
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CITYSEEKER: HOW DO VLMS EXPLORE EMBODIED
URBAN NAVIGATION WITH IMPLICIT HUMAN NEEDS?

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-Language Models (VLMs) have made significant progress in explicit
instruction-based navigation; however, their ability to interpret implicit human
needs (e.g., “I am thirsty”) in dynamic urban environments remains underexplored.
This paper introduces CitySeeker, a novel benchmark designed to assess VLMs’
spatial reasoning and decision-making capabilities for exploring embodied urban
navigation to address implicit needs. CitySeeker includes 6,440 trajectories across
8 cities, capturing diverse visual characteristics and implicit needs in 7 goal-driven
scenarios. Extensive experiments reveal that even top-performing models (e.g.,
Qwen2.5-VL-32B-Instruct) achieve only 21.1% task completion. We find key
bottlenecks in error accumulation in long-horizon reasoning, inadequate spatial
cognition, and deficient experiential recall. To further analyze them, we investigate
a series of exploratory strategies—Backtracking Mechanisms, Enriching Spatial
Cognition, and Memory-Based Retrieval (BCR), inspired by human cognitive
mapping’s emphasis on iterative observation-reasoning cycles and adaptive path
optimization. Our analysis provides actionable insights for developing VLMs with
robust spatial intelligence required for tackling “last-mile” navigation challenges.

1 INTRODUCTION

Figure 1: Navigation Instructions indicating ex-
plicit needs (top) and implicit needs (bottom).

Figure 2: The statistics of CitySeeker with 6,440
trajectories in diverse scenarios.

Vision-Language Models (VLMs), with their advanced vision-grounded reasoning and language
generation capabilities, are increasingly being applied to complex tasks like Embodied Urban
Navigation (Zhang et al., 2024a). Autonomous embodied navigation in open urban environments is
a cornerstone for realizing a new generation of intelligent services, leading to a rising demand for
VLMs that can guide service robots, drones, or an AR assistant through urban settings. However,
the capabilities of VLMs in this domain remain underexplored, as recent advances have focused
on agents that follow explicit step-by-step instructions (e.g., “Proceed straight until the sculpture
fountain, turn right, then continue until reaching McDonald’s”). Such approaches, which we describe
as explicit needs, rely on pre-constructed navigation directives rather than natural human commands,
and face critical limitations in dynamic or novel urban scenarios (Wang et al., 2021; 2024b).
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Table 1: Overview of Vision-Language Navigation datasets.
Dataset Instruction Type Instruction Environment Source City Nodes Avg.Length Avg.Token

Talk the Walk (De Vries et al., 2018) Explicit 786 GridWorld 3D Rendering 1 100 6.8 34.5
Room-to-Room (Anderson et al., 2018) Explicit 21,567 Indoor Panoramas 1 10,800 6.0 29.0

Touchdown (Chen et al., 2019) Explicit 9,326 Outdoor Street View 1 29,641 35.2 89.6
Talk2Nav (Vasudevan et al., 2021) Explicit 10,714 Outdoor Panoramas and Map 1 21,233 40.0 68.8

StreetNav (Jain et al., 2024) Explicit 644,415 Outdoor Street View 2 - 1,194m 7.13
map2seq (Schumann & Riezler, 2020) Explicit 7,672 Outdoor OpenStreetMap 1 29,641 40.0 55.1

CitySeeker Implicit 6,440 Outdoor+Dynamic Street View and Map 8 41,128 18.3 11.11

In contrast, real-world human instructions often involve abstract goals that pertain to implicit
needs (Zhou et al., 2024b). These needs are often unannotated on traditional maps or lack the
granularity needed for last-mile navigation, and are implicit on multiple aspects: functional (e.g.,
when finding a restroom, recognizing the affordance that one is also available in a McDonald’s, or
inferring that “I’m thirsty” can be resolved by a convenience store or even a public water fountain),
spatial (e.g., upon seeing a more visually prominent landmark like a shopping complex, inferring that
a Starbucks is likely nearby, or realizing that a cinema is often hidden inside a mall), and semantic
(e.g., subjective qualities like a “romantic” or “upscale” restaurant). Addressing these common needs
is a fundamental challenge for goal-oriented navigation, requiring an agent to ground environmental
intent through active exploration and spatial reasoning to solve the crucial “last-mile” problem,
especially in contexts like city walks (Gao et al., 2024). We illustrate this concept in Figure 1.

The ability to understand human needs in urban space is fundamental to Embodied Urban Nav-
igation (Liu et al., 2024; Hirose et al., 2023). While prior work has explored VLM’s ability to
interpret human needs, these efforts have been largely confined to constrained settings like indoor
environments and 3D games (Wu et al., 2024a; Zhang et al., 2024b). This raises a critical scientific
question: Can VLMs develop intrinsic spatial awareness (Yang et al., 2024) for Embodied Navigation
in open-world urban settings to address implicit human needs? This task introduces unique chal-
lenges: (1) Dynamic Visual Complexity, with diverse and changing road networks and storefronts;
(2) Free-Form Instruction Parsing for goals in flexible language; and (3) Long-Horizon Reasoning
across extensive distances. The latter is not merely about path length but requires robust, multi-hop
reasoning that couples semantic inference with visual grounding. For instance, to address “I need a
temporary place with Wi-Fi to work,” an agent must ground the abstract function of “working.” While
it may infer POI categories like Cafe or Library, the final decision depends on visually grounding a
location’s suitability by dynamically searching for real-world cues—such as a storefront’s ambiance,
patrons with laptops, or even a “Free Wi-Fi” sign—that confirm it meets the user’s need in real time.

Humans address these challenges using cognitive maps—mental representations of spatial relation-
ships and environmental attributes (Epstein et al., 2017; Tolman, 1948). By combining observation
with prior knowledge, humans can dynamically update their spatial understanding, infer latent prop-
erties, and formulate grounded plans from abstract goals—capabilities yet to be replicated in VLMs
for outdoor navigation (Clemenson et al., 2021; Farzanfar et al., 2023; Momennejad et al., 2024;
Wu et al., 2024b). Inspired by this, we propose CitySeeker, a novel benchmark for autonomous
embodied urban navigation. It assesses Implicit-Need-Driven Visual Grounding: the process of
translating an implicit need into a concrete visual search by using semantic inference to infer possible
targets and grounding this understanding in a continuous stream of observations. To systematically
probe this ability, its 7 task categories represent a spectrum of varying cognitive difficulty, from direct
recognition (“Basic POI”) to highly abstract reasoning (“Abstract Demand,” “Semantic Preference”).
The benchmark is implemented through 6,440 trajectories across 8 globally distributed urban regions
with diverse layouts and visual characteristics (Table 1).

Our extensive experiments reveal that existing VLMs generally underperform, exhibiting significant
trajectory deviation and deficient spatial cognition. Building on these benchmark findings, we
further investigate advanced strategies that endow the agent with human-like cognitive capabilities.
We propose and analyze a triad of exploratory approaches: Backtracking mechanisms mimic self-
correction, Spatial Cognition Enrichment mimics mental map building, and Memory-Based Retrieval
mirrors recalling past experiences. These BCR strategies offer a concrete roadmap to elevate VLM
spatial intelligence. From a cognitive science perspective, our research is aligned with exciting
developments in AI concerning Spatial Mental Models within LLMs (Momennejad et al., 2024;
Yang et al., 2024; Wu et al., 2024b), probing the intrinsic spatial intelligence of these models. In
summary, our contributions are threefold:
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• CitySeeker is the first large-scale benchmark for embodied urban navigation that addresses implicit
needs across diverse multi-city settings, incorporating real-world visual diversity, long-horizon
planning, and unstructured instructions.

• We design a VLM-based framework and a suite of human-inspired cognitive strategies (BCR) that
translate implicit needs into multi-step plans through iterative observation-reasoning cycles.

• Through extensive experiments, we surface key bottlenecks in VLM spatial reasoning and crys-
tallize them—and their fixes—into the BCR triad of Backtracking, Cognitive-map enrichment, and
Retrieval-augmented memory, offering insightful guidance for advancing spatial intelligence.

2 RELATED WORK

Spatial Cognition and Mental Models. The concept of spatial cognition—internal mental represen-
tations of space—originates from cognitive science and has long been considered fundamental to
how humans navigate (Tolman, 1948; Epstein et al., 2017). A recent paradigm shift has been spurred
by findings that large models can develop emergent “world models” and representations of space and
time without supervised training (Gurnee & Tegmark, 2023). This has inspired a new line of inquiry
dedicated to probing the intrinsic spatial intelligence of these models (Yang et al., 2025; Yin et al.,
2025; Feng et al., 2025; Manh et al., 2025). Our work provides the first attempt to systematically
evaluate the emergent spatial cognition of VLMs through complex urban navigation tasks.

Vision-Language Navigation (VLN). Research in VLN has explored diverse instruction formats,
including step-by-step, dialog-based (Goetting et al., 2024; Zhou et al., 2024a), and goal- or intention-
oriented instructions (Wang et al., 2023; Qi et al., 2020a; Chiang et al., 2024; Liu et al., 2025).
However, the majority of outdoor VLN research and benchmarks, such as Touchdown (Chen et al.,
2019), have focused on agents following explicit step-by-step directives. This has led to the develop-
ment of various methods (Xu et al., 2024; Schumann et al., 2024; Dorbala et al., 2022; Pan et al.,
2024) —excel at direct text-visual matching but are less equipped for the abstract reasoning required
by implicit goals. Moreover, many solutions are limited by a reliance on static representations of
predefined environment and poor generalizability (Cao et al., 2024; Elnoor et al., 2024; Zhan et al.,
2024), revealing a gap in handling dynamic, real-world urban navigation. Goal-oriented navigation
requires agents to use perception and commonsense reasoning to ground abstract concepts. Its form
focuses on zero-shot open-world navigation (Mirowski et al., 2018; Majumdar et al., 2022; Zhou et al.,
2024b), which has largely been limited to indoor environments. CitySeeker is the first benchmark to
evaluate this goal-oriented reasoning for implicit needs in open-world cities.

3 CITYSEEKER BENCHMARK

The CitySeeker dataset comprises 6,440 route instances and corresponding natural language instruc-
tions covering 7 carefully curated categories of everyday human needs. These categories span typical
requests from target recognition (e.g., finding nearby facilities or brands), contextual inference (e.g.,
inferring that a restroom is likely available in McDonald’s) and attribute analysis (e.g., guiding to a
bank with accessible facilities), to abstract and subjective reasoning (e.g., finding a restaurant suitable
for a team gathering). The design of these categories is guided by three core criteria: (1) semantic
complexity of goals, (2) spatial reasoning requirements, and (3) real-world applicability.

CitySeeker is collected from eight distinct metropolitan areas—Beijing, Shanghai, Shenzhen,
Chengdu, Hong Kong, London, and New York—capturing diverse architectural layouts and dy-
namic street-level visuals. Overall, the benchmark includes over 41,128 street-view panoramas (from
Google or Baidu Maps since 2024) to ensure realistic appearance variations. As shown in Figure 2,
our dataset balances instruction types, urban regions, and navigation difficulty (based on trajectory
length). These categories collectively capture a broad range and diversity of real-world navigation
challenges, with 19.2% involving POI navigation, 20.4% requiring the interpretation of abstract
demands, and other major portions dedicated to brand-specific searches (23.4%) and latent POI
discovery (23.0%). To facilitate quantitative evaluation, we further sampled 1,257 route instances as
the final benchmark test set, balancing coverage across all metropolitan areas and categories.
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Figure 3: Construction Process of the CitySeeker Dataset.

3.1 BENCHMARK CONSTRUCTION

We employ a demand-driven pipeline to generate high-quality navigation routes at scale, as summa-
rized in Figure 3. By integrating panoramic data, POI filtering, and graph-based distance queries,
it yields high-fidelity routes spanning a broad spectrum of real-life urban navigation needs (see
Appendix B for details).

Data Collection and Topology Construction. We gather street-level panoramas from both Google
and Baidu Street View, covering diverse urban areas (e.g., Western cities, Hong Kong, Mainland
China). To discretize each city’s road network, we place a node every 20 meters and capture its
panoramic imagery with metadata (e.g., latitude/longitude, heading, navigable headings). These
nodes and edges represent navigable connections annotated with azimuths and distances, forming a
graph-based structure stored in Neo4j. This layout facilitates spatial queries and ensures consistent
global connectivity. Each collected Points of Interest (POI) is then linked to any vantage node within
a 50-meter radius, reflecting the idea of a visible or discoverable place from that viewpoint. This step
updates the knowledge graph with triplets of the form (Node) –has–> (VisiblePOI).

Question Design and Generation. To cover common daily needs, we first identify a set of high-
frequency POI categories. These are sourced primarily from map providers (e.g., “restaurant,” “coffee
shop”) and are supplemented with other visually rich POIs identified from street-view images and
manually verified, capturing targets often unannotated on maps. This enables us to design specific
templates for different query types. Each question type is manually associated with one or more POI
categories; for instance, “I’m feeling thirsty” may map to beverage shops, water fountains, or cafés.

Route Generation and Validation. We generate navigation paths by selecting start and end nodes
based on the intended POI category. We determine the starting nodes based on constraints to ensure
that the shortest path falls within a controllable minimum radius (e.g., ensuring no other similar
POIs lie within an overly small radius), thereby guaranteeing a meaningful navigation distance. The
shortest paths between start and target nodes (containing the target POI) are then calculated using a
shortest-path algorithm (e.g., A*). This process yields effective routes ranging from 5 to 25 steps.
Finally, we manually verify each route by confirming the target POI is indeed visible or indirectly
visible at the terminal node. To further empirically validate the rationality of our Need-to-POI
mappings and mitigate potential designer bias, we conducted a cross-cultural human consensus
survey (N = 120), which demonstrated a high degree of agreement (83.39%) with our ground truth
categories (see Appendix B for details). Any route failing this check is refined or discarded.

4 EVALUATION ON CITYSEEKER

4.1 OVERVIEW

Task Formulation. We formulate the VLN task within a navigation graph G = (V, E), where V
represents the set of georeferenced nodes and E denotes edges. At time step t, the agent occupies
a node vt ∈ V . The agent receives a natural language instruction W and an observation set Ot =
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Figure 4: The CitySeeker Implicit-Need-Driven Embodied Urban Navigation Framework.

{ot,1, ot,2, . . . , ot,n}, where n is the number of perspective views at vt. The agent maintains a state
st = (vt,Ot) representing current environmental context. The agent operates via a policy πΘ that
sequentially generates a reasoning rationale followed by an action: (Φt, at, ct) = πΘ(W, st). Here,
Φt is the reasoning rationale, and at ∈ At = {1, . . . , n} is the index of the selected perspective view
with confidence ct ∈ [0, 1]. The environment transitions to the next node vt+1 based on the dynamics
T (vt, at). A reasoning process is recorded as: τ = {W, (s1,Φ1, a1, c1), . . . , (sT ,ΦT , aT , cT )},
where the process terminates once the stop condition is met.

Navigation Framework. Figure 4 illustrates the navigation pipeline. At each time step, the panoramic
image at the current viewpoint is subdivided into multiple perspective views, each corresponding to a
feasible heading. Guided by a ReAct-style reasoning procedure (Yao et al., 2023), the VLM processes
the current observation (Observe), infers a navigation intention (Think), selects one perspective view
to move toward (Act), and finally outputs a confidence score as reflection (Reflect). This process
iterates until the agent deems it has reached the goal or surpasses a maximum step limit (35 steps).
To isolate the model’s core spatial reasoning ability, we intentionally keep each step independent: the
agent does not maintain persistent memory or feed previous internal states into subsequent decisions.

4.2 EVALUATION SETUP

Benchmark Models. We comprehensively evaluate 27 multi-image capable VLMs across diverse
model families, encompassing various parameter scales and architecture. For proprietary models,
we consider GPT-4o, GPT-4o-Mini, o4-mini, Gemini-1.5-Pro and Gemini-2.5-Pro (Team, 2024).
For open-source models, we evaluate models from Qwen2-VL series (7/72B Instruct) (Wang et al.,
2024a), Qwen2.5-VL series (7/32/72B Instruct) (Bai et al., 2025), InternVL2.5 (8/26/38B) (Chen
et al., 2024), InternVL3 (8/14/38B), Llama-3.2 (11/90B Vision variants) (Dubey et al., 2024), Llama-4
(Scout-17B-16E-Instruct/Maverick-17B-128E-Instruct), LLaVA derivatives (Llama3-llava-next-8b,
LLaVA-OneVision-Qwen2-7B) (Liu et al., 2023), MiniCPM derivatives (V-2.6/o-2.6) (Yao et al.,
2024; Yu et al., 2024), Phi series (3.5-Vision-Instruct/4-Multimodal-Instruct) (Abdin et al., 2024;
Microsoft, 2025) and MiniMax-01 (Li et al., 2025). All evaluations are conducted under zero-shot
settings using unified prompts (see Appendix C.1 for full details).

Metric Design. We adopt a comprehensive evaluation protocol that extends standard VLN metrics (Qi
et al., 2020b) to assess task success and navigation efficiency. Our evaluation includes: Task
Completion (TC), measured with metrics of varying granularity: (1) TC-Exact (TCE) requires a strict,
single-node endpoint match. To account for the fact that a target is often visible from multiple nearby
viewpoints, (2) TC-Proximity (TCP) grants success within a geodesic threshold of ≤50m to address
this spatial ambiguity; (3) TC-Category (TCC) evaluates whether the final destination belongs to
the same category as the intended target, acknowledging practical flexibility in location-based tasks
(e.g., reaching any restaurant rather than the closest one); Path Quality, assessed via (4) Normalized
Dynamic Time Warping (nDTW) (Xu et al., 2024) to quantify trajectory alignment with ground
truth, (5) Success weighted by Path Length (SPL) to rigorously measure navigation efficiency by
balancing success rates against trajectory length, and (6) Average Steps (AS) for decision efficiency;
Distance-Based Metrics, (7) Shortest-Path Distance (SPD) for straight-line distance to the goal.
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Table 2: The performance of CitySeeker Framework. For Subcategory evaluations, the TCP score is
reported. Top performers are highlighted in bold, while secondary leaders are underlined. For details
on the AS metric and a more comprehensive evaluation of the models, please refer to Appendix C.3.

Models
Overall Subcategories

TCE TCP TCC SPL SPD nDTW
Basic
POI

Brand-
Specific

Transit
Hub

Latent
POI

Abstract
Demand

Inclusive
Infra.

Semantic
Pref.

GPT-4o 2.4 18.3 6.8 13.3 125.4 136.9 18.9 21.1 19.6 9.7 18.9 14.9 26.0
GPT-4o-mini 1.1 12.3 7.6 7.5 202.0 325.2 12.3 21.1 14.3 7.4 11.8 7.5 10.6

o4-mini 2.6 17.9 6.8 11.6 130.1 156.3 20.2 19.9 12.5 13.1 16.7 9.0 24.0
Gemini-2.5-pro 1.8 17.3 5.0 12.1 121.8 121.2 20.4 18.0 16.1 10.2 20.6 9.0 13.5

InternVL2.5-8B 1.0 14.6 4.4 5.6 118.5 140.4 15.7 14.3 1.8 14.8 18.4 10.4 10.6
InternVL2.5-26B 1.6 15.3 3.7 7.3 109.5 106.0 20.4 12.4 8.9 10.8 17.1 7.5 8.7
InternVL2.5-38B 2.2 18.1 7.2 11.2 136.6 169.2 17.6 24.2 14.3 13.1 22.8 10.4 16.4
InternVL3-8B 1.3 15.8 4.9 6.4 118.3 144.5 17.2 15.5 7.1 14.2 16.7 16.4 15.4
InternVL3-14B 1.7 15.1 6.4 8.5 136.2 170.8 13.8 20.5 17.9 8.0 19.3 10.5 17.3
InternVL3-38B 2.5 19.3 6.7 10.6 115.8 128.3 18.9 25.5 12.5 13.1 23.3 11.9 21.2
Qwen2-VL-7B 0.7 11.1 1.7 5.2 111.4 114.4 11.4 9.9 14.3 4.6 13.2 13.4 15.4
Qwen2-VL-72B 1.0 11.9 2.3 9.0 113.0 89.5 14.8 8.7 7.1 7.4 14.5 1.5 15.4
Qwen2.5-VL-7B 0.5 15.8 4.3 4.6 119.0 151.8 20.2 17.4 12.5 10.2 13.6 7.5 15.4
Qwen2.5-VL-32B 2.6 21.1 6.2 12.7 122.6 147.0 22.2 30.4 10.7 14.2 24.1 9.0 20.2
Qwen2.5-VL-72B 2.0 14.6 7.2 9.1 174.9 250.2 14.8 21.7 14.3 6.8 15.8 11.9 14.4
Llama3.2-90B 0.9 12.5 3.7 7.3 124.5 123.1 13.6 12.4 1.8 9.7 14.0 10.4 16.4
Llama-4-Scout-17B 1.8 14.1 7.0 6.7 145.0 211.4 12.3 18.6 14.3 8.5 17.5 17.9 14.4
Llama-4-Maverick-17B 0.9 10.8 1.6 4.0 107.1 110.5 12.7 10.6 8.9 10.2 12.7 4.5 4.8
MiniMax-01 1.5 13.6 6.8 8.8 172.2 236.6 15.5 16.2 8.9 6.8 14.9 11.9 13.5
MiniCPM-V-2.6 0.9 11.7 3.5 4.0 122.2 152.2 12.5 10.6 19.6 9.7 13.2 7.5 8.7
MiniCPM-o-2.6 1.4 15.5 6.4 5.6 130.1 176.0 14.4 22.4 10.7 12.5 18.9 11.9 12.5
Phi-4-Multimodal 0.6 9.2 1.1 7.1 101.1 58.1 14.0 6.2 5.4 2.8 10.5 7.5 2.9
Llava-Llama3-8B 0.3 10.4 0.8 5.1 104.8 86.9 14.8 8.7 5.4 8.0 8.8 4.5 7.7
Llava-Qwen2-7B 0.3 6.9 0.4 6.2 98.1 49.8 12.5 2.5 3.6 2.8 6.6 3.0 1.0

Human 5.7 30.1 13.5 21.2 143.5 178.6 31.8 36.5 34.9 19.7 31.5 16.7 29.8
Random Choice 0.7 13.9 3.2 3.8 112.4 128.3 16.6 10.6 5.4 10.8 14.9 16.4 13.5
Forward Direction 0.2 7.2 0.4 1.8 100.8 99.3 13.3 3.1 3.6 2.3 6.6 1.5 1.9

Reference Baselines. To comprehensively assess model capabilities, we introduce three evaluation
baselines. We establish a (1) Human Baseline using an interactive platform where 10 participants
of diverse backgrounds performed the navigation tasks. We also include a (2) Random Choice
Baseline, which selects a random direction at each step, and a (3) Forward Direction Baseline,
which always chooses the forward direction as a simple heuristic.

5 MAIN RESULTS AND ANALYSIS

5.1 OVERALL PERFORMANCE

Table 2 presents the overall results. In general, the models exhibit relatively low success rates,
particularly under the stricter criterion TCE. Larger models (e.g., Qwen2.5-VL-32B, GPT-4o, Gemini-
2.5-Pro) perform slightly better—likely due to stronger internal representations—but the gains over
smaller models remain modest. Notably, open-source models like the Qwen2.5-VL and InternVL3
series demonstrate competitive performance. This superiority likely stems from specific architectural
and training alignments with CitySeeker’s demands: Qwen2.5-VL benefits from spatial-aware SFT
and efficient high-resolution processing crucial for identifying street-level details, while InternVL3
leverages native multimodal pre-training and Mixed Preference Optimization (MPO) to enhance the
complex cross-modal reasoning required for implicit needs. However, no model consistently excels,
with some even underperforming random baselines. Ablation study further revealed that providing
agents with a global 2D map surprisingly degraded task completion, underscoring the challenge of
fusing map-based information with visual grounding (see Appendix D). Human participants achieved
the best overall performance, outperforming all models on both TCP and TCC. They exhibit a clear
advantage across diverse task dimensions, especially in tasks requiring urban commonsense like
“Transit Hub” navigation (a TCP of 34.9% for humans versus 10.7% for the best VLM Qwen2.5-VL-
32B) and “Basic POI” finding (31.8% vs. 22.2%).

Task Category Analysis. Breaking down performance by query category reveals a clear divide
between tasks requiring direct recognition versus those demanding deeper inference, as shown in
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Figure 5: Radar Chart: TCP performance of different models across various subcategories. Bar Chart:
TCP performance of models in different cities (left: New York, right: Beijing).

Figure 6: Heat Map: GPT-4o’s navigation trajectory distribution in New York (left) and Beijing
(right). Scatter Plot: Relationship between model-generated trajectory steps and nDTW.

Table 2 and radar chart of Figure 5. Models performed best on Brand-Specific navigation, where
recognizable brand names (e.g., Starbucks) serve as strong lexical and visual anchors. In sharp
contrast, one of the most challenging categories was Latent POI, which requires agents to reason
about indirectly observable targets that are not explicitly signed (e.g., inferring a restroom is inside a
McDonald’s). This finding highlights a key VLM limitation: while adept at direct recognition, they
falter when tasks require nuanced, commonsense inference about the environment.

Variation Across Cities. Performance also varies across different metropolitan areas. As shown on
bar chart of Figure 5, interestingly, GPT-4o variants perform poorly in Beijing but achieve highest
scores in New York—this may reflect biases in the training data or the more grid-like street layouts in
the United States. To test for linguistic bias, we conducted a cross-lingual experiment, which revealed
that this performance gap is not primarily driven by language factors (see Appendix C.4 for details).

5.2 IN-DEPTH ANALYSIS

As shown in Figure 6, model performance tends to degrade with increased route length. When the
number of steps is fewer than 20, nDTW values remain relatively small and correct trajectories are
more common. However, at around 35 steps, nDTW metrics become highly scattered, indicating that
longer horizons require robust sequential reasoning—an ability current VLMs often lack, as their
errors accumulate without being integrated into a coherent spatial memory.

Trajectory Patterns. In Figure 6, two prominent error modes emerge: (1) Trajectory Deviation.
This arises from compounded errors at each sequential decision point, a problem exacerbated by
sparse or ambiguous instructions. (2) Oscillatory Detours. Some open-source models exceed the
optimal path length by 40–60% (e.g., trajectories #47 and #153 in New York), likely attributable to
fragmented context handling and incomplete global awareness. We also observe that path efficiency
correlates weakly with TC: when uncertain, some models veer off course or backtrack repeatedly,
leading to wasted steps. Notably, most models demonstrate looping behavior—visiting the same node
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Figure 7: Overview of the BCR Approach -Backtracking, Spatial Cognition, and Memory-Based
Retrieval to enhance VLM performance in urban VLN tasks.

Table 3: Performance of different models on TCP and nDTW under three strategies. The best results
are highlighted in bold.
Model Baseline B1 B2 B3 C1 C2 R1 R2 R3

TCP nDTW TCP nDTW TCP nDTW TCP nDTW TCP nDTW TCP nDTW TCP nDTW TCP nDTW TCP nDTW

GPT-4o-Mini 12.5 337.1 15.7 289.5 17.4 277.9 18.2 258.3 17.2 242.3 15.1 239.7 18.3 136.6 17.9 312.2 19.4 176.9
InternVL3-8B 15.0 142.9 16.7 139.9 18.5 137.5 17.2 138.6 17.9 145.2 16.4 197.6 18.6 148.9 16.9 128.4 17.9 134.8
MiniCPM-V-2.6 11.3 159.0 9.1 120.5 13.1 153.1 13.0 137.2 11.6 123.0 8.5 144.4 14.6 143.3 14.8 146.7 15.7 111.5
Qwen2.5-VL-7B-Instruct 12.5 122.2 14.0 140.5 14.4 156.7 15.3 141.8 15.3 142.5 12.3 135.8 16.1 156.4 15.9 441.4 16.2 141.8
Qwen2.5-VL-32B-Instruct 19.9 167.7 21.9 164.5 22.2 154.6 23.1 159.4 21.2 153.5 19.6 162.1 26.9 173.2 25.9 172.8 25.4 152.8

multiple times (e.g., trajectory #63 in New York and #32 in Beijing)—suggesting difficulties with
local decision-making. Interestingly, others (e.g., Llava-Qwen2-7B) take relatively concise routes yet
still show low accuracy, implying a lack of deeper spatial understanding despite fewer detours.

6 EXPLORATORY APPROACHES TO EMBODIED URBAN NAVIGATION

To explore strategies for enhancing VLM performance, we propose a three-pronged approach,
BCR, involving Backtracking Mechanisms, Spatial Cognition Enrichment, and Memory-Based
Retrieval (Figure 7). These methods aim to mitigate cumulative navigation errors, boost global
spatial awareness, and enable memory-informed decision-making. We denote these three method
series as B, C, and R respectively in the following content. We conducted initial experiments on a
mini-size subset of 650 samples; for full technical details, including an analysis of combined BCR
strategies, please refer to Appendix E.

6.1 BACKTRACKING MECHANISMS

We introduce backtracking to correct navigational errors. (B1) Basic Backtracking is triggered when
the agent’s internal confidence, averaged over a sliding window of k steps, falls below a predefined
threshold θ. The agent then reverts to the last trusted node. This mechanism is self-supervised and
does not require external feedback. (B2) Step-Reward Backtracking replaces subjective confidence
with objective progress metric: the topological distance to the goal, dt. Backtracking is initiated
if this distance increases monotonically for k consecutive steps, i.e., when

∧k−1
i=0 (dt−i > dt−(i+1))

holds. This corrects navigational drift away from the target. (B3) Human-Guided Backtracking
enhances B1 by providing a directional hint after reverting. This hint guides the agent toward the
optimal action a∗ = argmin

a∈At

E[dt+1|at = a], which minimizes the expected future distance to the

target, thereby realigning the agent’s trajectory with the shortest path to the goal.

Empirical Performance. As shown in Table 3, B1 generally improves TCP across models, in-
dicating that confidence-based backtracking stabilizes navigation for capable VLMs. However, it
underperforms on smaller models like MiniCPM-V-2.6 (TCP drops from 11.3% to 9.1%), suggesting
insufficient spatial reasoning for effective self-assessment. B2 and B3 are more universally effective,
consistently improving TCP across all models. For instance, B3 boosts GPT-4o-Mini’s TCP to 18.2%
while significantly improving its path efficiency (nDTW drops from 337.1 to 258.3). These results
highlight that while simple self-correction benefits capable models, external signals (like progress
rewards or timely hints, in B2 and B3) offer more robust improvements.
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6.2 SPATIAL COGNITION ENRICHMENT

To improve the agent’s environmental awareness, we generate enriched spatial cues by using GPT-4.1
to synthesize successful and erroneous trajectories from various VLMs (e.g., GPT-4o, Gemini-2.5-
pro). This synthesized knowledge is then injected into the agent’s prompt in one of two formats.
(C1) Topology Cognitive Graph provides a structured graph where nodes represent locations and
edges represent actionable transitions. This format forces the agent to ground its decisions in explicit
environmental connectivity, discouraging exploration of invalid paths. (C2) Relative Position Map
offers a more intuitive spatial context, describing relationships between locations with directional
cues (e.g., “left”, “slightly right”) and estimated distances. While lacking explicit connectivity, this
method allows the agent to construct a flexible mental map based on relative positional relationships.

Empirical Performance. Table 3 illustrates that C1 improves TCP across models by grounding
decisions in topological structure. For instance, GPT-4o-Mini achieves an increase from 12.5% to
17.2%. The impact of C2 is more mixed; while it can improve path efficiency (e.g., for GPT-4o-Mini,
nDTW drops to 239.7), it sometimes slightly reduces task completion (e.g., for MiniCPM-V-2.6, TCP
drops from 11.3% to 8.5%). Overall, C1 appears more reliable for improving task success, whereas
C2 supports a more flexible and exploratory approach but sacrifices some success rate.

6.3 MEMORY-BASED RETRIEVAL

To overcome fragmented decision-making, we implement a graph-based memory module, enabling
agents to retrieve or append past rationales and actions. (R1) Topology-based Retrieval aggregates
multi-round node and edge metadata based on graph connectivity. At each step, it retrieves a local
subgraph of h-hop neighbors, accessing metadata like node visitation counts, previous decisions,
edge transition success rates and confidence scores. This helps avoid repeating past mistakes and
promotes the reuse of successful paths. (R2) Spatial-based Retrieval complements this by retrieving
a subgraph of nodes and relationships within a fixed Euclidean radius, which emphasizes geographic
proximity. (R3) Historical Trajectory Lookup introduces short-term memory by appending recent
intra-round navigation history into VLM’s context. This includes spatial data, action choices, and
prior decision rationale over a sliding window. Unlike R1 and R2, R3 does not rely on database
traversal, making it a lightweight method to stabilize reasoning within a single episode.

Empirical Performance. Table 3 reveals that the R-series strategies are the most powerful overall.
For GPT-4o-Mini, R3 yields the highest TCP of all strategies (19.4%), while R1 achieves the best path
efficiency with a dramatic nDTW reduction to 136.6. This demonstrates that different memory-based
approaches can simultaneously enhance both task completion and navigation efficiency. Across all
models, R-series strategies consistently produce some of the highest TCP scores, with R1 pushing
the top-performing Qwen2.5-VL-32B-Instruct to an impressive 26.9% TCP. This confirms that
memory-aware navigation is crucial for improving both the reliability and effectiveness of the agent.

Trade-off Analysis and Application Scenarios. The B-Series strategies (especially B2 and B3)
reliably improve task completion, making them suitable when success is prioritized. The C-Series is
applicable when external spatial information can be provided; C1 generally favors accuracy, while
C2 may trade success for better path efficiency. Overall, the R-Series is the most robust approach for
long-horizon navigation, consistently yielding the best task completion rates. Lightweight models
like InternVL3-8B are suitable for time-sensitive tasks, while heavier models like Qwen2.5-VL-32B-
Instruct, augmented with R-series strategies, are ideal for precision-critical applications.

7 CONCLUSION

CitySeeker establishes a new standard for embodied urban navigation by systematically evaluating
how well VLMs tackle implicit human needs in diverse, real-world cityscapes. Our extensive
experiments uncover that today’s models frequently struggle with the complexities of this task, often
deviating from optimal routes due to limited spatial reasoning. To address this, we introduced a
human-inspired cognitive framework and outlined three insightful strategies—backtracking, spatial
cognition enrichment, and memory-based retrieval—which demonstrably improve performance.
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These findings offer a clear pathway toward developing more robust, human-like agents capable of
solving the crucial “last-mile” problem in real-world navigation.

ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics. The study involved human participants for the
establishment of a human baseline. All participants were fairly compensated for their time in line
with our institution’s standard rates for research assistance, and the experimental procedure was
clearly explained to them. The street-view imagery used in our experiments was accessed via publicly
available APIs (Google Maps and Baidu Maps). To strictly adhere to the API Terms of Service, we do
not distribute any raw street-view images or offline copies. Instead, researchers can access the visual
data using our provided scripts, which query the official APIs using the released trajectory metadata
(e.g., Panorama IDs and coordinates). This approach ensures full compliance while maintaining the
scientific reproducibility of the benchmark.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work while complying with data usage policies, we have made
our metadata, code, and supplementary materials publicly available. The CitySeeker benchmark
release includes: (1) the complete trajectory graph data (nodes, edges, and Panorama IDs), and (2)
the full implementation code for our evaluation framework and BCR exploratory strategies. The
scripts enable re-fetching the necessary street-view imagery directly from the public APIs. This
methodology aligns with established practices in the field (e.g., Touchdown (Chen et al., 2019)) to
ensure reproducibility without distributing copyrighted images. Furthermore, we have verified that
reproducing test set via these scripts incurs no financial cost under standard API usage tiers. All
resources can be found at anonymous repository linked in Appendix A. The main paper and appendix
provide comprehensive details on our experimental setup (Appendix C), the exact prompts used for
all VLM evaluations (Appendix C.2), and the specifics of our evaluation metrics (Section 4.2).

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark Johnson, Niko Sünderhauf, Ian Reid,
Stephen Gould, and Anton Van Den Hengel. Vision-and-language navigation: Interpreting visually-
grounded navigation instructions in real environments. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 3674–3683, 2018.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025.

Yihan Cao, Jiazhao Zhang, Zhinan Yu, Shuzhen Liu, Zheng Qin, Qin Zou, Bo Du, and Kai Xu.
Cognav: Cognitive process modeling for object goal navigation with llms. arXiv preprint
arXiv:2412.10439, 2024.

Howard Chen, Alane Suhr, Dipendra Misra, Noah Snavely, and Yoav Artzi. Touchdown: Natural
language navigation and spatial reasoning in visual street environments. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12538–12547, 2019.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
for generic visual-linguistic tasks. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 24185–24198, 2024.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hao-Tien Lewis Chiang, Zhuo Xu, Zipeng Fu, Mithun George Jacob, Tingnan Zhang, Tsang-
Wei Edward Lee, Wenhao Yu, Connor Schenck, David Rendleman, Dhruv Shah, et al. Mobility vla:
Multimodal instruction navigation with long-context vlms and topological graphs. arXiv preprint
arXiv:2407.07775, 2024.

Gregory D Clemenson, Antonella Maselli, Alexander J Fiannaca, Amos Miller, and Mar Gonzalez-
Franco. Rethinking gps navigation: creating cognitive maps through auditory clues. Scientific
reports, 11(1):7764, 2021.

Harm De Vries, Kurt Shuster, Dhruv Batra, Devi Parikh, Jason Weston, and Douwe Kiela. Talk the
walk: Navigating new york city through grounded dialogue. arXiv preprint arXiv:1807.03367,
2018.

Vishnu Sashank Dorbala, Gunnar Sigurdsson, Robinson Piramuthu, Jesse Thomason, and Gaurav S
Sukhatme. Clip-nav: Using clip for zero-shot vision-and-language navigation. arXiv preprint
arXiv:2211.16649, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Mohamed Elnoor, Kasun Weerakoon, Gershom Seneviratne, Ruiqi Xian, Tianrui Guan, Mohamed
Khalid M Jaffar, Vignesh Rajagopal, and Dinesh Manocha. Robot navigation using physically
grounded vision-language models in outdoor environments. arXiv preprint arXiv:2409.20445,
2024.

Russell A Epstein, Eva Zita Patai, Joshua B Julian, and Hugo J Spiers. The cognitive map in humans:
spatial navigation and beyond. Nature neuroscience, 20(11):1504–1513, 2017.

Delaram Farzanfar, Hugo J Spiers, Morris Moscovitch, and R Shayna Rosenbaum. From cognitive
maps to spatial schemas. Nature Reviews Neuroscience, 24(2):63–79, 2023.

Jie Feng, Tianhui Liu, Yuwei Du, Siqi Guo, Yuming Lin, and Yong Li. Citygpt: Empowering urban
spatial cognition of large language models. In Proceedings of the 31st ACM SIGKDD Conference
on Knowledge Discovery and Data Mining V. 2, pp. 591–602, 2025.

Peng Gao, Peng Wang, Feng Gao, Fei Wang, and Ruyue Yuan. Vision-language navigation with
embodied intelligence: A survey. arXiv preprint arXiv:2402.14304, 2024.

Dylan Goetting, Himanshu Gaurav Singh, and Antonio Loquercio. End-to-end navigation with
vision language models: Transforming spatial reasoning into question-answering. arXiv preprint
arXiv:2411.05755, 2024.

Wes Gurnee and Max Tegmark. Language models represent space and time. arXiv preprint
arXiv:2310.02207, 2023.

Noriaki Hirose, Dhruv Shah, Ajay Sridhar, and Sergey Levine. Sacson: Scalable autonomous control
for social navigation. IEEE Robotics and Automation Letters, 2023.

Gaurav Jain, Basel Hindi, Zihao Zhang, Koushik Srinivasula, Mingyu Xie, Mahshid Ghasemi, Daniel
Weiner, Sophie Ana Paris, Xin Yi Therese Xu, Michael Malcolm, et al. Streetnav: Leveraging
street cameras to support precise outdoor navigation for blind pedestrians. In Proceedings of the
37th Annual ACM Symposium on User Interface Software and Technology, pp. 1–21, 2024.

Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao
Guo, Da Chen, Dong Li, et al. Minimax-01: Scaling foundation models with lightning attention.
arXiv preprint arXiv:2501.08313, 2025.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36:34892–34916, 2023.

Xinhao Liu, Jintong Li, Yichen Jiang, Niranjan Sujay, Zhicheng Yang, Juexiao Zhang, John Abanes,
Jing Zhang, and Chen Feng. Citywalker: Learning embodied urban navigation from web-scale
videos. arXiv preprint arXiv:2411.17820, 2024.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xinhao Liu, Jintong Li, Yicheng Jiang, Niranjan Sujay, Zhicheng Yang, Juexiao Zhang, John Abanes,
Jing Zhang, and Chen Feng. Citywalker: Learning embodied urban navigation from web-scale
videos. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 6875–6885,
2025.

Arjun Majumdar, Gunjan Aggarwal, Bhavika Devnani, Judy Hoffman, and Dhruv Batra. Zson: Zero-
shot object-goal navigation using multimodal goal embeddings. Advances in Neural Information
Processing Systems, 35:32340–32352, 2022.

Bui Duc Manh, Soumyaratna Debnath, Zetong Zhang, Shriram Damodaran, Arvind Kumar, Yueyi
Zhang, Lu Mi, Erik Cambria, and Lin Wang. Mind meets space: Rethinking agentic spatial
intelligence from a neuroscience-inspired perspective. arXiv preprint arXiv:2509.09154, 2025.

Microsoft. Phi-4-mini technical report: Compact yet powerful multimodal language models via
mixture-of-loras. arXiv preprint arXiv:2503.01743, 2025.

Piotr Mirowski, Matt Grimes, Mateusz Malinowski, Karl Moritz Hermann, Keith Anderson, Denis
Teplyashin, Karen Simonyan, Andrew Zisserman, Raia Hadsell, et al. Learning to navigate in
cities without a map. Advances in neural information processing systems, 31, 2018.

Ida Momennejad, Hosein Hasanbeig, Felipe Vieira Frujeri, Hiteshi Sharma, Nebojsa Jojic, Hamid
Palangi, Robert Ness, and Jonathan Larson. Evaluating cognitive maps and planning in large
language models with cogeval. Advances in Neural Information Processing Systems, 36, 2024.

Bowen Pan, Rameswar Panda, SouYoung Jin, Rogerio Feris, Aude Oliva, Phillip Isola, and Yoon Kim.
Langnav: Language as a perceptual representation for navigation. In Findings of the Association
for Computational Linguistics: NAACL 2024, pp. 950–974, 2024.

Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang, William Yang Wang, Chunhua Shen, and Anton
van den Hengel. Reverie: Remote embodied visual referring expression in real indoor environments.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
9982–9991, 2020a.

Yuankai Qi, Qi Wu, Peter Anderson, Xin Wang, William Yang Wang, Chunhua Shen, and Anton
van den Hengel. Reverie: Remote embodied visual referring expression in real indoor environments.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
9982–9991, 2020b.

Raphael Schumann and Stefan Riezler. Generating landmark navigation instructions from maps as a
graph-to-text problem. arXiv preprint arXiv:2012.15329, 2020.

Raphael Schumann, Wanrong Zhu, Weixi Feng, Tsu-Jui Fu, Stefan Riezler, and William Yang Wang.
Velma: Verbalization embodiment of llm agents for vision and language navigation in street view.
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 18924–18933,
2024.

Gemini Team. Gemini: A family of highly capable multimodal models, 2024.

Edward C Tolman. Cognitive maps in rats and men. Psychological review, 55(4):189, 1948.

Arun Balajee Vasudevan, Dengxin Dai, and Luc Van Gool. Talk2nav: Long-range vision-and-
language navigation with dual attention and spatial memory. International Journal of Computer
Vision, 129:246–266, 2021.

Hanqing Wang, Wenguan Wang, Wei Liang, Caiming Xiong, and Jianbing Shen. Structured scene
memory for vision-language navigation. In Proceedings of the IEEE/CVF conference on Computer
Vision and Pattern Recognition, pp. 8455–8464, 2021.

Hongcheng Wang, Andy Guan Hong Chen, Xiaoqi Li, Mingdong Wu, and Hao Dong. Find what
you want: Learning demand-conditioned object attribute space for demand-driven navigation.
Advances in Neural Information Processing Systems, 36:16353–16366, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
world at any resolution. arXiv preprint arXiv:2409.12191, 2024a.

Siqi Wang, Chao Liang, Yunfan Gao, Yang Liu, Jing Li, and Haofen Wang. Decoding urban industrial
complexity: Enhancing knowledge-driven insights via industryscopegpt. MM ’24, pp. 4757–4765,
New York, NY, USA, 2024b. Association for Computing Machinery. ISBN 9798400706868. doi:
10.1145/3664647.3681705. URL https://doi.org/10.1145/3664647.3681705.

Wansen Wu, Tao Chang, Xinmeng Li, Quanjun Yin, and Yue Hu. Vision-language navigation: a
survey and taxonomy. Neural Computing and Applications, 36(7):3291–3316, 2024a.

Wenshan Wu, Shaoguang Mao, Yadong Zhang, Yan Xia, Li Dong, Lei Cui, and Furu Wei. Mind’s
eye of llms: Visualization-of-thought elicits spatial reasoning in large language models. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024b.

Yunzhe Xu, Yiyuan Pan, Zhe Liu, and Hesheng Wang. Flame: Learning to navigate with multimodal
llm in urban environments. arXiv preprint arXiv:2408.11051, 2024.

Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in
space: How multimodal large language models see, remember, and recall spaces. arXiv preprint
arXiv:2412.14171, 2024.

Jihan Yang, Shusheng Yang, Anjali W Gupta, Rilyn Han, Li Fei-Fei, and Saining Xie. Thinking in
space: How multimodal large language models see, remember, and recall spaces. In Proceedings
of the Computer Vision and Pattern Recognition Conference, pp. 10632–10643, 2025.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint
arXiv:2408.01800, 2024.

Baiqiao Yin, Qineng Wang, Pingyue Zhang, Jianshu Zhang, Kangrui Wang, Zihan Wang, Jieyu
Zhang, Keshigeyan Chandrasegaran, Han Liu, Ranjay Krishna, et al. Spatial mental modeling
from limited views. arXiv preprint arXiv:2506.21458, 2025.

Tianyu Yu, Haoye Zhang, Qiming Li, Qixin Xu, Yuan Yao, Da Chen, Xiaoman Lu, Ganqu Cui,
Yunkai Dang, Taiwen He, Xiaocheng Feng, Jun Song, Bo Zheng, Zhiyuan Liu, Tat-Seng Chua,
and Maosong Sun. Rlaif-v: Open-source ai feedback leads to super gpt-4v trustworthiness. arXiv
preprint arXiv:2405.17220, 2024.

Zhaohuan Zhan, Lisha Yu, Sijie Yu, and Guang Tan. Mc-gpt: Empowering vision-and-language
navigation with memory map and reasoning chains. arXiv preprint arXiv:2405.10620, 2024.

Jingyi Zhang, Jiaxing Huang, Sheng Jin, and Shijian Lu. Vision-language models for vision tasks: A
survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024a.

Yue Zhang, Ziqiao Ma, Jialu Li, Yanyuan Qiao, Zun Wang, Joyce Chai, Qi Wu, Mohit Bansal, and
Parisa Kordjamshidi. Vision-and-language navigation today and tomorrow: A survey in the era of
foundation models. arXiv preprint arXiv:2407.07035, 2024b.

Gengze Zhou, Yicong Hong, Zun Wang, Xin Eric Wang, and Qi Wu. Navgpt-2: Unleashing
navigational reasoning capability for large vision-language models. In European Conference on
Computer Vision, pp. 260–278. Springer, 2024a.

Gengze Zhou, Yicong Hong, and Qi Wu. Navgpt: Explicit reasoning in vision-and-language
navigation with large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 7641–7649, 2024b.

13

https://doi.org/10.1145/3664647.3681705


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX
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• F. VLM Generation Examples
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• H. Limitations and Future Work

• I. LLM Usage Statement

A DATA AND CODE AVAILABILITY

To promote community engagement and ensure reproducibility, the CitySeeker dataset along with
the full implementation code are publicly available at:
https://github.com/anonymous-cityseeker/CitySeeker.

B BENCHMARK DETAILS

The CitySeeker dataset comprises 6,440 trajectories across 8 diverse urban regions, paired with
navigation instructions addressing implicit human needs. To ensure strict adherence to image
licensing and usage rights (e.g., Google Maps Platform Terms of Service), our public release strategy
dissociates raw visual data from trajectory metadata. Specifically, we release the complete trajectory
graphs (including node coordinates and Panorama IDs) and navigation instructions. Rather than
distributing offline copies of copyrighted street-view imagery, we provide automated scripts that allow
researchers to re-fetch the necessary visual data directly from the official APIs. This methodology
ensures full compliance with non-commercial, research-only usage policies while maintaining the
benchmark’s reproducibility. Route-map visualizations are generated from OpenStreetMap data
(ODbL) and shared under compatible terms.

B.1 IMPLICIT NEEDS INSTRUCTION GENERATION PROCESS

Each instruction type is manually associated with one or more Point of Interest (POI) categories.
For Basic POI Navigation, Brand-Specific Navigation, and Transportation Hub Navigation
categories, the corresponding POI types are directly indicated in the questions; For Inclusive Infras-
tructure Navigation and Semantic Preference Navigation, we leverage POI metadata descriptions
provided by map vendors; For Latent POI Navigation and Abstract Demand Navigation questions,
we manually define the mapping between the questions and POI categories based on everyday life
experience. Table 4 and 5 present some mapping examples.
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Table 4: Latent POI Navigation Mapping Examples
User Query Mapped POI Categories
“Please find the nearest cinema.” Movie theater, Shopping mall

“Please find the nearest ATM.” ATM, Bank

“Please find the nearest coffee shop.” Cafe, Coffee shop, Shopping mall

“Please find the nearest gym.” Physical fitness program, Gym, Fitness
center, Gym and fitness centre

“Please find the nearest parking lot.” Parking lot, Free parking lot, Parking
garage, Public parking space

“Please find the nearest restroom.” Public bathroom, Public
wheelchair-accessible bathroom,
Subway station, Shopping mall,
McDonald’s, KFC

Table 5: Abstract Demand Navigation Mapping Examples
User Query Mapped POI Categories
“I need to go to the airport and would
like assistance in finding the best way
there. Could you help me?”

Subway station, Bus station, Bus stop,
Taxi service, Car leasing service, Car
rental agency

“I want to bring my child to play and
need assistance finding a suitable place
nearby. Could you help me?”

Shopping mall, Park, City park, Museum,
Art museum, Children’s amusement
center, Playground

“I want to buy fruits and vegetables and
need assistance finding a suitable place
nearby. Could you help me?”

Supermarket, Fruit and vegetable
store, Greengrocer, Farmers’ market

“I want to exercise and need assistance
finding a suitable place nearby.” Could
you help me?

Park, City park, Physical fitness
program, Gym, Yoga studio, Swimming
pool

“I want to rest and read and need help
finding a suitable place nearby. Could
you assist me?”

Cafe, Coffee shop, Public library,
Library, Book store, Park

“I want to work with Wi-Fi and need as-
sistance finding a suitable place nearby.
Could you help me?”

Cafe, Coffee shop, Public library,
Library, Book store, McDonald’s, KFC,
Five Guys

“I have run out of phone credit and need
to recharge it. Could you assist me in
finding a nearby place where I can do
so?”

Cafe, Coffee shop, Public
library, Library, Supermarket,
Telecommunications service provider,
Cell phone store, Target, McDonald’s,
KFC, 7-ELEVEn, Best Buy

“I’m feeling hungry and would like
something to eat. Could you help me
find a nearby place?”

Convenience store, Supermarket, Market,
Dessert shop, Food truck, Food stall,
Shopping mall, Restaurant, Diner

“I’m feeling thirsty and would like some-
thing to drink. Could you help me find a
nearby place?”

Convenience store, Supermarket,
Shopping mall, Cafe, Bubble tea store,
Water fountain, Vending machine,
Dessert shop, Juice shop

“I’m not feeling well and need assis-
tance finding a suitable place nearby.
Could you help me?”

Clinics, Pharmacies, Hospitals
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Enrichment with Visually-Grounded POIs. To enrich our POI beyond standard map data, we
address the challenge of temporary or purely visual POIs not available from map providers. We
employ a powerful VLM to identify such facilities (e.g., temporary food stalls or vendors) within
street-views. To ensure data quality, all identified POIs then undergo a manual verification process.
Once confirmed, these visual POIs are added to our graph database with their corresponding locations,
making them available for the query-to-POI mapping process. This step is crucial for ensuring our
benchmark reflects the dynamic and visually rich nature of urban environments.

Query POI Cypher Statement Example. To retrieve specific POI instances, we construct Cypher
queries that consider category attributes, name-based keyword patterns, or descriptive information
within the graph database. The queries are adjusted based on the different POI categories provided
by various map vendors, ensuring flexibility in retrieving relevant POIs efficiently. For Inclusive
Infrastructure and Semantic Preference, we query the corresponding description information for each
POI, which is stored in the retrieved POI metadata. This includes descriptive terms that specify
human-centric attributes of the POI, such as romantic, upscale, family-friendly, cozy, outdoor seating,
wheelchair accessible entrance, etc. The Cypher query combines these descriptive words with
category-specific terms, as shown below.

Cypher Query Example - Find the nearest group or family-friendly restaurant.

MATCH (place:Point)-[:CONTAINS]->(vp:VisiblePoint)
WHERE (ANY(key IN keys(vp)

WHERE (key CONTAINS ‘introduction’ OR key CONTAINS ‘
result’) AND

(vp[key] CONTAINS ‘Groups’
OR vp[key] CONTAINS ‘Family-friendly’)))

AND (vp.category CONTAINS ‘restaurant’
OR vp.category CONTAINS ‘diner’)

RETURN COLLECT(DISTINCT place) AS validPOIs

For Abstract Demand, a query such as “I want to rest and read” triggers a Cypher query that retrieves
POIs from categories like Cafe, Coffee Shop, Public Library, Library, Book Store,
and Park, while simultaneously considering relevant keywords like “park” and “book store” in the
POI names. This dual consideration of category and keywords ensures that the query matches a
comprehensive set of potential POIs. The Cypher query is as follows:

Cypher Query Example - I want to rest and read and need help finding a suitable place nearby.

MATCH (place:Point)-[:CONTAINS]->(vp:VisiblePoint)
WHERE vp.category IN [‘Cafe’, ‘Coffee shop’, ‘Public library’,

‘Library’, ‘Book store’, ’Park’]
OR any(keyword IN [‘park’, ‘book store’]

WHERE toLower(vp.name) CONTAINS toLower(keyword))
RETURN COLLECT(DISTINCT place) AS validPOIs

Manual Trajectory Validation. To mitigate potential mapping incompleteness, we implement
manual verification to re-inspect generated trajectories, ensuring no alternative POIs that could fulfill
the user’s request exist along the path except at the designated endpoint. By doing so, we ensure that
the generated trajectories are comprehensive and accurate, reducing the likelihood of missing target
POIs or introducing redundant POIs that could lead to incorrect ground truth.

To further prove that our common sense mappings are not designer bias but reflect robust human
common sense with cross-cultural generalization, we conducted a new supplementary survey. We
surveyed 120 participants across four regions (30 North America, 40 Asia, 30 Europe, 20 Other).
We presented our 10 abstract queries (e.g., “I’m feeling thirsty...”). For each question, participants
selected from 50 POI categories. These options included our pre-defined mapping categories mixed
into a large, systematic pool of ∼40 other POI categories drawn from the entire Google/Baidu POI
classification system.

The results show a massive consensus cliff. Our pre-defined mapping options received a Global
Average Consensus of 83.39%, while the unselected other POI categories received a Global Average
Consensus of only 1.90%. This 81% gap proves that our ground truth mappings are not designer
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Table 6: Full Cross-Cultural Consistency Statistics (Part 1). Survey results (N = 120) validating
Need-to-POI mappings. SD indicates Cross-Cultural Standard Deviation.

User Query POI Category Statistics (Mean / SD)
“I’m feeling hungry and
would like something to
eat. Could you help me
find a nearby place?”

Supermarket
Restaurant
Diner
Convenience store
Shopping mall
Market
Food stall
Dessert shop
Food truck

Mean: 88.89% (SD: 7.70%)
Mean: 88.33% (SD: 7.26%)
Mean: 85.28% (SD: 8.01%)
Mean: 80.56% (SD: 4.19%)
Mean: 73.89% (SD: 7.88%)
Mean: 64.44% (SD: 21.43%)
Mean: 60.56% (SD: 4.19%)
Mean: 50.83% (SD: 11.27%)
Mean: 46.67% (SD: 25.17%)

“I’m feeling thirsty and
would like something to
drink. Could you help me
find a nearby place?”

Convenience store
Cafe
Vending machine
Supermarket
Water fountain
Bubble tea store
Dessert shop
Juice shop
Shopping mall

Mean: 91.94% (SD: 5.02%)
Mean: 87.50% (SD: 4.64%)
Mean: 80.28% (SD: 2.93%)
Mean: 79.17% (SD: 3.63%)
Mean: 66.11% (SD: 18.58%)
Mean: 63.06% (SD: 29.58%)
Mean: 61.94% (SD: 8.83%)
Mean: 55.83% (SD: 8.46%)
Mean: 45.00% (SD: 5.00%)

“I’m not feeling well and
need assistance finding
a suitable place nearby.
Could you help me?”

Pharmacies
Hospitals
Clinics

Mean: 96.11% (SD: 3.47%)
Mean: 87.50% (SD: 4.33%)
Mean: 82.50% (SD: 7.95%)

“I want to rest and read
and need help finding
a suitable place nearby.
Could you assist me?”

Public library
Park
Library
Coffee shop
Cafe
Book store

Mean: 96.11% (SD: 3.47%)
Mean: 94.44% (SD: 3.85%)
Mean: 89.17% (SD: 1.44%)
Mean: 83.33% (SD: 8.82%)
Mean: 82.22% (SD: 3.85%)
Mean: 75.56% (SD: 7.70%)

“I want to work with Wi-
Fi and need assistance
finding a suitable place
nearby. Could you help
me?”

Cafe
Coffee shop
Library
Public library
Book store
McDonald’s
KFC
Five Guys

Mean: 94.17% (SD: 2.20%)
Mean: 93.89% (SD: 3.47%)
Mean: 91.94% (SD: 1.73%)
Mean: 91.39% (SD: 5.55%)
Mean: 66.67% (SD: 3.33%)
Mean: 66.11% (SD: 9.77%)
Mean: 63.06% (SD: 8.35%)
Mean: 50.56% (SD: 17.35%)

“I have run out of
phone credit and need
to recharge it. Could you
assist me in finding a
nearby place where I can
do so?”

Cell phone store
Telecom. service provider
7-ELEVEn
Supermarket
Convenience store
Best Buy
Cafe
Library
Coffee shop
Target
Public library
McDonald’s
KFC

Mean: 93.61% (SD: 3.76%)
Mean: 90.28% (SD: 2.93%)
Mean: 82.78% (SD: 17.02%)
Mean: 77.22% (SD: 2.55%)
Mean: 74.72% (SD: 6.47%)
Mean: 62.50% (SD: 34.59%)
Mean: 61.94% (SD: 5.02%)
Mean: 55.83% (SD: 15.07%)
Mean: 54.44% (SD: 5.09%)
Mean: 51.39% (SD: 42.95%)
Mean: 48.61% (SD: 10.55%)
Mean: 46.67% (SD: 11.55%)
Mean: 45.00% (SD: 13.23%)
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Table 7: Full Cross-Cultural Consistency Statistics (Part 2).
User Query POI Category Statistics (Mean / SD)

“I want to exercise and
need assistance finding
a suitable place nearby.
Could you help me?”

Park
Gym
City park
Physical fitness program
Swimming pool
Yoga studio

Mean: 95.00% (SD: 1.67%)
Mean: 91.67% (SD: 6.01%)
Mean: 87.50% (SD: 6.61%)
Mean: 76.11% (SD: 6.74%)
Mean: 73.33% (SD: 11.55%)
Mean: 64.44% (SD: 7.70%)

“I want to bring my
child to play and need
assistance finding a
suitable place nearby.
Could you help me?”

City park
Playground
Park
Museum
Children’s amusement center
Shopping mall
Art museum

Mean: 94.17% (SD: 2.20%)
Mean: 91.94% (SD: 8.83%)
Mean: 88.89% (SD: 1.92%)
Mean: 85.83% (SD: 2.20%)
Mean: 81.67% (SD: 2.89%)
Mean: 65.83% (SD: 10.64%)
Mean: 65.00% (SD: 1.67%)

“I need to go to the
airport and would like
assistance in finding the
best way there. Could
you help me?”

Subway station
Bus stop
Taxi service
Bus station
Car leasing service
Car rental agency

Mean: 92.22% (SD: 6.94%)
Mean: 80.83% (SD: 8.78%)
Mean: 78.89% (SD: 1.92%)
Mean: 78.61% (SD: 10.55%)
Mean: 67.50% (SD: 4.64%)
Mean: 65.28% (SD: 6.47%)

“I want to buy fruits
and vegetables and need
assistance finding a
suitable place nearby.”

Supermarket
Fruit and vegetable store
Farmers’ market
Greengrocer

Mean: 97.22% (SD: 2.55%)
Mean: 90.28% (SD: 2.93%)
Mean: 79.72% (SD: 11.56%)
Mean: 75.00% (SD: 18.33%)

bias but are the clear, emergent human common sense that surfaces from the noise. Furthermore,
the consensus was highly consistent on average. The Average Cross-Cultural Standard Deviation
(SD) for our ground truth options was only 8.40% (NA, EA, EU). This low SD value quantitatively
proves high overall consistency across cultural regions. Tables 6 and 7 present the detailed statistics
for questions.

B.2 INSTRUCTION CATEGORIES AND EXAMPLES

To provide a comprehensive overview of our benchmark, we present additional explanations and
question examples from the seven categories in Table 8. These categories were intentionally designed
as a hierarchical metric to probe different levels of a VLM’s reasoning capabilities. They represent a
deliberate scaffolding of different cognitive and semantic difficulty, spanning from Direct Recogni-
tion (e.g., “Basic POI”, “Brand-Specific”) and Contextual Inference (e.g., locating an un-signed
“restroom”), to Fine-Grained Attribute Reasoning (e.g., an “accessible entrance”) and culminating
in highly Subjective and Abstract Reasoning (e.g., interpreting “I’m feeling hungry”).

C EXPERIMENTAL DETAILS

C.1 IMPLEMENTATION DETAILS

We evaluate 27 commercial and open-source VLMs with multi-image input capabilities, selected
based on three criteria: (1) recency and popularity, (2) coverage of the full parameter spectrum, from
lightweight (≤ 8B) to very large (≥ 70B), (3) architectural diversity covering both Transformer-
based models and mixture-of-experts (MoE) designs (e.g., LLaMA-4 series), and (4) varied training
methodologies including reinforcement learning and reasoning-enhanced approaches (e.g., CoT-based
o4-mini and Gemini-2.5-pro). All commercial models are accessed through their official APIs, while
open-source implementations leverage the Hugging Face ecosystem. Inference uses vendors’ default
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Table 8: Navigation Instruction Categories and Examples.
Category Description Example

1. Basic POI Naviga-
tion

Request common urban
facilities.

“Please find the nearest restaurant.”
“Please find the nearest convenience store.”
“Please find the nearest shopping mall.”
“Please find the nearest bank.”
“Please find the nearest healthcare facility.”

2. Brand-Specific
Navigation

Seek specific commercial
brand locations.

“Please find the nearest Starbucks.”
“Please find the nearest KFC or McDonald’s.”
“Please find the nearest 7-Eleven.”
“Please find the nearest Chase Bank.”
“Please find the nearest Apple.”

3. Transportation
Hub Navigation

Ask for public transit
locations.

“Please find the nearest subway station.”
“Please find the nearest bus station.”

4. Latent POI Navi-
gation

Indirectly observable tar-
gets requiring contextual
reasoning.

“Please find the nearest restroom.”
“Please find the nearest gym.”
“Please find the nearest ATM.”
“Please find the nearest parking lot.”
“Please find the nearest cinema.”

5. Abstract Demand
Navigation

Express abstract human
needs through contextual
clues.

“I’m feeling hungry and would like something to
eat. Could you help me find a nearby place?”

“I’m feeling thirsty and would like something to
drink. Could you help me find a nearby place?”

“I have run out of phone credit and need to
recharge it. Could you assist me in finding a
nearby place where I can do so?”

“I’m not feeling well and need assistance finding a
suitable place nearby. Could you help me?”

“I want to bring my child to play and need
assistance finding a suitable place nearby. Could
you help me?”

“I need to go to the airport and would like
assistance in finding the best way there. Could you
help me?”

6. Inclusive Infras-
tructure Navigation

Prioritize inclusive infras-
tructure.

“Please find the nearest restaurant with an
accessible entrance.”

“Please find the nearest clothing store with an
accessible entrance.”

“Please find the nearest apartment building with an
accessible entrance.”

“Please find the nearest office building with an
accessible entrance.”

“Please find the nearest bank with an accessible
entrance.”

7. Semantic Prefer-
ence Navigation

Use descriptive language
for subjective criteria.

“Please find the nearest upscale restaurant.”
“Please find the nearest restaurant with outdoor
seating.”

“Please find the nearest restaurant with roadside
parking.”

“Please find the nearest romantic restaurant.”
“Please find the nearest group or family-friendly
restaurant.”
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settings or greedy decoding, except for o4-mini, where we set temperature = 1.0. Experiments are
executed on machines equipped with NVIDIA RTX 4090 and A100 GPUs.

Human evaluation involved 10 participants—5 undergraduates and 5 graduates—recruited to reflect
varied cultural and gender backgrounds. They were compensated at $15/hour , in line with standard
part-time research assistant rates at our institution. Participants were selected based on both availabil-
ity and familiarity with navigation tasks; notably, three of them had previously lived in three or more
of the cities featured in our benchmark. Our annotation platform is shown in Figure 8, and it was
configured exactly like the model evaluation environment, with a maximum step limit of 35.

Figure 8: Developed Human Annotation Platform.

C.2 EXPERIMENT PROMPTS

CitySeeker mainly employs two structured prompt types. Both prompts require a JSON output.
Deterministic parsing is applied, and unparseable response automatically falls back to action
0. For extended experiments BCR, additional contextual signals {backtrack_prompt},
{surrounding_prompt}, and {history_prompt} are provided.

Stop prompt: The model inspects a panoramic view at the current node and outputs a single JSON
block that fuses the overall observation with its thoughts / rationale. It then decides whether to
continue (action 0) or terminate (action -1), and returns an accompanying confidence score.

Choice prompt: The model compares the perspective images generated for each navigable heading
and selects the most promising direction. Two constraints apply: (1) {perspective_prompt}
enumerates the available perspectives; (2) {direction_prompt} reveals the agent’s current
facing orientation, helping it avoid reflexively choosing a backward path.

Stop Prompt

Instruction: You are a helpful robot that analyses images according to question and helps them find the way
to reach their destination. Given the question, state whether the scene content satisfies the user’s requirement.
Output Format: {format_instructions}
Example:
Input:

[
{"type": "text", "text": "I am hungry"},
{"type": "image_url", "image_url": "..."}

]
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Output:

{
"overall observation": "There are residential buildings, a bookstore, and a bus station.",
"thoughts": "I am hungry, so I should find a restaurant. No restaurant here, keep going.",
"action": 0

}

If you think you have already arrived at the destination, output action -1 for stop; otherwise 0.
Now it’s your turn.
Input:
{query}
You are now at viewpoint {viewpoint_filename}.
{backtrack_prompt}
{image_content}

Choice Prompt

Instruction: You are a helpful robot that analyses multiple candidate images and selects the one that best
answers the user’s question. Return its index (A, B, C . . . ) together with a confidence score in [0, 1].
Output Format: {format_instructions}
Example:
Input:

[
{"type": "text", "text": "I am hungry"},
{"type": "image_url", "image_url": "..."},
{"type": "image_url", "image_url": "..."}

]

Output:

{
"perspective observation": {

"A": "A narrow side street with no shops or amenities nearby.",
"B": "A broad avenue lined with numerous office buildings, suggesting a higher chance of

restaurants and other services."
},
"thoughts": "I’m hungry and need the route most likely to lead to food. The broad avenue (B) lined

with office buildings is much more likely to have restaurants, while the narrow side street (A)
lacks any amenities. Therefore, I should head toward B."

"action": "B",
"score": 0.78

}

{perspective_prompt}. Make sure the number of observations equals the number of perspectives provided.
{direction_prompt}. Prioritise the FORWARD, LEFT, and RIGHT directions; move BACK only if no better
option exists.
You have just backtracked, please choose image index {index}.
Historical context from previous rounds: {surrounding_prompt}.
Visit trajectory so far: {history_nodes_prompt}.
{query}
You are now at viewpoint {viewpoint_filename}.
{image_content}

C.3 BENCHMARK EVALUATION RESULTS DETAILS

For completeness, we report the outcomes of each individual run along with all performance metrics
in Tables 9, 10, and 11, providing a more granular view of the models’ behavior.

C.4 CROSS-LINGUAL EXPERIMENT ON LINGUISTIC BIAS

To investigate whether the performance disparity between cities like New York and Beijing was due
to linguistic bias in our English-only prompts, we conducted a cross-lingual experiment. We selected
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Table 9: The overall performance of CitySeeker Framework.
Model TCE TCP-40m TCP-50m TCP-60m TCC SPD nDTW AS
GPT-4o 2.39% 14.96% 18.30% 23.07% 6.84% 125.4 136.97 21.17
GPT-4o-mini 1.11% 9.94% 12.33% 15.43% 7.56% 201.97 325.17 31.62
o4-mini 2.63% 14.80% 17.90% 21.80% 6.76% 130.09 156.33 22.96
Gemini-1.5-pro 1.91% 13.13% 15.43% 17.82% 7.48% 157.14 241.86 31.73
Gemini-2.5-pro 1.83% 13.84% 17.34% 20.92% 5.01% 121.75 121.15 18.43
InternVL2.5-8B 0.95% 10.66% 14.56% 18.85% 4.38% 118.47 140.43 28.88
InternVL2.5-26B 1.59% 11.06% 15.27% 19.09% 3.66% 109.53 106 23.4
InternVL2.5-38B 2.23% 14.32% 18.14% 22.28% 7.16% 136.55 169.18 25.03
InternVL3-8B 1.27% 11.85% 15.83% 20.29% 4.85% 118.27 144.51 30.13
InternVL3-14B 1.67% 12.41% 15.12% 19.17% 6.44% 136.17 170.81 25.66
InternVL3-38B 2.47% 15.04% 19.25% 23.95% 6.68% 115.82 128.34 25.62
Qwen2-VL-7B 0.72% 7.96% 11.14% 15.27% 1.67% 111.4 114.36 24.79
Qwen2-VL-72B 0.95% 9.07% 11.93% 16.79% 2.31% 113.01 89.52 13.13
Qwen2.5-VL-7B 0.48% 11.30% 15.83% 21.16% 4.30% 119.02 151.84 32
Qwen2.5-VL-32B 2.55% 17.66% 21.08% 24.90% 6.21% 122.6 146.95 24.55
Qwen2.5-VL-72B 1.99% 11.14% 14.56% 17.58% 7.24% 174.92 250.22 28.63
Llama3.2-90B 0.88% 9.15% 12.49% 15.19% 3.74% 124.51 123.05 18.99
Llama-4-Scout-17B 1.75% 12.01% 14.08% 18.22% 7.00% 145 211.35 31.74
Llama-4-Maverick-17B 0.88% 7.64% 10.82% 15.99% 1.59% 107.14 110.51 30.97
Llama-3.2-11B-Vision 0.48% 9.15% 12.49% 16.79% 2.39% 112.93 112.44 26.07
Llava-Llama3-8B 0.32% 6.92% 10.42% 14.32% 0.80% 104.79 86.85 20.78
Llava-Qwen2-7B 0.32% 4.38% 6.92% 11.46% 0.40% 98.07 49.82 4.95
MiniMax01 1.51% 11.61% 13.60% 16.47% 6.84% 172.05 236.55 25.7
MiniCPM-V-2.6 0.88% 8.91% 11.69% 15.12% 3.50% 122.23 152.17 32.33
MiniCPM-o-2.6 1.35% 11.38% 15.51% 20.76% 6.44% 130.05 175.96 32.04
Phi-3.5-Vision 0.32% 7.40% 10.90% 14.72% 0.95% 107.11 81.95 15.88
Phi-4-Multimodal 0.56% 6.36% 9.15% 13.44% 1.11% 101.06 58.05 9.05
Random Choice 0.72% 8.83% 13.92% 19.17% 3.18% 112.41 128.28 35
Forward Direction 0.24% 5.01% 7.24% 13.21% 0.40% 100.83 99.29 35

Table 10: The subcategory performance of CitySeeker Framework-Part1.

Model
Basic POI Brand-Specific Transit Hub

TCE
(%)

TCP-
50m(%)

TCC
(%) SPD nDTW TCE

(%)
TCP-

50m(%)
TCC
(%) SPD nDTW TCE

(%)
TCP-

50m(%)
TCC
(%) SPD nDTW

GPT-4o 1.1 18.9 3.0 118.3 99.6 3.7 21.1 8.7 125.7 163.4 5.4 19.6 7.1 114.3 98.2
GPT-4o-mini 0.9 12.3 4.3 203.2 323.8 3.7 21.1 8.7 176.3 286.8 1.8 14.3 7.1 225.1 331.9
o4-mini 1.1 20.2 2.2 129.1 141.6 6.2 19.9 11.8 134.3 177.6 1.8 12.5 3.6 146.3 187.9
Gemini-1.5-pro 1.9 17.6 3.0 157.4 230.8 4.4 20.5 8.7 160.6 255.2 0.0 12.5 5.4 131.5 138.8
Gemini-2.5-pro 1.5 20.4 2.8 121.3 110.9 3.7 18.0 8.1 122.5 150.4 0.0 16.1 0.0 109.2 106.8
InternVL2.5-8B 0.9 15.7 3.4 121.7 133.9 1.2 14.3 3.1 105.5 103.7 1.8 1.8 1.8 119.3 111.4
InternVL2.5-26B 1.1 20.4 1.9 110.2 105.9 5.0 12.4 6.8 108.7 104.0 0.0 8.9 0.0 120.5 119.9
InternVL2.5-38B 1.5 17.6 2.8 145.3 170.8 7.5 24.2 10.6 115.7 136.8 0.0 14.3 1.8 126.3 145.2
InternVL3-8B 0.2 17.2 2.8 125.7 153.2 1.9 15.5 5.6 107.3 113.3 0.0 7.1 1.8 118.5 98.0
InternVL3-14B 0.9 13.8 2.8 147.1 178.5 4.4 20.5 8.1 112.1 128.4 1.8 17.9 3.6 136.4 151.6
InternVL3-38B 1.7 18.9 2.6 122.2 128.6 7.5 25.5 11.8 98.0 103.8 0.0 12.5 5.4 128.5 114.0
Qwen2-VL-7B 0.9 11.4 0.9 116.4 111.6 0.6 9.9 1.2 104.8 99.7 0.0 14.3 1.8 102.5 85.0
Qwen2-VL-72B 0.9 14.8 0.4 111.7 72.2 1.9 8.7 2.5 114.6 92.1 0.0 7.1 1.8 110.6 68.6
Qwen2.5-VL-7B 0.4 20.2 1.1 121.0 151.4 0.6 17.4 5.0 112.5 142.3 1.8 12.5 10.7 127.3 153.6
Qwen2.5-VL-32B 1.7 22.2 2.6 122.7 132.0 3.7 30.4 8.7 115.4 165.0 0.0 10.7 5.4 132.9 127.3
Qwen2.5-VL-72B 1.5 14.8 3.9 182.9 251.0 2.5 21.7 5.0 158.1 237.4 1.8 14.3 7.1 159.8 206.0
Llama3.2-90B 0.9 13.6 2.2 135.2 140.5 0.6 12.4 3.1 115.7 114.6 1.8 1.8 1.8 124.3 106.3
Llama-4-Scout-17B 1.7 12.3 4.5 153.8 221.2 3.1 18.6 8.7 136.8 196.1 3.6 14.3 5.4 158.1 213.3
Llama-4-Maverick-17B 1.1 12.7 0.9 113.3 116.5 1.2 10.6 2.5 103.0 111.1 1.8 8.9 1.8 99.8 84.0
Llama-3.2-11B-Vision 0.9 15.1 1.1 117.2 114.3 0.0 14.3 1.2 107.0 111.4 0.0 7.1 0.0 113.2 94.2
Llava-Llama3-8B 0.4 14.8 0.7 108.4 90.1 0.0 8.7 0.6 103.4 87.2 1.8 5.4 1.8 113.0 101.6
Llava-Qwen2-7B 0.4 12.5 0.2 102.2 51.7 0.0 2.5 0.0 95.5 49.3 0.0 3.6 0.0 92.9 46.9
MiniMax-01 2.2 15.5 5.6 171.0 226.3 1.2 16.2 2.5 166.2 218.3 1.8 8.9 1.8 158.9 148.5
MiniCPM-V-2.6 0.7 12.5 2.6 128.2 153.2 1.2 10.6 3.1 120.6 154.7 3.6 19.6 8.9 111.5 129.7
MiniCPM-o-2.6 1.3 14.4 2.6 137.4 185.7 3.7 22.4 10.6 112.6 144.7 0.0 10.7 1.8 132.7 160.1
Phi-3_5-Vision 0.7 14.4 0.7 112.0 87.7 0.0 6.8 0.6 100.9 72.9 0.0 3.6 1.8 108.3 67.5
Phi-4-Multimodal 0.9 14.0 0.7 102.5 59.4 0.0 6.2 0.0 96.7 54.0 0.0 5.4 1.8 100.8 49.5
Forward Direction 0.7 13.3 0.2 105.0 102.3 0.0 3.1 0.0 97.8 103.0 0.0 3.6 0.0 99.2 93.8
Random Choice 0.7 16.6 1.7 116.9 129.4 0.6 10.6 4.4 110.6 130.1 1.8 5.4 3.6 126.0 138.0
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Table 11: The subcategory performance of CitySeeker Framework-Part2.

Model
Latent POI Abstract Demand Inclusive Infrastructure Semantic Preference

TCE
(%)

TCP-
50m(%)

TCC
(%) SPD nDTW TCE

(%)
TCP-

50m(%)
TCC
(%) SPD nDTW TCE

(%)
TCP-

50m(%)
TCC
(%) SPD nDTW TCE

(%)
TCP-

50m(%)
TCC
(%) SPD nDTW

GPT-4o 1.7 9.7 10.2 158.1 208.0 4.4 18.9 11.4 129.1 155.6 1.5 14.9 1.5 111.1 111.2 1.9 26.0 8.7 108.4 139.9
GPT-4o-mini 0.0 7.4 8.0 233.5 379.8 0.9 11.8 13.6 215.5 374.4 0.0 7.5 4.5 175.1 282.7 1.0 10.6 8.7 158.3 214.4
o4-mini 1.1 13.1 9.7 144.5 201.4 4.8 16.7 12.3 133.3 160.1 0.0 9.0 0.0 107.5 104.6 3.9 24.0 8.7 102.8 121.3
Gemini-1.5-pro 0.0 11.4 11.4 183.6 291.7 3.1 14.5 13.6 155.4 248.7 0.0 6.0 6.0 154.5 259.7 1.0 14.4 7.7 125.3 215.8
Gemini-2.5-pro 0.6 10.2 3.4 139.2 140.7 3.5 20.6 10.5 118.7 129.6 0.0 9.0 0.0 111.6 81.8 1.0 13.5 6.7 113.1 103.2
InternVL2.5-8B 1.7 14.8 4.6 125.8 167.8 0.9 18.4 8.8 113.9 146.6 0.0 10.5 1.5 115.8 156.7 0.0 10.6 3.9 122.8 171.9
InternVL2.5-26B 0.6 10.8 3.4 115.5 117.6 2.6 17.1 7.9 107.7 102.4 0.0 7.5 1.5 91.7 81.6 0.0 8.7 1.0 107.2 105.9
InternVL2.5-38B 0.6 13.1 6.8 157.7 218.4 3.5 22.8 14.0 132.1 169.6 0.0 10.5 6.0 115.3 127.6 0.0 16.4 10.6 122.8 167.6
InternVL3-8B 2.8 14.2 7.4 125.8 167.7 1.8 16.7 7.5 110.9 145.8 1.5 16.4 3.0 115.4 138.1 1.9 15.4 5.8 107.6 141.4
InternVL3-14B 1.7 8.0 6.3 149.3 195.1 1.8 19.3 10.5 134.3 184.0 1.5 10.5 6.0 110.0 99.4 1.0 17.3 13.5 122.9 188.4
InternVL3-38B 0.6 13.1 5.1 129.6 163.7 3.1 23.3 14.0 117.1 134.4 1.5 11.9 4.5 100.6 99.8 1.9 21.2 5.8 91.9 118.3
Qwen2-VL-7B 0.0 4.6 1.1 116.4 113.0 1.8 13.2 4.4 104.4 108.7 0.0 13.4 0.0 111.0 150.1 0.0 15.4 1.9 111.3 157.0
Qwen2-VL-72B 0.6 7.4 2.8 111.8 81.1 1.8 14.5 5.3 114.4 120.5 0.0 1.5 1.5 112.0 78.9 0.0 15.4 3.9 117.6 127.4
Qwen2.5-VL-7B 0.6 10.2 5.7 129.4 163.7 0.4 13.6 7.5 117.2 153.9 0.0 7.5 4.5 117.4 156.6 0.0 15.4 4.8 103.1 139.9
Qwen2.5-VL-32B 1.7 14.2 6.3 146.3 197.9 5.3 24.1 10.5 116.3 155.9 1.5 9.0 7.5 115.6 125.1 1.9 20.2 8.7 106.0 104.7
Qwen2.5-VL-72B 0.0 6.8 6.8 217.0 319.7 2.6 15.8 11.0 160.7 231.2 9.0 11.9 16.4 139.3 185.8 1.0 14.4 12.5 156.7 256.3
Llama3.2-90B 0.6 9.7 3.4 125.4 117.4 0.9 14.0 6.1 116.4 109.5 0.0 10.5 3.0 104.9 83.7 1.9 16.4 8.7 119.2 131.4
Llama-4-Scout-17B 0.6 8.5 6.8 160.8 239.0 2.2 17.5 11.8 132.8 201.8 0.0 17.9 6.0 119.9 173.0 1.0 14.4 6.7 127.5 188.7
Llama-4-Maverick-17B 1.1 10.2 2.8 105.5 104.7 0.4 12.7 2.2 107.0 116.3 0.0 4.5 0.0 93.3 84.2 0.0 4.8 1.0 101.7 111.2
Llama-3.2-11B-Vision 0.0 9.7 2.8 107.9 92.1 0.4 12.3 5.3 114.7 125.3 1.5 9.0 4.5 108.1 126.6 0.0 8.7 2.9 110.5 112.8
Llava-Llama3-8B 0.0 8.0 1.1 102.1 80.4 0.4 8.8 1.3 103.5 83.7 0.0 4.5 0.0 100.6 88.5 0.0 7.7 0.0 96.8 80.7
Llava-Qwen2-7B 0.0 2.8 0.6 99.5 51.4 0.9 6.6 1.3 94.6 47.4 0.0 3.0 0.0 90.1 45.5 0.0 1.0 0.0 96.7 49.1
MiniMax-01 0.0 6.8 7.4 213.6 320.6 1.8 14.9 12.7 172.2 273.8 1.5 11.9 4.5 119.0 123.7 1.0 13.5 9.6 156.8 206.9
MiniCPM-V-2.6 0.6 9.7 2.8 132.5 176.2 1.3 13.2 4.4 112.6 141.2 0.0 7.5 3.0 114.8 145.6 0.0 8.7 4.8 112.4 143.6
MiniCPM-o-2.6 1.1 12.5 8.5 143.7 190.0 1.3 18.9 10.5 123.5 175.6 0.0 11.9 4.5 118.3 169.3 0.0 12.5 8.7 121.7 170.7
Phi-3_5-Vision 0.6 9.1 1.1 107.8 83.0 0.0 11.8 1.3 103.4 76.8 0.0 9.0 3.0 110.2 106.6 0.0 7.7 0.0 99.4 71.7
Phi-4-Multimodal 0.0 2.8 0.6 104.1 55.4 1.3 10.5 4.0 101.9 64.0 0.0 7.5 0.0 92.8 49.9 0.0 2.9 0.0 99.6 59.7
Forward Direction 0.0 2.3 0.6 99.4 93.2 0.0 6.6 1.3 101.0 104.1 0.0 1.5 0.0 93.8 95.0 0.0 1.9 0.0 94.7 85.6
Random Choice 0.0 10.8 1.7 114.9 131.3 1.3 14.9 6.6 108.9 126.3 0.0 16.4 3.0 96.3 113.9 1.0 13.5 2.9 101.7 123.7

representative models and ran them on tasks in both Beijing and New York, comparing performance
when using our standard English prompts versus fully localized Chinese prompts and outputs.

Table 12: Cross-lingual performance in Beijing and New York. Localizing prompts to Chinese did
not yield consistent improvements, suggesting linguistic bias is not the primary performance driver.

Model City Language TCP (%) TCE (%) TCC (%) nDTW

Qwen2.5-VL-32B
Beijing English 25.95 4.32 10.81 122.40

Chinese 23.91 3.44 8.88 120.36

New York English 15.42 3.48 3.48 144.78
Chinese 14.93 2.99 4.98 133.13

InternVL3-8B
Beijing English 14.63 0.00 3.25 143.41

Chinese 15.45 1.63 1.63 148.51

New York English 15.42 2.49 6.97 136.13
Chinese 9.45 1.49 2.99 140.07

GPT-4o-mini
Beijing English 7.32 0.81 3.25 345.36

Chinese 7.32 2.44 2.44 217.31

New York English 13.43 1.00 9.45 332.95
Chinese 14.93 2.49 8.96 251.84

The results, detailed in Table 12, show that localizing the prompts to Chinese does not provide a
consistent performance benefit, and the impact varies significantly by model and city. For instance,
the top-performing Qwen2.5-VL-32B saw its TCP decrease in both cities when using Chinese. Con-
versely, GPT-4o-mini’s performance increased in New York with Chinese prompts, while InternVL3-
8B’s performance dropped sharply. This high degree of variability strongly suggests that the observed
performance gaps between cities are not primarily driven by linguistic factors but are likely rooted in
deeper visual and geographic biases within the models’ training data.
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Figure 9: Illustration of the agent’s input in the map-augmented setting. At each time step, the VLM
receives both a global navigation map, which updates with its current position, and the corresponding
first-person street panorama.

D ABLATION STUDY: THE IMPACT OF GLOBAL MAP INFORMATION

A primary design choice in CitySeeker is the focus on a VLM’s ability to navigate based on its
first-person visual perception and intrinsic world knowledge. To better isolate and understand these
intrinsic reasoning abilities, we conducted an ablation study to quantify the impact of providing
explicit global map information. This study explores an alternative, map-augmented setting where, at
every step, the VLM was provided with both its first-person street view and an interactive 2D global
map. This map dynamically updated with the agent’s current position and heading, mimicking the
experience of a human using a modern navigation application.

D.1 EXPERIMENTAL SETUP

In this setting, the agent’s prompt was augmented at each step with both a dynamically rendered 2D
map and the corresponding first-person street panorama, as illustrated in Figure 9. This interactive
map always showed the full planned route while centering on the agent’s current position and heading,
providing continuous global context just as a user would see in navigation software. The VLM was
explicitly instructed to first analyze this map to determine the geometrically optimal next step and
then select the corresponding street-view perspective. This setup was designed to test if providing
such real-time, human-like map guidance would simplify the task and improve performance.

D.2 RESULTS AND ANALYSIS

We evaluated two top-performing models, GPT-4o and Qwen2.5-VL-32B-Instruct, on the full bench-
mark test set under this map-augmented condition. The results were counter-intuitive and revealing,
as summarized in Table 13.

Table 13: Performance comparison between the map-free and map-augmented navigation settings
on the full test set. The new results reveal a trade-off where map guidance improves path following
(nDTW) but degrades task completion (TCP/TCE).

Model Map-Free Map-Augmented
TCE (%) TCP (%) nDTW TCE (%) TCP (%) nDTW

GPT-4o 2.4 18.3 136.9 0.9 11.7 75.7
Qwen2.5-VL-32B-Instruct 2.6 21.1 147.0 0.2 7.6 54.4

Contrary to expectations, providing a global map at each step led to a surprising trade-off: while
path-following efficiency improved dramatically (as shown by lower nDTW scores), the models’
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Figure 10: An example of a typical reasoning failure from Qwen2.5-VL-32B-Instruct.

ability to complete the actual task collapsed. For both models, Task Completion (both TCP and TCE)
dropped significantly. For instance, the TCP for Qwen2.5-VL-32B-Instruct fell from 21.1% to just
7.6%, even as its path alignment score (nDTW) improved from 147.0 to 54.4. This suggests that
while the map helps the agent follow a geometric route, it severely hinders its ability to perform the
core task of semantic discovery. Our analysis of the models’ reasoning traces, an example of which is
shown in Figure 10, revealed primary failure modes:

(1) Poor Cognition of 2D Map Geometry: The models demonstrated a weak understanding of
direction and distance on the 2D map. They frequently failed to perform correct “mental rotations”;
for instance, when their heading was North but the route required moving South, they struggled
to select the “back” perspective. Furthermore, they showed little awareness of distance, often
hallucinating that they were near the destination when still at the starting point.

(2) Over-reliance and Failure to Align: The VLMs tended to fixate on the 2D map’s abstract
geometric instructions, failing to properly align them with the labeled, first-person street views. For
instance, after inferring a “left turn” from the map, a model would still frequently select the "front"
perspective, despite being explicitly told which perspective corresponded to the “left” direction.
This demonstrates a deep failure in grounding an abstract command, even when provided with all
necessary information.

(3) Trivialization of the Core Challenge: The map effectively turned the task from one of discovery
and semantic reasoning into a simpler, but more brittle, geometric path-following exercise. The core
challenge of our benchmark—inferring that “I’m thirsty” means looking for a café and then visually
identifying one—was often ignored. The models would become “map followers”, focusing only on
the blue line and failing to perform the crucial visual exploration needed to identify the actual POI
that satisfied the user’s implicit need.

D.3 CONCLUSION

This ablation study demonstrates that simply providing a global map does not necessarily solve the
core challenges of implicit-need navigation and can even distract the VLM from the essential task of
grounding abstract language in the visual world. Furthermore, the map’s limited information and
potential for positional deviation can introduce additional sources of error. Therefore, to isolate and
rigorously evaluate the agent’s intrinsic spatial cognition and commonsense reasoning abilities,
our primary experimental results are reported under the map-free setting. This approach forces
the VLM to build and rely on its own internal mental model of the environment, providing a truer
measure of its embodied intelligence. While developing agents that can effectively fuse map and
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visual information is a valuable direction for future research, our work focuses on first establishing
this crucial baseline for the VLM’s intrinsic, perception-driven capabilities.

E BCR STUDIES DETAILS

E.1 BACKTRACKING MECHANISMS

We propose three distinct backtracking strategies to mitigate error accumulation over long trajectories
in large-scale VLN tasks in urban environments: (B1) Basic Backtracking, (B2) Step-Reward
Backtracking, and (B3) Human-Guided Backtracking.

Figure 11: Backtracking Mechanisms: (B1) Basic Backtracking, (B2) Step-Reward Backtracking,
and (B3) Human-Guided Backtracking.

Basic Backtracking (B1). In this basic backtracking strategy, the agent reverts to the last “trusted”
node when its internal confidence falls below a predefined threshold over several consecutive steps.
The model tracks its confidence scores during each step, and if the average confidence score over a
set number of steps drops below a threshold, the agent will backtrack to the last trusted node. This
simple strategy operates independently of any external signals. The confidence metric, stored in a
deque, is updated at each step with the current score of the model’s prediction.

The implementation process maintains a sliding window of prediction confidence scores stnt=n−k
over k consecutive steps (default k = 3). Backtracking triggers when:

s̄ =
1

k

n∑
i=n−k+1

si < θ (θ = 0.75) (1)

The agent reverts to the last node where the confidence st meets or exceeds the threshold θ. The
agent reverts k steps when the average confidence s̄ falls below .

Step-Reward Backtracking (B2). This mechanism evaluates progress toward the goal by replac-
ing subjective confidence scores with objective topological distance as the backtracking criterion.
Specifically, it calculates the shortest path steps dt from current viewpoint vt to target vtarget in the
graph topology G.

During each step, the agent checks whether the distance to the goal has increased. Backtracking
triggers when distances increase monotonically over k = 3 consecutive steps:

k−1∧
i=0

(
dt−i > dt−(i+1)

)
(2)

This condition ensures that if the agent’s progress toward the goal stagnates or worsens, it will
backtrack.
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Human-Guided Backtracking (B3). This strategy extends basic backtracking B1 with correc-
tive guidance, providing minimal external "hint" that suggests the best action to take next after
backtracking. The optimal action a∗ maximizes path consistency with the shortest path to vtarget
through:

a∗ = argmin
a∈At

E[dt+1|at = a] (3)

where At denotes available actions at backtracked node vt, and dt+1 represents the expected graph-
theoretic distance after taking action a.

The guidance integrates by dynamically aligning the shortest path directions with navigable headings
through topological analysis. The action that maximizes path consistency is selected via:

ϕ(a) = Iθa ∈ Θoptimal · cos(θa − θpath) (4)

where θa is the heading direction for action a, and Θoptimal is the set of optimal path headings.
This external guidance helps ensure that the agent’s action maximizes path consistency and progress
toward the goal.

E.2 SPATIAL COGNITION ENRICHMENT

In this section, we explore the potential of providing richer spatial cues to an agent to enhance global
awareness and reduce fragmented decision-making during navigation tasks. Specifically, we compare
two distinct methods of presenting spatial information: Topology Cognitive Graph (C1) and Relative
Position Maps (C2). The goal is to investigate how these different representations influence the
agent’s ability to understand its environment and effectively plan routes.

We investigate whether supplying richer spatial cues can bolster global awareness and reduce frag-
mented decision-making by synthesizing multi-model trajectory data through GPT-4.1 as a cognitive
summarizer. Our methodology processes ground truth paths and generated trajectories from GPT-4o
and Gemini2.5-pro (containing both correct segments and historical errors) for each navigation task.
GPT-4.1 analyzes these heterogeneous trajectories using specialized prompts to produce structured
spatial representations, which are then integrated into the initial input for downstream VLMs.

Figure 12: Spatial Cognition Enrichment: (C1) Topology Cognitive Graph, and (C2) Relative Position
Maps.

(C1) Topology Cognitive Graph. In this approach, the VLM is provided with a topological graph
of recently traversed segments, which explicitly defines the connectivity between various locations.
The graph consists of nodes representing locations and directed edges that signify possible actions or
transitions between those locations. Each trajectory is annotated with explicit relationships between
nodes, forming a clear and structured map of the environment. This graph can be seen as an abstracted
representation of the agent’s route, where the agent is instructed to focus on the connectivity between
locations. This forces VLM to ground decisions in connectivity patterns, reducing exploration of
invalid paths.

An example of how this spatial information is represented is shown in the prompt:
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Topology Cognitive Graph Generation Prompt

Given the following trajectories with the same starting point for the same question, connect them and
represent the relationships between the nodes in a graph format.
Example:
Node: 00002929.jpg
**Relationships:**
- ‘00002929.jpg’ → **action 0** → ‘00002930.jpg’
- ‘00002929.jpg’ → **action 1** → ‘00002931.jpg’
Node: 00003210.jpg
**Relationships:**
- ‘00003210.jpg’ → **action 0** → ‘00003211.jpg’
- ‘00003210.jpg’ → **action 1** → ‘00003212.jpg’
Node: 00001111.jpg
**Relationships:**
- ‘00001111.jpg’ → **action 0** → ‘00001112.jpg’.

(C2) Relative Position Map. In contrast to the topology-based approach, the Relative Position Map
emphasizes the spatial orientation of locations without directly specifying connectivity. Instead of
relying on an explicit graph structure, the VLM receives approximate directional cues that describe the
relative positions of recently visited nodes. These cues include terms such as “front”, “back”, “left”,
“right”, and “slightly left/right”, along with approximate distances between nodes. This approach
provides the VLM with a more intuitive understanding of the space, allowing it to navigate with a
flexible mental model of its surroundings, albeit with less precision in terms of connectivity.

An example of the relative directional information provided to the VLM is:

Relative Position Map Generation Prompt

Given the following trajectories with the same starting point for the same question, describe the spatial
relationships between the key nodes. Emphasize the relative directional orientation (such as front, back, left,
right, slightly left, slightly right, etc.) and relative distances. Note that, not all nodes are directly connected,
so focus on the relative spatial relationships rather than direct connections.
Example:
00001190.jpg → 00001192.jpg
- **Direction**: Right
- **Relative Position**: Distance: 20-30 meters
00001192.jpg → 00001204.jpg
- **Direction**: Slightly right
- **Relative Position**: Distance: 30-50 meters
00001204.jpg → 00001539.jpg
- **Direction**: Slightly left
- **Relative Position**: Distance: 50-70 meters.

This method captures the VLM’s internal spatial sense, where it perceives locations in terms of
relative proximity and directional alignment rather than as distinct, connected points. The benefit
of this approach is that it fosters a more adaptable navigation strategy, particularly in dynamic or
complex environments where exact node connectivity is not always available or necessary.

E.3 MEMORY-BASED RETRIEVAL

To address the issue of “fragmented memory”, we introduce a memory-based retrieval mechanism
based on the Neo4j graph database. This mechanism consists of three core components: (R1)
Topology-based Retrieval, (R2) Spatial-based Retrieval, and (R3) Historical Trajectory Lookup. This
architecture enables memory formation across multiple reasoning iterations while mitigating error
propagation.

Topology-based Retrieval (R1). Each navigation query undergoes n sequential rounds of execution.
During rounds 1 to n− 1, the agent explores the environment without memory retrieval, with all
trajectories and node metadata (e.g., observations, thoughts, decisions, and confidence scores) stored
in Neo4j. In the final round n, the agent activates memory retrieval mode, dynamically accessing
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Figure 13: Memory-Based Retrieval: (R1) Topology-based Retrieval, (R2) Spatial-based Retrieval,
and (R3) Historical Trajectory Lookup.

historical cross-round information. At each navigation step, the agent queries a local subgraph
spanning h-hop topological connections (default h=1) through Neo4j’s graph traversal operations.
The returned subgraph contains:

Nodes with cumulative visitation counts and n− 1 round metadata (thoughts, previous/next actions,
directional choices, confidence scores); Edges annotated with historical transition patterns across
multiple rounds (successful/failed attempts, directions). For example, a node might reveal that
previous rounds chose "action 1" (right turn) when transitioning to a specific neighbor. This topo-
logical memory enables the agent to prioritize frequently successful paths while avoiding recurrent
error-prone branches.

Spatial-based Retrieval (R2). Complementing topological constraints, this mechanism retrieves
localized subgraphs based on Euclidean spatial proximity. At each navigation step in the final round
n , the agent queries all nodes and relationships within a configurable radius (default: 50 meters)
from the current position using Neo4j’s geospatial index. This dual focus on geographic density and
historical usage patterns allows the agent to weigh physically closer options while avoiding previously
failed paths. By jointly modeling metric space and graph topology, R2 mitigates the "tunnel vision"
of pure topological approaches, particularly in irregular urban layouts where physical proximity often
outweighs structural connectivity.

Historical Trajectory Lookup (R3). This mechanism introduces short-term working memory
by dynamically appending the agent’s recent navigation history within the current round. At each
time step t, the mechanism automatically appends the trajectory segment from the preceding n steps
(n = 3 by default), including: (1) spatial context - filenames, coordinates, and headings of visited
nodes; (2) action traces - movement directions (e.g., “turn left”, “proceed straight”) and associated
confidence scores; (3) decision rationale - preserved observations and reasoning from prior steps.

Unlike cross-round memory in R1/R2, R3 operates through a sliding temporal window that exclusively
tracks intra-episode navigation patterns. At step t, the t − 1 to t − n entries get injected into the
VLM’s input context through template-based natural language formatting, preserving recent decision
logic. This short-term memory gets purged upon round completion through automated attribute
pruning in Neo4j, ensuring no residual traces affect subsequent trials.

E.4 PERFORMANCE OF COMBINED BCR STRATEGIES

To explore the synergistic potential of our proposed strategies, we conducted a preliminary experiment
where we combined several effective mechanisms (B2, B3, C1, R3). The results, shown in Table 14,
indicate a positive but not strictly additive effect. For instance, the combined strategies boosted
Qwen2.5-VL-32B’s TCP from 19.9% to 27.38%. This suggests complex interactions between the
different cognitive tools. A full exploration of optimal strategy combinations is a promising direction
for future work.

F VLM GENERATION EXAMPLES
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"Question": "Please find the nearest restaurant."

Current Position: ViewPointPosit ion(filename='00003627.jpg', longitude=-0.165657411, latitude=51.48873373)
Overall Observation: There is a restaurant in this image.
Perspect ive Observation: {"A": "This perspective is on your RIGHT and shows a street with retail stores and pedestrians.", "B": 
"This perspective is on your LEFT and shows a street with some restaurants and a seating area visible.", "C": "This 
perspective is on your BACK and shows a quieter street with fewer visible restaurant options."}
Thoughts: I am looking for a restaurant. In this image, there is a restaurant visible, so I have arrived at the destination and can 
stop here.
Action: -1
Action Direction: Stop
Score: 0.9

Current Position: ViewPointPosit ion(filename='00004020.jpg', longitude=-0.165934529, latitude=51.48951679)
Overall Observation: The scene contains resident ial buildings and a small alley, but no visible restaurants.
Perspective Observation: {"A": "This perspective shows a narrow alley with a van in front, which could lead to a more open 
area.", "B": "This perspective shows a dead-end with bins and no visible path forward."}
Thoughts: I am looking for a restaurant. This image shows a resident ial area with no visible restaurants. I should keep moving 
to find a restaurant.
Action: 0
Action Direction: Step Forward
Score: 0.85

Current Position: ViewPointPosit ion(filename='00003879.jpg', longitude=-0.165733681, latitude=51.48883251)
Overall Observation: There is a bookstore (Waterstones) and some resident ial or commercial buildings visible in this image, 
but no restaurants.
Perspect ive Observation: {"A": "This perspective is on your FRONT with visible shops and potential restaurant options.", "B": 
"This perspective is on your BACK and shows a quieter street with fewer visible amenities."}
Thoughts: I am looking for the nearest restaurant, but there is no restaurant visible in this image. I should continue searching 
to find a suitable location.
Action: 0
Action Direction: Step Forward
Score: 0.9

VLM: GPT-4o 

City: London Category: Basic POI 

…

A B

A B C

加上全景图 q2

Step 1

Step 10

Step 11

Current Position: ViewPointPosit ion(filename='00003878.jpg', longitude=-0.165809952, latitude=51.48893128)
Overall Observation: The image shows a street with buildings, but there is no clear indication of a restaurant here.
Perspect ive Observation: {"A": "This perspective is on your FRONT, showing a small street leading forward with possible 
stores.", "B": "This perspective is on your BACK, showing a continuat ion of the street with visible buildings."}
Thoughts: I am trying to find a restaurant, but this image does not seem to show any signs of a restaurant. I should continue 
looking.
Action: 0
Action Direction: Step Forward
Score: 0.85 Step 9

A B

A B

Figure 14: Further illustrative examples drawn from the CitySeeker benchmark.
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“Question”: “Please find the nearest Starbucks."

Current Position: ViewPointPosit ion(filename='00000596.jpg', longitude=-0.166328556, latitude=51.48846743)
Overall Observation: There is a Starbucks in this image.
Perspect ive Observation: {"A": "This perspective is on your BACK and shows a street but no clear Starbucks.", "B": "This 
perspective is on your FRONT and clearly shows a Starbucks on the right side of the street.", "C": "This perspective is on your 
LEFT and also shows a Starbucks but appears further away."}
Thoughts: I am looking for a Starbucks. There is a Starbucks visible in this image, so I have arrived at the destination and do 
not need to continue further.
Action: -1
Action Direction: Stop
Score: 0.95

Current Position: ViewPointPosit ion(filename='00003660.jpg', longitude=-0.167807813, latitude=51.48855038)
Overall Observation: There are buildings under development or construction, but no visible Starbucks or coffee shop in this 
image.
Perspective Observation: {"A": "This perspective is on your BACK. It shows a closed area with loading docks and no visible 
signs of Starbucks.", "B": "This perspective is on your FRONT. It shows a pathway with buildings and a potential way forward."}
Thoughts: I am looking for the nearest Starbucks, but I do not see any Starbucks or coffee shop in this image. This area 
appears to have construction and buildings, but no Starbucks is visible.
Action: 1
Action Direction: Step Forward
Score: 0.95

Current Position: ViewPointPosit ion(filename='00000684.jpg', longitude=-0.166470288, latitude=51.48840684)
Overall Observation: There are various shops and restaurants, including Five Guys, but no Starbucks is visible in this image.
Perspect ive Observation: {“A”: “There seems no visible Starbucks on the both sides of the road.", "B": "There is no visible 
Starbucks in this direct ion."}
Thoughts: I am looking for the nearest Starbucks. In this image, I can see stores like Five Guys and other shops, but there is 
no visible Starbucks. I should continue searching to find a Starbucks.
Action: 0
Action Direction: Step Forward
Score: 0.95

VLM: GPT-4o 

…

A B

A B

A B C

Step 1

Step 27

Step 28

加上全景图 q33

Current Position: ViewPointPosit ion(filename='00000685.jpg', longitude=-0.166612021, latitude=51.48834625)
Overall Observation: There are various shops, including clothing stores and a Five Guys restaurant, but no Starbucks is visible.
Perspect ive Observation: {"A": "This perspective is on your BACK with visible shops and a calm street.", "B": "This perspective 
is on your FRONT with visible shops, a bus, and more act ivity."}
Thoughts: I am looking for a Starbucks. From this image, I can see stores and shops, but no Starbucks is visible. I should 
continue searching for the destination.
Action: 1
Action Direction: Step Forward
Score: 0.9 Step 26

A B

City: London Category: Brand-Specific

Figure 15: Further illustrative examples drawn from the CitySeeker benchmark.
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"Question": "Please find the nearest restroom."

Current Position: ViewPointPosit ion(filename='00000144.jpg', longitude=-73.99065504, latitude=40.74610284)
Overall Observation: There is a McDonald's in this image, which might have a restroom inside. 
Perspect ive Observation: {"A": "This perspective shows a wide street with several buildings, including possible stores or 
restaurants.", "B": "This perspective shows a narrower street with a McDonald's visible, which might have restrooms 
available."}
Thoughts: I am looking for the nearest restroom. From this image, I see a McDonald's, which might have a restroom inside. I 
should check it out as it could fulf ill my requirement. 
Action: -1
Action Direction: Stop
Score: 0.85

Current Position: ViewPointPosit ion(filename='00000340.jpg', longitude=-73.98978952, latitude=40.74574025)
Overall Observation: There are various commercial buildings, shops, and vehicles visible in this image, but no clear indication 
of a restroom.
Perspective Observation: {"A": "This perspective is on your BACK. The view shows a street with buildings and parked 
vehicles.", "B": "This perspective is on your FRONT. The view shows a street with shops, parked cars, and some visible 
storefronts."}
Thoughts:  I am looking for the nearest restroom. From this image, I do not observe any signs or indications of a restroom, so I 
need to continue searching.
Action: 1
Action Direction: Step Forward
Score: 0.85

Current Position: ViewPointPosit ion(filename='00000145.jpg', longitude=-73.99052101, latitude=40.74604502)
Overall Observation: This image shows an urban intersection with buildings, vehicles, and pedestrians, but no visible restroom 
signs or facilities. 
Perspect ive Observation: {"A": "This perspective is on your FRONT_LEFT and shows a busy street with buildings and cars.", 
"B": "This perspective is on your FRONT and highlights a McDonald's which may have restrooms.", "C": "This perspective is 
on your BACK and shows a street with pedestrians and buildings, but it is not the preferred direct ion.", "D": "This perspective 
is on your FRONT_RIGHT and displays a McDonald's which may have restrooms."}
Thoughts: I need to find a restroom. From this image, I do not observe any specific signs or facilities indicating the presence of 
a restroom. Therefore, I should continue searching. 
Action: 1
Action Direction: Step Forward
Score: 0.9

VLM: GPT-4o 

…

加上全景图 q2

Step 1

Step 6

Step 7

Current Position: ViewPointPosit ion(filename='00000336.jpg', longitude=-73.99037471, latitude=40.74598407)
Overall Observation: The image shows a busy urban street with commercial buildings, stores, and a McDonald's, but no visible 
restroom or restroom signs. 
Perspect ive Observation: {"A": "This perspective shows a street with parked cars and some buildings, but no clear indication of 
a restroom.", "B": "This perspective shows a busy intersection with visible signage and potentially more restroom options."}
Thoughts: I am looking for the nearest restroom. There is no visible restroom in this image, so I should continue searching to 
find one. 
Action: 1
Action Direction: Step Forward
Score: 0.85 Step 5

A B

A B

A B C D

A B

50

City: New York Category: Latent POI 

Figure 16: Further illustrative examples drawn from the CitySeeker benchmark.
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"Question": "I want to work with Wi-Fi and need assistance 

finding a suitable place nearby. Could you help me?"

VLM: Qwen2.5-VL-72B-Instruct
 

…
Step 1

Step 6

Step 7

Step 5

Current Position: ViewPointPosit ion(filename='00004025.jpg ', longitude=121.5053419, latitude=31.27496906)
Overall Observation: There is a Starbucks Coffee shop visible in this image, which typically offers Wi-Fi for customer. 
Perspect ive Observat ion: {"A": "The FRONT image displays a wide street with buildings and potent ial Wi-Fi spots ahead.", 
"B": "This perspective is on your LEFT and shows a street with some restaurants and a seating area visible.", "C": "The 
BACK image is not visible, but stepping BACK is discouraged."}
Thoughts:  Since the goal is to find a place with Wi-Fi, and a Starbucks Coffee shop is a suitable place for this need, I should 
stop here.
Action: -1
Action Direction: Stop
Score: 0.95

Current Position: ViewPointPosit ion(filename='00004009.jpg', longitude=121.5061697, latitude=31.27526108)
Overall Observation: This image shows a wide street with various buildings, including commercial establishments and a bank. 
There are no visible signs of Wi-Fi availability or specific places like cafes or libraries that are typically known for Wi-Fi access.
Perspective Observation: {"A": "There are resident ial or commercial buildings on the left side of the street.", "B": " On the right 
side of the street, there are more buildings, including what appears to be a larger commercial structure.”}
Thoughts: Since the goal is to find a suitable place with Wi-Fi and there are no clear indicators of such places in the image, it 
would be best to continue exploring the area. 
Action: 1
Action Direction: Step Forward
Score: 0.85

Current Position: ViewPointPosit ion(filename='00004024.jpg', longitude=121.5055075, latitude=31.27502746)
Overall Observation: There is a wide road with multiple lanes, bordered by trees and modern buildings. There are no visible 
signs indicating the presence of Wi-Fi hotspots or cafes.
Perspect ive Observation: {"A": "This perspective shows a clear path forward with buildings and shops on either side, which 
could be potential places with Wi-Fi.", "B": " This perspective shows a backward view, which is less likely to lead to a place 
with Wi-Fi since it's already passed."}
Thoughts: Since there are no visible signs of a place with Wi-Fi, such as cafes or public Wi-Fi zones, I should continue 
exploring the area by moving forward to find a suitable place.
Action: 0
Action Direction: Step Forward
Score: 0.95

Current Position: ViewPointPosit ion(filename='00004008.jpg ', longitude=121.505673, latitude=31.27508587)
Overall Observation: A street view with urban buildings, vehicles, and a bus. No specific places with Wi-Fi are visible.
Perspect ive Observation: {"A": " The left side of the street has older buildings and less commercial act ivity, making it less 
likely to have public Wi-Fi.", "B": "The right side features a modern building with a sign, suggesting a commercial area like a 
mall or of fice space, where public Wi-Fi is more common."}
Thoughts: The scene shows a busy street with buildings, cars, and a bus. There are no visible signs of a Wi-Fi-enabled place 
like a cafe or a library. Since the user is looking for a place to work with Wi-Fi, it's best to continue searching.
Action: 1
Action Direction: Step Forward
Score: 0.85

A B

A B

A B

A B

City: Shanghai Category: Abstract Demand

Figure 17: Further illustrative examples drawn from the CitySeeker benchmark.
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Table 14: Performance with combined BCR strategies.
Model Baseline TCP % Combined BCR TCP %
InternVL3-8B 15.0 18.96
Qwen2.5-VL-32B 19.9 27.38

G ERROR ANALYSIS

Figure 18: Error Distribution of Primary Error Types in Qwen2.5-VL-32B and InternVL3-8B for
Embodied Urban Navigation.

To identify the main bottlenecks in VLMs for Embodied Urban Navigation with implicit human
needs, we thoroughly examine and analyze the primary error patterns observed in the 300-sample
mini-size subset of the CitySeeker benchmark. By manually inspecting model outputs — including
observations, rationales and actions, with corresponding street-view images, we categorize failure
modes into six distinct types (visually exemplified in Figure 19):

(1) Visual Observation Errors: These arise from failure to recognize target or misidentification of
critical visual cues (e.g., overlooking signage while fixating on irrelevant street objects).

(2) Observation–Think Mismatch: Even when the VLM correctly observes the target, the rationale
diverges from the observation. For example, the model visually identifies a target restaurant but fails
to prioritize advancing toward it in its rationale.

(3) Underthinking or Overthinking: Underthinking is particularly evident when the model lacks
knowledge of non-primary functional affordances of a POI. For example, while recognizing Starbucks,
the model ignores its potential to provide Wi-Fi, leading to a missed target. Overthinking might draw
unfounded conclusions from limited evidence, leading to incorrect conclusions, such as assuming a
store labeled ‘CVS Pharmacy’ is a convenience store.

(4) Critical Decision Errors at Waypoints: Incorrect routing choices at pivotal junctions, leading to
irreversible deviations. This occurs when the target is observed within the right field of view, yet the
model erroneously selects the leftward path, or when perceptual inaccuracies lead to the choice of a
non-viable route that cannot reach the target.

(5) Premature Termination or Overshooting: Over-anticipatory stopping before reaching targets or
passing by the target leads to not reaching or missing the target.

(6) Instruction Parsing Errors: Generation of malformed JSON outputs violating predefined action
schemas (e.g., missing "action" fields), rendering trajectories unexecutable.
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Figure 19: Qualitative examples of primary VLM failure modes in CitySeeker.
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Figure 18 compares two representative VLMs - Qwen2.5-VL-32B and InternVL3-8B - revealing
distinct error profiles. Both exhibit significant critical decision errors (Type 4: 22.8% vs. 24.7%),
highlighting persistent challenges in spatial reasoning at navigation waypoints. The larger Qwen
model demonstrates stronger visual perception (Type 1: 14.6% vs. 22.2%) but suffers more under-
thinking/overthinking errors (Type 3: 32.9% vs. 27.8%). This discrepancy likely stems from the
model’s lack of human-like urban living experience, which limits its ability to discern primary/sec-
ondary affordances of POIs. Additionally, the model occasionally draws unfounded conclusions
from sparse visual evidence - potentially due to overcompensation for missing contextual knowledge.
Conversely, InternVL3-8B struggles with instruction parsing (Type 6: 10.8% vs. 6.3%) and basic
visual recognition, with more misidentifications of street POIs and hallucination. This contrast reveals
a scale-driven tradeoff: larger models develop nuanced visual grounding but introduce complex
reasoning failures, while smaller models face fundamental perception and instruction-compliance
challenges.

Deeper Dive: Human vs. VLM Failure Modes Through analysis of error trajectories and participant
interviews, a deeper analysis of failure modes reveals a crucial distinction between human and VLM
bottlenecks. As summarized in Table 15, VLM failures are predominantly cognitive, stemming
from a lack of commonsense knowledge. In contrast, the dominant failure mode for humans is
strategic. Faced with unfamiliar environments and a strict step limit, humans possess the necessary
world knowledge to understand the task, but often falter in devising an optimal exploratory plan.
This manifests as inefficient, intuition-driven exploration—leading to forgotten paths and repeated
loops—or poor management of the step budget, such as overshooting a valid target.

Table 15: Detailed comparison of primary failure modes between humans and the top-performing
VLM (Qwen2.5-VL-32B).
Failure Mode Cate-
gory

Human Error Profile & Rationale Model Error Profile & Rationale
(Qwen2.5-VL-32B)

Strategic & Naviga-
tional
(e.g., Termina-
tion/Overshooting)

60.7% (Primary Human Failure)
Humans understand the goal but strug-
gle with devising an optimal ex-
ploratory plan. Failures are intuition-
driven and stem from:
1. Inefficient Exploration: Partici-
pants noted that poor signage or visu-
ally similar streets often led to confu-
sion and forgetting previously explored
paths, causing inefficient loops that ex-
haust the 35-step limit.
2. Overshooting: A human might find
a valid target but continue walking past
it “just to see what’s around the next cor-
ner,” a reasonable exploratory behavior
that fails under a strict step budget.

40.5%
The model’s errors here are less strate-
gic. It does not suffer from imperfect
memory but can still misjudge distance
to a visible target or fail to recognize it,
leading to premature stops or passing
the goal.

Cognitive Failures
(e.g., Under/Over-
thinking)

19.1%
Humans rarely fail basic inferences. Er-
rors occur on nuanced tasks, such as
failing to consider a convenience store’s
secondary function of recharging phone
credit, or overthinking whether a restau-
rant is truly “upscale”.

32.9%
The model’s key bottleneck. It strug-
gles to infer non-obvious functions of
POIs and lacks the real-world experi-
ence to make flexible logical leaps, re-
vealing a critical gap in commonsense
reasoning.

Visual & Execution
Errors
(e.g., Visual, Parsing,
Mismatch)

20.2%
In an unfamiliar city and under pressure,
human perception can falter. This is
exacerbated by language barriers (e.g.,
non-native participants processing En-
glish storefront signs) and cultural un-
familiarity with local brands, leading to
overlooked or misidentified cues.

26.6%
The model is prone to a mix of errors:
misidentifying visual cues (14.6%), fail-
ing to adhere to the output format
(6.3%), or having a disconnect between
its visual observation and textual ratio-
nale (5.7%).
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This contrast reveals a fascinating trade-off. An AI agent has a theoretical advantage with its perfect
memory, which should prevent the inefficient looping that humans are prone to. However, this
is counteracted by its lack of deep, intuitive commonsense. While humans possess the necessary
real-world knowledge to understand the implicit needs, they are hampered by imperfect memory
and an intuition-driven approach to planning that can be inefficient in unfamiliar environments. This
suggests that future work should focus not just on improving VLM perception, but on endowing them
with more robust, human-like intuitive and strategic reasoning capabilities.

H LIMITATIONS AND FUTURE WORK

Despite the advancements enabled by CitySeeker, our study highlights several limitations of current
VLMs in embodied urban navigation, which in turn point to promising directions for future research.

First, generalization and adaptability to specific contexts remain challenges. Physically, while
models perform modestly in familiar urban layouts, their effectiveness declines in irregular road
networks due to training data biases. Semantically, our framework currently relies on foundational
spatial consensus and does not yet account for personalized user preferences or historical behavioral
patterns, limiting the model’s ability to provide tailored assistance.

Second, long-context reasoning and memory retention are key bottlenecks. Long-horizon naviga-
tion requires processing extensive sequences of visual and textual information, which consumes a
large number of tokens. This poses a challenge for models with context length limitations and can
lead to the forgetting of crucial information from earlier steps, resulting in inefficient paths with loops
and repeated errors.

Third, our ablation study on map-augmented navigation (Appendix D) revealed a fundamental weak-
ness in aligning 2D maps with first-person street views. The models’ poor cognition of orientation
and distance on the 2D map often led to confusion and hallucinations, degrading performance rather
than improving it. This highlights a critical gap in the models’ ability to fuse these two distinct modes
of spatial information.

Lastly, real-time adaptability is limited by computational inefficiencies. The significant latency
in VLM decision-making, stemming from redundant visual processing, currently restricts practical
deployment in real-time applications.

Addressing these limitations requires a multi-faceted approach. Future work should focus on:

• Enhancing Commonsense and Affordance Reasoning: A key area for improvement is
the model’s understanding of functional affordances (e.g., that a café provides Wi-Fi), a
weakness particularly evident in smaller models. New training methodologies could focus
on enriching models with this kind of real-world, commonsense knowledge.

• Integrating Personalized Behavioral Priors: While CitySeeker focuses on universal
common sense, real-world navigation is often personalized. A promising future direction is
to incorporate behavioral priors derived from GPS traces or check-in data. Once a VLM
demonstrates robust spatial common sense, these empirical signals can be used to rank valid
candidates, moving from general capability to personalized assistance.

• Improving Geometric and Orientational Understanding: Future research should ex-
plicitly target the model’s ability to understand orientation and perform “mental rotations”,
bridging the gap between abstract 2D map representations and the first-person visual world.

• Developing More Efficient Architectures: Innovations in persistent memory architectures
and more efficient inference frameworks are needed to tackle the challenges of long-horizon
reasoning and real-time performance.

I LLM USAGE STATEMENT

In preparing this manuscript, LLM was used as a general-purpose assistive tool. Its application
was confined to the final stages of writing, specifically for minor polishing and refinement of the
English prose to improve clarity and readability. The LLM did not contribute to the research ideation,
experimental methodology, data analysis, or the generation of results and conclusions in this work.
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