, rely on pre-constructed navigation directives rather than natural human commands,
054 and face critical limitations in dynamic or novel urban scenarios (Wang et al., 2021; 2024b).

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

Table 1: Overview of Vision-Language Navigation datasets.

Dataset	Instruction Type	Instruction	Environment	Source	City	Nodes	Avg.Length	Avg.Token
Talk the Walk (De Vries et al., 2018)	Explicit	786	GridWorld	3D Rendering	1	100	6.8	34.5
Room-to-Room (Anderson et al., 2018)	Explicit	21,567	Indoor	Panoramas	1	10,800	6.0	29.0
Touchdown (Chen et al., 2019)	Explicit	9,326	Outdoor	Street View	1	29,641	35.2	89.6
Talk2Nav (Vasudevan et al., 2021)	Explicit	10,714	Outdoor	Panoramas and Map	1	21,233	40.0	68.8
StreetNav (Jain et al., 2024)	Explicit	644,415	Outdoor	Street View	2	-	1,194m	7.13
map2seq (Schumann & Riezler, 2020)	Explicit	7,672	Outdoor	OpenStreetMap	1	29,641	40.0	55.1
CitySeeker	Implicit	6,440	Outdoor+Dynamic	Street View and Map	8	41,128	18.3	11.11

In contrast, real-world human instructions often involve *abstract goals* that pertain to **implicit needs** (Zhou et al., 2024b). These needs are often unannotated on traditional maps or lack the granularity needed for last-mile navigation, and are implicit on multiple aspects: **functional** (e.g., when finding a restroom, recognizing the affordance that one is also available in a McDonald’s, or inferring that “I’m thirsty” can be resolved by a convenience store or even a public water fountain), **spatial** (e.g., upon seeing a more visually prominent landmark like a shopping complex, inferring that a Starbucks is likely nearby, or realizing that a cinema is often hidden inside a mall), and **semantic** (e.g., subjective qualities like a “romantic” or “upscale” restaurant). Addressing these common needs is a fundamental challenge for goal-oriented navigation, requiring an agent to ground environmental intent through active exploration and spatial reasoning to solve the crucial “last-mile” problem, especially in contexts like city walks (Gao et al., 2024). We illustrate this concept in Figure 1.

The ability to understand human needs in urban space is fundamental to Embodied Urban Navigation (Liu et al., 2024; Hirose et al., 2023). While prior work has explored VLM’s ability to interpret human needs, these efforts have been largely confined to constrained settings like indoor environments and 3D games (Wu et al., 2024a; Zhang et al., 2024b). This raises a critical scientific question: *Can VLMs develop intrinsic spatial awareness (Yang et al., 2024) for Embodied Navigation in open-world urban settings to address implicit human needs?* This task introduces unique challenges: (1) **Dynamic Visual Complexity**, with diverse and changing road networks and storefronts; (2) **Free-Form Instruction Parsing** for goals in flexible language; and (3) **Long-Horizon Reasoning** across extensive distances. The latter is not merely about path length but requires robust, multi-hop reasoning that couples semantic inference with visual grounding. For instance, to address “I need a temporary place with Wi-Fi to work,” an agent must ground the abstract function of “working.” While it may infer POI categories like Cafe or Library, the final decision depends on visually grounding a location’s *suitability* by dynamically searching for real-world cues—such as a storefront’s ambiance, patrons with laptops, or even a “Free Wi-Fi” sign—that confirm it meets the user’s need in real time.

Humans address these challenges using *cognitive maps*—mental representations of spatial relationships and environmental attributes (Epstein et al., 2017; Tolman, 1948). By combining observation with prior knowledge, humans can dynamically update their spatial understanding, infer latent properties, and formulate grounded plans from abstract goals—capabilities yet to be replicated in VLMs for outdoor navigation (Clemenson et al., 2021; Farzanfar et al., 2023; Momennejad et al., 2024; Wu et al., 2024b). Inspired by this, we propose **CitySeeker**, a novel benchmark for autonomous embodied urban navigation. It assesses **Implicit-Need-Driven Visual Grounding**: the process of translating an implicit need into a concrete visual search by using semantic inference to infer possible targets and grounding this understanding in a continuous stream of observations. To systematically probe this ability, its 7 task categories represent a spectrum of varying cognitive difficulty, from direct recognition (“Basic POI”) to highly abstract reasoning (“Abstract Demand,” “Semantic Preference”). The benchmark is implemented through 6,440 trajectories across 8 globally distributed urban regions with diverse layouts and visual characteristics (Table 1).

Our extensive experiments reveal that existing VLMs generally underperform, exhibiting significant trajectory deviation and deficient spatial cognition. Building on these benchmark findings, we further investigate advanced strategies that endow the agent with human-like cognitive capabilities. We propose and analyze a triad of exploratory approaches: **Backtracking** mechanisms mimic self-correction, **Spatial Cognition Enrichment** mimics mental map building, and **Memory-Based Retrieval** mirrors recalling past experiences. These **BCR** strategies offer a concrete roadmap to elevate VLM spatial intelligence. From a cognitive science perspective, our research is aligned with exciting developments in AI concerning **Spatial Mental Models** within LLMs (Momennejad et al., 2024; Yang et al., 2024; Wu et al., 2024b), probing the intrinsic spatial intelligence of these models. In summary, our contributions are threefold:

- CitySeeker is the first large-scale benchmark for embodied urban navigation that addresses implicit needs across diverse multi-city settings, incorporating real-world visual diversity, long-horizon planning, and unstructured instructions.
- We design a VLM-based framework and a suite of human-inspired cognitive strategies (BCR) that translate implicit needs into multi-step plans through iterative observation-reasoning cycles.
- Through extensive experiments, we surface key bottlenecks in VLM spatial reasoning and crystallize them—and their fixes—into the BCR triad of Backtracking, Cognitive-map enrichment, and Retrieval-augmented memory, offering insightful guidance for advancing spatial intelligence.

2 RELATED WORK

Spatial Cognition and Mental Models. The concept of spatial cognition—internal mental representations of space—originates from cognitive science and has long been considered fundamental to how humans navigate (Tolman, 1948; Epstein et al., 2017). A recent paradigm shift has been spurred by findings that large models can develop emergent “world models” and representations of space and time without supervised training (Gurnee & Tegmark, 2023). This has inspired a new line of inquiry dedicated to probing the intrinsic spatial intelligence of these models (Yang et al., 2025; Yin et al., 2025; Feng et al., 2025; Manh et al., 2025). Our work provides the first attempt to systematically evaluate the emergent spatial cognition of VLMs through complex urban navigation tasks.

Vision-Language Navigation (VLN). Research in VLN has explored diverse instruction formats, including step-by-step, dialog-based (Goetting et al., 2024; Zhou et al., 2024a), and **goal- or intention-oriented instructions** (Wang et al., 2023; Qi et al., 2020a; Chiang et al., 2024; Liu et al., 2025). However, the majority of outdoor VLN research and benchmarks, such as Touchdown (Chen et al., 2019), have focused on agents following explicit step-by-step directives. This has led to the development of various methods (Xu et al., 2024; Schumann et al., 2024; Dorbala et al., 2022; Pan et al., 2024)—excel at direct text-visual matching but are less equipped for the abstract reasoning required by implicit goals. Moreover, many solutions are limited by a reliance on static representations of predefined environment and poor generalizability (Cao et al., 2024; Elnoor et al., 2024; Zhan et al., 2024), revealing a gap in handling dynamic, real-world urban navigation. Goal-oriented navigation requires agents to use perception and commonsense reasoning to ground abstract concepts. Its form focuses on zero-shot open-world navigation (Mirowski et al., 2018; Majumdar et al., 2022; Zhou et al., 2024b), which has largely been limited to indoor environments. **CitySeeker** is the first benchmark to evaluate this goal-oriented reasoning for implicit needs in open-world cities.

3 CITYSEEKER BENCHMARK

The CitySeeker dataset comprises 6,440 route instances and corresponding natural language instructions covering 7 carefully curated categories of everyday human needs. These categories span typical requests from target recognition (e.g., finding nearby facilities or brands), contextual inference (e.g., inferring that a restroom is likely available in McDonald’s) and attribute analysis (e.g., guiding to a bank with accessible facilities), to abstract and subjective reasoning (e.g., finding a restaurant suitable for a team gathering). The design of these categories is guided by three core criteria: (1) semantic complexity of goals, (2) spatial reasoning requirements, and (3) real-world applicability.

CitySeeker is collected from eight distinct metropolitan areas—Beijing, Shanghai, Shenzhen, Chengdu, Hong Kong, London, and New York—capturing diverse architectural layouts and dynamic street-level visuals. Overall, the benchmark includes over 41,128 street-view panoramas (from Google or Baidu Maps since 2024) to ensure realistic appearance variations. As shown in Figure 2, our dataset balances instruction types, urban regions, and navigation difficulty (based on trajectory length). These categories collectively capture a broad range and diversity of real-world navigation challenges, with 19.2% involving POI navigation, 20.4% requiring the interpretation of abstract demands, and other major portions dedicated to brand-specific searches (23.4%) and latent POI discovery (23.0%). To facilitate quantitative evaluation, we further sampled 1,257 route instances as the final benchmark test set, balancing coverage across all metropolitan areas and categories.

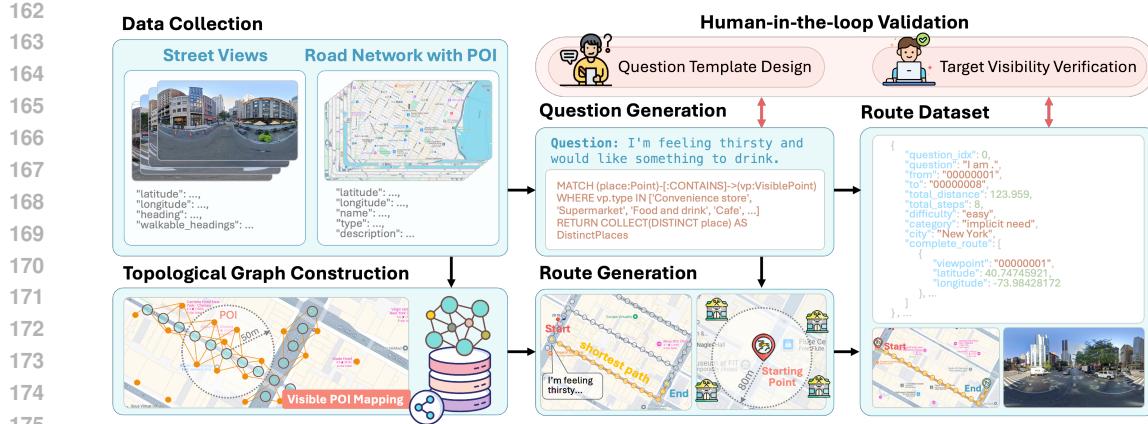


Figure 3: Construction Process of the CitySeeker Dataset.

3.1 BENCHMARK CONSTRUCTION

We employ a demand-driven pipeline to generate high-quality navigation routes at scale, as summarized in Figure 3. By integrating panoramic data, POI filtering, and graph-based distance queries, it yields high-fidelity routes spanning a broad spectrum of real-life urban navigation needs (see Appendix B for details).

Data Collection and Topology Construction. We gather street-level panoramas from both Google and Baidu Street View, covering diverse urban areas (e.g., Western cities, Hong Kong, Mainland China). To discretize each city’s road network, we place a node every 20 meters and capture its panoramic imagery with metadata (e.g., latitude/longitude, heading, navigable headings). These nodes and edges represent navigable connections annotated with azimuths and distances, forming a graph-based structure stored in Neo4j. This layout facilitates spatial queries and ensures consistent global connectivity. Each collected Points of Interest (POI) is then linked to any vantage node within a 50-meter radius, reflecting the idea of a visible or discoverable place from that viewpoint. This step updates the knowledge graph with triplets of the form (Node) –has–> (VisiblePOI).

Question Design and Generation. To cover common daily needs, we first identify a set of high-frequency POI categories. These are sourced primarily from map providers (e.g., “restaurant,” “coffee shop”) and are supplemented with other visually rich POIs identified from street-view images and manually verified, capturing targets often unannotated on maps. This enables us to design specific templates for different query types. Each question type is manually associated with one or more POI categories; for instance, “I’m feeling thirsty” may map to beverage shops, water fountains, or cafés.

Route Generation and Validation. We generate navigation paths by selecting start and end nodes based on the intended POI category. We determine the starting nodes based on constraints to ensure that the shortest path falls within a controllable minimum radius (e.g., ensuring no other similar POIs lie within an overly small radius), thereby guaranteeing a meaningful navigation distance. The shortest paths between start and target nodes (containing the target POI) are then calculated using a shortest-path algorithm (e.g., A*). This process yields effective routes ranging from 5 to 25 steps. Finally, we manually verify each route by confirming the target POI is indeed visible or indirectly visible at the terminal node. **To further empirically validate the rationality of our Need-to-POI mappings and mitigate potential designer bias, we conducted a cross-cultural human consensus survey ($N = 120$), which demonstrated a high degree of agreement (83.39%) with our ground truth categories (see Appendix B for details).** Any route failing this check is refined or discarded.

4 EVALUATION ON CITYSEEKER

4.1 OVERVIEW

Task Formulation. We formulate the VLN task within a navigation graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where \mathcal{V} represents the set of georeferenced nodes and \mathcal{E} denotes edges. **At time step t , the agent occupies a node $v_t \in \mathcal{V}$. The agent receives a natural language instruction \mathcal{W} and an observation set $\mathcal{O}_t =$**

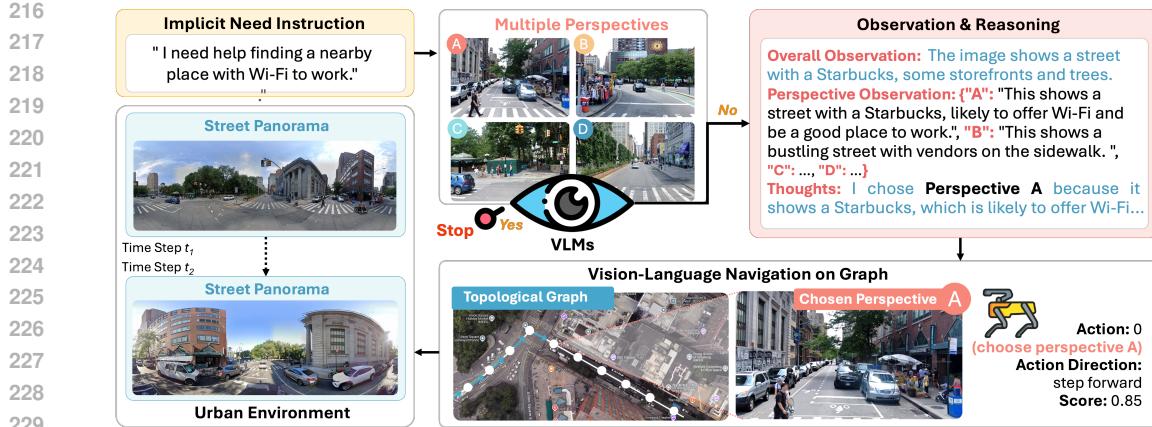


Figure 4: The CitySeeker Implicit-Need-Driven Embodied Urban Navigation Framework.

$\{o_{t,1}, o_{t,2}, \dots, o_{t,n}\}$, where n is the number of perspective views at v_t . The agent maintains a state $s_t = (v_t, \mathcal{O}_t)$ representing current environmental context. The agent operates via a policy π_Θ that sequentially generates a reasoning rationale followed by an action: $(\Phi_t, a_t, c_t) = \pi_\Theta(\mathcal{W}, s_t)$. Here, Φ_t is the reasoning rationale, and $a_t \in \mathcal{A}_t = \{1, \dots, n\}$ is the index of the selected perspective view with confidence $c_t \in [0, 1]$. The environment transitions to the next node v_{t+1} based on the dynamics $T(v_t, a_t)$. A reasoning process is recorded as: $\tau = \{\mathcal{W}, (s_1, \Phi_1, a_1, c_1), \dots, (s_T, \Phi_T, a_T, c_T)\}$, where the process terminates once the stop condition is met.

Navigation Framework. Figure 4 illustrates the navigation pipeline. At each time step, the panoramic image at the current viewpoint is subdivided into multiple perspective views, each corresponding to a feasible heading. Guided by a ReAct-style reasoning procedure (Yao et al., 2023), the VLM processes the current observation (Observe), infers a navigation intention (Think), selects one perspective view to move toward (Act), and finally outputs a confidence score as reflection (Reflect). This process iterates until the agent deems it has reached the goal or surpasses a maximum step limit (35 steps). To isolate the model’s core spatial reasoning ability, we intentionally keep each step independent: the agent does not maintain persistent memory or feed previous internal states into subsequent decisions.

4.2 EVALUATION SETUP

Benchmark Models. We comprehensively evaluate 27 multi-image capable VLMs across diverse model families, encompassing various parameter scales and architecture. For proprietary models, we consider GPT-4o, GPT-4o-Mini, o4-mini, Gemini-1.5-Pro and Gemini-2.5-Pro (Team, 2024). For open-source models, we evaluate models from Qwen2-VL series (7/72B Instruct) (Wang et al., 2024a), Qwen2.5-VL series (7/32/72B Instruct) (Bai et al., 2025), InternVL2.5 (8/26/38B) (Chen et al., 2024), InternVL3 (8/14/38B), Llama-3.2 (11/90B Vision variants) (Dubey et al., 2024), Llama-4 (Scout-17B-16E-Instruct/Maverick-17B-128E-Instruct), LLaVA derivatives (Llama3-llava-next-8b, LLaVA-OneVision-Qwen2-7B) (Liu et al., 2023), MiniCPM derivatives (V-2.6/o-2.6) (Yao et al., 2024; Yu et al., 2024), Phi series (3.5-Vision-Instruct/4-Multimodal-Instruct) (Abdin et al., 2024; Microsoft, 2025) and MiniMax-01 (Li et al., 2025). All evaluations are conducted under zero-shot settings using unified prompts (see Appendix C.1 for full details).

Metric Design. We adopt a comprehensive evaluation protocol that extends standard VLN metrics (Qi et al., 2020b) to assess task success and navigation efficiency. Our evaluation includes: Task Completion (TC), measured with metrics of varying granularity: (1) TC-Exact (TCE) requires a strict, single-node endpoint match. To account for the fact that a target is often visible from multiple nearby viewpoints, (2) TC-Proximity (TCP) grants success within a geodesic threshold of ≤ 50 m to address this spatial ambiguity; (3) TC-Category (TCC) evaluates whether the final destination belongs to the same category as the intended target, acknowledging practical flexibility in location-based tasks (e.g., reaching any restaurant rather than the closest one); Path Quality, assessed via (4) Normalized Dynamic Time Warping (nDTW) (Xu et al., 2024) to quantify trajectory alignment with ground truth, (5) Success weighted by Path Length (SPL) to rigorously measure navigation efficiency by balancing success rates against trajectory length, and (6) Average Steps (AS) for decision efficiency; Distance-Based Metrics, (7) Shortest-Path Distance (SPD) for straight-line distance to the goal.

270
 271 Table 2: **The performance of CitySeeker Framework.** For Subcategory evaluations, the TCP score is
 272 reported. Top performers are highlighted in bold, while secondary leaders are underlined. For details
 273 on the AS metric and a more comprehensive evaluation of the models, please refer to Appendix C.3.

Models	Overall						Subcategories						
	TCE	TCP	TCC	SPL	SPD	nDTW	Basic POI	Brand-Specific	Transit Hub	Latent POI	Abstract Demand	Inclusive Infra.	Semantic Pref.
GPT-4o	2.4	18.3	6.8	13.3	125.4	136.9	18.9	21.1	19.6	9.7	18.9	14.9	26.0
GPT-4o-mini	1.1	12.3	7.6	7.5	202.0	325.2	12.3	21.1	14.3	7.4	11.8	7.5	10.6
o4-mini	2.6	17.9	6.8	11.6	130.1	156.3	20.2	19.9	12.5	13.1	16.7	9.0	24.0
Gemini-2.5-pro	1.8	17.3	5.0	12.1	121.8	121.2	<u>20.4</u>	18.0	16.1	10.2	20.6	9.0	13.5
InternVL2.5-8B	1.0	14.6	4.4	5.6	118.5	140.4	15.7	14.3	1.8	14.8	18.4	10.4	10.6
InternVL2.5-26B	1.6	15.3	3.7	7.3	109.5	106.0	<u>20.4</u>	12.4	8.9	10.8	17.1	7.5	8.7
InternVL2.5-38B	2.2	18.1	<u>7.2</u>	11.2	136.6	169.2	17.6	24.2	14.3	13.1	22.8	10.4	16.4
InternVL3-8B	1.3	15.8	4.9	6.4	118.3	144.5	17.2	15.5	7.1	<u>14.2</u>	16.7	16.4	15.4
InternVL3-14B	1.7	15.1	6.4	8.5	136.2	170.8	13.8	20.5	<u>17.9</u>	8.0	19.3	<u>10.5</u>	17.3
InternVL3-38B	2.5	<u>19.3</u>	6.7	10.6	115.8	128.3	18.9	<u>25.5</u>	12.5	13.1	<u>23.3</u>	11.9	21.2
Qwen2-VL-7B	0.7	11.1	1.7	5.2	111.4	114.4	11.4	9.9	14.3	4.6	13.2	13.4	15.4
Qwen2-VL-72B	1.0	11.9	2.3	9.0	113.0	89.5	14.8	8.7	7.1	7.4	14.5	1.5	15.4
Qwen2.5-VL-7B	0.5	15.8	4.3	4.6	119.0	151.8	20.2	17.4	12.5	10.2	13.6	7.5	15.4
Qwen2.5-VL-32B	2.6	21.1	6.2	<u>12.7</u>	122.6	147.0	22.2	30.4	10.7	<u>14.2</u>	24.1	9.0	20.2
Qwen2.5-VL-72B	2.0	14.6	<u>7.2</u>	9.1	174.9	250.2	14.8	21.7	14.3	6.8	15.8	11.9	14.4
Llama3.2-90B	0.9	12.5	3.7	7.3	124.5	123.1	13.6	12.4	1.8	9.7	14.0	10.4	16.4
Llama-4-Scout-17B	1.8	14.1	7.0	6.7	145.0	211.4	12.3	18.6	14.3	8.5	17.5	17.9	14.4
Llama-4-Maverick-17B	0.9	10.8	1.6	4.0	107.1	110.5	12.7	10.6	8.9	10.2	12.7	4.5	4.8
MiniMax-01	1.5	13.6	6.8	8.8	172.2	236.6	15.5	16.2	8.9	6.8	14.9	11.9	13.5
MiniCPM-V-2.6	0.9	11.7	3.5	4.0	122.2	152.2	12.5	10.6	19.6	9.7	13.2	7.5	8.7
MiniCPM-o-2.6	1.4	15.5	6.4	5.6	130.1	176.0	14.4	22.4	10.7	12.5	18.9	11.9	12.5
Phi-4-Multimodal	0.6	9.2	1.1	7.1	<u>101.1</u>	<u>58.1</u>	14.0	6.2	5.4	2.8	10.5	7.5	2.9
Llava-Llama3-8B	0.3	10.4	0.8	5.1	<u>104.8</u>	86.9	14.8	8.7	5.4	8.0	8.8	4.5	7.7
Llava-Qwen2-7B	0.3	6.9	0.4	6.2	98.1	49.8	12.5	2.5	3.6	2.8	6.6	3.0	1.0
Human	5.7	30.1	13.5	21.2	143.5	178.6	31.8	36.5	34.9	19.7	31.5	16.7	29.8
Random Choice	0.7	13.9	3.2	3.8	112.4	128.3	16.6	10.6	5.4	10.8	14.9	16.4	13.5
Forward Direction	0.2	7.2	0.4	1.8	100.8	99.3	13.3	3.1	3.6	2.3	6.6	1.5	1.9

297
 298 **Reference Baselines.** To comprehensively assess model capabilities, we introduce three evaluation
 299 baselines. We establish a (1) **Human Baseline** using an interactive platform where 10 participants
 300 of diverse backgrounds performed the navigation tasks. We also include a (2) **Random Choice**
 301 **Baseline**, which selects a random direction at each step, and a (3) **Forward Direction Baseline**,
 302 which always chooses the forward direction as a simple heuristic.

303 5 MAIN RESULTS AND ANALYSIS

304 5.1 OVERALL PERFORMANCE

305
 306 Table 2 presents the overall results. In general, the models exhibit relatively low success rates,
 307 particularly under the stricter criterion TCE. Larger models (e.g., Qwen2.5-VL-32B, GPT-4o, Gemini-
 308 2.5-Pro) perform slightly better—likely due to stronger internal representations—but the gains over
 309 smaller models remain modest. Notably, open-source models like the Qwen2.5-VL and InternVL3
 310 series demonstrate competitive performance. This superiority likely stems from specific architectural
 311 and training alignments with CitySeeker’s demands: Qwen2.5-VL benefits from spatial-aware SFT
 312 and efficient high-resolution processing crucial for identifying street-level details, while InternVL3
 313 leverages native multimodal pre-training and Mixed Preference Optimization (MPO) to enhance the
 314 complex cross-modal reasoning required for implicit needs. However, no model consistently excels,
 315 with some even underperforming random baselines. Ablation study further revealed that providing
 316 agents with a global 2D map surprisingly degraded task completion, underscoring the challenge of
 317 fusing map-based information with visual grounding (see Appendix D). Human participants achieved
 318 the best overall performance, outperforming all models on both TCP and TCC. They exhibit a clear
 319 advantage across diverse task dimensions, especially in tasks requiring urban commonsense like
 320 “Transit Hub” navigation (a TCP of 34.9% for humans versus 10.7% for the best VLM Qwen2.5-VL-
 321 32B) and “Basic POI” finding (31.8% vs. 22.2%).

322
 323 **Task Category Analysis.** Breaking down performance by query category reveals a clear divide
 324 between tasks requiring direct recognition versus those demanding deeper inference, as shown in

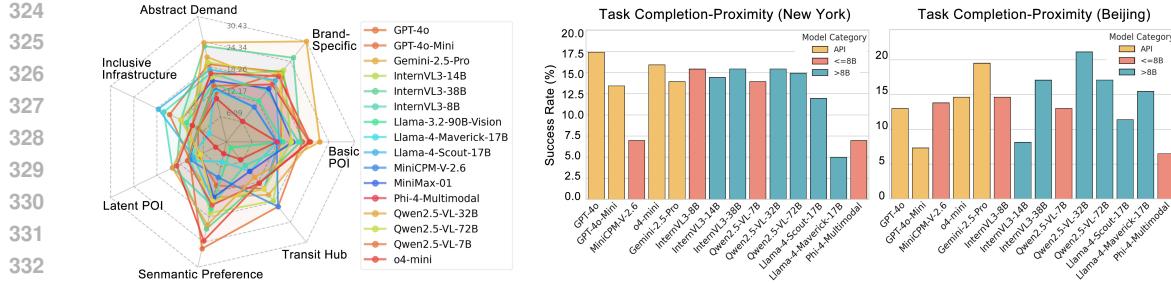


Figure 5: Radar Chart: TCP performance of different models across various subcategories. Bar Chart: TCP performance of models in different cities (left: New York, right: Beijing).

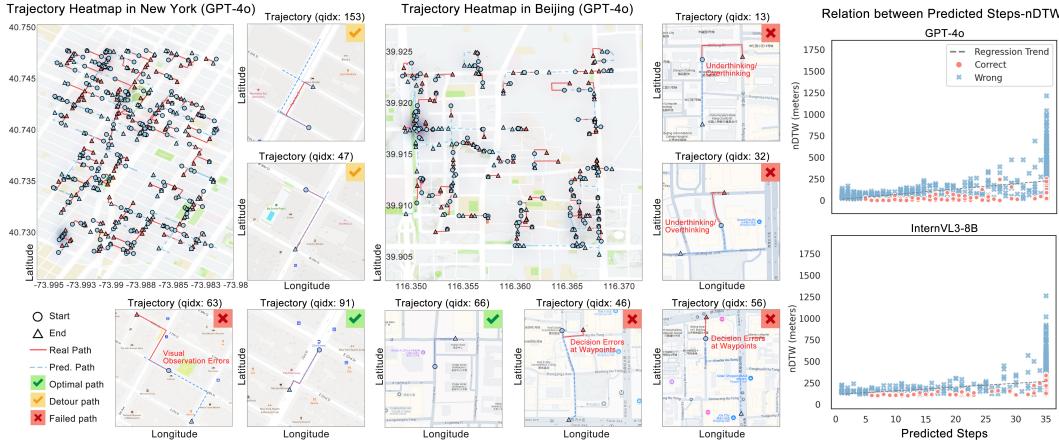


Figure 6: Heat Map: GPT-4o’s navigation trajectory distribution in New York (left) and Beijing (right). Scatter Plot: Relationship between model-generated trajectory steps and nDTW.

Table 2 and radar chart of Figure 5. Models performed best on **Brand-Specific** navigation, where recognizable brand names (e.g., Starbucks) serve as strong lexical and visual anchors. In sharp contrast, one of the most challenging categories was **Latent POI**, which requires agents to reason about indirectly observable targets that are not explicitly signed (e.g., inferring a restroom is inside a McDonald’s). This finding highlights a key VLM limitation: while adept at direct recognition, they falter when tasks require nuanced, commonsense inference about the environment.

Variation Across Cities. Performance also varies across different metropolitan areas. As shown on bar chart of Figure 5, interestingly, GPT-4o variants perform poorly in Beijing but achieve highest scores in New York—this may reflect biases in the training data or the more grid-like street layouts in the United States. To test for linguistic bias, we conducted a cross-lingual experiment, which revealed that this performance gap is not primarily driven by language factors (see Appendix C.4 for details).

5.2 IN-DEPTH ANALYSIS

As shown in Figure 6, model performance tends to degrade with increased route length. When the number of steps is fewer than 20, nDTW values remain relatively small and correct trajectories are more common. However, at around 35 steps, nDTW metrics become highly scattered, indicating that longer horizons require robust sequential reasoning—an ability current VLMs often lack, as their errors accumulate without being integrated into a coherent spatial memory.

Trajectory Patterns. In Figure 6, two prominent error modes emerge: (1) Trajectory Deviation. This arises from compounded errors at each sequential decision point, a problem exacerbated by sparse or ambiguous instructions. (2) Oscillatory Detours. Some open-source models exceed the optimal path length by 40–60% (e.g., trajectories #47 and #153 in New York), likely attributable to fragmented context handling and incomplete global awareness. We also observe that path efficiency correlates weakly with TC: when uncertain, some models veer off course or backtrack repeatedly, leading to wasted steps. Notably, most models demonstrate looping behavior—visiting the same node

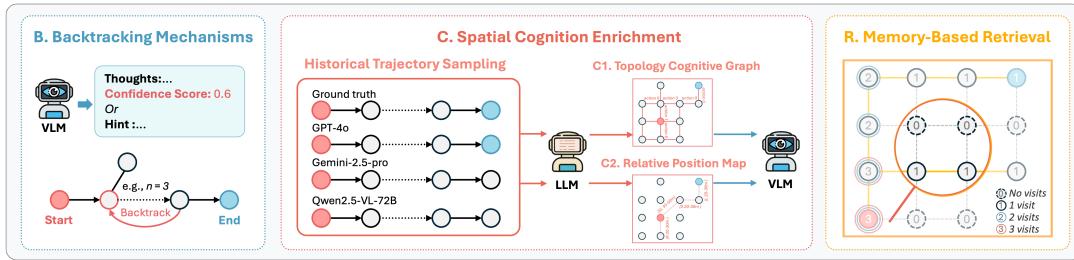


Figure 7: Overview of the **BCR** Approach -Backtracking, Spatial Cognition, and Memory-Based Retrieval to enhance VLM performance in urban VLN tasks.

Table 3: Performance of different models on TCP and nDTW under three strategies. The best results are highlighted in bold.

Model	Baseline	B1	B2	B3	C1	C2	R1	R2	R3									
	TCP nDTW	TCP nDTW	TCP nDTW															
GPT-4o-Mini	12.5	337.1	15.7	289.5	17.4	277.9	18.2	258.3	17.2	242.3	15.1	239.7	18.3	136.6	17.9	312.2	19.4	176.9
InternVL3-8B	15.0	142.9	16.7	139.9	18.5	137.5	17.2	138.6	17.9	145.2	16.4	197.6	18.6	148.9	16.9	128.4	17.9	134.8
MiniCPM-V-2.6	11.3	159.0	9.1	120.5	13.1	153.1	13.0	137.2	11.6	123.0	8.5	144.4	14.6	143.3	14.8	146.7	15.7	111.5
Qwen2.5-VL-7B-Instruct	12.5	122.2	14.0	140.5	14.4	156.7	15.3	141.8	15.3	142.5	12.3	135.8	16.1	156.4	15.9	441.4	16.2	141.8
Qwen2.5-VL-32B-Instruct	19.9	167.7	21.9	164.5	22.2	154.6	23.1	159.4	21.2	153.5	19.6	162.1	26.9	173.2	25.9	172.8	25.4	152.8

multiple times (e.g., trajectory #63 in New York and #32 in Beijing)—suggesting difficulties with local decision-making. Interestingly, others (e.g., Llava-Qwen2-7B) take relatively concise routes yet still show low accuracy, implying a lack of deeper spatial understanding despite fewer detours.

6 EXPLORATORY APPROACHES TO EMBODIED URBAN NAVIGATION

To explore strategies for enhancing VLM performance, we propose a three-pronged approach, BCR, involving **Backtracking Mechanisms**, **Spatial Cognition Enrichment**, and **Memory-Based Retrieval** (Figure 7). These methods aim to mitigate cumulative navigation errors, boost global spatial awareness, and enable memory-informed decision-making. We denote these three method series as **B**, **C**, and **R** respectively in the following content. We conducted initial experiments on a mini-size subset of 650 samples; for full technical details, including an analysis of combined BCR strategies, please refer to Appendix E.

6.1 BACKTRACKING MECHANISMS

We introduce backtracking to correct navigational errors. **(B1) Basic Backtracking** is triggered when the agent’s internal confidence, averaged over a sliding window of k steps, falls below a predefined threshold θ . The agent then reverts to the last trusted node. This mechanism is self-supervised and does not require external feedback. **(B2) Step-Reward Backtracking** replaces subjective confidence with objective progress metric: the topological distance to the goal, d_t . Backtracking is initiated if this distance increases monotonically for k consecutive steps, i.e., when $\bigwedge_{i=0}^{k-1} (d_{t-i} > d_{t-(i+1)})$ holds. This corrects navigational drift away from the target. **(B3) Human-Guided Backtracking** enhances B1 by providing a directional hint after reverting. This hint guides the agent toward the optimal action $a^* = \arg \min_{a \in \mathcal{A}_t} \mathbb{E}[d_{t+1} | a_t = a]$, which minimizes the expected future distance to the target, thereby realigning the agent’s trajectory with the shortest path to the goal.

Empirical Performance. As shown in Table 3, **B1** generally improves TCP across models, indicating that confidence-based backtracking stabilizes navigation for capable VLMs. However, it underperforms on smaller models like MiniCPM-V-2.6 (TCP drops from 11.3% to 9.1%), suggesting insufficient spatial reasoning for effective self-assessment. **B2** and **B3** are more universally effective, consistently improving TCP across all models. For instance, **B3** boosts GPT-4o-Mini’s TCP to 18.2% while significantly improving its path efficiency (nDTW drops from 337.1 to 258.3). These results highlight that while simple self-correction benefits capable models, external signals (like progress rewards or timely hints, in B2 and B3) offer more robust improvements.

432 6.2 SPATIAL COGNITION ENRICHMENT
433

434 To improve the agent’s environmental awareness, we generate enriched spatial cues by using GPT-4.1
 435 to synthesize successful and erroneous trajectories from various VLMs (e.g., GPT-4o, Gemini-2.5-
 436 pro). This synthesized knowledge is then injected into the agent’s prompt in one of two formats.
 437 **(C1) Topology Cognitive Graph** provides a structured graph where nodes represent locations and
 438 edges represent actionable transitions. This format forces the agent to ground its decisions in explicit
 439 environmental connectivity, discouraging exploration of invalid paths. **(C2) Relative Position Map**
 440 offers a more intuitive spatial context, describing relationships between locations with directional
 441 cues (e.g., “left”, “slightly right”) and estimated distances. While lacking explicit connectivity, this
 442 method allows the agent to construct a flexible mental map based on relative positional relationships.
 443

444 **Empirical Performance.** Table 3 illustrates that **C1** improves TCP across models by grounding
 445 decisions in topological structure. For instance, GPT-4o-Mini achieves an increase from 12.5% to
 446 17.2%. The impact of **C2** is more mixed; while it can improve path efficiency (e.g., for GPT-4o-Mini,
 447 nDTW drops to 239.7), it sometimes slightly reduces task completion (e.g., for MiniCPM-V-2.6, TCP
 448 drops from 11.3% to 8.5%). Overall, C1 appears more reliable for improving task success, whereas
 449 C2 supports a more flexible and exploratory approach but sacrifices some success rate.
 450

451 6.3 MEMORY-BASED RETRIEVAL
452

453 To overcome fragmented decision-making, we implement a graph-based memory module, enabling
 454 agents to retrieve or append past rationales and actions. **(R1) Topology-based Retrieval** aggregates
 455 multi-round node and edge metadata based on graph connectivity. At each step, it retrieves a local
 456 subgraph of h -hop neighbors, accessing metadata like node visitation counts, previous decisions,
 457 edge transition success rates and confidence scores. This helps avoid repeating past mistakes and
 458 promotes the reuse of successful paths. **(R2) Spatial-based Retrieval** complements this by retrieving
 459 a subgraph of nodes and relationships within a fixed Euclidean radius, which emphasizes geographic
 460 proximity. **(R3) Historical Trajectory Lookup** introduces short-term memory by appending recent
 461 intra-round navigation history into VLM’s context. This includes spatial data, action choices, and
 462 prior decision rationale over a sliding window. Unlike R1 and R2, R3 does not rely on database
 463 traversal, making it a lightweight method to stabilize reasoning within a single episode.
 464

465 **Empirical Performance.** Table 3 reveals that the R-series strategies are the most powerful overall.
 466 For GPT-4o-Mini, **R3** yields the highest TCP of all strategies (19.4%), while **R1** achieves the best path
 467 efficiency with a dramatic nDTW reduction to 136.6. This demonstrates that different memory-based
 468 approaches can simultaneously enhance both task completion and navigation efficiency. Across all
 469 models, R-series strategies consistently produce some of the highest TCP scores, with **R1** pushing
 470 the top-performing Qwen2.5-VL-32B-Instruct to an impressive **26.9%** TCP. This confirms that
 471 memory-aware navigation is crucial for improving both the reliability and effectiveness of the agent.
 472

473 **Trade-off Analysis and Application Scenarios.** The **B-Series** strategies (especially B2 and B3)
 474 reliably improve task completion, making them suitable when success is prioritized. The **C-Series** is
 475 applicable when external spatial information can be provided; C1 generally favors accuracy, while
 476 C2 may trade success for better path efficiency. Overall, the **R-Series** is the most robust approach for
 477 long-horizon navigation, consistently yielding the best task completion rates. Lightweight models
 478 like InternVL3-8B are suitable for time-sensitive tasks, while heavier models like Qwen2.5-VL-32B-
 479 Instruct, augmented with R-series strategies, are ideal for precision-critical applications.
 480

481 7 CONCLUSION
482

483 CitySeeker establishes a new standard for embodied urban navigation by systematically evaluating
 484 how well VLMs tackle implicit human needs in diverse, real-world cityscapes. Our extensive
 485 experiments uncover that today’s models frequently struggle with the complexities of this task, often
 486 deviating from optimal routes due to limited spatial reasoning. To address this, we introduced a
 487 human-inspired cognitive framework and outlined three insightful strategies—backtracking, spatial
 488 cognition enrichment, and memory-based retrieval—which demonstrably improve performance.
 489

486 These findings offer a clear pathway toward developing more robust, human-like agents capable of
 487 solving the crucial “last-mile” problem in real-world navigation.
 488

489 **ETHICS STATEMENT**

490 This research adheres to the ICLR Code of Ethics. The study involved human participants for the
 491 establishment of a human baseline. All participants were fairly compensated for their time in line
 492 with our institution’s standard rates for research assistance, and the experimental procedure was
 493 clearly explained to them. The street-view imagery used in our experiments was accessed via publicly
 494 available APIs (Google Maps and Baidu Maps). **To strictly adhere to the API Terms of Service, we do
 495 not distribute any raw street-view images or offline copies. Instead, researchers can access the visual
 496 data using our provided scripts, which query the official APIs using the released trajectory metadata
 497 (e.g., Panorama IDs and coordinates).** This approach ensures full compliance while maintaining the
 498 scientific reproducibility of the benchmark.
 499

500 **REPRODUCIBILITY STATEMENT**

501 To ensure the reproducibility of our work while complying with data usage policies, we have made
 502 our metadata, code, and supplementary materials publicly available. The **CitySeeker** benchmark
 503 release includes: (1) the complete trajectory graph data (nodes, edges, and Panorama IDs), and (2)
 504 the full implementation code for our evaluation framework and BCR exploratory strategies. **The
 505 scripts enable re-fetching the necessary street-view imagery directly from the public APIs.** This
 506 methodology aligns with established practices in the field (e.g., Touchdown (Chen et al., 2019)) to
 507 ensure reproducibility without distributing copyrighted images. Furthermore, we have verified that
 508 reproducing test set via these scripts incurs no financial cost under standard API usage tiers. All
 509 resources can be found at anonymous repository linked in Appendix A. The main paper and appendix
 510 provide comprehensive details on our experimental setup (Appendix C), the exact prompts used for
 511 all VLM evaluations (Appendix C.2), and the specifics of our evaluation metrics (Section 4.2).
 512

513 **REFERENCES**

514

515 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
 516 Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
 517 capable language model locally on your phone. *arXiv preprint arXiv:2404.14219*, 2024.

518

519 Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
 520 Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting visually-
 521 grounded navigation instructions in real environments. In *Proceedings of the IEEE conference on
 522 computer vision and pattern recognition*, pp. 3674–3683, 2018.

523

524 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 525 Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
 526 Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
 527 Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-v1 technical report. *arXiv
 528 preprint arXiv:2502.13923*, 2025.

529

530 Yihan Cao, Jiazhao Zhang, Zhinan Yu, Shuzhen Liu, Zheng Qin, Qin Zou, Bo Du, and Kai Xu.
 531 Cognav: Cognitive process modeling for object goal navigation with llms. *arXiv preprint
 532 arXiv:2412.10439*, 2024.

533

534 Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. Touchdown: Natural
 535 language navigation and spatial reasoning in visual street environments. In *Proceedings of the
 536 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 12538–12547, 2019.

537

538 Zhe Chen, Jiannan Wu, Wenhui Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
 539 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
 540 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF Conference on Computer
 541 Vision and Pattern Recognition*, pp. 24185–24198, 2024.

540 Hao-Tien Lewis Chiang, Zhuo Xu, Zipeng Fu, Mithun George Jacob, Tingnan Zhang, Tsang-
 541 Wei Edward Lee, Wenhao Yu, Connor Schenck, David Rendleman, Dhruv Shah, et al. Mobility vla:
 542 Multimodal instruction navigation with long-context vlms and topological graphs. *arXiv preprint*
 543 *arXiv:2407.07775*, 2024.

544 Gregory D Clemenson, Antonella Maselli, Alexander J Fiannaca, Amos Miller, and Mar Gonzalez-
 545 Franco. Rethinking gps navigation: creating cognitive maps through auditory clues. *Scientific*
 546 *reports*, 11(1):7764, 2021.

547 Harm De Vries, Kurt Shuster, Dhruv Batra, Devi Parikh, Jason Weston, and Douwe Kiela. Talk the
 548 walk: Navigating new york city through grounded dialogue. *arXiv preprint arXiv:1807.03367*,
 549 2018.

550 Vishnu Sashank Dorbala, Gunnar Sigurdsson, Robinson Piramuthu, Jesse Thomason, and Gaurav S
 551 Sukhatme. Clip-nav: Using clip for zero-shot vision-and-language navigation. *arXiv preprint*
 552 *arXiv:2211.16649*, 2022.

553 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 554 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 555 *arXiv preprint arXiv:2407.21783*, 2024.

556 Mohamed Elnoor, Kasun Weerakoon, Gershom Seneviratne, Ruiqi Xian, Tianrui Guan, Mohamed
 557 Khalid M Jaffar, Vignesh Rajagopal, and Dinesh Manocha. Robot navigation using physically
 558 grounded vision-language models in outdoor environments. *arXiv preprint arXiv:2409.20445*,
 559 2024.

560 Russell A Epstein, Eva Zita Patai, Joshua B Julian, and Hugo J Spiers. The cognitive map in humans:
 561 spatial navigation and beyond. *Nature neuroscience*, 20(11):1504–1513, 2017.

562 Delaram Farzanfar, Hugo J Spiers, Morris Moscovitch, and R Shayna Rosenbaum. From cognitive
 563 maps to spatial schemas. *Nature Reviews Neuroscience*, 24(2):63–79, 2023.

564 Jie Feng, Tianhui Liu, Yuwei Du, Siqi Guo, Yuming Lin, and Yong Li. Citygpt: Empowering urban
 565 spatial cognition of large language models. In *Proceedings of the 31st ACM SIGKDD Conference*
 566 *on Knowledge Discovery and Data Mining* V. 2, pp. 591–602, 2025.

567 Peng Gao, Peng Wang, Feng Gao, Fei Wang, and Ruyue Yuan. Vision-language navigation with
 568 embodied intelligence: A survey. *arXiv preprint arXiv:2402.14304*, 2024.

569 Dylan Goetting, Himanshu Gaurav Singh, and Antonio Loquercio. End-to-end navigation with
 570 vision language models: Transforming spatial reasoning into question-answering. *arXiv preprint*
 571 *arXiv:2411.05755*, 2024.

572 Wes Gurnee and Max Tegmark. Language models represent space and time. *arXiv preprint*
 573 *arXiv:2310.02207*, 2023.

574 Noriaki Hirose, Dhruv Shah, Ajay Sridhar, and Sergey Levine. Sacson: Scalable autonomous control
 575 for social navigation. *IEEE Robotics and Automation Letters*, 2023.

576 Gaurav Jain, Basel Hindi, Zihao Zhang, Koushik Srinivasula, Mingyu Xie, Mahshid Ghasemi, Daniel
 577 Weiner, Sophie Ana Paris, Xin Yi Therese Xu, Michael Malcolm, et al. Streetnav: Leveraging
 578 street cameras to support precise outdoor navigation for blind pedestrians. In *Proceedings of the*
 579 *37th Annual ACM Symposium on User Interface Software and Technology*, pp. 1–21, 2024.

580 Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao
 581 Guo, Da Chen, Dong Li, et al. Minimax-01: Scaling foundation models with lightning attention.
 582 *arXiv preprint arXiv:2501.08313*, 2025.

583 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in*
 584 *neural information processing systems*, 36:34892–34916, 2023.

585 Xinhao Liu, Jintong Li, Yichen Jiang, Niranjan Sujay, Zhicheng Yang, Juexiao Zhang, John Abanes,
 586 Jing Zhang, and Chen Feng. Citywalker: Learning embodied urban navigation from web-scale
 587 videos. *arXiv preprint arXiv:2411.17820*, 2024.

594 Xinhao Liu, Jintong Li, Yicheng Jiang, Niranjan Sujay, Zhicheng Yang, Juxiao Zhang, John Abanes,
 595 Jing Zhang, and Chen Feng. Citywalker: Learning embodied urban navigation from web-scale
 596 videos. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 6875–6885,
 597 2025.

598 Arjun Majumdar, Gunjan Aggarwal, Bhavika Devnani, Judy Hoffman, and Dhruv Batra. Zson: Zero-
 599 shot object-goal navigation using multimodal goal embeddings. *Advances in Neural Information
 600 Processing Systems*, 35:32340–32352, 2022.

602 Bui Duc Manh, Soumyaratna Debnath, Zetong Zhang, Shriram Damodaran, Arvind Kumar, Yueyi
 603 Zhang, Lu Mi, Erik Cambria, and Lin Wang. Mind meets space: Rethinking agentic spatial
 604 intelligence from a neuroscience-inspired perspective. *arXiv preprint arXiv:2509.09154*, 2025.

606 Microsoft. Phi-4-mini technical report: Compact yet powerful multimodal language models via
 607 mixture-of-loras. *arXiv preprint arXiv:2503.01743*, 2025.

609 Piotr Mirowski, Matt Grimes, Mateusz Malinowski, Karl Moritz Hermann, Keith Anderson, Denis
 610 Teplyashin, Karen Simonyan, Andrew Zisserman, Raia Hadsell, et al. Learning to navigate in
 611 cities without a map. *Advances in neural information processing systems*, 31, 2018.

612 Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Frujeri, Hiteshi Sharma, Nebojsa Jojic, Hamid
 613 Palangi, Robert Ness, and Jonathan Larson. Evaluating cognitive maps and planning in large
 614 language models with cogeval. *Advances in Neural Information Processing Systems*, 36, 2024.

616 Bowen Pan, Rameswar Panda, SouYoung Jin, Rogerio Feris, Aude Oliva, Phillip Isola, and Yoon Kim.
 617 Langnav: Language as a perceptual representation for navigation. In *Findings of the Association
 618 for Computational Linguistics: NAACL 2024*, pp. 950–974, 2024.

619 Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang, William Yang Wang, Chunhua Shen, and Anton
 620 van den Hengel. Reverie: Remote embodied visual referring expression in real indoor environments.
 621 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 622 9982–9991, 2020a.

623 Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang, William Yang Wang, Chunhua Shen, and Anton
 624 van den Hengel. Reverie: Remote embodied visual referring expression in real indoor environments.
 625 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 626 9982–9991, 2020b.

628 Raphael Schumann and Stefan Riezler. Generating landmark navigation instructions from maps as a
 629 graph-to-text problem. *arXiv preprint arXiv:2012.15329*, 2020.

631 Raphael Schumann, Wanrong Zhu, Weixi Feng, Tsu-Jui Fu, Stefan Riezler, and William Yang Wang.
 632 Velma: Verbalization embodiment of llm agents for vision and language navigation in street view.
 633 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 18924–18933,
 634 2024.

635 Gemini Team. Gemini: A family of highly capable multimodal models, 2024.

637 Edward C Tolman. Cognitive maps in rats and men. *Psychological review*, 55(4):189, 1948.

639 Arun Balajee Vasudevan, Dengxin Dai, and Luc Van Gool. Talk2nav: Long-range vision-and-
 640 language navigation with dual attention and spatial memory. *International Journal of Computer
 641 Vision*, 129:246–266, 2021.

642 Hanqing Wang, Wenguan Wang, Wei Liang, Caiming Xiong, and Jianbing Shen. Structured scene
 643 memory for vision-language navigation. In *Proceedings of the IEEE/CVF conference on Computer
 644 Vision and Pattern Recognition*, pp. 8455–8464, 2021.

646 Hongcheng Wang, Andy Guan Hong Chen, Xiaoqi Li, Mingdong Wu, and Hao Dong. Find what
 647 you want: Learning demand-conditioned object attribute space for demand-driven navigation.
Advances in Neural Information Processing Systems, 36:16353–16366, 2023.

648 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 649 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the
 650 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024a.

651

652 Siqi Wang, Chao Liang, Yunfan Gao, Yang Liu, Jing Li, and Haofen Wang. Decoding urban industrial
 653 complexity: Enhancing knowledge-driven insights via industryscopegt. MM '24, pp. 4757–4765,
 654 New York, NY, USA, 2024b. Association for Computing Machinery. ISBN 9798400706868. doi:
 655 10.1145/3664647.3681705. URL <https://doi.org/10.1145/3664647.3681705>.

656 Wansen Wu, Tao Chang, Xinmeng Li, Quanjun Yin, and Yue Hu. Vision-language navigation: a
 657 survey and taxonomy. *Neural Computing and Applications*, 36(7):3291–3316, 2024a.

658

659 Wenshan Wu, Shaoguang Mao, Yadong Zhang, Yan Xia, Li Dong, Lei Cui, and Furu Wei. Mind's
 660 eye of llms: Visualization-of-thought elicits spatial reasoning in large language models. In *The
 661 Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024b.

662 Yunzhe Xu, Yiyuan Pan, Zhe Liu, and Hesheng Wang. Flame: Learning to navigate with multimodal
 663 llm in urban environments. *arXiv preprint arXiv:2408.11051*, 2024.

664

665 Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in
 666 space: How multimodal large language models see, remember, and recall spaces. *arXiv preprint
 667 arXiv:2412.14171*, 2024.

668 Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in
 669 space: How multimodal large language models see, remember, and recall spaces. In *Proceedings
 670 of the Computer Vision and Pattern Recognition Conference*, pp. 10632–10643, 2025.

671 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 672 React: Synergizing reasoning and acting in language models. In *International Conference on
 673 Learning Representations (ICLR)*, 2023.

674

675 Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
 676 Weilin Zhao, Zihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. *arXiv preprint
 677 arXiv:2408.01800*, 2024.

678

679 Baiqiao Yin, Qineng Wang, Pingyue Zhang, Jianshu Zhang, Kangrui Wang, Zihan Wang, Jieyu
 680 Zhang, Keshigeyan Chandrasegaran, Han Liu, Ranjay Krishna, et al. Spatial mental modeling
 681 from limited views. *arXiv preprint arXiv:2506.21458*, 2025.

682

683 Tianyu Yu, Haoye Zhang, Qiming Li, Qixin Xu, Yuan Yao, Da Chen, Xiaoman Lu, Ganqu Cui,
 684 Yunkai Dang, Taiwen He, Xiaocheng Feng, Jun Song, Bo Zheng, Zhiyuan Liu, Tat-Seng Chua,
 685 and Maosong Sun. Rlaif-v: Open-source ai feedback leads to super gpt-4v trustworthiness. *arXiv
 686 preprint arXiv:2405.17220*, 2024.

687

688 Zhaohuan Zhan, Lisha Yu, Sijie Yu, and Guang Tan. Mc-gpt: Empowering vision-and-language
 689 navigation with memory map and reasoning chains. *arXiv preprint arXiv:2405.10620*, 2024.

690

691 Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks: A
 692 survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2024a.

693

694 Yue Zhang, Ziqiao Ma, Jialu Li, Yanyuan Qiao, Zun Wang, Joyce Chai, Qi Wu, Mohit Bansal, and
 695 Parisa Kordjamshidi. Vision-and-language navigation today and tomorrow: A survey in the era of
 696 foundation models. *arXiv preprint arXiv:2407.07035*, 2024b.

697

698 Gengze Zhou, Yicong Hong, Zun Wang, Xin Eric Wang, and Qi Wu. Navgpt-2: Unleashing
 699 navigational reasoning capability for large vision-language models. In *European Conference on
 700 Computer Vision*, pp. 260–278. Springer, 2024a.

701 Gengze Zhou, Yicong Hong, and Qi Wu. Navgpt: Explicit reasoning in vision-and-language
 702 navigation with large language models. In *Proceedings of the AAAI Conference on Artificial
 703 Intelligence*, volume 38, pp. 7641–7649, 2024b.

702 APPENDIX
703
704 • A. Data and Code Availability
705 • B. Benchmark Details

- B.1 Implicit Needs Instruction Generation Process
- B.2 Instruction Categories and Examples

706 • C. Experimental Details

- C.1 Implementation Details
- C.2 Experiment Prompts
- C.3 Evaluation Results Details
- C.4 Cross-Lingual Experiment on Linguistic Bias

707 • D. Ablation Study: Impact of Global Map
708 • E. BCR Studies Details

- E.1 Backtracking Mechanisms
- E.2 Spatial Cognition Enrichment
- E.3 Memory-Based Retrieval
- E.4 Performance of Combined BCR Strategies

709 • F. VLM Generation Examples
710 • G. Error Analysis
711 • H. Limitations and Future Work
712 • I. LLM Usage Statement
713
714729 A DATA AND CODE AVAILABILITY
730
731 To promote community engagement and ensure reproducibility, the **CitySeeker** dataset along with
732 the full implementation code are publicly available at:
733 <https://github.com/anonymous-cityseeker/CitySeeker>.
 735 B BENCHMARK DETAILS
736
737 The CitySeeker dataset comprises 6,440 trajectories across 8 diverse urban regions, paired with
738 navigation instructions addressing implicit human needs. To ensure strict adherence to image
739 licensing and usage rights (e.g., Google Maps Platform Terms of Service), our public release strategy
740 dissociates raw visual data from trajectory metadata. Specifically, we release the complete trajectory
741 graphs (including node coordinates and Panorama IDs) and navigation instructions. Rather than
742 distributing offline copies of copyrighted street-view imagery, we provide automated scripts that allow
743 researchers to re-fetch the necessary visual data directly from the official APIs. This methodology
744 ensures full compliance with non-commercial, research-only usage policies while maintaining the
745 benchmark’s reproducibility. Route-map visualizations are generated from OpenStreetMap data
746 (ODbL) and shared under compatible terms.
 748 B.1 IMPLICIT NEEDS INSTRUCTION GENERATION PROCESS
749
750 Each instruction type is manually associated with one or more Point of Interest (POI) categories.
751 For **Basic POI Navigation**, **Brand-Specific Navigation**, and **Transportation Hub Navigation**
752 categories, the corresponding POI types are directly indicated in the questions; For **Inclusive Infras-**
753 **tructure Navigation** and **Semantic Preference Navigation**, we leverage POI metadata descriptions
754 provided by map vendors; For **Latent POI Navigation** and **Abstract Demand Navigation** questions,
755 we manually define the mapping between the questions and POI categories based on everyday life
experience. Table 4 and 5 present some mapping examples.

756

757

Table 4: Latent POI Navigation Mapping Examples

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

User Query	Mapped POI Categories
<i>Please find the nearest cinema.</i>	Movie theater, Shopping mall
<i>Please find the nearest ATM.</i>	ATM, Bank
<i>Please find the nearest coffee shop.</i>	Cafe, Coffee shop, Shopping mall
<i>Please find the nearest gym.</i>	Physical fitness program, Gym, Fitness center, Gym and fitness centre
<i>Please find the nearest parking lot.</i>	Parking lot, Free parking lot, Parking garage, Public parking space
<i>Please find the nearest restroom.</i>	Public bathroom, Public wheelchair-accessible bathroom, Subway station, Shopping mall, McDonald's, KFC

Table 5: Abstract Demand Navigation Mapping Examples

User Query	Mapped POI Categories
<i>I need to go to the airport and would like assistance in finding the best way there. Could you help me?</i>	Subway station, Bus station, Bus stop, Taxi service, Car leasing service, Car rental agency
<i>I want to bring my child to play and need assistance finding a suitable place nearby. Could you help me?</i>	Shopping mall, Park, City park, Museum, Art museum, Children's amusement center, Playground
<i>I want to buy fruits and vegetables and need assistance finding a suitable place nearby. Could you help me?</i>	Supermarket, Fruit and vegetable store, Greengrocer, Farmers' market
<i>I want to exercise and need assistance finding a suitable place nearby. Could you help me?</i>	Park, City park, Physical fitness program, Gym, Yoga studio, Swimming pool
<i>I want to rest and read and need help finding a suitable place nearby. Could you assist me?</i>	Cafe, Coffee shop, Public library, Library, Book store, Park
<i>I want to work with Wi-Fi and need assistance finding a suitable place nearby. Could you help me?</i>	Cafe, Coffee shop, Public library, Library, Book store, McDonald's, KFC, Five Guys
<i>I have run out of phone credit and need to recharge it. Could you assist me in finding a nearby place where I can do so?</i>	Cafe, Coffee shop, Public library, Library, Supermarket, Telecommunications service provider, Cell phone store, Target, McDonald's, KFC, 7-ELEVEn, Best Buy
<i>I'm feeling hungry and would like something to eat. Could you help me find a nearby place?</i>	Convenience store, Supermarket, Market, Dessert shop, Food truck, Food stall, Shopping mall, Restaurant, Diner
<i>I'm feeling thirsty and would like something to drink. Could you help me find a nearby place?</i>	Convenience store, Supermarket, Shopping mall, Cafe, Bubble tea store, Water fountain, Vending machine, Dessert shop, Juice shop
<i>I'm not feeling well and need assistance finding a suitable place nearby. Could you help me?</i>	Clinics, Pharmacies, Hospitals

810 **Enrichment with Visually-Grounded POIs.** To enrich our POI beyond standard map data, we
 811 address the challenge of temporary or purely visual POIs not available from map providers. We
 812 employ a powerful VLM to identify such facilities (e.g., temporary food stalls or vendors) within
 813 street-views. To ensure data quality, all identified POIs then undergo a manual verification process.
 814 Once confirmed, these visual POIs are added to our graph database with their corresponding locations,
 815 making them available for the query-to-POI mapping process. This step is crucial for ensuring our
 816 benchmark reflects the dynamic and visually rich nature of urban environments.

817 **Query POI Cypher Statement Example.** To retrieve specific POI instances, we construct Cypher
 818 queries that consider category attributes, name-based keyword patterns, or descriptive information
 819 within the graph database. The queries are adjusted based on the different POI categories provided
 820 by various map vendors, ensuring flexibility in retrieving relevant POIs efficiently. For Inclusive
 821 Infrastructure and Semantic Preference, we query the corresponding description information for each
 822 POI, which is stored in the retrieved POI metadata. This includes descriptive terms that specify
 823 human-centric attributes of the POI, such as romantic, upscale, family-friendly, cozy, outdoor seating,
 824 wheelchair accessible entrance, etc. The Cypher query combines these descriptive words with
 825 category-specific terms, as shown below.

826 Cypher Query Example - Find the nearest group or family-friendly restaurant.

```
828     MATCH (place:Point)-[:CONTAINS]->(vp:VisiblePoint)
829     WHERE (ANY(key IN keys(vp)
830                WHERE (key CONTAINS 'introduction' OR key CONTAINS 'result') AND
831                    (vp[key] CONTAINS 'Groups'
832                    OR vp[key] CONTAINS 'Family-friendly'))
833                AND (vp.category CONTAINS 'restaurant'
834                    OR vp.category CONTAINS 'diner'))
835     RETURN COLLECT(DISTINCT place) AS validPOIs
836
```

837 For Abstract Demand, a query such as “I want to rest and read” triggers a Cypher query that retrieves
 838 POIs from categories like Cafe, Coffee Shop, Public Library, Library, Book Store,
 839 and Park, while simultaneously considering relevant keywords like “park” and “book store” in the
 840 POI names. This dual consideration of category and keywords ensures that the query matches a
 841 comprehensive set of potential POIs. The Cypher query is as follows:

842 Cypher Query Example - I want to rest and read and need help finding a suitable place nearby.

```
844     MATCH (place:Point)-[:CONTAINS]->(vp:VisiblePoint)
845     WHERE vp.category IN ['Cafe', 'Coffee shop', 'Public library',
846                    'Library', 'Book store', 'Park']
847            OR any(keyword IN ['park', 'book store']
848                    WHERE toLower(vp.name) CONTAINS toLower(keyword))
849     RETURN COLLECT(DISTINCT place) AS validPOIs
```

850 **Manual Trajectory Validation.** To mitigate potential mapping incompleteness, we implement
 851 manual verification to re-inspect generated trajectories, ensuring no alternative POIs that could fulfill
 852 the user’s request exist along the path except at the designated endpoint. By doing so, we ensure that
 853 the generated trajectories are comprehensive and accurate, reducing the likelihood of missing target
 854 POIs or introducing redundant POIs that could lead to incorrect ground truth.

855 To further prove that our common sense mappings are not designer bias but reflect robust human
 856 common sense with cross-cultural generalization, we conducted a new supplementary survey. We
 857 surveyed 120 participants across four regions (30 North America, 40 Asia, 30 Europe, 20 Other).
 858 We presented our 10 abstract queries (e.g., “I’m feeling thirsty...”). For each question, participants
 859 selected from 50 POI categories. These options included our pre-defined mapping categories mixed
 860 into a large, systematic pool of ~40 other POI categories drawn from the entire Google/Baidu POI
 861 classification system.

862 The results show a massive consensus cliff. Our pre-defined mapping options received a Global
 863 Average Consensus of **83.39%**, while the unselected other POI categories received a Global Average
 864 Consensus of only **1.90%**. This 81% gap proves that our ground truth mappings are not designer

864

865

866

867 Table 6: **Full Cross-Cultural Consistency Statistics (Part 1).** Survey results ($N = 120$) validating
868 Need-to-POI mappings. SD indicates Cross-Cultural Standard Deviation.

User Query	POI Category	Statistics (Mean / SD)
870 “I’m feeling hungry and 871 would like something to 872 eat. Could you help me 873 find a nearby place?”	874 Supermarket 875 Restaurant 876 Diner 877 Convenience store 878 Shopping mall 879 Market 880 Food stall 881 Dessert shop 882 Food truck	883 Mean: 88.89% (SD: 7.70%) 884 Mean: 88.33% (SD: 7.26%) 885 Mean: 85.28% (SD: 8.01%) 886 Mean: 80.56% (SD: 4.19%) 887 Mean: 73.89% (SD: 7.88%) 888 Mean: 64.44% (SD: 21.43%) 889 Mean: 60.56% (SD: 4.19%) 890 Mean: 50.83% (SD: 11.27%) 891 Mean: 46.67% (SD: 25.17%)
892 “I’m feeling thirsty and 893 would like something to 894 drink. Could you help me 895 find a nearby place?”	896 Convenience store 897 Cafe 898 Vending machine 899 Supermarket 900 Water fountain 901 Bubble tea store 902 Dessert shop 903 Juice shop 904 Shopping mall	905 Mean: 91.94% (SD: 5.02%) 906 Mean: 87.50% (SD: 4.64%) 907 Mean: 80.28% (SD: 2.93%) 908 Mean: 79.17% (SD: 3.63%) 909 Mean: 66.11% (SD: 18.58%) 910 Mean: 63.06% (SD: 29.58%) 911 Mean: 61.94% (SD: 8.83%) 912 Mean: 55.83% (SD: 8.46%) 913 Mean: 45.00% (SD: 5.00%)
914 “I’m not feeling well and 915 need assistance finding 916 a suitable place nearby. 917 Could you help me?”	918 Pharmacies 919 Hospitals 920 Clinics	921 Mean: 96.11% (SD: 3.47%) 922 Mean: 87.50% (SD: 4.33%) 923 Mean: 82.50% (SD: 7.95%)
924 “I want to rest and read 925 and need help finding 926 a suitable place nearby. 927 Could you assist me?”	928 Public library 929 Park 930 Library 931 Coffee shop 932 Cafe 933 Book store	934 Mean: 96.11% (SD: 3.47%) 935 Mean: 94.44% (SD: 3.85%) 936 Mean: 89.17% (SD: 1.44%) 937 Mean: 83.33% (SD: 8.82%) 938 Mean: 82.22% (SD: 3.85%) 939 Mean: 75.56% (SD: 7.70%)
940 “I want to work with Wi- 941 Fi and need assistance 942 finding a suitable place 943 nearby. Could you help 944 me?”	945 Cafe 946 Coffee shop 947 Library 948 Public library 949 Book store 950 McDonald’s 951 KFC 952 Five Guys	953 Mean: 94.17% (SD: 2.20%) 954 Mean: 93.89% (SD: 3.47%) 955 Mean: 91.94% (SD: 1.73%) 956 Mean: 91.39% (SD: 5.55%) 957 Mean: 66.67% (SD: 3.33%) 958 Mean: 66.11% (SD: 9.77%) 959 Mean: 63.06% (SD: 8.35%) 960 Mean: 50.56% (SD: 17.35%)
961 “I have run out of 962 phone credit and need 963 to recharge it. Could you 964 assist me in finding a 965 nearby place where I can 966 do so?”	967 Cell phone store 968 Telecom. service provider 969 7-ELEVEn 970 Supermarket 971 Convenience store 972 Best Buy 973 Cafe 974 Library 975 Coffee shop 976 Target 977 Public library 978 McDonald’s 979 KFC	980 Mean: 93.61% (SD: 3.76%) 981 Mean: 90.28% (SD: 2.93%) 982 Mean: 82.78% (SD: 17.02%) 983 Mean: 77.22% (SD: 2.55%) 984 Mean: 74.72% (SD: 6.47%) 985 Mean: 62.50% (SD: 34.59%) 986 Mean: 61.94% (SD: 5.02%) 987 Mean: 55.83% (SD: 15.07%) 988 Mean: 54.44% (SD: 5.09%) 989 Mean: 51.39% (SD: 42.95%) 990 Mean: 48.61% (SD: 10.55%) 991 Mean: 46.67% (SD: 11.55%) 992 Mean: 45.00% (SD: 13.23%)

917

918

919

Table 7: Full Cross-Cultural Consistency Statistics (Part 2).

User Query	POI Category	Statistics (Mean / SD)
<i>"I want to exercise and need assistance finding a suitable place nearby. Could you help me?"</i>	Park Gym City park Physical fitness program Swimming pool Yoga studio	Mean: 95.00% (SD: 1.67%) Mean: 91.67% (SD: 6.01%) Mean: 87.50% (SD: 6.61%) Mean: 76.11% (SD: 6.74%) Mean: 73.33% (SD: 11.55%) Mean: 64.44% (SD: 7.70%)
<i>"I want to bring my child to play and need assistance finding a suitable place nearby. Could you help me?"</i>	City park Playground Park Museum Children's amusement center Shopping mall Art museum	Mean: 94.17% (SD: 2.20%) Mean: 91.94% (SD: 8.83%) Mean: 88.89% (SD: 1.92%) Mean: 85.83% (SD: 2.20%) Mean: 81.67% (SD: 2.89%) Mean: 65.83% (SD: 10.64%) Mean: 65.00% (SD: 1.67%)
<i>"I need to go to the airport and would like assistance in finding the best way there. Could you help me?"</i>	Subway station Bus stop Taxi service Bus station Car leasing service Car rental agency	Mean: 92.22% (SD: 6.94%) Mean: 80.83% (SD: 8.78%) Mean: 78.89% (SD: 1.92%) Mean: 78.61% (SD: 10.55%) Mean: 67.50% (SD: 4.64%) Mean: 65.28% (SD: 6.47%)
<i>"I want to buy fruits and vegetables and need assistance finding a suitable place nearby."</i>	Supermarket Fruit and vegetable store Farmers' market Greengrocer	Mean: 97.22% (SD: 2.55%) Mean: 90.28% (SD: 2.93%) Mean: 79.72% (SD: 11.56%) Mean: 75.00% (SD: 18.33%)

944

945

946 bias but are the clear, emergent human common sense that surfaces from the noise. Furthermore,
 947 the consensus was highly consistent on average. The Average Cross-Cultural Standard Deviation
 948 (SD) for our ground truth options was only **8.40%** (NA, EA, EU). This low SD value quantitatively
 949 proves high overall consistency across cultural regions. Tables 6 and 7 present the detailed statistics
 950 for questions.

951

952

B.2 INSTRUCTION CATEGORIES AND EXAMPLES

953

954 To provide a comprehensive overview of our benchmark, we present additional explanations and
 955 question examples from the seven categories in Table 8. These categories were intentionally designed
 956 as a hierarchical metric to probe different levels of a VLM’s reasoning capabilities. They represent a
 957 deliberate scaffolding of different cognitive and semantic difficulty, spanning from **Direct Recognition**
 958 (e.g., “Basic POI”, “Brand-Specific”) and **Contextual Inference** (e.g., locating an un-signed
 959 “restroom”), to **Fine-Grained Attribute Reasoning** (e.g., an “accessible entrance”) and culminating
 960 in highly **Subjective and Abstract Reasoning** (e.g., interpreting “I’m feeling hungry”).

961

C EXPERIMENTAL DETAILS

963

C.1 IMPLEMENTATION DETAILS

964

965

966 We evaluate 27 commercial and open-source VLMs with multi-image input capabilities, selected
 967 based on three criteria: (1) recency and popularity, (2) coverage of the full parameter spectrum, from
 968 lightweight ($\leq 8B$) to very large ($\geq 70B$), (3) architectural diversity covering both Transformer-
 969 based models and mixture-of-experts (MoE) designs (e.g., LLaMA-4 series), and (4) varied training
 970 methodologies including reinforcement learning and reasoning-enhanced approaches (e.g., CoT-based
 971 o4-mini and Gemini-2.5-pro). All commercial models are accessed through their official APIs, while
 open-source implementations leverage the Hugging Face ecosystem. Inference uses vendors’ default

972

973

974

975

Table 8: Navigation Instruction Categories and Examples.

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Category	Description	Example
1. Basic POI Navigation	Request common urban facilities.	<p><i>“Please find the nearest restaurant.”</i></p> <p><i>“Please find the nearest convenience store.”</i></p> <p><i>“Please find the nearest shopping mall.”</i></p> <p><i>“Please find the nearest bank.”</i></p> <p><i>“Please find the nearest healthcare facility.”</i></p>
2. Brand-Specific Navigation	Seek specific commercial brand locations.	<p><i>“Please find the nearest Starbucks.”</i></p> <p><i>“Please find the nearest KFC or McDonald’s.”</i></p> <p><i>“Please find the nearest 7-Eleven.”</i></p> <p><i>“Please find the nearest Chase Bank.”</i></p> <p><i>“Please find the nearest Apple.”</i></p>
3. Transportation Hub Navigation	Ask for public transit locations.	<p><i>“Please find the nearest subway station.”</i></p> <p><i>“Please find the nearest bus station.”</i></p>
4. Latent POI Navigation	Indirectly observable targets requiring contextual reasoning.	<p><i>“Please find the nearest restroom.”</i></p> <p><i>“Please find the nearest gym.”</i></p> <p><i>“Please find the nearest ATM.”</i></p> <p><i>“Please find the nearest parking lot.”</i></p> <p><i>“Please find the nearest cinema.”</i></p>
5. Abstract Demand Navigation	Express abstract human needs through contextual clues.	<p><i>“I’m feeling hungry and would like something to eat. Could you help me find a nearby place?”</i></p> <p><i>“I’m feeling thirsty and would like something to drink. Could you help me find a nearby place?”</i></p> <p><i>“I have run out of phone credit and need to recharge it. Could you assist me in finding a nearby place where I can do so?”</i></p> <p><i>“I’m not feeling well and need assistance finding a suitable place nearby. Could you help me?”</i></p> <p><i>“I want to bring my child to play and need assistance finding a suitable place nearby. Could you help me?”</i></p> <p><i>“I need to go to the airport and would like assistance in finding the best way there. Could you help me?”</i></p>
6. Inclusive Infrastructure Navigation	Prioritize inclusive infrastructure.	<p><i>“Please find the nearest restaurant with an accessible entrance.”</i></p> <p><i>“Please find the nearest clothing store with an accessible entrance.”</i></p> <p><i>“Please find the nearest apartment building with an accessible entrance.”</i></p> <p><i>“Please find the nearest office building with an accessible entrance.”</i></p> <p><i>“Please find the nearest bank with an accessible entrance.”</i></p>
7. Semantic Preference Navigation	Use descriptive language for subjective criteria.	<p><i>“Please find the nearest upscale restaurant.”</i></p> <p><i>“Please find the nearest restaurant with outdoor seating.”</i></p> <p><i>“Please find the nearest restaurant with roadside parking.”</i></p> <p><i>“Please find the nearest romantic restaurant.”</i></p> <p><i>“Please find the nearest group or family-friendly restaurant.”</i></p>

1026 settings or greedy decoding, except for o4-mini, where we set temperature = 1.0. Experiments are
 1027 executed on machines equipped with NVIDIA RTX 4090 and A100 GPUs.
 1028

1029 Human evaluation involved 10 participants—5 undergraduates and 5 graduates—recruited to reflect
 1030 varied cultural and gender backgrounds. They were compensated at \$15/hour, in line with standard
 1031 part-time research assistant rates at our institution. Participants were selected based on both availabil-
 1032 ity and familiarity with navigation tasks; notably, three of them had previously lived in three or more
 1033 of the cities featured in our benchmark. Our annotation platform is shown in Figure 8, and it was
 1034 configured exactly like the model evaluation environment, with a maximum step limit of 35.
 1035

1054 Figure 8: Developed Human Annotation Platform.
 1055

1056 C.2 EXPERIMENT PROMPTS

1058 CitySeeker mainly employs two structured prompt types. Both prompts require a JSON output.
 1059 Deterministic parsing is applied, and unparseable response automatically falls back to action
 1060 0. For extended experiments **BCR**, additional contextual signals `{backtrack_prompt}`,
 1061 `{surrounding_prompt}`, and `{history_prompt}` are provided.

1062 **Stop prompt:** The model inspects a panoramic view at the current node and outputs a single JSON
 1063 block that fuses the *overall observation* with its *thoughts / rationale*. It then decides whether to
 1064 continue (action 0) or terminate (action -1), and returns an accompanying confidence score.
 1065

1066 **Choice prompt:** The model compares the perspective images generated for each navigable heading
 1067 and selects the most promising direction. Two constraints apply: (1) `{perspective_prompt}`
 1068 enumerates the available perspectives; (2) `{direction_prompt}` reveals the agent’s current
 1069 facing orientation, helping it avoid reflexively choosing a backward path.
 1070

Stop Prompt

1071 Instruction: You are a helpful robot that analyses images according to question and helps them find the way
 1072 to reach their destination. Given the question, state whether the scene content satisfies the user’s requirement.
 1073 Output Format: `{format_instructions}`

1074 Example:

1075 Input:

```
1076 [
  1077   {"type": "text", "text": "I am hungry"},  

  1078   {"type": "image_url", "image_url": "..."}  

  1079 ]
```

```

1080
1081 Output:
1082 {
1083     "overall_observation": "There are residential buildings, a bookstore, and a bus station.",
1084     "thoughts": "I am hungry, so I should find a restaurant. No restaurant here, keep going.",
1085     "action": 0
1086 }
1087 If you think you have already arrived at the destination, output action -1 for stop; otherwise 0.
1088 Now it's your turn.
1089 Input:
1090 {query}
1091 You are now at viewpoint {viewpoint_filename}.
1092 {backtrack_prompt}
1093 {image_content}

```

Choice Prompt

```

1094
1095 Instruction: You are a helpful robot that analyses multiple candidate images and selects the one that best
1096 answers the user's question. Return its index (A, B, C ...) together with a confidence score in [0, 1].
1097 Output Format: {format_instructions}
1098 Example:
1099 Input:
1100 [
1101     {"type": "text", "text": "I am hungry"},  

1102     {"type": "image_url", "image_url": "..."},  

1103     {"type": "image_url", "image_url": "..."}  

1104 ]
1105 Output:
1106 {
1107     "perspective_observation": {  

1108         "A": "A narrow side street with no shops or amenities nearby.",  

1109         "B": "A broad avenue lined with numerous office buildings, suggesting a higher chance of  

1110             restaurants and other services."  

1111     },  

1112     "thoughts": "I'm hungry and need the route most likely to lead to food. The broad avenue (B) lined  

1113         with office buildings is much more likely to have restaurants, while the narrow side street (A)  

1114         lacks any amenities. Therefore, I should head toward B."  

1115     "action": "B",  

1116     "score": 0.78  

1117 }
1118 {perspective_prompt}. Make sure the number of observations equals the number of perspectives provided.
1119 {direction_prompt}. Prioritise the FORWARD, LEFT, and RIGHT directions; move BACK only if no better
1120 option exists.
1121 You have just backtracked, please choose image index {index}.
1122 Historical context from previous rounds: {surrounding_prompt}.
1123 Visit trajectory so far: {history_nodes_prompt}.
1124 {query}
1125 You are now at viewpoint {viewpoint_filename}.
1126 {image_content}

```

C.3 BENCHMARK EVALUATION RESULTS DETAILS

1127 For completeness, we report the outcomes of each individual run along with all performance metrics
1128 in Tables 9, 10, and 11, providing a more granular view of the models' behavior.

C.4 CROSS-LINGUAL EXPERIMENT ON LINGUISTIC BIAS

1130 To investigate whether the performance disparity between cities like New York and Beijing was due
1131 to linguistic bias in our English-only prompts, we conducted a cross-lingual experiment. We selected

1134

1135

Table 9: The overall performance of CitySeeker Framework.

1136

1137

Model	TCE	TCP-40m	TCP-50m	TCP-60m	TCC	SPD	nDTW	AS
GPT-4o	2.39%	14.96%	18.30%	23.07%	6.84%	125.4	136.97	21.17
GPT-4o-mini	1.11%	9.94%	12.33%	15.43%	7.56%	201.97	325.17	31.62
o4-mini	2.63%	14.80%	17.90%	21.80%	6.76%	130.09	156.33	22.96
Gemini-1.5-pro	1.91%	13.13%	15.43%	17.82%	7.48%	157.14	241.86	31.73
Gemini-2.5-pro	1.83%	13.84%	17.34%	20.92%	5.01%	121.75	121.15	18.43
InternVL2.5-8B	0.95%	10.66%	14.56%	18.85%	4.38%	118.47	140.43	28.88
InternVL2.5-26B	1.59%	11.06%	15.27%	19.09%	3.66%	109.53	106	23.4
InternVL2.5-38B	2.23%	14.32%	18.14%	22.28%	7.16%	136.55	169.18	25.03
InternVL3-8B	1.27%	11.85%	15.83%	20.29%	4.85%	118.27	144.51	30.13
InternVL3-14B	1.67%	12.41%	15.12%	19.17%	6.44%	136.17	170.81	25.66
InternVL3-38B	2.47%	15.04%	19.25%	23.95%	6.68%	115.82	128.34	25.62
Qwen2-VL-7B	0.72%	7.96%	11.14%	15.27%	1.67%	111.4	114.36	24.79
Qwen2-VL-72B	0.95%	9.07%	11.93%	16.79%	2.31%	113.01	89.52	13.13
Qwen2.5-VL-7B	0.48%	11.30%	15.83%	21.16%	4.30%	119.02	151.84	32
Qwen2.5-VL-32B	2.55%	17.66%	21.08%	24.90%	6.21%	122.6	146.95	24.55
Qwen2.5-VL-72B	1.99%	11.14%	14.56%	17.58%	7.24%	174.92	250.22	28.63
Llama3.2-90B	0.88%	9.15%	12.49%	15.19%	3.74%	124.51	123.05	18.99
Llama-4-Scout-17B	1.75%	12.01%	14.08%	18.22%	7.00%	145	211.35	31.74
Llama-4-Maverick-17B	0.88%	7.64%	10.82%	15.99%	1.59%	107.14	110.51	30.97
Llama-3.2-11B-Vision	0.48%	9.15%	12.49%	16.79%	2.39%	112.93	112.44	26.07
Llava-Llama3-8B	0.32%	6.92%	10.42%	14.32%	0.80%	104.79	86.85	20.78
Llava-Qwen2-7B	0.32%	4.38%	6.92%	11.46%	0.40%	98.07	49.82	4.95
MiniMax01	1.51%	11.61%	13.60%	16.47%	6.84%	172.05	236.55	25.7
MiniCPM-V-2.6	0.88%	8.91%	11.69%	15.12%	3.50%	122.23	152.17	32.33
MiniCPM-o-2.6	1.35%	11.38%	15.51%	20.76%	6.44%	130.05	175.96	32.04
Phi-3.5-Vision	0.32%	7.40%	10.90%	14.72%	0.95%	107.11	81.95	15.88
Phi-4-Multimodal	0.56%	6.36%	9.15%	13.44%	1.11%	101.06	58.05	9.05
Random Choice	0.72%	8.83%	13.92%	19.17%	3.18%	112.41	128.28	35
Forward Direction	0.24%	5.01%	7.24%	13.21%	0.40%	100.83	99.29	35

1160

1161

1162

Table 10: The subcategory performance of CitySeeker Framework-Part1.

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Model	Basic POI				Brand-Specific				Transit Hub						
	TCE	TCP-50m(%)	TCC	SPD	TCE	TCP-50m(%)	TCC	SPD	TCE	TCP-50m(%)	TCC	SPD	nDTW		
GPT-4o	1.1	18.9	3.0	118.3	99.6	3.7	21.1	8.7	125.7	163.4	5.4	19.6	7.1	114.3	98.2
GPT-4o-mini	0.9	12.3	4.3	203.2	323.8	3.7	21.1	8.7	176.3	286.8	1.8	14.3	7.1	225.1	331.9
o4-mini	1.1	20.2	2.2	129.1	141.6	6.2	19.9	11.8	134.3	177.6	1.8	12.5	3.6	146.3	187.9
Gemini-1.5-pro	1.9	17.6	3.0	157.4	230.8	4.4	20.5	8.7	160.6	255.2	0.0	12.5	5.4	131.5	138.8
Gemini-2.5-pro	1.5	20.4	2.8	121.3	110.9	3.7	18.0	8.1	122.5	150.4	0.0	16.1	0.0	109.2	106.8
InternVL2.5-8B	0.9	15.7	3.4	121.7	133.9	1.2	14.3	3.1	105.5	103.7	1.8	1.8	1.8	119.3	111.4
InternVL2.5-26B	1.1	20.4	1.9	110.2	105.9	5.0	12.4	6.8	108.7	104.0	0.0	8.9	0.0	120.5	119.9
InternVL2.5-38B	1.5	17.6	2.8	145.3	170.8	7.5	24.2	10.6	115.7	136.8	0.0	14.3	1.8	126.3	145.2
InternVL3-8B	0.2	17.2	2.8	125.7	153.2	1.9	15.5	5.6	107.3	113.3	0.0	7.1	1.8	118.5	98.0
InternVL3-14B	0.9	13.8	2.8	147.1	178.5	4.4	20.5	8.1	112.1	128.4	1.8	17.9	3.6	136.4	151.6
InternVL3-38B	1.7	18.9	2.6	122.2	128.6	7.5	25.5	11.8	98.0	103.8	0.0	12.5	5.4	128.5	114.0
Qwen2-VL-7B	0.9	11.4	0.9	116.4	111.6	0.6	9.9	1.2	104.8	99.7	0.0	14.3	1.8	102.5	85.0
Qwen2-VL-72B	0.9	14.8	0.4	111.7	72.2	1.9	8.7	2.5	114.6	92.1	0.0	7.1	1.8	110.6	68.6
Qwen2.5-VL-7B	0.4	20.2	1.1	121.0	151.4	0.6	17.4	5.0	112.5	142.3	1.8	12.5	10.7	127.3	153.6
Qwen2.5-VL-32B	1.7	22.2	2.6	122.7	132.0	3.7	30.4	8.7	115.4	165.0	0.0	10.7	5.4	132.9	127.3
Qwen2.5-VL-72B	1.5	14.8	3.9	182.9	251.0	2.5	21.7	5.0	158.1	237.4	1.8	14.3	7.1	159.8	206.0
Llama3.2-90B	0.9	13.6	2.2	135.2	140.5	0.6	12.4	3.1	115.7	114.6	1.8	1.8	1.8	124.3	106.3
Llama-4-Scout-17B	1.7	12.3	4.5	153.8	221.2	3.1	18.6	8.7	136.8	196.1	3.6	14.3	5.4	158.1	213.3
Llama-4-Maverick-17B	1.1	12.7	0.9	113.3	116.5	1.2	10.6	2.5	103.0	111.1	1.8	8.9	1.8	99.8	84.0
Llama-3.2-11B-Vision	0.9	15.1	1.1	117.2	114.3	0.0	14.3	1.2	107.0	111.4	0.0	7.1	0.0	113.2	94.2
Llava-Llama3-8B	0.4	14.8	0.7	108.4	90.1	0.0	8.7	0.6	103.4	87.2	1.8	5.4	1.8	113.0	101.6
Llava-Qwen2-7B	0.4	12.5	0.2	102.2	51.7	0.0	2.5	0.0	95.5	49.3	0.0	3.6	0.0	92.9	46.9
MiniMax-01	2.2	15.5	5.6	171.0	226.3	1.2	16.2	2.5	166.2	218.3	1.8	8.9	1.8	158.9	148.5
MinicPM-V-2.6	0.7	12.5	2.6	128.2	153.2	1.2	10.6	3.1	120.6	154.7	3.6	19.6	8.9	111.5	129.7
MinicPM-o-2.6	1.3	14.4	2.6	137.4	185.7	3.7	22.4	10.6	112.6	144.7	0.0	10.7	1.8	132.7	160.1
Phi-3_5-Vision	0.7	14.4	0.7	112.0	87.7	0.0	6.8	0.6	100.9	72.9	0.0	3.6	1.8	108.3	67.5
Phi-4-Multimodal	0.9	14.0	0.7	102.5	59.4	0.0	6.2	0.0	96.7	54.0	0.0	5.4	1.8	100.8	49.5
Forward Direction	0.7	13.3	0.2	105.0	102.3	0.0	3.1	0.0	97.8	103.0	0.0	3.6	0.0	99.2	93.8
Random Choice	0.7	16.6	1.7	116.9	129.4	0.6	10.6	4.4	110.6	130.1	1.8	5.4	3.6	126.0	138.0

1188

1189

Table 11: The subcategory performance of CitySeeker Framework-Part2.

Model	Latent POI				Abstract Demand				Inclusive Infrastructure				Semantic Preference				
	TCE (%)	TCP- 50m(%)	TCC (%)	SPD nDTW	TCE (%)	TCP- 50m(%)	TCC (%)	SPD nDTW	TCE (%)	TCP- 50m(%)	TCC (%)	SPD nDTW	TCE (%)	TCP- 50m(%)	TCC (%)	SPD nDTW	
GPT-4o	1.7	9.7	10.2	158.1	208.0	4.4	18.9	11.4	129.1	155.6	1.5	14.9	1.5	111.1	111.2	1.9	26.0
GPT-4o-mini	0.0	7.4	8.0	233.5	379.8	0.9	11.8	13.6	215.5	374.4	0.0	7.5	4.5	175.1	282.7	1.0	10.6
o4-mini	1.1	13.1	9.7	144.5	201.4	4.8	16.7	12.3	133.3	160.1	0.0	9.0	0.0	107.5	104.6	3.9	24.0
Gemini-1.5-pro	0.0	11.4	11.4	183.6	291.7	3.1	14.5	13.6	155.4	248.7	0.0	6.0	6.0	154.5	259.7	1.0	14.4
Gemini-2.5-pro	0.6	10.2	3.4	139.2	140.7	3.5	20.6	10.5	118.7	129.6	0.0	9.0	0.0	111.6	81.8	1.0	13.5
InternVL2.5-8B	1.7	14.8	4.6	125.8	167.8	0.9	18.4	8.8	113.9	146.6	0.0	10.5	1.5	115.8	156.7	0.0	10.6
InternVL2.5-26B	0.6	10.8	3.4	115.5	117.6	2.6	17.1	7.9	107.7	102.4	0.0	7.5	1.5	91.7	81.6	0.0	8.7
InternVL2.5-38B	0.6	13.1	6.8	157.7	218.4	3.5	22.8	14.0	132.1	169.6	0.0	10.5	6.0	115.3	127.6	0.0	16.4
InternVL3-8B	2.8	14.2	7.4	125.8	167.7	1.8	16.7	7.5	110.9	145.8	1.5	16.4	3.0	115.4	138.1	1.9	15.4
InternVL3-14B	1.7	8.0	6.3	149.3	195.1	1.8	19.3	10.5	134.3	184.0	1.5	10.5	6.0	110.0	99.4	1.0	17.3
InternVL3-38B	0.6	13.1	5.1	129.6	163.7	3.1	23.3	14.0	117.1	134.4	1.5	11.9	4.5	100.6	99.8	1.9	21.2
Qwen2-VL-7B	0.0	4.6	1.1	116.4	113.0	1.8	13.2	4.4	104.4	108.7	0.0	13.4	0.0	111.0	150.1	0.0	15.4
Qwen2-VL-72B	0.6	7.4	2.8	111.8	81.1	1.8	14.5	5.3	114.4	120.5	0.0	1.5	1.5	112.0	78.9	0.0	15.4
Qwen2.5-VL-7B	0.6	10.2	5.7	129.4	163.7	0.4	13.6	7.5	117.2	153.9	0.0	7.5	4.5	117.4	156.6	0.0	15.4
Qwen2.5-VL-32B	1.7	14.2	6.3	146.3	197.9	5.3	24.1	10.5	116.3	155.9	1.5	9.0	7.5	115.6	125.1	1.9	20.2
Qwen2.5-VL-72B	0.0	6.8	6.8	217.0	319.7	2.6	15.8	11.0	160.7	231.2	9.0	11.9	16.4	139.3	185.8	1.0	14.4
Llama3-2-90B	0.6	9.7	3.4	125.4	117.4	0.9	14.0	6.1	116.4	109.5	0.0	10.5	3.0	104.9	83.7	1.9	16.4
Llama-4-Scout-17B	0.6	8.5	6.8	160.8	239.0	2.2	17.5	11.8	132.8	201.8	0.0	17.9	6.0	119.9	173.0	1.0	14.4
Llama-4-Maverick-17B	1.1	10.2	2.8	105.5	104.7	0.4	12.7	2.2	107.0	116.3	0.0	4.5	0.0	93.3	84.2	0.0	4.8
Llama-3.2-11B-Vision	0.0	9.7	2.8	107.9	92.1	0.4	12.3	5.3	114.7	125.3	1.5	9.0	4.5	108.1	126.6	0.0	8.7
Llava-Llama3-8B	0.0	8.0	1.1	102.1	80.4	0.4	8.8	1.3	103.5	83.7	0.0	4.5	0.0	100.6	88.5	0.0	7.7
Llava-Qwen2-7B	0.0	2.8	0.6	99.5	51.4	0.9	6.6	1.3	94.6	47.4	0.0	3.0	0.0	90.1	45.5	0.0	1.0
MiniIMax-01	0.0	6.8	7.4	213.6	320.6	1.8	14.9	12.7	172.2	273.8	1.5	11.9	4.5	119.0	123.7	1.0	13.5
MiniCPM-V-2.6	0.6	9.7	2.8	132.5	176.2	1.3	13.2	4.4	112.6	141.2	0.0	7.5	3.0	114.8	145.6	0.0	8.7
MiniCPM-o-2.6	1.1	12.5	8.5	143.7	190.0	1.3	18.9	10.5	123.5	175.6	0.0	11.9	4.5	118.3	169.3	0.0	12.5
Phi-3.5-Vision	0.6	9.1	1.1	107.8	83.0	0.0	11.8	1.3	103.4	76.8	0.0	9.0	3.0	110.2	106.6	0.0	7.7
Phi-4-Multimodal	0.0	2.8	0.6	104.1	55.4	1.3	10.5	4.0	101.9	64.0	0.0	7.5	0.0	92.8	49.9	0.0	2.9
Forward Direction	0.0	2.3	0.6	99.4	93.2	0.0	6.6	1.3	101.0	104.1	0.0	1.5	0.0	93.8	95.0	0.0	1.9
Random Choice	0.0	10.8	1.7	114.9	131.3	1.3	14.9	6.6	108.9	126.3	0.0	16.4	3.0	96.3	113.9	1.0	13.5

1210

1211

representative models and ran them on tasks in both Beijing and New York, comparing performance when using our standard English prompts versus fully localized Chinese prompts and outputs.

1214

1215

1216

Table 12: Cross-lingual performance in Beijing and New York. Localizing prompts to Chinese did not yield consistent improvements, suggesting linguistic bias is not the primary performance driver.

Model	City	Language	TCP (%)	TCE (%)	TCC (%)	nDTW
Qwen2.5-VL-32B	Beijing	English	25.95	4.32	10.81	122.40
		Chinese	23.91	3.44	8.88	120.36
InternVL3-8B	New York	English	15.42	3.48	3.48	144.78
		Chinese	14.93	2.99	4.98	133.13
GPT-4o-mini	Beijing	English	14.63	0.00	3.25	143.41
		Chinese	15.45	1.63	1.63	148.51
	New York	English	15.42	2.49	6.97	136.13
		Chinese	9.45	1.49	2.99	140.07
	Beijing	English	7.32	0.81	3.25	345.36
		Chinese	7.32	2.44	2.44	217.31
	New York	English	13.43	1.00	9.45	332.95
		Chinese	14.93	2.49	8.96	251.84

1234

1235

The results, detailed in Table 12, show that localizing the prompts to Chinese does not provide a consistent performance benefit, and the impact varies significantly by model and city. For instance, the top-performing Qwen2.5-VL-32B saw its TCP *decrease* in both cities when using Chinese. Conversely, GPT-4o-mini’s performance *increased* in New York with Chinese prompts, while InternVL3-8B’s performance dropped sharply. This high degree of variability strongly suggests that the observed performance gaps between cities are not primarily driven by linguistic factors but are likely rooted in deeper visual and geographic biases within the models’ training data.

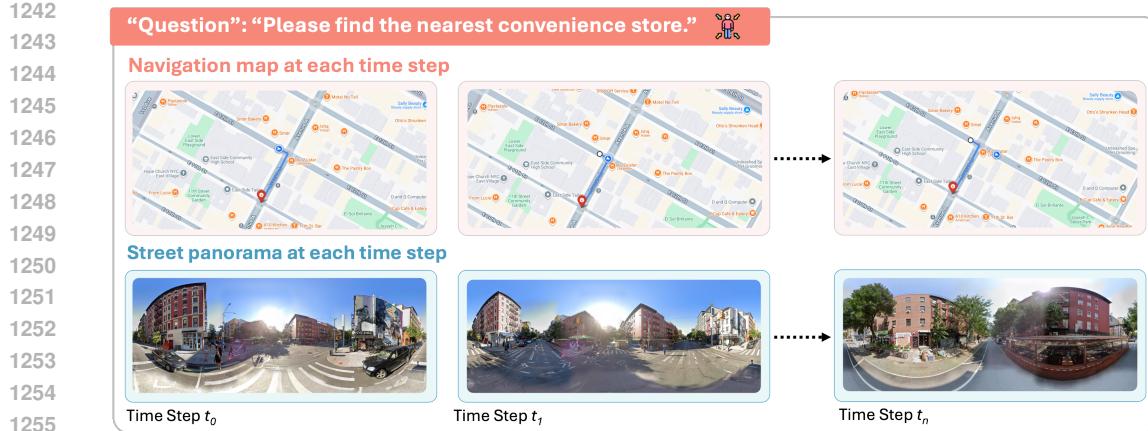


Figure 9: Illustration of the agent’s input in the map-augmented setting. At each time step, the VLM receives both a global navigation map, which updates with its current position, and the corresponding first-person street panorama.

D ABLATION STUDY: THE IMPACT OF GLOBAL MAP INFORMATION

A primary design choice in **CitySeeker** is the focus on a VLM’s ability to navigate based on its first-person visual perception and intrinsic world knowledge. To better isolate and understand these intrinsic reasoning abilities, we conducted an ablation study to quantify the impact of providing explicit global map information. This study explores an alternative, map-augmented setting where, at every step, the VLM was provided with both its first-person street view and an interactive 2D global map. This map dynamically updated with the agent’s current position and heading, mimicking the experience of a human using a modern navigation application.

D.1 EXPERIMENTAL SETUP

In this setting, the agent’s prompt was augmented at each step with both a dynamically rendered 2D map and the corresponding first-person street panorama, as illustrated in Figure 9. This interactive map always showed the full planned route while centering on the agent’s current position and heading, providing continuous global context just as a user would see in navigation software. The VLM was explicitly instructed to first analyze this map to determine the geometrically optimal next step and then select the corresponding street-view perspective. This setup was designed to test if providing such real-time, human-like map guidance would simplify the task and improve performance.

D.2 RESULTS AND ANALYSIS

We evaluated two top-performing models, GPT-4o and Qwen2.5-VL-32B-Instruct, on the full benchmark test set under this map-augmented condition. The results were counter-intuitive and revealing, as summarized in Table 13.

Table 13: Performance comparison between the map-free and map-augmented navigation settings on the full test set. The new results reveal a trade-off where map guidance improves path following (nDTW) but degrades task completion (TCP/TCE).

Model	Map-Free			Map-Augmented		
	TCE (%)	TCP (%)	nDTW	TCE (%)	TCP (%)	nDTW
GPT-4o	2.4	18.3	136.9	0.9	11.7	75.7
Qwen2.5-VL-32B-Instruct	2.6	21.1	147.0	0.2	7.6	54.4

Contrary to expectations, providing a global map at each step led to a surprising trade-off: while path-following efficiency improved dramatically (as shown by lower nDTW scores), the models’

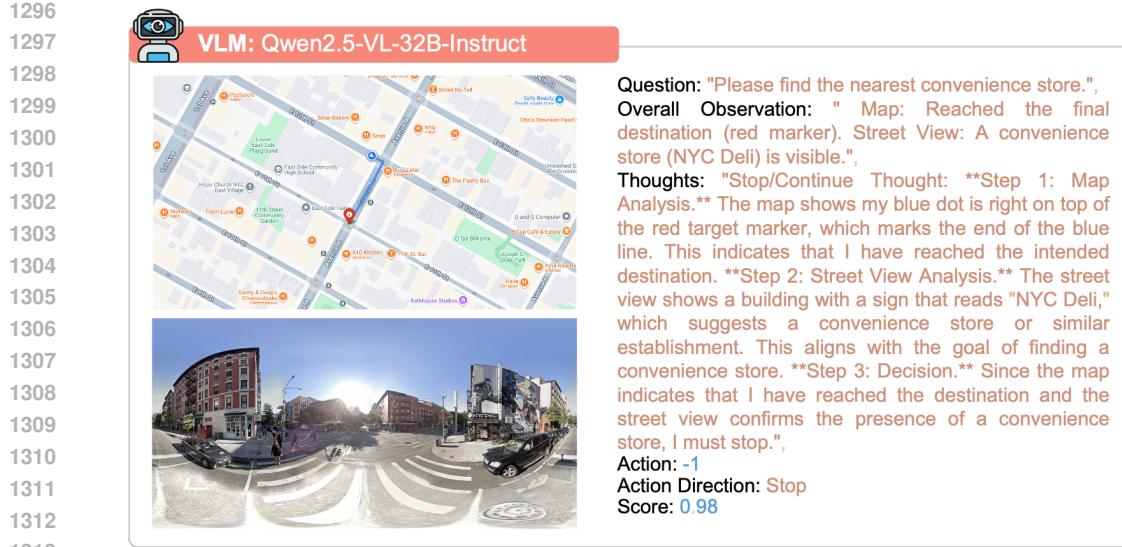


Figure 10: An example of a typical reasoning failure from Qwen2.5-VL-32B-Instruct.

ability to complete the actual task collapsed. For both models, Task Completion (both TCP and TCE) dropped significantly. For instance, the TCP for Qwen2.5-VL-32B-Instruct fell from 21.1% to just 7.6%, even as its path alignment score (nDTW) improved from 147.0 to 54.4. This suggests that while the map helps the agent follow a geometric route, it severely hinders its ability to perform the core task of semantic discovery. Our analysis of the models’ reasoning traces, an example of which is shown in Figure 10, revealed primary failure modes:

- (1) **Poor Cognition of 2D Map Geometry:** The models demonstrated a weak understanding of direction and distance on the 2D map. They frequently failed to perform correct “mental rotations”; for instance, when their heading was North but the route required moving South, they struggled to select the “back” perspective. Furthermore, they showed little awareness of distance, often hallucinating that they were near the destination when still at the starting point.
- (2) **Over-reliance and Failure to Align:** The VLMs tended to fixate on the 2D map’s abstract geometric instructions, failing to properly align them with the labeled, first-person street views. For instance, after inferring a “left turn” from the map, a model would still frequently select the “front” perspective, despite being explicitly told which perspective corresponded to the “left” direction. This demonstrates a deep failure in grounding an abstract command, even when provided with all necessary information.
- (3) **Trivialization of the Core Challenge:** The map effectively turned the task from one of *discovery and semantic reasoning* into a simpler, but more brittle, geometric path-following exercise. The core challenge of our benchmark—inferring that “I’m thirsty” means looking for a café and then visually identifying one—was often ignored. The models would become “map followers”, focusing only on the blue line and failing to perform the crucial visual exploration needed to identify the actual POI that satisfied the user’s implicit need.

D.3 CONCLUSION

This ablation study demonstrates that simply providing a global map does not necessarily solve the core challenges of implicit-need navigation and can even distract the VLM from the essential task of grounding abstract language in the visual world. Furthermore, the map’s limited information and potential for positional deviation can introduce additional sources of error. Therefore, to isolate and rigorously evaluate the agent’s **intrinsic spatial cognition and commonsense reasoning abilities**, our primary experimental results are reported under the map-free setting. This approach forces the VLM to build and rely on its own internal mental model of the environment, providing a truer measure of its embodied intelligence. While developing agents that can effectively fuse map and

visual information is a valuable direction for future research, our work focuses on first establishing this crucial baseline for the VLM’s intrinsic, perception-driven capabilities.

E BCR STUDIES DETAILS

E.1 BACKTRACKING MECHANISMS

We propose three distinct backtracking strategies to mitigate error accumulation over long trajectories in large-scale VLN tasks in urban environments: **(B1)** Basic Backtracking, **(B2)** Step-Reward Backtracking, and **(B3)** Human-Guided Backtracking.

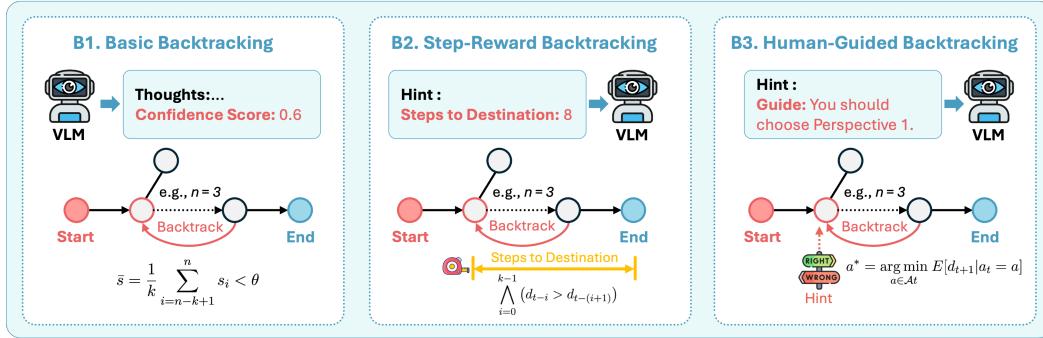


Figure 11: Backtracking Mechanisms: (B1) Basic Backtracking, (B2) Step-Reward Backtracking, and (B3) Human-Guided Backtracking.

Basic Backtracking (B1). In this basic backtracking strategy, the agent reverts to the last “trusted” node when its internal confidence falls below a predefined threshold over several consecutive steps. The model tracks its confidence scores during each step, and if the average confidence score over a set number of steps drops below a threshold, the agent will backtrack to the last trusted node. This simple strategy operates independently of any external signals. The confidence metric, stored in a deque, is updated at each step with the current score of the model’s prediction.

The implementation process maintains a sliding window of prediction confidence scores $s_{t=n-k}^n$ over k consecutive steps (default $k = 3$). Backtracking triggers when:

$$\bar{s} = \frac{1}{k} \sum_{i=n-k+1}^n s_i < \theta \quad (\theta = 0.75) \quad (1)$$

The agent reverts to the last node where the confidence s_t meets or exceeds the threshold θ . The agent reverts k steps when the average confidence \bar{s} falls below θ .

Step-Reward Backtracking (B2). This mechanism evaluates progress toward the goal by replacing subjective confidence scores with objective topological distance as the backtracking criterion. Specifically, it calculates the shortest path steps d_t from current viewpoint v_t to target v_{target} in the graph topology \mathcal{G} .

During each step, the agent checks whether the distance to the goal has increased. Backtracking triggers when distances increase monotonically over $k = 3$ consecutive steps:

$$\bigwedge_{i=0}^{k-1} (d_{t-i} > d_{t-(i+1)}) \quad (2)$$

This condition ensures that if the agent’s progress toward the goal stagnates or worsens, it will backtrack.

Human-Guided Backtracking (B3). This strategy extends basic backtracking B1 with corrective guidance, providing minimal external "hint" that suggests the best action to take next after backtracking. The optimal action a^* maximizes path consistency with the shortest path to v_{target} through:

$$a^* = \arg \min_{a \in \mathcal{A}_t} \mathbb{E}[d_{t+1} | a_t = a] \quad (3)$$

where \mathcal{A}_t denotes available actions at backtracked node v_t , and d_{t+1} represents the expected graph-theoretic distance after taking action a .

The guidance integrates by dynamically aligning the shortest path directions with navigable headings through topological analysis. The action that maximizes path consistency is selected via:

$$\phi(a) = \mathbb{I}\theta_a \in \Theta_{optimal} \cdot \cos(\theta_a - \theta_{path}) \quad (4)$$

where θ_a is the heading direction for action a , and $\Theta_{optimal}$ is the set of optimal path headings. This external guidance helps ensure that the agent's action maximizes path consistency and progress toward the goal.

E.2 SPATIAL COGNITION ENRICHMENT

In this section, we explore the potential of providing richer spatial cues to an agent to enhance global awareness and reduce fragmented decision-making during navigation tasks. Specifically, we compare two distinct methods of presenting spatial information: Topology Cognitive Graph (C1) and Relative Position Maps (C2). The goal is to investigate how these different representations influence the agent's ability to understand its environment and effectively plan routes.

We investigate whether supplying richer spatial cues can bolster global awareness and reduce fragmented decision-making by synthesizing multi-model trajectory data through GPT-4.1 as a cognitive summarizer. Our methodology processes ground truth paths and generated trajectories from GPT-4.0 and Gemini2.5-pro (containing both correct segments and historical errors) for each navigation task. GPT-4.1 analyzes these heterogeneous trajectories using specialized prompts to produce structured spatial representations, which are then integrated into the initial input for downstream VLMs.

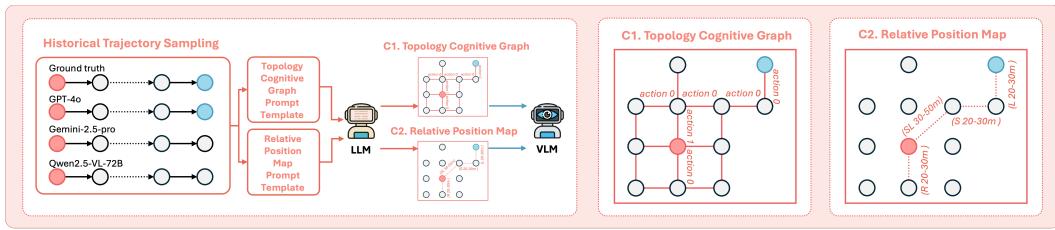


Figure 12: Spatial Cognition Enrichment: (C1) Topology Cognitive Graph, and (C2) Relative Position Maps.

(C1) Topology Cognitive Graph. In this approach, the VLM is provided with a topological graph of recently traversed segments, which explicitly defines the connectivity between various locations. The graph consists of nodes representing locations and directed edges that signify possible actions or transitions between those locations. Each trajectory is annotated with explicit relationships between nodes, forming a clear and structured map of the environment. This graph can be seen as an abstracted representation of the agent's route, where the agent is instructed to focus on the connectivity between locations. This forces VLM to ground decisions in connectivity patterns, reducing exploration of invalid paths.

An example of how this spatial information is represented is shown in the prompt:

1458 Topology Cognitive Graph Generation Prompt
 1459
 1460 Given the following trajectories with the same starting point for the same question, connect them and
 1461 represent the relationships between the nodes in a graph format.
 1462 Example:
 1463 Node: 00002929.jpg
 1464 **Relationships:**
 1465 - '00002929.jpg' → **action 0** → '00002930.jpg'
 1466 - '00002929.jpg' → **action 1** → '00002931.jpg'
 1467 Node: 00003210.jpg
 1468 **Relationships:**
 1469 - '00003210.jpg' → **action 0** → '00003211.jpg'
 1470 - '00003210.jpg' → **action 1** → '00003212.jpg'
 1471 Node: 00001111.jpg
 1472 **Relationships:**
 1473 - '00001111.jpg' → **action 0** → '00001112.jpg'.
 1474

(C2) Relative Position Map. In contrast to the topology-based approach, the Relative Position Map emphasizes the spatial orientation of locations without directly specifying connectivity. Instead of relying on an explicit graph structure, the VLM receives approximate directional cues that describe the relative positions of recently visited nodes. These cues include terms such as “front”, “back”, “left”, “right”, and “slightly left/right”, along with approximate distances between nodes. This approach provides the VLM with a more intuitive understanding of the space, allowing it to navigate with a flexible mental model of its surroundings, albeit with less precision in terms of connectivity.

An example of the relative directional information provided to the VLM is:

1482 Relative Position Map Generation Prompt
 1483
 1484 Given the following trajectories with the same starting point for the same question, describe the spatial
 1485 relationships between the key nodes. Emphasize the relative directional orientation (such as front, back, left,
 1486 right, slightly left, slightly right, etc.) and relative distances. Note that, not all nodes are directly connected,
 1487 so focus on the relative spatial relationships rather than direct connections.
 1488 Example:
 1489 00001190.jpg → 00001192.jpg
 1490 - **Direction**: Right
 1491 - **Relative Position**: Distance: 20-30 meters
 1492 00001192.jpg → 00001204.jpg
 1493 - **Direction**: Slightly right
 1494 - **Relative Position**: Distance: 30-50 meters
 1495 00001204.jpg → 00001539.jpg
 1496 - **Direction**: Slightly left
 1497 - **Relative Position**: Distance: 50-70 meters.
 1498

1499 This method captures the VLM’s internal spatial sense, where it perceives locations in terms of
 1500 relative proximity and directional alignment rather than as distinct, connected points. The benefit
 1501 of this approach is that it fosters a more adaptable navigation strategy, particularly in dynamic or
 1502 complex environments where exact node connectivity is not always available or necessary.

1503 E.3 MEMORY-BASED RETRIEVAL 1504

1505 To address the issue of “fragmented memory”, we introduce a memory-based retrieval mechanism
 1506 based on the Neo4j graph database. This mechanism consists of three core components: (R1)
 1507 Topology-based Retrieval, (R2) Spatial-based Retrieval, and (R3) Historical Trajectory Lookup. This
 1508 architecture enables memory formation across multiple reasoning iterations while mitigating error
 1509 propagation.

1510 Topology-based Retrieval (R1). Each navigation query undergoes n sequential rounds of execution.
 1511 During rounds 1 to $n - 1$, the agent explores the environment without memory retrieval, with all
 1512 trajectories and node metadata (e.g., observations, thoughts, decisions, and confidence scores) stored
 1513 in Neo4j. In the final round n , the agent activates memory retrieval mode, dynamically accessing

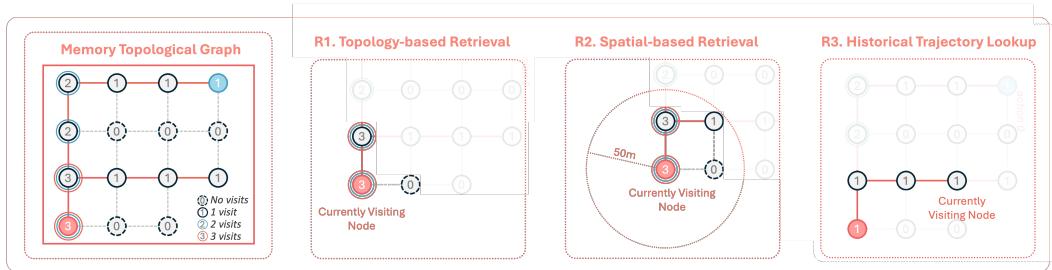


Figure 13: Memory-Based Retrieval: (R1) Topology-based Retrieval, (R2) Spatial-based Retrieval, and (R3) Historical Trajectory Lookup.

historical cross-round information. At each navigation step, the agent queries a local subgraph spanning h -hop topological connections (default $h=1$) through Neo4j’s graph traversal operations. The returned subgraph contains:

Nodes with cumulative visitation counts and $n - 1$ round metadata (thoughts, previous/next actions, directional choices, confidence scores); Edges annotated with historical transition patterns across multiple rounds (successful/failed attempts, directions). For example, a node might reveal that previous rounds chose “action 1” (right turn) when transitioning to a specific neighbor. This topological memory enables the agent to prioritize frequently successful paths while avoiding recurrent error-prone branches.

Spatial-based Retrieval (R2). Complementing topological constraints, this mechanism retrieves localized subgraphs based on Euclidean spatial proximity. At each navigation step in the final round n , the agent queries all nodes and relationships within a configurable radius (default: 50 meters) from the current position using Neo4j’s geospatial index. This dual focus on geographic density and historical usage patterns allows the agent to weigh physically closer options while avoiding previously failed paths. By jointly modeling metric space and graph topology, R2 mitigates the “tunnel vision” of pure topological approaches, particularly in irregular urban layouts where physical proximity often outweighs structural connectivity.

Historical Trajectory Lookup (R3). This mechanism introduces short-term working memory by dynamically appending the agent’s recent navigation history within the current round. At each time step t , the mechanism automatically appends the trajectory segment from the preceding n steps ($n = 3$ by default), including: (1) spatial context - filenames, coordinates, and headings of visited nodes; (2) action traces - movement directions (e.g., “turn left”, “proceed straight”) and associated confidence scores; (3) decision rationale - preserved observations and reasoning from prior steps.

Unlike cross-round memory in R1/R2, R3 operates through a sliding temporal window that exclusively tracks intra-episode navigation patterns. At step t , the $t - 1$ to $t - n$ entries get injected into the VLM’s input context through template-based natural language formatting, preserving recent decision logic. This short-term memory gets purged upon round completion through automated attribute pruning in Neo4j, ensuring no residual traces affect subsequent trials.

E.4 PERFORMANCE OF COMBINED BCR STRATEGIES

To explore the synergistic potential of our proposed strategies, we conducted a preliminary experiment where we combined several effective mechanisms (B2, B3, C1, R3). The results, shown in Table 14, indicate a positive but not strictly additive effect. For instance, the combined strategies boosted Qwen2.5-VL-32B’s TCP from 19.9% to 27.38%. This suggests complex interactions between the different cognitive tools. A full exploration of optimal strategy combinations is a promising direction for future work.

F VLM GENERATION EXAMPLES

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

City: London Category: Basic POI

"Question": "Please find the nearest restaurant."

VLM: GPT-4o

Current Position: ViewPointPosition(filename='00004020.jpg', longitude=-0.165934529, latitude=51.48951679)

Overall Observation: The scene contains residential buildings and a small alley, but no visible restaurants.

Perspective Observation: {"A": "This perspective shows a narrow alley with a van in front, which could lead to a more open area.", "B": "This perspective shows a dead-end with bins and no visible path forward."}

Thoughts: I am looking for a restaurant. This image shows a residential area with no visible restaurants. I should keep moving to find a restaurant.

Action: 0

Action Direction: Step Forward

Score: 0.85

Step 1

...

Current Position: ViewPointPosition(filename='00003878.jpg', longitude=-0.165809952, latitude=51.48893128)

Overall Observation: The image shows a street with buildings, but there is no clear indication of a restaurant here.

Perspective Observation: {"A": "This perspective is on your FRONT, showing a small street leading forward with possible stores.", "B": "This perspective is on your BACK, showing a continuation of the street with visible buildings."}

Thoughts: I am trying to find a restaurant, but this image does not seem to show any signs of a restaurant. I should continue looking.

Action: 0

Action Direction: Step Forward

Score: 0.85

Step 9

Current Position: ViewPointPosition(filename='00003879.jpg', longitude=-0.165733681, latitude=51.48883251)

Overall Observation: There is a bookstore (Waterstones) and some residential or commercial buildings visible in this image, but no restaurants.

Perspective Observation: {"A": "This perspective is on your FRONT with visible shops and potential restaurant options.", "B": "This perspective is on your BACK and shows a quieter street with fewer visible amenities."}

Thoughts: I am looking for the nearest restaurant, but there is no restaurant visible in this image. I should continue searching to find a suitable location.

Action: 0

Action Direction: Step Forward

Score: 0.9

Step 10

Current Position: ViewPointPosition(filename='00003627.jpg', longitude=-0.165657411, latitude=51.48873373)

Overall Observation: There is a restaurant in this image.

Perspective Observation: {"A": "This perspective is on your RIGHT and shows a street with retail stores and pedestrians.", "B": "This perspective is on your LEFT and shows a street with some restaurants and a seating area visible.", "C": "This perspective is on your BACK and shows a quieter street with fewer visible restaurant options."}

Thoughts: I am looking for a restaurant. In this image, there is a restaurant visible, so I have arrived at the destination and can stop here.

Action: -1

Action Direction: Stop

Score: 0.9

Step 11

Figure 14: Further illustrative examples drawn from the CitySeeker benchmark.

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

City: London Category: Brand-Specific

"Question": "Please find the nearest Starbucks."

VLM: GPT-4o

Current Position: ViewPointPosition(filename='00003660.jpg', longitude=-0.167807813, latitude=51.48855038)
 Overall Observation: There are buildings under development or construction, but no visible Starbucks or coffee shop in this image.

Perspective Observation: {"A": "This perspective is on your BACK. It shows a closed area with loading docks and no visible signs of Starbucks.", "B": "This perspective is on your FRONT. It shows a pathway with buildings and a potential way forward."}
 Thoughts: I am looking for the nearest Starbucks, but I do not see any Starbucks or coffee shop in this image. This area appears to have construction and buildings, but no Starbucks is visible.

Action: 1

Action Direction: Step Forward

Score: 0.95

Step 1

...

Current Position: ViewPointPosition(filename='00000685.jpg', longitude=-0.166612021, latitude=51.48834625)
 Overall Observation: There are various shops, including clothing stores and a Five Guys restaurant, but no Starbucks is visible.

Perspective Observation: {"A": "This perspective is on your BACK with visible shops and a calm street.", "B": "This perspective is on your FRONT with visible shops, a bus, and more activity."}

Thoughts: I am looking for a Starbucks. From this image, I can see stores and shops, but no Starbucks is visible. I should continue searching for the destination.

Action: 1

Action Direction: Step Forward

Score: 0.9

Step 26

Current Position: ViewPointPosition(filename='00000684.jpg', longitude=-0.166470288, latitude=51.48840684)
 Overall Observation: There are various shops and restaurants, including Five Guys, but no Starbucks is visible in this image.

Perspective Observation: {"A": "There seems no visible Starbucks on the both sides of the road.", "B": "There is no visible Starbucks in this direction."}

Thoughts: I am looking for the nearest Starbucks. In this image, I can see stores like Five Guys and other shops, but there is no visible Starbucks. I should continue searching to find a Starbucks.

Action: 0

Action Direction: Step Forward

Score: 0.95

Step 27

Current Position: ViewPointPosition(filename='00000596.jpg', longitude=-0.166328556, latitude=51.48846743)
 Overall Observation: There is a Starbucks in this image.

Perspective Observation: {"A": "This perspective is on your BACK and shows a street but no clear Starbucks.", "B": "This perspective is on your FRONT and clearly shows a Starbucks on the right side of the street.", "C": "This perspective is on your LEFT and also shows a Starbucks but appears further away."}

Thoughts: I am looking for a Starbucks. There is a Starbucks visible in this image, so I have arrived at the destination and do not need to continue further.

Action: 1

Action Direction: Stop

Score: 0.95

Step 28

Figure 15: Further illustrative examples drawn from the CitySeeker benchmark.

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

City: New York Category: Latent POI**"Question": "Please find the nearest restroom."****VLM: GPT-4o**

Current Position: ViewPointPosition(filename='00000340.jpg', longitude=-73.98978952, latitude=40.74574025)

Overall Observation: There are various commercial buildings, shops, and vehicles visible in this image, but no clear indication of a restroom.

Perspective Observation: {"A": "This perspective is on your BACK. The view shows a street with buildings and parked vehicles.", "B": "This perspective is on your FRONT. The view shows a street with shops, parked cars, and some visible storefronts."}

Thoughts: I am looking for the nearest restroom. From this image, I do not observe any signs or indications of a restroom, so I need to continue searching.

Action: 1

Action Direction: Step Forward

Score: 0.85

Step 1

Current Position: ViewPointPosition(filename='00000336.jpg', longitude=-73.99037471, latitude=40.74598407)

Overall Observation: The image shows a busy urban street with commercial buildings, stores, and a McDonald's, but no visible restroom or restroom signs.

Perspective Observation: {"A": "This perspective shows a street with parked cars and some buildings, but no clear indication of a restroom.", "B": "This perspective shows a busy intersection with visible signage and potentially more restroom options."}

Thoughts: I am looking for the nearest restroom. There is no visible restroom in this image, so I should continue searching to find one.

Action: 1

Action Direction: Step Forward

Score: 0.85

Step 5

Current Position: ViewPointPosition(filename='00000145.jpg', longitude=-73.99052101, latitude=40.74604502)

Overall Observation: This image shows an urban intersection with buildings, vehicles, and pedestrians, but no visible restroom signs or facilities.

Perspective Observation: {"A": "This perspective is on your FRONT_LEFT and shows a busy street with buildings and cars.", "B": "This perspective is on your FRONT and highlights a McDonald's which may have restrooms.", "C": "This perspective is on your BACK and shows a street with pedestrians and buildings, but it is not the preferred direction.", "D": "This perspective is on your FRONT_RIGHT and displays a McDonald's which may have restrooms."}

Thoughts: I need to find a restroom. From this image, I do not observe any specific signs or facilities indicating the presence of a restroom. Therefore, I should continue searching.

Action: 1

Action Direction: Step Forward

Score: 0.9

Step 6

Current Position: ViewPointPosition(filename='00000144.jpg', longitude=-73.99065504, latitude=40.74610284)

Overall Observation: There is a McDonald's in this image, which might have a restroom inside.

Perspective Observation: {"A": "This perspective shows a wide street with several buildings, including possible stores or restaurants.", "B": "This perspective shows a narrower street with a McDonald's visible, which might have restrooms available."}

Thoughts: I am looking for the nearest restroom. From this image, I see a McDonald's, which might have a restroom inside. I should check it out as it could fulfill my requirement.

Action: -1

Action Direction: Stop

Score: 0.85

Step 7

Figure 16: Further illustrative examples drawn from the CitySeeker benchmark.

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

City: Shanghai Category: Abstract Demand

"Question": "I want to work with Wi-Fi and need assistance finding a suitable place nearby. Could you help me?"

VLM: Qwen2.5-VL-72B-Instruct

Current Position: ViewPointPosition(filename='00004009.jpg', longitude=121.5061697, latitude=31.27526108)

Overall Observation: This image shows a wide street with various buildings, including commercial establishments and a bank. There are no visible signs of Wi-Fi availability or specific places like cafes or libraries that are typically known for Wi-Fi access.

Perspective Observation: {"A": "There are residential or commercial buildings on the left side of the street.", "B": "On the right side of the street, there are more buildings, including what appears to be a larger commercial structure."}

Thoughts: Since the goal is to find a suitable place with Wi-Fi and there are no clear indicators of such places in the image, it would be best to continue exploring the area.

Action: 1

Action Direction: Step Forward

Score: 0.85

Step 1

Current Position: ViewPointPosition(filename='00004008.jpg', longitude=121.505673, latitude=31.27508587)

Overall Observation: A street view with urban buildings, vehicles, and a bus. No specific places with Wi-Fi are visible.

Perspective Observation: {"A": "The left side of the street has older buildings and less commercial activity, making it less likely to have public Wi-Fi.", "B": "The right side features a modern building with a sign, suggesting a commercial area like a mall or office space, where public Wi-Fi is more common."}

Thoughts: The scene shows a busy street with buildings, cars, and a bus. There are no visible signs of a Wi-Fi-enabled place like a cafe or a library. Since the user is looking for a place to work with Wi-Fi, it's best to continue searching.

Action: 1

Action Direction: Step Forward

Score: 0.85

Step 5

Current Position: ViewPointPosition(filename='00004024.jpg', longitude=121.5055075, latitude=31.27502746)

Overall Observation: There is a wide road with multiple lanes, bordered by trees and modern buildings. There are no visible signs indicating the presence of Wi-Fi hotspots or cafes.

Perspective Observation: {"A": "This perspective shows a clear path forward with buildings and shops on either side, which could be potential places with Wi-Fi.", "B": "This perspective shows a backward view, which is less likely to lead to a place with Wi-Fi since it's already passed."}

Thoughts: Since there are no visible signs of a place with Wi-Fi, such as cafes or public Wi-Fi zones, I should continue exploring the area by moving forward to find a suitable place.

Action: 0

Action Direction: Step Forward

Score: 0.95

Step 6

Current Position: ViewPointPosition(filename='00004025.jpg', longitude=121.5053419, latitude=31.27496906)

Overall Observation: There is a Starbucks Coffee shop visible in this image, which typically offers WiFi for customers.

Perspective Observation: {"A": "The FRONT image displays a wide street with buildings and potential Wi-Fi spots ahead.", "B": "This perspective is on your LEFT and shows a street with some restaurants and a seating area visible.", "C": "The BACK image is not visible, but stepping BACK is discouraged"}

Thoughts: Since the goal is to find a place with Wi-Fi, and a Starbucks Coffee shop is a suitable place for this need, I should stop here.

Action: 1

Action Direction: Stop

Score: 0.95

Step 7

Figure 17: Further illustrative examples drawn from the CitySeeker benchmark.

1782
1783
1784
1785
1786
1787

Table 14: Performance with combined BCR strategies.

Model	Baseline TCP %	Combined BCR TCP %
InternVL3-8B	15.0	18.96
Qwen2.5-VL-32B	19.9	27.38

1788
1789

G ERROR ANALYSIS

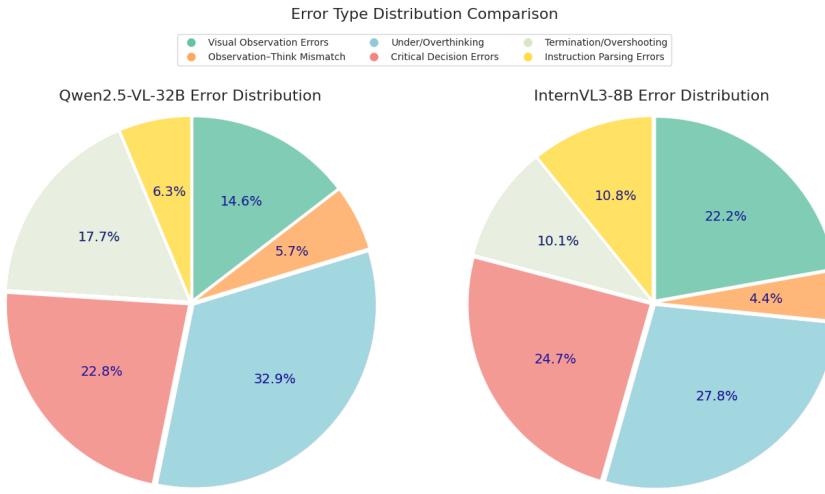
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808

Figure 18: Error Distribution of Primary Error Types in Qwen2.5-VL-32B and InternVL3-8B for Embodied Urban Navigation.

1811
1812
1813
1814
1815
1816
1817

To identify the main bottlenecks in VLMs for Embodied Urban Navigation with implicit human needs, we thoroughly examine and analyze the primary error patterns observed in the 300-sample mini-size subset of the CitySeeker benchmark. By manually inspecting model outputs — including observations, rationales and actions, with corresponding street-view images, we categorize failure modes into six distinct types ([visually exemplified in Figure 19](#)):

1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

- (1) **Visual Observation Errors:** These arise from failure to recognize target or misidentification of critical visual cues (e.g., overlooking signage while fixating on irrelevant street objects).
- (2) **Observation–Think Mismatch:** Even when the VLM correctly observes the target, the rationale diverges from the observation. For example, the model visually identifies a target restaurant but fails to prioritize advancing toward it in its rationale.
- (3) **Underthinking or Overthinking:** Underthinking is particularly evident when the model lacks knowledge of non-primary functional affordances of a POI. For example, while recognizing Starbucks, the model ignores its potential to provide Wi-Fi, leading to a missed target. Overthinking might draw unfounded conclusions from limited evidence, leading to incorrect conclusions, such as assuming a store labeled ‘CVS Pharmacy’ is a convenience store.
- (4) **Critical Decision Errors at Waypoints:** Incorrect routing choices at pivotal junctions, leading to irreversible deviations. This occurs when the target is observed within the right field of view, yet the model erroneously selects the leftward path, or when perceptual inaccuracies lead to the choice of a non-viable route that cannot reach the target.
- (5) **Premature Termination or Overshooting:** Over-anticipatory stopping before reaching targets or passing by the target leads to not reaching or missing the target.
- (6) **Instruction Parsing Errors:** Generation of malformed JSON outputs violating predefined action schemas (e.g., missing “action” fields), rendering trajectories unexecutable.

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

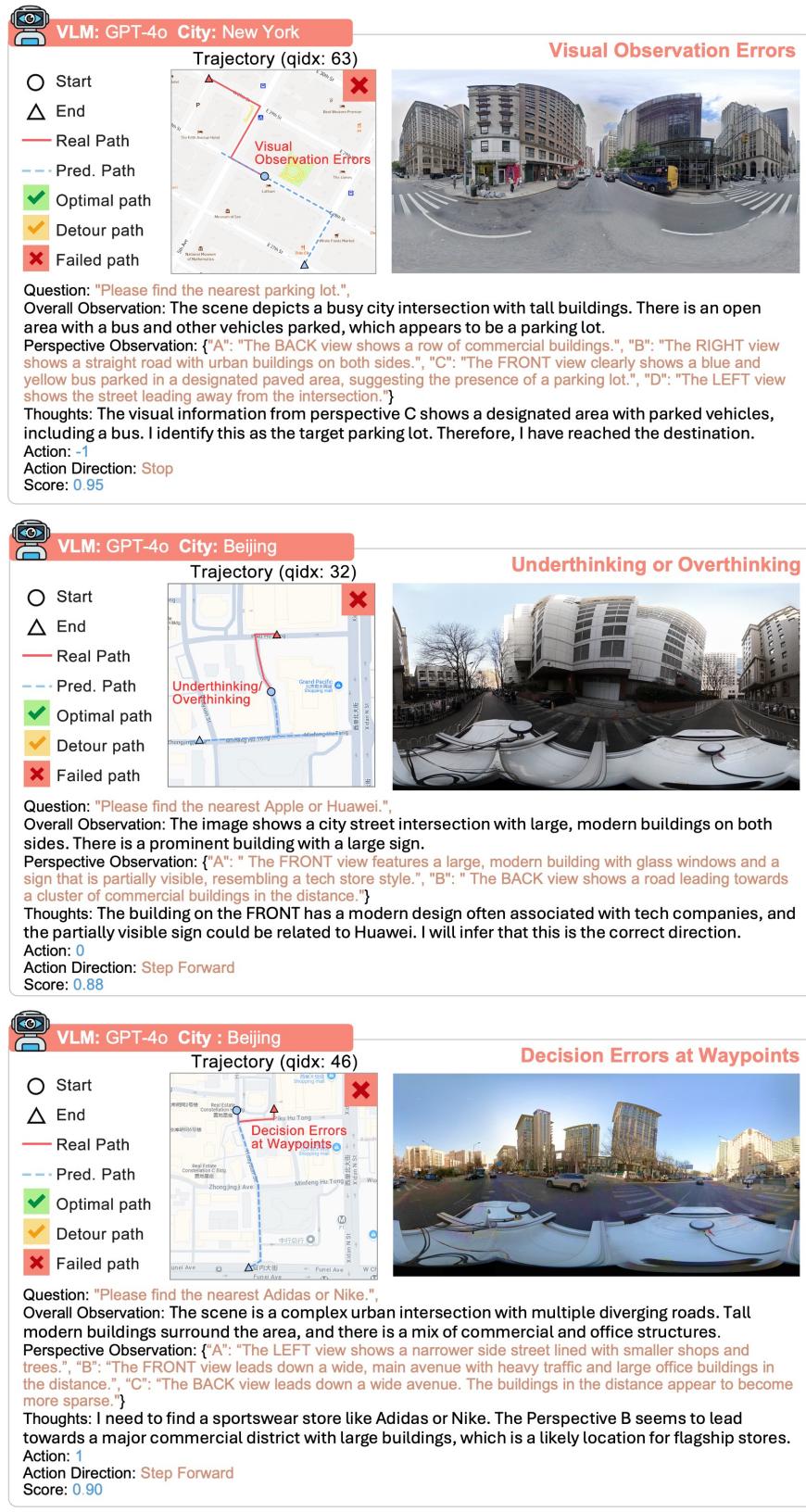


Figure 19: Qualitative examples of primary VLM failure modes in CitySeeker.

1890
 1891
 1892
 1893
 1894
 1895
 1896
 1897
 1898
 1899
 1900
 1901
 1902
 1903
 1904
 1905
 1906
 1907
 1908
 1909
 1910
 1911
 1912
 1913
 1914
 1915
 1916
 1917
 1918
 1919
 1920
 1921
 1922
 1923
 1924
 1925
 1926
 1927
 1928
 1929
 1930
 1931
 1932
 1933
 1934
 1935
 1936
 1937
 1938
 1939
 1940
 1941
 1942
 1943

Figure 18 compares two representative VLMs - Qwen2.5-VL-32B and InternVL3-8B - revealing distinct error profiles. Both exhibit significant **critical decision errors** (Type 4: 22.8% vs. 24.7%), highlighting persistent challenges in spatial reasoning at navigation waypoints. The larger Qwen model demonstrates stronger visual perception (Type 1: 14.6% vs. 22.2%) but suffers more **under-thinking/overthinking errors** (Type 3: 32.9% vs. 27.8%). This discrepancy likely stems from the model’s lack of human-like urban living experience, which limits its ability to discern primary/secondary affordances of POIs. Additionally, the model occasionally draws **unfounded conclusions** from sparse visual evidence - potentially due to overcompensation for missing contextual knowledge. Conversely, InternVL3-8B struggles with **instruction parsing** (Type 6: 10.8% vs. 6.3%) and basic visual recognition, with more misidentifications of street POIs and hallucination. This contrast reveals a scale-driven tradeoff: larger models develop nuanced visual grounding but introduce complex reasoning failures, while smaller models face fundamental perception and instruction-compliance challenges.

Deeper Dive: Human vs. VLM Failure Modes Through analysis of error trajectories and participant interviews, a deeper analysis of failure modes reveals a crucial distinction between human and VLM bottlenecks. As summarized in Table 15, VLM failures are predominantly **cognitive**, stemming from a lack of commonsense knowledge. In contrast, the dominant failure mode for humans is **strategic**. Faced with unfamiliar environments and a strict step limit, humans possess the necessary world knowledge to understand the task, but often falter in devising an optimal exploratory plan. This manifests as inefficient, intuition-driven exploration—leading to forgotten paths and repeated loops—or poor management of the step budget, such as overshooting a valid target.

Table 15: Detailed comparison of primary failure modes between humans and the top-performing VLM (Qwen2.5-VL-32B).

Failure Mode Category	Human Error Profile & Rationale	Model Error Profile & Rationale (Qwen2.5-VL-32B)
Strategic & Navigational (e.g., Termination/Overshooting)	<p>60.7% (Primary Human Failure) Humans understand the goal but struggle with devising an optimal exploratory plan. Failures are intuition-driven and stem from:</p> <ul style="list-style-type: none"> 1. Inefficient Exploration: Participants noted that poor signage or visually similar streets often led to confusion and forgetting previously explored paths, causing inefficient loops that exhaust the 35-step limit. 2. Overshooting: A human might find a valid target but continue walking past it “just to see what’s around the next corner,” a reasonable exploratory behavior that fails under a strict step budget. 	<p>40.5% The model’s errors here are less strategic. It does not suffer from imperfect memory but can still misjudge distance to a visible target or fail to recognize it, leading to premature stops or passing the goal.</p>
Cognitive Failures (e.g., Under/Over-thinking)	<p>19.1% Humans rarely fail basic inferences. Errors occur on nuanced tasks, such as failing to consider a convenience store’s secondary function of recharging phone credit, or overthinking whether a restaurant is truly “upscale”.</p>	<p>32.9% The model’s key bottleneck. It struggles to infer non-obvious functions of POIs and lacks the real-world experience to make flexible logical leaps, revealing a critical gap in commonsense reasoning.</p>
Visual & Execution Errors (e.g., Visual, Parsing, Mismatch)	<p>20.2% In an unfamiliar city and under pressure, human perception can falter. This is exacerbated by language barriers (e.g., non-native participants processing English storefront signs) and cultural unfamiliarity with local brands, leading to overlooked or misidentified cues.</p>	<p>26.6% The model is prone to a mix of errors: misidentifying visual cues (14.6%), failing to adhere to the output format (6.3%), or having a disconnect between its visual observation and textual rationale (5.7%).</p>

1944 This contrast reveals a fascinating trade-off. An AI agent has a theoretical advantage with its perfect
 1945 memory, which should prevent the inefficient looping that humans are prone to. However, this
 1946 is counteracted by its lack of deep, intuitive commonsense. While humans possess the necessary
 1947 real-world knowledge to understand the implicit needs, they are hampered by imperfect memory
 1948 and an intuition-driven approach to planning that can be inefficient in unfamiliar environments. This
 1949 suggests that future work should focus not just on improving VLM perception, but on endowing them
 1950 with more robust, human-like intuitive and strategic reasoning capabilities.

H LIMITATIONS AND FUTURE WORK

1952 Despite the advancements enabled by CitySeeker, our study highlights several limitations of current
 1953 VLMs in embodied urban navigation, which in turn point to promising directions for future research.

1954 First, **generalization and adaptability to specific contexts** remain challenges. Physically, while
 1955 models perform modestly in familiar urban layouts, their effectiveness declines in irregular road
 1956 networks due to training data biases. **Semantically, our framework currently relies on foundational**
 1957 **spatial consensus and does not yet account for personalized user preferences or historical behavioral**
 1958 **patterns, limiting the model’s ability to provide tailored assistance.**

1959 Second, **long-context reasoning and memory retention** are key bottlenecks. Long-horizon navigation
 1960 requires processing extensive sequences of visual and textual information, which consumes a
 1961 large number of tokens. This poses a challenge for models with context length limitations and can
 1962 lead to the forgetting of crucial information from earlier steps, resulting in inefficient paths with loops
 1963 and repeated errors.

1964 Third, our ablation study on map-augmented navigation (Appendix D) revealed a fundamental weakness
 1965 in **aligning 2D maps with first-person street views**. The models’ poor cognition of orientation
 1966 and distance on the 2D map often led to confusion and hallucinations, degrading performance rather
 1967 than improving it. This highlights a critical gap in the models’ ability to fuse these two distinct modes
 1968 of spatial information.

1969 Lastly, **real-time adaptability is limited by computational inefficiencies**. The significant latency
 1970 in VLM decision-making, stemming from redundant visual processing, currently restricts practical
 1971 deployment in real-time applications.

1972 Addressing these limitations requires a multi-faceted approach. Future work should focus on:

- 1973 • **Enhancing Commonsense and Affordance Reasoning:** A key area for improvement is
 1974 the model’s understanding of functional affordances (e.g., that a café provides Wi-Fi), a
 1975 weakness particularly evident in smaller models. New training methodologies could focus
 1976 on enriching models with this kind of real-world, commonsense knowledge.
- 1977 • **Integrating Personalized Behavioral Priors:** While CitySeeker focuses on universal
 1978 common sense, real-world navigation is often personalized. A promising future direction is
 1979 to incorporate behavioral priors derived from GPS traces or check-in data. Once a VLM
 1980 demonstrates robust spatial common sense, these empirical signals can be used to rank valid
 1981 candidates, moving from general capability to personalized assistance.
- 1982 • **Improving Geometric and Orientational Understanding:** Future research should ex-
 1983 plicitly target the model’s ability to understand orientation and perform “mental rotations”,
 1984 bridging the gap between abstract 2D map representations and the first-person visual world.
- 1985 • **Developing More Efficient Architectures:** Innovations in persistent memory architectures
 1986 and more efficient inference frameworks are needed to tackle the challenges of long-horizon
 1987 reasoning and real-time performance.

I LLM USAGE STATEMENT

1995 In preparing this manuscript, LLM was used as a general-purpose assistive tool. Its application
 1996 was confined to the final stages of writing, specifically for minor polishing and refinement of the
 1997 English prose to improve clarity and readability. The LLM did not contribute to the research ideation,
 1998 experimental methodology, data analysis, or the generation of results and conclusions in this work.