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ABSTRACT

Vision-Language Models (VLMs) have made significant progress in explicit
instruction-based navigation; however, their ability to interpret implicit human
needs (e.g., “I am thirsty”) in dynamic urban environments remains underexplored.
This paper introduces CitySeeker, a novel benchmark designed to assess VLMs’
spatial reasoning and decision-making capabilities for exploring embodied urban
navigation to address implicit needs. CitySeeker includes 6,440 trajectories across
8 cities, capturing diverse visual characteristics and implicit needs in 7 goal-driven
scenarios. Extensive experiments reveal that even top-performing models (e.g.,
Qwen2.5-VL-32B-Instruct) achieve only 21.1% task completion. We find key
bottlenecks in error accumulation in long-horizon reasoning, inadequate spatial
cognition, and deficient experiential recall. To further analyze them, we investigate
a series of exploratory strategies—Backtracking Mechanisms, Enriching Spatial
Cognition, and Memory-Based Retrieval (BCR), inspired by human cognitive
mapping’s emphasis on iterative observation-reasoning cycles and adaptive path
optimization. Our analysis provides actionable insights for developing VLMs with
robust spatial intelligence required for tackling “last-mile” navigation challenges.

1 INTRODUCTION

Explicit Step-by-Step Instruction

"Go straight and turn right at the intersection. Go

straight until there is a row of outdoor seats on your right.

The restaurant in front of you."
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Figure 1: Navigation Instructions indicating ex-
plicit needs (top) and implicit needs (bottom).

Figure 2: The statistics of CitySeeker with 6,440
trajectories in diverse scenarios.

Vision-Language Models (VLMs), with their advanced vision-grounded reasoning and language
generation capabilities, are increasingly being applied to complex tasks like Embodied Urban
Navigation (Zhang et al.|[20244). Autonomous embodied navigation in open urban environments is
a cornerstone for realizing a new generation of intelligent services, leading to a rising demand for
VLMs that can guide service robots, drones, or an AR assistant through urban settings. However,
the capabilities of VLMs in this domain remain underexplored, as recent advances have focused
on agents that follow explicit step-by-step instructions (e.g., “Proceed straight until the sculpture
fountain, turn right, then continue until reaching McDonald’s”). Such approaches, which we describe
as explicit needs, rely on pre-constructed navigation directives rather than natural human commands,
and face critical limitations in dynamic or novel urban scenarios (Wang et al., 2021}, [2024b).




Under review as a conference paper at ICLR 2026

Table 1: Overview of Vision-Language Navigation datasets.

Dataset Instruction Type Instruction Environment Source City Nodes Avg.Length Avg.Token
Talk the Walk (De Vries et al.|[2018) Explicit 786 GridWorld 3D Rendering 1 100 6.8 345
Room-to-Room (Anderson et al.|[2018) Explicit 21,567 Indoor Panoramas 1 10,800 6.0 29.0
Touchdown (Chen et al.[[2019) Explicit 9,326 Outdoor Street View 1 29,641 35.2 89.6
Talk2Nav (Vasudevan et al.|[2021) Explicit 10,714 Outdoor Panoramas and Map 1 21,233 40.0 68.8
StreetNav (Jain et al.|[2024) Explicit 644,415 Outdoor Street View 2 - 1,194m 7.13
map2seq (Schumann & Riezler|[2020) Explicit 7,672 Outdoor OpenStreetMap 1 29,641 40.0 55.1
CitySeeker Implicit 6,440 Outdoor+Dynamic Street Viewand Map 8 41,128 18.3 11.11

In contrast, real-world human instructions often involve abstract goals that pertain to implicit
needs (Zhou et al.l 2024b). These needs are often unannotated on traditional maps or lack the
granularity needed for last-mile navigation, and are implicit on multiple aspects: functional (e.g.,
when finding a restroom, recognizing the affordance that one is also available in a McDonald’s, or
inferring that “I’m thirsty” can be resolved by a convenience store or even a public water fountain),
spatial (e.g., upon seeing a more visually prominent landmark like a shopping complex, inferring that
a Starbucks is likely nearby, or realizing that a cinema is often hidden inside a mall), and semantic
(e.g., subjective qualities like a “romantic” or “upscale” restaurant). Addressing these common needs
is a fundamental challenge for goal-oriented navigation, requiring an agent to ground environmental
intent through active exploration and spatial reasoning to solve the crucial “last-mile” problem,
especially in contexts like city walks (Gao et al.,[2024). We illustrate this concept in FigureI]

The ability to understand human needs in urban space is fundamental to Embodied Urban Nav-
igation (Liu et al.l 2024} |Hirose et al.l 2023). While prior work has explored VLM’s ability to
interpret human needs, these efforts have been largely confined to constrained settings like indoor
environments and 3D games (Wu et al.| 2024a}; Zhang et al.,[2024b)). This raises a critical scientific
question: Can VLMs develop intrinsic spatial awareness (Yang et al.||2024) for Embodied Navigation
in open-world urban settings to address implicit human needs? This task introduces unique chal-
lenges: (1) Dynamic Visual Complexity, with diverse and changing road networks and storefronts;
(2) Free-Form Instruction Parsing for goals in flexible language; and (3) Long-Horizon Reasoning
across extensive distances. The latter is not merely about path length but requires robust, multi-hop
reasoning that couples semantic inference with visual grounding. For instance, to address “I need a
temporary place with Wi-Fi to work,” an agent must ground the abstract function of “working.” While
it may infer POI categories like Cafe or Library, the final decision depends on visually grounding a
location’s suitability by dynamically searching for real-world cues—such as a storefront’s ambiance,
patrons with laptops, or even a “Free Wi-Fi” sign—that confirm it meets the user’s need in real time.

Humans address these challenges using cognitive maps—mental representations of spatial relation-
ships and environmental attributes (Epstein et al.,|2017} [Tolmanl [1948). By combining observation
with prior knowledge, humans can dynamically update their spatial understanding, infer latent prop-
erties, and formulate grounded plans from abstract goals—capabilities yet to be replicated in VLMs
for outdoor navigation (Clemenson et al., 2021} |Farzanfar et al., | 2023; Momennejad et al.| [2024;
Wu et al., [2024b)). Inspired by this, we propose CitySeeker, a novel benchmark for autonomous
embodied urban navigation. It assesses Implicit-Need-Driven Visual Grounding: the process of
translating an implicit need into a concrete visual search by using semantic inference to infer possible
targets and grounding this understanding in a continuous stream of observations. To systematically
probe this ability, its 7 task categories represent a spectrum of varying cognitive difficulty, from direct
recognition (“Basic POI”) to highly abstract reasoning (“Abstract Demand,” “Semantic Preference”).
The benchmark is implemented through 6,440 trajectories across 8 globally distributed urban regions
with diverse layouts and visual characteristics (Table [I)).

Our extensive experiments reveal that existing VLMs generally underperform, exhibiting significant
trajectory deviation and deficient spatial cognition. Building on these benchmark findings, we
further investigate advanced strategies that endow the agent with human-like cognitive capabilities.
We propose and analyze a triad of exploratory approaches: Backtracking mechanisms mimic self-
correction, Spatial Cognition Enrichment mimics mental map building, and Memory-Based Retrieval
mirrors recalling past experiences. These BCR strategies offer a concrete roadmap to elevate VLM
spatial intelligence. From a cognitive science perspective, our research is aligned with exciting
developments in Al concerning Spatial Mental Models within LLMs (Momennejad et al.| 2024}
Yang et al., |2024; Wu et al.| 2024b)), probing the intrinsic spatial intelligence of these models. In
summary, our contributions are threefold:
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o CitySeeker is the first large-scale benchmark for embodied urban navigation that addresses implicit
needs across diverse multi-city settings, incorporating real-world visual diversity, long-horizon
planning, and unstructured instructions.

e We design a VLM-based framework and a suite of human-inspired cognitive strategies (BCR) that
translate implicit needs into multi-step plans through iterative observation-reasoning cycles.

e Through extensive experiments, we surface key bottlenecks in VLM spatial reasoning and crys-
tallize them—and their fixes—into the BCR triad of Backtracking, Cognitive-map enrichment, and
Retrieval-augmented memory, offering insightful guidance for advancing spatial intelligence.

2 RELATED WORK

Spatial Cognition and Mental Models. The concept of spatial cognition—internal mental represen-
tations of space—originates from cognitive science and has long been considered fundamental to
how humans navigate (Tolman, |1948} [Epstein et al.,[2017). A recent paradigm shift has been spurred
by findings that large models can develop emergent “world models” and representations of space and
time without supervised training (Gurnee & Tegmark] |2023). This has inspired a new line of inquiry
dedicated to probing the intrinsic spatial intelligence of these models (Yang et al.|[2025}; Yin et al.,
2025; |Feng et al., 2025; Manh et al., 2025). Our work provides the first attempt to systematically
evaluate the emergent spatial cognition of VLMs through complex urban navigation tasks.

Vision-Language Navigation (VLN). Research in VLN has explored diverse instruction formats,
including step-by-step, dialog-based (Goetting et al.,2024;Zhou et al.,[2024al), and goal- or intention-
oriented instructions (Wang et al., 2023} Q1 et al., 2020a}; Chiang et al., [2024; |Liu et al., [2025]).
However, the majority of outdoor VLN research and benchmarks, such as Touchdown (Chen et al.,
2019), have focused on agents following explicit step-by-step directives. This has led to the develop-
ment of various methods (Xu et al., 2024; |Schumann et al.| [2024; | Dorbala et al., 2022; [Pan et al.|
2024) —excel at direct text-visual matching but are less equipped for the abstract reasoning required
by implicit goals. Moreover, many solutions are limited by a reliance on static representations of
predefined environment and poor generalizability (Cao et al.| 2024} [Elnoor et al.,[2024; [Zhan et al.|
2024), revealing a gap in handling dynamic, real-world urban navigation. Goal-oriented navigation
requires agents to use perception and commonsense reasoning to ground abstract concepts. Its form
focuses on zero-shot open-world navigation (Mirowski et al., 2018 [Majumdar et al., 2022} Zhou et al.}
2024b)), which has largely been limited to indoor environments. CitySeeker is the first benchmark to
evaluate this goal-oriented reasoning for implicit needs in open-world cities.

3 CITYSEEKER BENCHMARK

The CitySeeker dataset comprises 6,440 route instances and corresponding natural language instruc-
tions covering 7 carefully curated categories of everyday human needs. These categories span typical
requests from target recognition (e.g., finding nearby facilities or brands), contextual inference (e.g.,
inferring that a restroom is likely available in McDonald’s) and attribute analysis (e.g., guiding to a
bank with accessible facilities), to abstract and subjective reasoning (e.g., finding a restaurant suitable
for a team gathering). The design of these categories is guided by three core criteria: (1) semantic
complexity of goals, (2) spatial reasoning requirements, and (3) real-world applicability.

CitySeeker is collected from eight distinct metropolitan areas—Beijing, Shanghai, Shenzhen,
Chengdu, Hong Kong, London, and New York—capturing diverse architectural layouts and dy-
namic street-level visuals. Overall, the benchmark includes over 41,128 street-view panoramas (from
Google or Baidu Maps since 2024) to ensure realistic appearance variations. As shown in Figure[2]
our dataset balances instruction types, urban regions, and navigation difficulty (based on trajectory
length). These categories collectively capture a broad range and diversity of real-world navigation
challenges, with 19.2% involving POI navigation, 20.4% requiring the interpretation of abstract
demands, and other major portions dedicated to brand-specific searches (23.4%) and latent POI
discovery (23.0%). To facilitate quantitative evaluation, we further sampled 1,257 route instances as
the final benchmark test set, balancing coverage across all metropolitan areas and categories.
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Figure 3: Construction Process of the CitySeeker Dataset.

3.1 BENCHMARK CONSTRUCTION

We employ a demand-driven pipeline to generate high-quality navigation routes at scale, as summa-
rized in Figure 3] By integrating panoramic data, POI filtering, and graph-based distance queries,
it yields high-fidelity routes spanning a broad spectrum of real-life urban navigation needs (see
Appendix [B] for details).

Data Collection and Topology Construction. We gather street-level panoramas from both Google
and Baidu Street View, covering diverse urban areas (e.g., Western cities, Hong Kong, Mainland
China). To discretize each city’s road network, we place a node every 20 meters and capture its
panoramic imagery with metadata (e.g., latitude/longitude, heading, navigable headings). These
nodes and edges represent navigable connections annotated with azimuths and distances, forming a
graph-based structure stored in Neo4j. This layout facilitates spatial queries and ensures consistent
global connectivity. Each collected Points of Interest (POI) is then linked to any vantage node within
a 50-meter radius, reflecting the idea of a visible or discoverable place from that viewpoint. This step
updates the knowledge graph with triplets of the form (Node) —has—> (VisiblePOI).

Question Design and Generation. To cover common daily needs, we first identify a set of high-
frequency POI categories. These are sourced primarily from map providers (e.g., “restaurant,” “coffee
shop”) and are supplemented with other visually rich POIs identified from street-view images and
manually verified, capturing targets often unannotated on maps. This enables us to design specific
templates for different query types. Each question type is manually associated with one or more POI
categories; for instance, “I'm feeling thirsty” may map to beverage shops, water fountains, or cafés.

Route Generation and Validation. We generate navigation paths by selecting start and end nodes
based on the intended POI category. We determine the starting nodes based on constraints to ensure
that the shortest path falls within a controllable minimum radius (e.g., ensuring no other similar
POIs lie within an overly small radius), thereby guaranteeing a meaningful navigation distance. The
shortest paths between start and target nodes (containing the target POI) are then calculated using a
shortest-path algorithm (e.g., A*). This process yields effective routes ranging from 5 to 25 steps.
Finally, we manually verify each route by confirming the target POI is indeed visible or indirectly
visible at the terminal node. To further empirically validate the rationality of our Need-to-POI
mappings and mitigate potential designer bias, we conducted a cross-cultural human consensus
survey (N = 120), which demonstrated a high degree of agreement (83.39%) with our ground truth
categories (see Appendix [B]for details). Any route failing this check is refined or discarded.

4 EVALUATION ON CITYSEEKER

4.1 OVERVIEW

Task Formulation. We formulate the VLN task within a navigation graph G = (V, £), where V
represents the set of georeferenced nodes and £ denotes edges. At time step ¢, the agent occupies
anode v; € V. The agent receives a natural language instruction V and an observation set O; =
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Implicit Need Instruction Observation & Reasoning

"I need help finding a nearby
place with Wi-Fi to work."

Overall Observation: The image shows a street
with a Starbucks, some storefronts and trees.
Perspective Observation: {"A": "This shows a
street with a Starbucks, likely to offer Wi-Fi and
be a good place to work.", "B": "This shows a
bustling street with vendors on the sidewalk. ",
"C":...,"D"..}

Thoughts: | chose Perspective A because it
shows a Starbucks, which is likely to offer Wi-Fi...

|
@ Action: 0

Action Direction:
step forward
Score: 0.85

Street Panorama

Time Step t, :
Time Step t, '

Street Panorama

>
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Figure 4: The CitySeeker Implicit-Need-Driven Embodied Urban Navigation Framework.

{011,012, .,0¢n} where n is the number of perspective views at v;. The agent maintains a state
st = (vy, Oy) representing current environmental context. The agent operates via a policy me that
sequentially generates a reasoning rationale followed by an action: (®y, as, ¢;) = mo(W, s¢). Here,
®, is the reasoning rationale, and a; € A; = {1,...,n} is the index of the selected perspective view
with confidence ¢; € [0, 1]. The environment transitions to the next node v;41 based on the dynamics
T(vt,ar). A reasoning process is recorded as: 7 = {W, (s1,®1,a1,¢1),..., (s, Pr,ar,cr)},
where the process terminates once the stop condition is met.

Navigation Framework. Figure[]illustrates the navigation pipeline. At each time step, the panoramic
image at the current viewpoint is subdivided into multiple perspective views, each corresponding to a
feasible heading. Guided by a ReAct-style reasoning procedure 2023), the VLM processes
the current observation (Observe), infers a navigation intention (Think), selects one perspective view
to move toward (Act), and finally outputs a confidence score as reflection (Reflect). This process
iterates until the agent deems it has reached the goal or surpasses a maximum step limit (35 steps).
To isolate the model’s core spatial reasoning ability, we intentionally keep each step independent: the
agent does not maintain persistent memory or feed previous internal states into subsequent decisions.

4.2 EVALUATION SETUP

Benchmark Models. We comprehensively evaluate 27 multi-image capable VLMs across diverse
model families, encompassing various parameter scales and architecture. For proprietary models,
we consider GPT-40, GPT-40-Mini, 04-mini, Gemini-1.5-Pro and Gemini-2.5-Pro 2024).
For open-source models, we evaluate models from Qwen2-VL series (7/72B Instruct)
2024a)), Qwen2.5-VL series (7/32/72B Instruct) [2025)), InternVL2.5 (8/26/38B)
et al.l[2024), InternVL3 (8/14/38B), Llama-3.2 (11/90B Vision variants) (Dubey et al.|,[2024), Llama-4
(Scout-17B-16E-Instruct/Maverick-17B-128E-Instruct), LLaVA derivatives (Llama3-1lava-next-8b,
LLaVA-OneVision-Qwen2-7B) [2023)), MiniCPM derivatives (V-2.6/0-2.6)
2024} [2024), Phi series (3.5-Vision-Instruct/4-Multimodal-Instruct) (Abdin et al., 2024}

Microsott, [2025)) and MiniMax-01 [2023)). All evaluations are conducted under zero-shot
settings using unified prompts (see Appendix [C.I|for full details).

Metric Design. We adopt a comprehensive evaluation protocol that extends standard VLN metrics
2020b) to assess task success and navigation efficiency. Our evaluation includes: Task
Completion (TC), measured with metrics of varying granularity: (1) TC-Exact (TCE) requires a strict,
single-node endpoint match. To account for the fact that a target is often visible from multiple nearby
viewpoints, (2) TC-Proximity (TCP) grants success within a geodesic threshold of <50m to address
this spatial ambiguity; (3) TC-Category (TCC) evaluates whether the final destination belongs to
the same category as the intended target, acknowledging practical flexibility in location-based tasks
(e.g., reaching any restaurant rather than the closest one); Path Quality, assessed via (4) Normalized
Dynamic Time Warping (nDTW) to quantify trajectory alignment with ground
truth, (5) Success weighted by Path Length (SPL) to rigorously measure navigation efficiency by
balancing success rates against trajectory length, and (6) Average Steps (AS) for decision efficiency;
Distance-Based Metrics, (7) Shortest-Path Distance (SPD) for straight-line distance to the goal.
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Table 2: The performance of CitySeeker Framework. For Subcategory evaluations, the TCP score is
reported. Top performers are highlighted in bold, while secondary leaders are underlined. For details
on the AS metric and a more comprehensive evaluation of the models, please refer to Appendix [C.3]

Overall Subcategories

Models Basic Brand- Transit Latent Abstract Inclusive Semantic

TCE TCP TCC SPL SPD nDTW POl  Specific  Hub POl Demand Infra. Pref.
GPT-40 24 18.3 6.8 133 1254 1369 189 21.1 19.6 9.7 18.9 14.9 26.0
GPT-40-mini 1.1 12.3 7.6 7.5 202.0 3252 12.3 21.1 14.3 74 11.8 7.5 10.6
04-mini 2.6 17.9 6.8 11.6  130.1 1563 202 19.9 125 13.1 16.7 9.0 24.0
Gemini-2.5-pro 1.8 17.3 5.0 2.1 121.8 1212 204 18.0 16.1 10.2 20.6 9.0 13.5
InternVL2.5-8B 1.0 14.6 4.4 5.6 1185 1404 157 143 1.8 14.8 184 104 10.6
InternVL2.5-26B 1.6 153 3.7 7.3 109.5 106.0 204 12.4 8.9 10.8 17.1 7.5 8.7
InternVL2.5-38B 22 18.1 72 112 1366 1692 17.6 242 14.3 13.1 22.8 104 16.4
InternVL3-8B 1.3 15.8 49 6.4 1183 1445 17.2 15.5 7.1 142 16.7 16.4 15.4
InternVL3-14B 1.7 15.1 6.4 8.5 1362 170.8 13.8 20.5 17.9 8.0 19.3 10.5 17.3
InternVL3-38B 2.5 19.3 6.7 10.6 1158 1283 18.9 25.5 12.5 13.1 233 11.9 21.2
Qwen2-VL-7B 0.7 11.1 1.7 52 1114 1144 114 9.9 14.3 4.6 13.2 13.4 15.4
Qwen2-VL-72B 1.0 11.9 2.3 9.0 113.0 895 14.8 8.7 7.1 74 14.5 1.5 154
Qwen2.5-VL-7B 0.5 15.8 43 4.6 119.0 1518 202 174 12.5 10.2 13.6 7.5 15.4
Qwen2.5-VL-32B 2.6 21.1 6.2 127 1226 1470 222 30.4 10.7 14.2 24.1 9.0 20.2
Qwen2.5-VL-72B 2.0 14.6 7.2 9.1 1749 2502 14.8 21.7 14.3 6.8 15.8 11.9 14.4
Llama3.2-90B 0.9 12.5 3.7 7.3 1245 123.1 13.6 124 1.8 9.7 14.0 104 16.4
Llama-4-Scout-17B 1.8 14.1 7.0 6.7 145.0 2114 123 18.6 14.3 8.5 17.5 17.9 14.4
Llama-4-Maverick-17B 0.9 10.8 1.6 4.0 107.1  110.5 12.7 10.6 8.9 10.2 12.7 45 4.8
MiniMax-01 1.5 13.6 6.8 8.8 1722 236.6 155 16.2 8.9 6.8 14.9 11.9 13.5
MiniCPM-V-2.6 0.9 11.7 35 4.0 1222 1522 12.5 10.6 19.6 9.7 13.2 7.5 8.7
MiniCPM-0-2.6 1.4 15.5 6.4 5.6 130.1  176.0 14.4 224 10.7 12.5 18.9 11.9 12.5
Phi-4-Multimodal 0.6 9.2 1.1 7.1 101.1  58.1 14.0 6.2 54 2.8 10.5 7.5 2.9
Llava-Llama3-8B 0.3 10.4 0.8 5.1 104.8  86.9 14.8 8.7 5.4 8.0 8.8 4.5 7.7
Llava-Qwen2-7B 0.3 6.9 0.4 6.2 98.1 49.8 12.5 25 3.6 2.8 6.6 3.0 1.0
Human 57 30.1 135 212 1435 1786 318 36.5 349 19.7 31.5 16.7 29.8
Random Choice 0.7 139 32 3.8 1124 1283 16.6 10.6 54 10.8 14.9 16.4 13.5
Forward Direction 0.2 72 0.4 1.8 100.8  99.3 133 3.1 3.6 2.3 6.6 1.5 1.9

Reference Baselines. To comprehensively assess model capabilities, we introduce three evaluation
baselines. We establish a (1) Human Baseline using an interactive platform where 10 participants
of diverse backgrounds performed the navigation tasks. We also include a (2) Random Choice
Baseline, which selects a random direction at each step, and a (3) Forward Direction Baseline,
which always chooses the forward direction as a simple heuristic.

5 MAIN RESULTS AND ANALYSIS

5.1 OVERALL PERFORMANCE

Table 2] presents the overall results. In general, the models exhibit relatively low success rates,
particularly under the stricter criterion TCE. Larger models (e.g., Qwen2.5-VL-32B, GPT-40, Gemini-
2.5-Pro) perform slightly better—Tlikely due to stronger internal representations—but the gains over
smaller models remain modest. Notably, open-source models like the Qwen2.5-VL and InternVL3
series demonstrate competitive performance. This superiority likely stems from specific architectural
and training alignments with CitySeeker’s demands: Qwen2.5-VL benefits from spatial-aware SFT
and efficient high-resolution processing crucial for identifying street-level details, while InternVL3
leverages native multimodal pre-training and Mixed Preference Optimization (MPO) to enhance the
complex cross-modal reasoning required for implicit needs. However, no model consistently excels,
with some even underperforming random baselines. Ablation study further revealed that providing
agents with a global 2D map surprisingly degraded task completion, underscoring the challenge of
fusing map-based information with visual grounding (see Appendix D). Human participants achieved
the best overall performance, outperforming all models on both TCP and TCC. They exhibit a clear
advantage across diverse task dimensions, especially in tasks requiring urban commonsense like
“Transit Hub” navigation (a TCP of 34.9% for humans versus 10.7% for the best VLM Qwen2.5-VL-
32B) and “Basic POI” finding (31.8% vs. 22.2%).

Task Category Analysis. Breaking down performance by query category reveals a clear divide
between tasks requiring direct recognition versus those demanding deeper inference, as shown in
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Figure 5: Radar Chart: TCP performance of different models across various subcategories. Bar Chart:
TCP performance of models in different cities (left: New York, right: Beijing).
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Figure 6: Heat Map: GPT-40’s navigation trajectory distribution in New York (left) and Beijing
(right). Scatter Plot: Relationship between model-generated trajectory steps and nDTW.

Table 2] and radar chart of Figure[5] Models performed best on Brand-Specific navigation, where
recognizable brand names (e.g., Starbucks) serve as strong lexical and visual anchors. In sharp
contrast, one of the most challenging categories was Latent POI, which requires agents to reason
about indirectly observable targets that are not explicitly signed (e.g., inferring a restroom is inside a
McDonald’s). This finding highlights a key VLM limitation: while adept at direct recognition, they
falter when tasks require nuanced, commonsense inference about the environment.

Variation Across Cities. Performance also varies across different metropolitan areas. As shown on
bar chart of Figure 3] interestingly, GPT-40 variants perform poorly in Beijing but achieve highest
scores in New York—this may reflect biases in the training data or the more grid-like street layouts in
the United States. To test for linguistic bias, we conducted a cross-lingual experiment, which revealed
that this performance gap is not primarily driven by language factors (see Appendix [C.4]for details).

5.2 IN-DEPTH ANALYSIS

As shown in Figure [§] model performance tends to degrade with increased route length. When the
number of steps is fewer than 20, nDTW values remain relatively small and correct trajectories are
more common. However, at around 35 steps, nDTW metrics become highly scattered, indicating that
longer horizons require robust sequential reasoning—an ability current VLMs often lack, as their
errors accumulate without being integrated into a coherent spatial memory.

Trajectory Patterns. In Figure[6] two prominent error modes emerge: (1) Trajectory Deviation.
This arises from compounded errors at each sequential decision point, a problem exacerbated by
sparse or ambiguous instructions. (2) Oscillatory Detours. Some open-source models exceed the
optimal path length by 40-60% (e.g., trajectories #47 and #153 in New York), likely attributable to
fragmented context handling and incomplete global awareness. We also observe that path efficiency
correlates weakly with TC: when uncertain, some models veer off course or backtrack repeatedly,
leading to wasted steps. Notably, most models demonstrate looping behavior—visiting the same node
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Figure 7: Overview of the BCR Approach -Backtracking, Spatial Cognition, and Memory-Based
Retrieval to enhance VLM performance in urban VLN tasks.

Table 3: Performance of different models on TCP and nDTW under three strategies. The best results

are highlighted in bold.

Model | Baseline Bl B2 B3 C1 C2 R1 R2 R3
|TCP nDTW TCP nDTW TCP nDTW TCP nDTW TCP nDTW TCP nDTW TCP nDTW TCP nDTW TCP nDTW

GPT-40-Mini 12,5 337.1 [15.7 289.5 17.4277.9 1822583 [17.2 2423 15.1 239.7 |183 136.6 17.9 3122 19.4 176.9

InternVL3-8B 15.0 1429 |16.7 139.9 185 137.5 17.2 138.6 |17.9 1452 16.4 197.6 [18.6 1489 16.9 1284 17.9 134.8

MiniCPM-V-2.6 113 159.0 [9.1 1205 13.1 153.1 13.0 137.2 |11.6 123.0 8.5 144.4 [14.6 1433 14.8 1467 157 111.5

Qwen2.5-VL-7B-Instruct |12.5 122.2 [14.0 140.5 14.4 156.7 15.3 141.8 |15.3 142.5 12.3 135.8 [16.1 156.4 159 441.4 16.2 141.8
Qwen2.5-VL-32B-Instruct|19.9 167.7 |21.9 164.5 22.2 154.6 23.1 159.4 |21.2 153.5 19.6 162.1 [26.9 173.2 25.9 172.8 25.4 152.8

multiple times (e.g., trajectory #63 in New York and #32 in Beijing)—suggesting difficulties with
local decision-making. Interestingly, others (e.g., Llava-Qwen2-7B) take relatively concise routes yet
still show low accuracy, implying a lack of deeper spatial understanding despite fewer detours.

6 EXPLORATORY APPROACHES TO EMBODIED URBAN NAVIGATION

To explore strategies for enhancing VLM performance, we propose a three-pronged approach,
BCR, involving Backtracking Mechanisms, Spatial Cognition Enrichment, and Memory-Based
Retrieval (Figure [7). These methods aim to mitigate cumulative navigation errors, boost global
spatial awareness, and enable memory-informed decision-making. We denote these three method
series as B, C, and R respectively in the following content. We conducted initial experiments on a
mini-size subset of 650 samples; for full technical details, including an analysis of combined BCR
strategies, please refer to Appendix

6.1 BACKTRACKING MECHANISMS

We introduce backtracking to correct navigational errors. (B1) Basic Backtracking is triggered when
the agent’s internal confidence, averaged over a sliding window of k steps, falls below a predefined
threshold 6. The agent then reverts to the last trusted node. This mechanism is self-supervised and
does not require external feedback. (B2) Step-Reward Backtracking replaces subjective confidence
with objective progress metric: the topological distance to the goal, d;. Backtracking is initiated

if this distance increases monotonically for k& consecutive steps, i.e., when /\;:O1 (di—i > di—(i41))
holds. This corrects navigational drift away from the target. (B3) Human-Guided Backtracking
enhances B1 by providing a directional hint after reverting. This hint guides the agent toward the

optimal action a* = arg min E[d;1|a; = a], which minimizes the expected future distance to the
a€ Ay

target, thereby realigning the agent’s trajectory with the shortest path to the goal.

Empirical Performance. As shown in Table |3} B1 generally improves TCP across models, in-
dicating that confidence-based backtracking stabilizes navigation for capable VLMs. However, it
underperforms on smaller models like MiniCPM-V-2.6 (TCP drops from 11.3% to 9.1%), suggesting
insufficient spatial reasoning for effective self-assessment. B2 and B3 are more universally effective,
consistently improving TCP across all models. For instance, B3 boosts GPT-40-Mini’s TCP to 18.2%
while significantly improving its path efficiency (nDTW drops from 337.1 to 258.3). These results
highlight that while simple self-correction benefits capable models, external signals (like progress
rewards or timely hints, in B2 and B3) offer more robust improvements.
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6.2 SPATIAL COGNITION ENRICHMENT

To improve the agent’s environmental awareness, we generate enriched spatial cues by using GPT-4.1
to synthesize successful and erroneous trajectories from various VLMs (e.g., GPT-40, Gemini-2.5-
pro). This synthesized knowledge is then injected into the agent’s prompt in one of two formats.
(C1) Topology Cognitive Graph provides a structured graph where nodes represent locations and
edges represent actionable transitions. This format forces the agent to ground its decisions in explicit
environmental connectivity, discouraging exploration of invalid paths. (C2) Relative Position Map
offers a more intuitive spatial context, describing relationships between locations with directional
cues (e.g., “left”, “slightly right”) and estimated distances. While lacking explicit connectivity, this
method allows the agent to construct a flexible mental map based on relative positional relationships.

Empirical Performance. Table [3|illustrates that C1 improves TCP across models by grounding
decisions in topological structure. For instance, GPT-40-Mini achieves an increase from 12.5% to
17.2%. The impact of C2 is more mixed; while it can improve path efficiency (e.g., for GPT-40-Mini,
nDTW drops to 239.7), it sometimes slightly reduces task completion (e.g., for MiniCPM-V-2.6, TCP
drops from 11.3% to 8.5%). Overall, C1 appears more reliable for improving task success, whereas
C2 supports a more flexible and exploratory approach but sacrifices some success rate.

6.3 MEMORY-BASED RETRIEVAL

To overcome fragmented decision-making, we implement a graph-based memory module, enabling
agents to retrieve or append past rationales and actions. (R1) Topology-based Retrieval aggregates
multi-round node and edge metadata based on graph connectivity. At each step, it retrieves a local
subgraph of h-hop neighbors, accessing metadata like node visitation counts, previous decisions,
edge transition success rates and confidence scores. This helps avoid repeating past mistakes and
promotes the reuse of successful paths. (R2) Spatial-based Retrieval complements this by retrieving
a subgraph of nodes and relationships within a fixed Euclidean radius, which emphasizes geographic
proximity. (R3) Historical Trajectory Lookup introduces short-term memory by appending recent
intra-round navigation history into VLM’s context. This includes spatial data, action choices, and
prior decision rationale over a sliding window. Unlike R1 and R2, R3 does not rely on database
traversal, making it a lightweight method to stabilize reasoning within a single episode.

Empirical Performance. Table 3|reveals that the R-series strategies are the most powerful overall.
For GPT-40-Mini, R3 yields the highest TCP of all strategies (19.4%), while R1 achieves the best path
efficiency with a dramatic nDTW reduction to 136.6. This demonstrates that different memory-based
approaches can simultaneously enhance both task completion and navigation efficiency. Across all
models, R-series strategies consistently produce some of the highest TCP scores, with R1 pushing
the top-performing Qwen2.5-VL-32B-Instruct to an impressive 26.9% TCP. This confirms that
memory-aware navigation is crucial for improving both the reliability and effectiveness of the agent.

Trade-off Analysis and Application Scenarios. The B-Series strategies (especially B2 and B3)
reliably improve task completion, making them suitable when success is prioritized. The C-Series is
applicable when external spatial information can be provided; C1 generally favors accuracy, while
C2 may trade success for better path efficiency. Overall, the R-Series is the most robust approach for
long-horizon navigation, consistently yielding the best task completion rates. Lightweight models
like InternVL3-8B are suitable for time-sensitive tasks, while heavier models like Qwen2.5-VL-32B-
Instruct, augmented with R-series strategies, are ideal for precision-critical applications.

7 CONCLUSION

CitySeeker establishes a new standard for embodied urban navigation by systematically evaluating
how well VLMs tackle implicit human needs in diverse, real-world cityscapes. Our extensive
experiments uncover that today’s models frequently struggle with the complexities of this task, often
deviating from optimal routes due to limited spatial reasoning. To address this, we introduced a
human-inspired cognitive framework and outlined three insightful strategies—backtracking, spatial
cognition enrichment, and memory-based retrieval—which demonstrably improve performance.
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These findings offer a clear pathway toward developing more robust, human-like agents capable of
solving the crucial “last-mile” problem in real-world navigation.

ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics. The study involved human participants for the
establishment of a human baseline. All participants were fairly compensated for their time in line
with our institution’s standard rates for research assistance, and the experimental procedure was
clearly explained to them. The street-view imagery used in our experiments was accessed via publicly
available APIs (Google Maps and Baidu Maps). To strictly adhere to the API Terms of Service, we do
not distribute any raw street-view images or offline copies. Instead, researchers can access the visual
data using our provided scripts, which query the official APIs using the released trajectory metadata
(e.g., Panorama IDs and coordinates). This approach ensures full compliance while maintaining the
scientific reproducibility of the benchmark.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work while complying with data usage policies, we have made
our metadata, code, and supplementary materials publicly available. The CitySeeker benchmark
release includes: (1) the complete trajectory graph data (nodes, edges, and Panorama IDs), and (2)
the full implementation code for our evaluation framework and BCR exploratory strategies. The
scripts enable re-fetching the necessary street-view imagery directly from the public APIs. This
methodology aligns with established practices in the field (e.g., Touchdown (Chen et al;[2019)) to
ensure reproducibility without distributing copyrighted images. Furthermore, we have verified that
reproducing test set via these scripts incurs no financial cost under standard API usage tiers. All
resources can be found at anonymous repository linked in Appendix [Al The main paper and appendix
provide comprehensive details on our experimental setup (Appendix [C), the exact prompts used for
all VLM evaluations (Appendix[C.2), and the specifics of our evaluation metrics (Section 4.2).
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A DATA AND CODE AVAILABILITY

To promote community engagement and ensure reproducibility, the CitySeeker dataset along with
the full implementation code are publicly available at:
https://github.com/anonymous—cityseeker/CitySeekerl

B BENCHMARK DETAILS

The CitySeeker dataset comprises 6,440 trajectories across 8 diverse urban regions, paired with
navigation instructions addressing implicit human needs. To ensure strict adherence to image
licensing and usage rights (e.g., Google Maps Platform Terms of Service), our public release strategy
dissociates raw visual data from trajectory metadata. Specifically, we release the complete trajectory
graphs (including node coordinates and Panorama IDs) and navigation instructions. Rather than
distributing offline copies of copyrighted street-view imagery, we provide automated scripts that allow
researchers to re-fetch the necessary visual data directly from the official APIs. This methodology
ensures full compliance with non-commercial, research-only usage policies while maintaining the
benchmark’s reproducibility. Route-map visualizations are generated from OpenStreetMap data
(ODbL) and shared under compatible terms.

B.1 IMPLICIT NEEDS INSTRUCTION GENERATION PROCESS

Each instruction type is manually associated with one or more Point of Interest (POI) categories.
For Basic POI Navigation, Brand-Specific Navigation, and Transportation Hub Navigation
categories, the corresponding POI types are directly indicated in the questions; For Inclusive Infras-
tructure Navigation and Semantic Preference Navigation, we leverage POI metadata descriptions
provided by map vendors; For Latent POI Navigation and Abstract Demand Navigation questions,
we manually define the mapping between the questions and POI categories based on everyday life
experience. Table[dand [5| present some mapping examples.
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Table 4: Latent POI Navigation Mapping Examples

User Query

Mapped POI Categories

“Please find the nearest cinema.”
“Please find the nearest ATM.”
“Please find the nearest coffee shop.”
“Please find the nearest gym.”

“Please find the nearest parking lot.”

“Please find the nearest restroom.”

Movie theater, Shopping mall
ATM, Bank
Cafe,Coffee shop, Shopping mall

Physical fitness program, Gym, Fitness
center,Gym and fitness centre

Parking lot, Free parking lot, Parking
garage,Public parking space

Public bathroom, Public
wheelchair—-accessible bathroom,
Subway station, Shopping mall,

McDonald’ s, KFC

Table 5: Abstract Demand Navigation Mapping Examples

User Query

Mapped POI Categories

“I need to go to the airport and would
like assistance in finding the best way
there. Could you help me?”

“I want to bring my child to play and
need assistance finding a suitable place
nearby. Could you help me?”

“I want to buy fruits and vegetables and
need assistance finding a suitable place
nearby. Could you help me?”

“I want to exercise and need assistance
finding a suitable place nearby.” Could
you help me?

“I want to rest and read and need help
finding a suitable place nearby. Could
you assist me?”

“I want to work with Wi-Fi and need as-
sistance finding a suitable place nearby.
Could you help me?”

“I have run out of phone credit and need
to recharge it. Could you assist me in
finding a nearby place where I can do
s0?”

“I'm feeling hungry and would like
something to eat. Could you help me
find a nearby place?”

“I'm feeling thirsty and would like some-
thing to drink. Could you help me find a
nearby place?”

“I'm not feeling well and need assis-
tance finding a suitable place nearby.
Could you help me?”

Subway station, Bus station, Bus stop,
Taxi service, Car leasing service, Car
rental agency

Shopping mall, Park, City park, Museum,
Art museum, Children’s amusement
center, Playground

Fruit and vegetable
market

Supermarket,
store, Greengrocer, Farmers’

Park, City park, Physical fitness
program, Gym, Yoga studio, Swimming
pool

Cafe, Coffee shop, Public library,

Library, Book store,Park

Cafe, Coffee shop, Public library,
Library, Book store, McDonald’s, KFC,
Five Guys

Cafe, Coffee shop, Public
library, Library, Supermarket,

Telecommunications service provider,
Cell phone store, Target, McDonald’s,
KFC, 7-ELEVEN, Best Buy

Convenience store, Supermarket, Market,
Dessert shop, Food truck, Food stall,
Shopping mall, Restaurant,Diner

Convenience store, Supermarket,
Shopping mall, Cafe, Bubble tea store,
Water fountain, Vending machine,
Dessert shop, Juice shop

Clinics,Pharmacies, Hospitals
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Enrichment with Visually-Grounded POIs. To enrich our POI beyond standard map data, we
address the challenge of temporary or purely visual POIs not available from map providers. We
employ a powerful VLM to identify such facilities (e.g., temporary food stalls or vendors) within
street-views. To ensure data quality, all identified POIs then undergo a manual verification process.
Once confirmed, these visual POIs are added to our graph database with their corresponding locations,
making them available for the query-to-POI mapping process. This step is crucial for ensuring our
benchmark reflects the dynamic and visually rich nature of urban environments.

Query POI Cypher Statement Example. To retrieve specific POI instances, we construct Cypher
queries that consider category attributes, name-based keyword patterns, or descriptive information
within the graph database. The queries are adjusted based on the different POI categories provided
by various map vendors, ensuring flexibility in retrieving relevant POIs efficiently. For Inclusive
Infrastructure and Semantic Preference, we query the corresponding description information for each
POI, which is stored in the retrieved POI metadata. This includes descriptive terms that specify
human-centric attributes of the POI, such as romantic, upscale, family-friendly, cozy, outdoor seating,
wheelchair accessible entrance, etc. The Cypher query combines these descriptive words with
category-specific terms, as shown below.

Cypher Query Example - Find the nearest group or family-friendly restaurant.

MATCH (place:Point)-[:CONTAINS]->(vp:VisiblePoint)
WHERE (ANY (key IN keys (vp)
WHERE (key CONTAINS ‘introduction’ OR key CONTAINS ‘
result’) AND

(vp[key] CONTAINS ‘Groups’

OR vplkey] CONTAINS ‘Family-friendly’)))

AND (vp.category CONTAINS ‘restaurant’

OR vp.category CONTAINS ‘diner’)

RETURN COLLECT (DISTINCT place) AS validPOIs

For Abstract Demand, a query such as “T want to rest and read” triggers a Cypher query that retrieves
POIs from categories like Cafe, Cof fee Shop,Public Library,Library,Book Store,
and Park, while simultaneously considering relevant keywords like “park” and “book store” in the
POI names. This dual consideration of category and keywords ensures that the query matches a
comprehensive set of potential POIs. The Cypher query is as follows:

Cypher Query Example - [ want to rest and read and need help finding a suitable place nearby.

MATCH (place:Point)-[:CONTAINS]->(vp:VisiblePoint)
WHERE vp.category IN [‘Cafe’, ‘Coffee shop’, ‘Public library’,
‘Library’, ‘Book store’, ’'Park’]
OR any (keyword IN [ ‘park’, ‘book store’]
WHERE toLower (vp.name) CONTAINS toLower (keyword))
RETURN COLLECT (DISTINCT place) AS validPOIs

Manual Trajectory Validation. To mitigate potential mapping incompleteness, we implement
manual verification to re-inspect generated trajectories, ensuring no alternative POIs that could fulfill
the user’s request exist along the path except at the designated endpoint. By doing so, we ensure that
the generated trajectories are comprehensive and accurate, reducing the likelihood of missing target
POIs or introducing redundant POIs that could lead to incorrect ground truth.

To further prove that our common sense mappings are not designer bias but reflect robust human
common sense with cross-cultural generalization, we conducted a new supplementary survey. We
surveyed 120 participants across four regions (30 North America, 40 Asia, 30 Europe, 20 Other).
We presented our 10 abstract queries (e.g., “I’m feeling thirsty...”). For each question, participants
selected from 50 POI categories. These options included our pre-defined mapping categories mixed
into a large, systematic pool of ~40 other POI categories drawn from the entire Google/Baidu POI
classification system.

The results show a massive consensus cliff. Our pre-defined mapping options received a Global
Average Consensus of 83.39%, while the unselected other POI categories received a Global Average
Consensus of only 1.90%. This 81% gap proves that our ground truth mappings are not designer
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Table 6: Full Cross-Cultural Consistency Statistics (Part 1). Survey results (N = 120) validating
Need-to-POI mappings. SD indicates Cross-Cultural Standard Deviation.

User Query POI Category Statistics (Mean / SD)
“I'm feeling hungry and ~ Supermarket Mean: 88.89% (SD: 7.70%)
would like something to Restaurant Mean: 88.33% (SD: 7.26%)

eat. Could you help me
find a nearby place?”

Diner

Convenience store
Shopping mall
Market

Food stall
Dessert shop

Food truck

Mean: 85.28% (SD: 8.01%)
Mean: 80.56% (SD: 4.19%)
Mean: 73.89% (SD: 7.88%)
Mean: 64.44% (SD: 21.43%)
Mean: 60.56% (SD: 4.19%)
Mean: 50.83% (SD: 11.27%)
Mean: 46.67% (SD: 25.17%)

“I'm feeling thirsty and
would like something to
drink. Could you help me
find a nearby place?”

Convenience store
Cafe

Vending machine
Supermarket

Water fountain
Bubble tea store
Dessert shop
Juice shop
Shopping mall

Mean: 91.94% (SD: 5.02%)
Mean: 87.50% (SD: 4.64%)
Mean: 80.28% (SD: 2.93%)
Mean: 79.17% (SD: 3.63%)
Mean: 66.11% (SD: 18.58%)
Mean: 63.06% (SD: 29.58%)
Mean: 61.94% (SD: 8.83%)
Mean: 55.83% (SD: 8.46%)
Mean: 45.00% (SD: 5.00%)

“I’'m not feeling well and
need assistance finding

a suitable place nearby.
Could you help me?”

Pharmacies
Hospitals
Clinics

Mean: 96.11% (SD: 3.47%)
Mean: 87.50% (SD: 4.33%)
Mean: 82.50% (SD: 7.95%)

“I want to rest and read
and need help finding
a suitable place nearby.
Could you assist me?”

Public library
Park

Library

Coffee shop
Cafe

Book store

Mean: 96.11% (SD: 3.47%)
Mean: 94.44% (SD: 3.85%)
Mean: 89.17% (SD: 1.44%)
Mean: 83.33% (SD: 8.82%)
Mean: 82.22% (SD: 3.85%)
Mean: 75.56% (SD: 7.70%)

“I want to work with Wi-
Fi and need assistance
finding a suitable place
nearby. Could you help
me?”

Cafe

Coffee shop
Library

Public library
Book store
McDonald’s

KFC

Five Guys

Mean: 94.17% (SD: 2.20%)
Mean: 93.89% (SD: 3.47%)
Mean: 91.94% (SD: 1.73%)
Mean: 91.39% (SD: 5.55%)
Mean: 66.67% (SD: 3.33%)
Mean: 66.11% (SD: 9.77%)
Mean: 63.06% (SD: 8.35%)
Mean: 50.56% (SD: 17.35%)

“I have run out of
phone credit and need

to recharge it. Could you
assist me in finding a
nearby place where I can
do so?”

Cell phone store
Telecom. service provider
7-ELEVEn
Supermarket
Convenience store
Best Buy

Cafe

Library

Coffee shop
Target

Public library
McDonald’s

KEC

Mean: 93.61% (SD: 3.76%)
Mean: 90.28% (SD: 2.93%)
Mean: 82.78% (SD: 17.02%)
Mean: 77.22% (SD: 2.55%)
Mean: 74.72% (SD: 6.47%)
Mean: 62.50% (SD: 34.59%)
Mean: 61.94% (SD: 5.02%)
Mean: 55.83% (SD: 15.07%)
Mean: 54.44% (SD: 5.09%)
Mean: 51.39% (SD: 42.95%)
Mean: 48.61% (SD: 10.55%)
Mean: 46.67% (SD: 11.55%)
Mean: 45.00% (SD: 13.23%)
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Table 7: Full Cross-Cultural Consistency Statistics (Part 2).

User Query POI Category Statistics (Mean / SD)
“I want to exercise and Park Mean: 95.00% (SD: 1.67%)
need assistance finding Gym Mean: 91.67% (SD: 6.01%)
a suitable place nearby.  Ccity park Mean: 87.50% (SD: 6.61%)
Could you help me?” Physical fitness program Mean: 76.11% (SD: 6.74%)
Swimming pool Mean: 73.33% (SD: 11.55%)
Yoga studio Mean: 64.44% (SD: 7.70%)
“I want to bring my City park Mean: 94.17% (SD: 2.20%)
child to play and need Playground Mean: 91.94% (SD: 8.83%)
assistance finding a Park Mean: 88.89% (SD: 1.92%)
suitable place nearb”y. Museum Mean: 85.83% (SD: 2.20%)
Could you help me? Children’s amusement center Mean: 81.67% (SD: 2.89%)
Shopping mall Mean: 65.83% (SD: 10.64%)
Art museum Mean: 65.00% (SD: 1.67%)
“I need to go to the Subway station Mean: 92.22% (SD: 6.94%)
airport and would like Bus stop Mean: 80.83% (SD: 8.78%)
assistance in finding the  Taxi service Mean: 78.89% (SD: 1.92%)
best way there. Could  Bys station Mean: 78.61% (SD: 10.55%)
you help me? Car leasing service Mean: 67.50% (SD: 4.64%)
Car rental agency Mean: 65.28% (SD: 6.47%)
“I want to buy fruits Supermarket Mean: 97.22% (SD: 2.55%)
and vegetables andneed Fruit and vegetable store Mean: 90.28% (SD: 2.93%)
assistance finding a Farmers’ market Mean: 79.72% (SD: 11.56%)
suitable place nearby.” Greengrocer Mean: 75.00% (SD: 18.33%)

bias but are the clear, emergent human common sense that surfaces from the noise. Furthermore,
the consensus was highly consistent on average. The Average Cross-Cultural Standard Deviation
(SD) for our ground truth options was only 8.40% (NA, EA, EU). This low SD value quantitatively
proves high overall consistency across cultural regions. Tables [6]and [7] present the detailed statistics
for questions.

B.2 INSTRUCTION CATEGORIES AND EXAMPLES

To provide a comprehensive overview of our benchmark, we present additional explanations and
question examples from the seven categories in Table[8] These categories were intentionally designed
as a hierarchical metric to probe different levels of a VLM’s reasoning capabilities. They represent a
deliberate scaffolding of different cognitive and semantic difficulty, spanning from Direct Recogni-
tion (e.g., “Basic POI”, “Brand-Specific”’) and Contextual Inference (e.g., locating an un-signed
“restroom”), to Fine-Grained Attribute Reasoning (e.g., an “accessible entrance”) and culminating
in highly Subjective and Abstract Reasoning (e.g., interpreting “I’m feeling hungry™).

C EXPERIMENTAL DETAILS

C.1 IMPLEMENTATION DETAILS

We evaluate 27 commercial and open-source VLMs with multi-image input capabilities, selected
based on three criteria: (1) recency and popularity, (2) coverage of the full parameter spectrum, from
lightweight (< 8B) to very large (> 70B), (3) architectural diversity covering both Transformer-
based models and mixture-of-experts (MoE) designs (e.g., LLaMA-4 series), and (4) varied training
methodologies including reinforcement learning and reasoning-enhanced approaches (e.g., CoT-based
04-mini and Gemini-2.5-pro). All commercial models are accessed through their official APIs, while
open-source implementations leverage the Hugging Face ecosystem. Inference uses vendors’ default
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Table 8: Navigation Instruction Categories and Examples.

Category

Description

Example

1. Basic POI Naviga-
tion

2. Brand-Specific
Navigation

3. Transportation
Hub Navigation

4. Latent POI Navi-
gation

5. Abstract Demand
Navigation

6. Inclusive Infras-
tructure Navigation

7. Semantic Prefer-
ence Navigation

Request common urban
facilities.

Seek specific commercial
brand locations.

Ask for public transit
locations.

Indirectly observable tar-
gets requiring contextual
reasoning.

Express abstract human
needs through contextual
clues.

Prioritize inclusive infras-
tructure.

Use descriptive language
for subjective criteria.

“Please find the nearest restaurant.”
“Please find the nearest convenience store.”
“Please find the nearest shopping mall.”
“Please find the nearest bank.”

“Please find the nearest healthcare facility.”

“Please find the nearest Starbucks.”

“Please find the nearest KFC or McDonald’s.”
“Please find the nearest 7-Eleven.”

“Please find the nearest Chase Bank.”

“Please find the nearest Apple.”

“Please find the nearest subway station.”
“Please find the nearest bus station.”

“Please find the nearest restroom.”
“Please find the nearest gym.”
“Please find the nearest ATM.”
“Please find the nearest parking lot.”
“Please find the nearest cinema.”

“I'm feeling hungry and would like something to
eat. Could you help me find a nearby place?”
“I’'m feeling thirsty and would like something to
drink. Could you help me find a nearby place?”
“I have run out of phone credit and need to
recharge it. Could you assist me in finding a
nearby place where I can do so?”

“I'm not feeling well and need assistance finding a
suitable place nearby. Could you help me?”

“I want to bring my child to play and need
assistance finding a suitable place nearby. Could
you help me?”

“I need to go to the airport and would like
assistance in finding the best way there. Could you
help me?”

“Please find the nearest restaurant with an
accessible entrance.”

“Please find the nearest clothing store with an
accessible entrance.”

“Please find the nearest apartment building with an
accessible entrance.”

“Please find the nearest office building with an
accessible entrance.”

“Please find the nearest bank with an accessible
entrance.”

“Please find the nearest upscale restaurant.”
“Please find the nearest restaurant with outdoor
seating.”

“Please find the nearest restaurant with roadside
parking.”

“Please find the nearest romantic restaurant.”
“Please find the nearest group or family-friendly
restaurant.”
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settings or greedy decoding, except for o4-mini, where we set temperature = 1.0. Experiments are
executed on machines equipped with NVIDIA RTX 4090 and A100 GPUs.

Human evaluation involved 10 participants—5 undergraduates and 5 graduates—recruited to reflect
varied cultural and gender backgrounds. They were compensated at $15/hour , in line with standard
part-time research assistant rates at our institution. Participants were selected based on both availabil-
ity and familiarity with navigation tasks; notably, three of them had previously lived in three or more
of the cities featured in our benchmark. Our annotation platform is shown in Figure[8] and it was
configured exactly like the model evaluation environment, with a maximum step limit of 35.

& CITYSEEKER

| - | 00004777 jpg
@ 00002883 pg

~ 00002172.pg
" 00002596 jpg
S 00002172jpg

6 - Please find the nearest shopping mall.

Figure 8: Developed Human Annotation Platform.

C.2 EXPERIMENT PROMPTS

CitySeeker mainly employs two structured prompt types. Both prompts require a JSON output.
Deterministic parsing is applied, and unparseable response automatically falls back to action
0. For extended experiments BCR, additional contextual signals {backtrack_prompt},
{surrounding_prompt}, and {history_prompt} are provided.

Stop prompt: The model inspects a panoramic view at the current node and outputs a single JSON
block that fuses the overall observation with its thoughts / rationale. It then decides whether to
continue (action 0) or terminate (action -1), and returns an accompanying confidence score.

Choice prompt: The model compares the perspective images generated for each navigable heading
and selects the most promising direction. Two constraints apply: (1) {perspective_prompt}
enumerates the available perspectives; (2) {direction_prompt} reveals the agent’s current
facing orientation, helping it avoid reflexively choosing a backward path.

Stop Prompt

Instruction: You are a helpful robot that analyses images according to question and helps them find the way
to reach their destination. Given the question, state whether the scene content satisfies the user’s requirement.
Output Format: {format_instructions }

Example:
Input:
[
{"type": "text", "text": "I am hungry"},
{"type": "image_url", "image_url": "..."}
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Output:
{

"overall observation": "There are residential buildings, a bookstore, and a bus station.",
"thoughts": "I am hungry, so I should find a restaurant. No restaurant here, keep going.",
"action": 0

}

If you think you have already arrived at the destination, output action -1 for stop; otherwise 0.
Now it’s your turn.

Input:

{query)

You are now at viewpoint {viewpoint_filename}.

{backtrack_prompt}

{image_content}

Instruction: You are a helpful robot that analyses multiple candidate images and selects the one that best
answers the user’s question. Return its index (A, B, C ...) together with a confidence score in [0, 1].
Output Format: {format_instructions}

Example:
Input:
[
{"type": "text", "text": "I am hungry"},
{"type": "image_url", "image_url": "..."},
{"type": "image_url", "image_url": "..."}
1
Output:
{

"perspective observation": {
"A": "A narrow side street with no shops or amenities nearby.",
"B": "A broad avenue lined with numerous office buildings, suggesting a higher chance of
restaurants and other services."
},
"thoughts": "I’m hungry and need the route most likely to lead to food. The broad avenue (B) lined
with office buildings is much more likely to have restaurants, while the narrow side street (A)
lacks any amenities. Therefore, I should head toward B."
"action": "B",
"score": 0.78

}

{perspective_prompt}. Make sure the number of observations equals the number of perspectives provided.
{direction_prompt}. Prioritise the FORWARD, LEFT, and RIGHT directions; move BACK only if no better
option exists.

You have just backtracked, please choose image index {index}.

Historical context from previous rounds: {surrounding_prompt}.

Visit trajectory so far: {history_nodes_prompt}.

{query)

You are now at viewpoint {viewpoint_filename}.
{image_content}

C.3 BENCHMARK EVALUATION RESULTS DETAILS

For completeness, we report the outcomes of each individual run along with all performance metrics
in Tables 0] [T0] and [T T] providing a more granular view of the models’ behavior.

C.4 CROSS-LINGUAL EXPERIMENT ON LINGUISTIC BIAS

To investigate whether the performance disparity between cities like New York and Beijing was due
to linguistic bias in our English-only prompts, we conducted a cross-lingual experiment. We selected
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Table 9: The overall performance of CitySeeker Framework.

Model TCE TCP-40m TCP-50m TCP-60m TCC SPD nDTW  AS
GPT-40 2.39% 14.96% 18.30% 23.07% 6.84% 1254 13697 21.17
GPT-40-mini 1.11% 9.94% 12.33% 1543%  7.56% 20197 325.17 31.62
04-mini 2.63% 14.80% 17.90% 21.80%  6.76% 130.09 156.33 22.96
Gemini-1.5-pro 1.91% 13.13% 15.43% 17.82% 748% 157.14 241.86 31.73
Gemini-2.5-pro 1.83% 13.84% 17.34% 2092%  5.01% 121.75 121.15 18.43
InternVL2.5-8B 0.95% 10.66% 14.56% 18.85%  4.38% 118.47 14043 28.88
InternVL2.5-26B 1.59% 11.06% 15.27% 19.09% 3.66% 109.53 106 23.4
InternVL2.5-38B 2.23% 14.32% 18.14% 22.28% 7.16% 136.55 169.18 25.03
InternVL3-8B 1.27% 11.85% 15.83% 2029%  4.85% 118.27 14451 30.13
InternVL3-14B 1.67% 12.41% 15.12% 19.17%  6.44% 136.17 170.81 25.66
InternVL3-38B 2.47% 15.04% 19.25% 23.95% 6.68% 115.82 12834 25.62
Qwen2-VL-7B 0.72% 7.96% 11.14% 15.27% 1.67% 111.4 11436 24.79
Qwen2-VL-72B 0.95% 9.07% 11.93% 16.79%  231% 113.01 89.52 13.13
Qwen2.5-VL-7B 0.48% 11.30% 15.83% 21.16% 430% 119.02 151.84 32
Qwen2.5-VL-32B 2.55% 17.66% 21.08% 2490%  6.21% 122.6 14695 24.55
Qwen2.5-VL-72B 1.99% 11.14% 14.56% 17.58%  724% 17492 250.22 28.63
Llama3.2-90B 0.88% 9.15% 12.49% 15.19% 3.74% 12451 123.05 18.99
Llama-4-Scout-17B 1.75% 12.01% 14.08% 18.22%  7.00% 145 211.35 31.74
Llama-4-Maverick-17B  0.88% 7.64% 10.82% 15.99% 1.59% 107.14 110.51 30.97
Llama-3.2-11B-Vision ~ 0.48% 9.15% 12.49% 16.79% 239% 11293 11244 26.07
Llava-Llama3-8B 0.32% 6.92% 10.42% 14.32% 0.80% 104.79 86.85  20.78
Llava-Qwen2-7B 0.32% 4.38% 6.92% 11.46%  0.40%  98.07 49.82 495
MiniMax01 1.51% 11.61% 13.60% 1647%  6.84% 172.05 236.55 25.7
MiniCPM-V-2.6 0.88% 8.91% 11.69% 15.12% 3.50% 12223 152.17 32.33
MiniCPM-0-2.6 1.35% 11.38% 15.51% 20.76%  6.44% 130.05 17596 32.04
Phi-3.5-Vision 0.32% 7.40% 10.90% 1472%  095% 107.11 8195 15.88
Phi-4-Multimodal 0.56%  6.36% 9.15% 13.44%  1.11% 101.06 58.05  9.05
Random Choice 0.72%  8.83% 13.92% 19.17%  3.18% 11241 12828 35
Forward Direction 024%  5.01% 7.24% 1321%  040% 100.83 9929 35
Table 10: The subcategory performance of CitySeeker Framework-Part1.
Basic POI Brand-Specific Transit Hub

Model

TCE TCP- TCC TCE TCP- TCC TCE TCP- TCC

(%) 50m(%) (%) SPD nDTW (%) 50m(%) (%) SPD nDTW (%) 50m(%) (%) SPD nDTW
GPT-40 1.1 189 3.0 1183 99.6 3.7 21.1 87 125.7 1634 54 19.6 7.1 1143 98.2
GPT-40-mini 09 123 43 203.2 323.8 3.7 21.1 87 1763 286.8 1.8 143 7.1 225.1 331.9
04-mini 1.1 202 22 129.1 1416 62 199 11.81343 177.6 1.8 125 3.6 146.3 187.9
Gemini-1.5-pro 1.9 17.6 3.0 1574 230.8 44 205 87 160.6 2552 0.0 125 5.4 131.5 1388
Gemini-2.5-pro 1.5 204 28 121.3 1109 3.7 18.0 8.1 1225 1504 0.0 16.1 0.0 109.2 106.8
InternVL2.5-8B 09 157 34 121.7 1339 12 143 3.1 1055 103.7 1.8 1.8 1.8 1193 1114
InternVL2.5-26B 1.1 204 19 1102 1059 50 124 6.8 108.7 1040 00 89 0.0 120.5 119.9
InternVL2.5-38B 1.5 17.6 2.8 1453 170.8 7.5 242 10.6 1157 136.8 0.0 143 1.8 126.3 145.2
InternVL3-8B 02 172 28 1257 1532 19 155 5.6 1073 1133 00 7.1 1.8 1185 98.0
InternVL3-14B 09 13.8 2.8 147.1 1785 44 205 8.1 112.1 1284 1.8 179 3.6 1364 151.6
InternVL3-38B 1.7 189 2.6 1222 1286 7.5 255 11.8 98.0 103.8 0.0 125 5.4 1285 114.0
Qwen2-VL-7B 09 114 09 1164 1116 06 99 1.2 1048 99.7 0.0 143 1.8 102.5 85.0
Qwen2-VL-72B 09 148 04 111.7 722 19 87 25 1146 921 00 7.1 1.8 110.6 68.6
Qwen2.5-VL-7B 04 202 1.1 121.0 1514 06 174 5.0 1125 1423 1.8 125 10.7 127.3 153.6
Qwen2.5-VL-32B 1.7 222 26 1227 132.0 3.7 304 87 1154 1650 0.0 10.7 54 1329 127.3
Qwen2.5-VL-72B 1.5 148 39 1829 251.0 25 21.7 5.0 1581 2374 1.8 143 7.1 159.8 206.0
Llama3.2-90B 09 13.6 2.2 1352 1405 0.6 124 3.1 1157 1146 1.8 1.8 1.8 124.3 106.3
Llama-4-Scout-17B 1.7 123 45 153.8 221.2 3.1 18.6 8.7 136.8 196.1 3.6 143 54 158.1 213.3
Llama-4-Maverick-17B 1.1 127 09 1133 1165 1.2 106 25 103.0 111.1 1.8 89 1.8 99.8 84.0
Llama-3.2-11B-Vision 0.9 15.1 1.1 1172 1143 0.0 143 1.2 107.0 111.4 0.0 7.1 0.0 113.2 942
Llava-Llama3-8B 04 148 0.7 1084 90.1 00 87 0.6 1034 872 1.8 54 1.8 113.0 101.6
Llava-Qwen2-7B 04 125 0.2 1022 51.7 00 25 0.0 955 493 00 3.6 0.0 929 469
MiniMax-01 22 155 5.6 171.0 2263 1.2 162 25 1662 2183 1.8 89 1.8 158.9 148.5
MiniCPM-V-2.6 0.7 125 26 1282 1532 1.2 106 3.1 120.6 1547 3.6 19.6 89 111.5 129.7
MiniCPM-0-2.6 1.3 144 26 1374 185.7 3.7 224 10.6112.6 1447 0.0 10.7 1.8 132.7 160.1
Phi-3_5-Vision 0.7 144 0.7 1120 877 00 6.8 0.6 1009 729 00 3.6 1.8 1083 67.5
Phi-4-Multimodal 09 140 0.7 1025 594 00 62 0.0 9.7 540 00 54 1.8 100.8 49.5
Forward Direction 07 133 0.2 105.0 1023 00 3.1 0.0 978 103.0 00 3.6 0.0 992 938
Random Choice 0.7 16,6 1.7 1169 1294 0.6 10.6 4.4 110.6 130.1 1.8 54 3.6 126.0 138.0

22



Under review as a conference paper at ICLR 2026

Table 11: The subcategory performance of CitySeeker Framework-Part2.

Latent POI Abstract Demand Inclusive Infrastructure Semantic Preference

Model

TCE TCP- TCC TCE TCP- TCC TCE TCP- TCC TCE TCP- TCC

(%) 50m(%) (%) SPD nDTW (%) 50m(%) (%) SPD nDTW (%) 50m(%) (%) SPD nDTW (%) 50m(%) (%) SPD nDTW
GPT-40 1.7 9.7 102 158.1 208.0 44 189 11.4129.1 1556 1.5 149 15 111.1 111.2 1.9 260 8.7 108.4 139.9
GPT-40-mini 00 74 80 23353798 09 11.8 13.62155 3744 00 7.5 45 17512827 1.0 10.6 8.7 1583 214.4
04-mini 1.1 131 9.7 1445 2014 48 167 1231333 160.1 0.0 9.0 0.0 107.5 1046 39 240 8.7 102.8 121.3
Gemini-1.5-pro 00 114 11.4183.6 291.7 3.1 145 13.61554 2487 00 6.0 6.0 1545 259.7 1.0 144 7.7 1253 2158
Gemini-2.5-pro 06 102 3.4 1392 140.7 35 206 1051187 129.6 00 9.0 0.0 111.6 81.8 1.0 135 6.7 113.1 103.2
InternVL2.5-8B 1.7 148 4.6 1258 167.8 09 184 8.8 1139 1466 0.0 105 1.5 115.8 1567 0.0 106 3.9 122.8 171.9
InternVL2.5-26B 06 108 3.4 1155 117.6 26 17.1 79 107.7 1024 00 7.5 1.5 917 816 0.0 87 1.0 107.2 1059
InternVL2.5-38B 06 131 6.8 157.7 2184 35 228 14.0132.1 169.6 00 105 6.0 1153 127.6 0.0 164 10.6 122.8 167.6
InternVL3-8B 28 142 74 1258 167.7 1.8 167 7.5 1109 1458 15 164 3.0 1154 138.1 19 154 58 107.6 141.4
InternVL3-14B 1.7 80 6.3 1493 1951 1.8 193 1051343 184.0 1.5 105 6.0 110.0 994 1.0 173 13.5122.9 1884
InternVL3-38B 06 131 5.1 129.6 163.7 3.1 233 14.0117.1 1344 15 119 4.5 1006 99.8 19 212 58 919 1183
Qwen2-VL-7B 00 46 1.1 1164 113.0 1.8 132 4.4 1044 1087 00 134 0.0 111.0 150.1 0.0 154 19 111.3 157.0
Qwen2-VL-72B 06 74 28 111.8 81.1 1.8 145 53 1144 1205 00 1.5 1.5 1120 789 0.0 154 39 117.6 1274
Qwen2.5-VL-7B 0.6 102 5.7 1294 163.7 04 136 7.5 1172 1539 00 7.5 45 1174 156.6 0.0 154 4.8 103.1 139.9
Qwen2.5-VL-32B 1.7 142 6.3 1463 1979 53 241 1051163 1559 1.5 9.0 7.5 1156 1251 1.9 202 8.7 106.0 104.7
Qwen2.5-VL-72B 00 6.8 6.8 217.0319.7 26 158 11.0160.7 231.2 9.0 119 1641393 1858 1.0 144 12.5156.7 256.3
Llama3.2-90B 06 97 3412541174 09 140 6.1 1164 1095 00 105 3.0 1049 837 19 164 87 1192 1314
Llama-4-Scout-17B 06 85 6.8 160.8 239.0 22 175 11.8132.8 201.8 0.0 179 6.0 1199 173.0 1.0 144 6.7 127.5 188.7
Llama-4-Maverick-17B 1.1  10.2 2.8 105.5 1047 04 127 22 107.0 1163 0.0 45 00 933 842 0.0 48 10 1017 1112
Llama-3.2-11B-Vision 0.0 9.7 2.8 1079 92.1 04 123 53 1147 1253 1.5 9.0 45 108.1 1266 0.0 87 29 1105 1128
Llava-Llama3-8B 00 80 I.I 102.1 804 04 88 1.3 1035 837 00 45 0.0 100.6 8.5 00 7.7 0.0 96.8 80.7
Llava-Qwen2-7B 00 28 0.6 995 514 09 6.6 13 946 474 00 3.0 0.0 90.1 455 00 1.0 0.0 96.7 49.1
MiniMax-01 00 6.8 74 213.6 320.6 1.8 149 12717222738 15 119 4.5 119.0 123.7 1.0 135 9.6 156.8 206.9
MiniCPM-V-2.6 06 9.7 2813251762 13 132 4.4 112.6 1412 00 7.5 3.0 1148 1456 0.0 87 4.8 1124 1436
MiniCPM-o0-2.6 1.1 125 8.5 143.7 1900 1.3 189 1051235 1756 0.0 119 4.5 1183 169.3 0.0 125 8.7 121.7 170.7
Phi-3_5-Vision 06 9.1 1.1 107.8 83.0 00 11.8 1.3 1034 768 00 9.0 3.0 1102 106.6 00 7.7 0.0 994 717
Phi-4-Multimodal 00 28 0.6 1041 554 13 105 4.0 1019 640 00 7.5 0.0 928 499 00 29 0.0 99.6 59.7
Forward Direction 00 23 06 994 932 00 6.6 13 101.0 1041 00 1.5 0.0 938 950 00 1.9 0.0 947 856
Random Choice 0.0 108 1.7 1149 1313 1.3 149 6.6 1089 1263 0.0 164 3.0 963 1139 1.0 135 29 101.7 123.7

representative models and ran them on tasks in both Beijing and New York, comparing performance
when using our standard English prompts versus fully localized Chinese prompts and outputs.

Table 12: Cross-lingual performance in Beijing and New York. Localizing prompts to Chinese did
not yield consistent improvements, suggesting linguistic bias is not the primary performance driver.

Model City Language TCP (%) TCE (%) TCC (%) nDTW
English 25.95 432 10.81 122.40
Beljing Chinese 23.91 3.44 8.88 120.36

Qwen2.5-VL-32B : : : :
New York  Enelish 15.42 3.48 3.48 144.78
Chinese 14.93 2.99 4.98 133.13
Beijing English 14.63 0.00 3.25 143.41
InternVL3-8B Chinese 15.45 1.63 1.63 148.51
New Yok English 15.42 2.49 6.97 136.13
EW XX Chinese 9.45 1.49 2.99 140.07
Beiiing English 7.32 0.81 3.25 345.36
GPTAowmini Chinese 7.32 2.44 2.44 217.31
New Yok English 13.43 1.00 9.45 332.95
Chinese 14.93 2.49 8.96 251.84

The results, detailed in Table [I2] show that localizing the prompts to Chinese does not provide a
consistent performance benefit, and the impact varies significantly by model and city. For instance,
the top-performing Qwen2.5-VL-32B saw its TCP decrease in both cities when using Chinese. Con-
versely, GPT-40-mini’s performance increased in New York with Chinese prompts, while InternVL3-
8B’s performance dropped sharply. This high degree of variability strongly suggests that the observed
performance gaps between cities are not primarily driven by linguistic factors but are likely rooted in
deeper visual and geographic biases within the models’ training data.
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Time Step t, Time Step t; Time Step t,,

Figure 9: Illustration of the agent’s input in the map-augmented setting. At each time step, the VLM
receives both a global navigation map, which updates with its current position, and the corresponding
first-person street panorama.

D ABLATION STUDY: THE IMPACT OF GLOBAL MAP INFORMATION

A primary design choice in CitySeeker is the focus on a VLM’s ability to navigate based on its
first-person visual perception and intrinsic world knowledge. To better isolate and understand these
intrinsic reasoning abilities, we conducted an ablation study to quantify the impact of providing
explicit global map information. This study explores an alternative, map-augmented setting where, at
every step, the VLM was provided with both its first-person street view and an interactive 2D global
map. This map dynamically updated with the agent’s current position and heading, mimicking the
experience of a human using a modern navigation application.

D.1 EXPERIMENTAL SETUP

In this setting, the agent’s prompt was augmented at each step with both a dynamically rendered 2D
map and the corresponding first-person street panorama, as illustrated in Figure[9] This interactive
map always showed the full planned route while centering on the agent’s current position and heading,
providing continuous global context just as a user would see in navigation software. The VLM was
explicitly instructed to first analyze this map to determine the geometrically optimal next step and
then select the corresponding street-view perspective. This setup was designed to test if providing
such real-time, human-like map guidance would simplify the task and improve performance.

D.2 RESULTS AND ANALYSIS

We evaluated two top-performing models, GPT-40 and Qwen2.5-VL-32B-Instruct, on the full bench-
mark test set under this map-augmented condition. The results were counter-intuitive and revealing,
as summarized in Table 3]

Table 13: Performance comparison between the map-free and map-augmented navigation settings
on the full test set. The new results reveal a trade-off where map guidance improves path following
(nDTW) but degrades task completion (TCP/TCE).

Model \ Map-Free Map-Augmented

\ TCE (%) TCP (%) nDTW \ TCE (%) TCP (%) nDTW
GPT-40 24 18.3 136.9 0.9 11.7 75.7
Qwen2.5-VL-32B-Instruct 2.6 21.1 147.0 0.2 7.6 54.4

Contrary to expectations, providing a global map at each step led to a surprising trade-off: while
path-following efficiency improved dramatically (as shown by lower nDTW scores), the models’

24



Under review as a conference paper at ICLR 2026

(<))
‘.
ol ‘ " , f"jﬁo"’ Question:
- g Overall Observation:
& "
&
Thoughts:
A’%«v et}
g, L3 4 { 5 - o 4
Action: -1
Action Direction:
Score: 098

Figure 10: An example of a typical reasoning failure from Qwen2.5-VL-32B-Instruct.

ability to complete the actual task collapsed. For both models, Task Completion (both TCP and TCE)
dropped significantly. For instance, the TCP for Qwen2.5-VL-32B-Instruct fell from 21.1% to just
7.6%, even as its path alignment score (nDTW) improved from 147.0 to 54.4. This suggests that
while the map helps the agent follow a geometric route, it severely hinders its ability to perform the
core task of semantic discovery. Our analysis of the models’ reasoning traces, an example of which is
shown in Figure [T0} revealed primary failure modes:

(1) Poor Cognition of 2D Map Geometry: The models demonstrated a weak understanding of
direction and distance on the 2D map. They frequently failed to perform correct “mental rotations”;
for instance, when their heading was North but the route required moving South, they struggled
to select the “back” perspective. Furthermore, they showed little awareness of distance, often
hallucinating that they were near the destination when still at the starting point.

(2) Over-reliance and Failure to Align: The VLMs tended to fixate on the 2D map’s abstract
geometric instructions, failing to properly align them with the labeled, first-person street views. For
instance, after inferring a “left turn” from the map, a model would still frequently select the "front"
perspective, despite being explicitly told which perspective corresponded to the “left” direction.
This demonstrates a deep failure in grounding an abstract command, even when provided with all
necessary information.

(3) Trivialization of the Core Challenge: The map effectively turned the task from one of discovery
and semantic reasoning into a simpler, but more brittle, geometric path-following exercise. The core
challenge of our benchmark—inferring that “I’m thirsty” means looking for a café and then visually
identifying one—was often ignored. The models would become “map followers”, focusing only on
the blue line and failing to perform the crucial visual exploration needed to identify the actual POI
that satisfied the user’s implicit need.

D.3 CONCLUSION

This ablation study demonstrates that simply providing a global map does not necessarily solve the
core challenges of implicit-need navigation and can even distract the VLM from the essential task of
grounding abstract language in the visual world. Furthermore, the map’s limited information and
potential for positional deviation can introduce additional sources of error. Therefore, to isolate and
rigorously evaluate the agent’s intrinsic spatial cognition and commonsense reasoning abilities,
our primary experimental results are reported under the map-free setting. This approach forces
the VLM to build and rely on its own internal mental model of the environment, providing a truer
measure of its embodied intelligence. While developing agents that can effectively fuse map and
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visual information is a valuable direction for future research, our work focuses on first establishing
this crucial baseline for the VLM’s intrinsic, perception-driven capabilities.

E BCR STUDIES DETAILS

E.1 BACKTRACKING MECHANISMS

We propose three distinct backtracking strategies to mitigate error accumulation over long trajectories
in large-scale VLN tasks in urban environments: (B1) Basic Backtracking, (B2) Step-Reward
Backtracking, and (B3) Human-Guided Backtracking.

B1. Basic Backtracking » B2. Step-Reward Backtracking C B3. Human-Guided Backtracking :

. ; Hint: im

'I - Thoughts:... Hint: ll E Guide: You should »H I
(=) Confidence Score: 0.6 Steps to Destination: 8 (=) choos‘e Peré ective 1 o
VLM VLM o : VLM

S e.g.,n=3 : j e.g ©
Backtrack Backtrack Backtrack
Start etrack End Start erecr End Start 4 rexirac End
" RIGHT, * s
= arg Eldyalas =
5= l Z s <0 a- k=1 @% ‘ “’fé‘;"”‘ el =l

i=n—k+1 /\ (de—i > dy—(i11)) Hint
i=0

Figure 11: Backtracking Mechanisms: (B1) Basic Backtracking, (B2) Step-Reward Backtracking,
and (B3) Human-Guided Backtracking.

Basic Backtracking (B1). In this basic backtracking strategy, the agent reverts to the last “trusted”
node when its internal confidence falls below a predefined threshold over several consecutive steps.
The model tracks its confidence scores during each step, and if the average confidence score over a
set number of steps drops below a threshold, the agent will backtrack to the last trusted node. This
simple strategy operates independently of any external signals. The confidence metric, stored in a
deque, is updated at each step with the current score of the model’s prediction.

The implementation process maintains a sliding window of prediction confidence scores s;;- .
over k consecutive steps (default £ = 3). Backtracking triggers when:

n

g:% Y si<6 (0=0.75) 1)

i=n—k+1

The agent reverts to the last node where the confidence s; meets or exceeds the threshold 6. The
agent reverts k steps when the average confidence 5 falls below .

Step-Reward Backtracking (B2). This mechanism evaluates progress toward the goal by replac-
ing subjective confidence scores with objective topological distance as the backtracking criterion.
Specifically, it calculates the shortest path steps d; from current viewpoint v; to target Vgge in the
graph topology G.

During each step, the agent checks whether the distance to the goal has increased. Backtracking
triggers when distances increase monotonically over k = 3 consecutive steps:

k—1
N (deei > di—is1)) )
=0

This condition ensures that if the agent’s progress toward the goal stagnates or worsens, it will
backtrack.
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Human-Guided Backtracking (B3). This strategy extends basic backtracking B1 with correc-
tive guidance, providing minimal external "hint" that suggests the best action to take next after
backtracking. The optimal action a* maximizes path consistency with the shortest path to vierget
through:

a* = argmin E[d;1|a: = a] 3)
acAt

where At denotes available actions at backtracked node vy, and d;y; represents the expected graph-
theoretic distance after taking action a.

The guidance integrates by dynamically aligning the shortest path directions with navigable headings
through topological analysis. The action that maximizes path consistency is selected via:

¢(a) =10, @optimal : COS(Qa - gpath) 4)

where 0, is the heading direction for action a, and © ,ptimai is the set of optimal path headings.
This external guidance helps ensure that the agent’s action maximizes path consistency and progress
toward the goal.

E.2 SPATIAL COGNITION ENRICHMENT

In this section, we explore the potential of providing richer spatial cues to an agent to enhance global
awareness and reduce fragmented decision-making during navigation tasks. Specifically, we compare
two distinct methods of presenting spatial information: Topology Cognitive Graph (C1) and Relative
Position Maps (C2). The goal is to investigate how these different representations influence the
agent’s ability to understand its environment and effectively plan routes.

We investigate whether supplying richer spatial cues can bolster global awareness and reduce frag-
mented decision-making by synthesizing multi-model trajectory data through GPT-4.1 as a cognitive
summarizer. Our methodology processes ground truth paths and generated trajectories from GPT-40
and Gemini2.5-pro (containing both correct segments and historical errors) for each navigation task.
GPT-4.1 analyzes these heterogeneous trajectories using specialized prompts to produce structured
spatial representations, which are then integrated into the initial input for downstream VLMs.

Ground truth Q O (@)
o- - .O_.O l } 2 O g o
§=.0-—0—0 o 1l —a O 0+0.0
TS O—O { F el O 0.0
Qwen2.5-VL-72B O 0s0 O S

.............. -O—0O 090 o o o

Figure 12: Spatial Cognition Enrichment: (C1) Topology Cognitive Graph, and (C2) Relative Position
Maps.

(C1) Topology Cognitive Graph. In this approach, the VLM is provided with a topological graph
of recently traversed segments, which explicitly defines the connectivity between various locations.
The graph consists of nodes representing locations and directed edges that signify possible actions or
transitions between those locations. Each trajectory is annotated with explicit relationships between
nodes, forming a clear and structured map of the environment. This graph can be seen as an abstracted
representation of the agent’s route, where the agent is instructed to focus on the connectivity between
locations. This forces VLM to ground decisions in connectivity patterns, reducing exploration of
invalid paths.

An example of how this spatial information is represented is shown in the prompt:
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Topology Cognitive Graph Generation Prompt

Given the following trajectories with the same starting point for the same question, connect them and
represent the relationships between the nodes in a graph format.
Example:

Node: 00002929.jpg

**Relationships:**

- ‘00002929.jpg” — **action 0** — ‘00002930.jpg’

- ‘00002929.jpg’ — **action 1** — ‘00002931.jpg’

Node: 00003210.jpg

**Relationships:**

- ‘00003210.jpg” — **action 0** — ‘00003211.jpg’

- ‘00003210.jpg’ — **action 1** — ‘00003212.jpg’

Node: 00001111.jpg

**Relationships:**

- ‘00001111.jpg” — **action 0** — ‘00001112.jpg’.

(C2) Relative Position Map. In contrast to the topology-based approach, the Relative Position Map
emphasizes the spatial orientation of locations without directly specifying connectivity. Instead of
relying on an explicit graph structure, the VLM receives approximate directional cues that describe the
relative positions of recently visited nodes. These cues include terms such as “front”, “back”, “left”,
“right”, and “slightly left/right”, along with approximate distances between nodes. This approach
provides the VLM with a more intuitive understanding of the space, allowing it to navigate with a
flexible mental model of its surroundings, albeit with less precision in terms of connectivity.

An example of the relative directional information provided to the VLM is:

Relative Position Map Generation Prompt

Given the following trajectories with the same starting point for the same question, describe the spatial
relationships between the key nodes. Emphasize the relative directional orientation (such as front, back, left,
right, slightly left, slightly right, etc.) and relative distances. Note that, not all nodes are directly connected,
so focus on the relative spatial relationships rather than direct connections.

Example:

00001190.jpg — 00001192.jpg

- **Direction**: Right

- **Relative Position**: Distance: 20-30 meters

00001192.jpg — 00001204.jpg

- **Direction**: Slightly right

- **Relative Position**: Distance: 30-50 meters

00001204.jpg — 00001539.jpg

- **Direction**: Slightly left

- **Relative Position**: Distance: 50-70 meters.

This method captures the VLM’s internal spatial sense, where it perceives locations in terms of
relative proximity and directional alignment rather than as distinct, connected points. The benefit
of this approach is that it fosters a more adaptable navigation strategy, particularly in dynamic or
complex environments where exact node connectivity is not always available or necessary.

E.3 MEMORY-BASED RETRIEVAL

To address the issue of “fragmented memory”, we introduce a memory-based retrieval mechanism
based on the Neo4j graph database. This mechanism consists of three core components: (R1)
Topology-based Retrieval, (R2) Spatial-based Retrieval, and (R3) Historical Trajectory Lookup. This
architecture enables memory formation across multiple reasoning iterations while mitigating error
propagation.

Topology-based Retrieval (R1). Each navigation query undergoes n sequential rounds of execution.
During rounds 1 to n — 1, the agent explores the environment without memory retrieval, with all
trajectories and node metadata (e.g., observations, thoughts, decisions, and confidence scores) stored
in Neo4j. In the final round n, the agent activates memory retrieval mode, dynamically accessing
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Figure 13: Memory-Based Retrieval: (R1) Topology-based Retrieval, (R2) Spatial-based Retrieval,
and (R3) Historical Trajectory Lookup.

historical cross-round information. At each navigation step, the agent queries a local subgraph
spanning h-hop topological connections (default h=1) through Neo4;j’s graph traversal operations.
The returned subgraph contains:

Nodes with cumulative visitation counts and n — 1 round metadata (thoughts, previous/next actions,
directional choices, confidence scores); Edges annotated with historical transition patterns across
multiple rounds (successful/failed attempts, directions). For example, a node might reveal that
previous rounds chose "action 1" (right turn) when transitioning to a specific neighbor. This topo-
logical memory enables the agent to prioritize frequently successful paths while avoiding recurrent
error-prone branches.

Spatial-based Retrieval (R2). Complementing topological constraints, this mechanism retrieves
localized subgraphs based on Euclidean spatial proximity. At each navigation step in the final round
n , the agent queries all nodes and relationships within a configurable radius (default: 50 meters)
from the current position using Neo4j’s geospatial index. This dual focus on geographic density and
historical usage patterns allows the agent to weigh physically closer options while avoiding previously
failed paths. By jointly modeling metric space and graph topology, R2 mitigates the "tunnel vision"
of pure topological approaches, particularly in irregular urban layouts where physical proximity often
outweighs structural connectivity.

Historical Trajectory Lookup (R3). This mechanism introduces short-term working memory
by dynamically appending the agent’s recent navigation history within the current round. At each
time step ¢, the mechanism automatically appends the trajectory segment from the preceding n steps
(n = 3 by default), including: (1) spatial context - filenames, coordinates, and headings of visited

nodes; (2) action traces - movement directions (e.g., “turn left”, “proceed straight”) and associated
confidence scores; (3) decision rationale - preserved observations and reasoning from prior steps.

Unlike cross-round memory in R1/R2, R3 operates through a sliding temporal window that exclusively
tracks intra-episode navigation patterns. At step ¢, the ¢ — 1 to ¢ — n entries get injected into the
VLM’s input context through template-based natural language formatting, preserving recent decision
logic. This short-term memory gets purged upon round completion through automated attribute
pruning in Neo4j, ensuring no residual traces affect subsequent trials.

E.4 PERFORMANCE OF COMBINED BCR STRATEGIES

To explore the synergistic potential of our proposed strategies, we conducted a preliminary experiment
where we combined several effective mechanisms (B2, B3, C1, R3). The results, shown in Table @
indicate a positive but not strictly additive effect. For instance, the combined strategies boosted
Qwen2.5-VL-32B’s TCP from 19.9% to 27.38%. This suggests complex interactions between the
different cognitive tools. A full exploration of optimal strategy combinations is a promising direction
for future work.

F VLM GENERATION EXAMPLES
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1566

1567 :

1568 City: London Category: Basic POI

1569

1570 N . .

Please find the nearest restaurant.

1571

1572

1573

1574

1575

1576

1577

1578 x

1579 Current Position: ViewP ointPosition(filename='00004020 pg’, longitude=-0.165934 529, latitude=51 48951679)
Overall Observation: The scene contains residential buildings and a small alley, but no visible restaurants.

1580 Perspective Observation: {"A": "This perspective shows a narrow alley with a van in front, which could lead to a more open
area.", "B": "This perspective shows a dead-end with bins and no visible path forward."}

1581 Thoughts: | am looking for a restaurant. This image shows a residential area with no visible restaurants. | should keep moving
to find a restaurant.

1582 Action: 0
Action Direction: Step Forward

1583 Score: 0 85

1584

1585

1586

1587

1588

1589 oA\ -l | ,

1590 S\L;rrentgosition: ViewP cintPosition(filename='00003878 jpg’, longitude=-0.165809952, Iatitu%ef=51 48893128)

erall Observation: The image shows a street with buildings, but there is no clear indication of a restaurant here.

1591 Perspective Observation: {"A": "This perspective is on your FRONT, showing a small street leading forward with possible
stores.", "B": "This perspective is on your BACK, showing a continuation of the street with visible buildings."}

1592 Thoughts: | am trying to find a restaurant, but this image does not seem to show any signs of a restaurant. | should continue
looking.

1593 Action: 0
Action Direction: Step Forward

1594 Score: 085

1595

1596

1597

1598

1599

1600 Current Position: ViewPointPosttion(filename=00003579 jng’, longitude=-0.165733681, latitude=51 48883251)

1601 Overall Observation: There is a bookstore (Waterstones) and some residential or commercial buildings visible in this image,
but no restaurants.

1602 Perspective Observation: {"A": "This perspective is on your FRONT with visible shops and potential restaurant options.", "B":
"This perspective is on your BACK and shows a quieter street with fewer visible amenities."}

1603 Thoughts: | am looking for the nearest restaurant, but there is no restaurant visible in this image. | should continue searching
to find a suitable location.

1604 Action: 0
Action Direction: Step Forward

1605 Score: 0.9

1606

1607

1608

1609

1610

1611 Current Position: ViewP ointPosition(filename=00003627 jpg’, longitude=-0.165657411, latitude=51 4887 3373)
Overall Observation: There is a restaurant in this image.

1612 Perspective Observation: {"A": "This perspective is on your RIGHT and shows a street with retail stores and pedestrians.", "B":
"This perspective is on your LEFT and shows a street with some restaurants and a seating area visible.", "C" "This

1613 perspective is on your BACK and shows a quieter street with fewer visible restaurant options."}

1614 Thoughts: | am looking for a restaurant. In this image, there is a restaurant visible, so | have arrived at the destination and can
stop here.
Action: -1

1615 Action Direction: Stop

1616 Score: 0.9

1617

1618

1619

Figure 14: Further illustrative examples drawn from the CitySeeker benchmark.
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1620
1621 =
1622 City: London Category: Brand-Specific
1623
1624 “ . "
Please find the nearest Starbucks.
1625
1626
1627
1628
1629
1630
1631
1632
1633 Current Position: ViewP ointPosition(filename='00003660 jpg’, longitude=-0.167807813, latitude=51 48855038
Overall Observation: There are buildings under development or construction, but no visible Starbucks or coffee shop in this
1634 image.
Perspective Observation: {"A": "This perspective is on your BACK. It shows a closed area with loading docks and no visible
1635 signs of Starbucks.", "B": "This perspective is on your FRONT. It shows a pathway with buildings and a potential way forward."}
1 Thoughts: | am looking for the nearest Starbucks, but | do not see any Starbucks or coffee shop in this image. This area
636 appears to have construction and buildings, but no Starbucks is visible.
1637 Action: 1
Action Direction: Step Forward
1638 Score: 095
1639 aoo
1640
1641
1642 J =
1643 y 'W “ ‘
1644 - -
Current Position: ViewP ointPosition(filename='00000685 jpg’, longitude=-0.166612021, latitude=51 48834625)
1645 Overall Observation: There are various shops, including clothing stores and a Five Guys restaurant, but no Starbucks is visible.
1646 Perspective Observation: {"A": "This perspective is on your BACK with visible shops and a calm street.", "B": "This perspective
is on your FRONT with visible shops, a bus, and more activity."}
1647 Thoughts: | am looking for a Starbucks. From this image, | can see stores and shops, but no Starbucks is visible. | should
continue searching for the destination.
1648 Action: 1
Action Direction: Step Forward
1649 Score: 0 9
1650
1651
1652
1653
1654
1655 Current Position: ViewP ointPosition(filename=00000684 jpg’, longitude=-0.1664 70288, latitude=51 48840684)
Overall Observation: There are various shops and restaurants, including Five Guys, but no Starbucks is visible in this image.
1656 Perspective Observation: {"A": “There seems no visible Starbucks on the both sides of the road.”, "B": "There is no visible
Starbucks in this direction."}
1657 Thoughts: | am looking for the nearest Starbucks. In this image, | can see stores like Five Guys and other shops, but there is
no visible Starbucks. | should continue searching to find a Starbucks.
1658 Action: 0
Action Direction: Step Forward
1659 Score: 095
1660
1661
1662
1663
1664
1665 Current Position: ViewP ointPosition(filename=0000059 [pg’, longitude=-0.166328556, latitude=51 48846743)
1666 Overall Observation: There is a Starbucks in this image.
Perspective Observation: {"A": "This perspective is on your BACK and shows a street but no clear Starbucks.", "B": "This
1667 perspective is on your FRONT and clearly shows a Starbucks on the right side of the street.", "C": "This perspective is on your
LEFT and also shows a Starbucks but appears further away."}
1668 Thoughts: | am looking for a Starbucks. There is a Starbucks visible in this image, so | have arrived at the destination and do
not need to continue further.
1669 Action: -1
Action Direction: Stop
1670 Score: 0 95
1671
1672
1673

Figure 15: Further illustrative examples drawn from the CitySeeker benchmark.
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1674

1675 .

1676 City: New York Category: Latent POI

1677

1678 "Please find the nearest restroom."

1679

1680

1681 =3

s — VLM: GPT-4o

1683

1684

1685

1686 PSR . )
Current Position: ViewP ointPosition(filename='00000340 pg’, longitude=-73.98978952, latitude=40.74574025)

1687 Overall Observation: There are various commercial buildings, shops, and vehicles visible in this image, but no clear indication
of a restroom.

1688 Perspective Observation: {"A": "This perspective is on your BACK. The view shows a street with buildings and parked

vehicles.", "B": "This perspective is on your FRONT. The view shows a street with shops, parked cars, and some visible

1689 storefronts."}

1690 Thoughts: | am looking for the nearest restroom. From this image, | do not observe any signs or indications of a restroom, so |
need to continue searching.
Action: 1
1691 Action Direction: Step Forward
1692 Score: 0.85
1693 -
1694
1695
1696
1697
1698 Current Position: ViewP ointPosition(filename='00000336 pg’, longitude=-73.9903 7471, latitude=40.74598407)
Overall Observation: The image shows a busy urban street with commercial buildings, stores, and a McDonald's, but no visible
1699 restroom or restroom signs.
Perspective Observation: {"A": "This perspective shows a street with parked cars and some buildings, but no clear indication of
1700 arestroom.", "B": "This perspective shows a busy intersection with visible signage and potentially more restroom options."}
Thoughts: | am looking for the nearest restroom. There is no visible restroom in this image, so | should continue searching to
1701 find one.
Action: 1
1702 Action Direction: Step Forward
1703 Score: 0.85
1704
1705
1706
1707
1708 Current Position: ViewP ointPosition(filename=00000145 jpg’, longitude=-73.99052101, latitude=40.74604502)
1709 Overall Observation: This image shows an urban intersection with buildings, vehicles, and pedestrians, but no visible restroom
signs or faciities.
Perspective Observation: {"A": "This perspective is on your FRONT LEFT and shows a busy street with buildings and cars.",
1710
"B": "This perspective is on your FRONT and highlights a McDonald's which may have restrooms.", "C": "This perspective is
1711 on your BACK and shows a street with pedestrians and buildings, but it is not the preferred direction.", "D": "This perspective
is on your FRONT_RIGHT and displays a McDonald's which may have restrooms."}
1712 Thoughts: | need to find a restroom. From this image, | do not observe any specific signs or facilities indicating the presence of
a restroom. Therefore, | should continue searching.
1713 Action: 1
Action Direction: Step Forward
1714 Score: 0.9
1715
1716
1717
1718
1719
1720 Current Position: ViewP ointPosition(filename=00000144 jpg’, longitude=-73.9906 5504, latitude=40.74610284)
Overall Observation: There is a McDonald's in this image, which might have a restroom inside.
1721 Perspective Observation: {"A": "This perspective shows a wide street with several buildings, including possible stores or

restaurants.", "B": "This perspective shows a narrower street with a McDonald's visible, which might have restrooms

1722 available."}

1723 Thoughts: | am looking for the nearest restroom. From this image, | see a McDonald's, which might have a restroom inside. |
should check it out as it could fuffill my requirement.

1724 Action: -1
Action Direction: Stop

1725 Score: 0 85

1726

1727

Figure 16: Further illustrative examples drawn from the CitySeeker benchmark.
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1728

1729 . .

1730 City: Shanghai Category: Abstract Demand

1731

1732 . .
1783 | want to work with Wi-Fi and need assistance $& g

finding a suitable place nearby. Could you help me?"

S = - ._'_
1734 S

1735 =
1736 — VLM: Qwen2.5-VL-72B-Instruct
1737
1738
1739
1740 - . e
1741 Current Position: ViewP ointPosition(filename='00004009 pg’, longitude=121.5061697, latitude=31.27526108)
Overall Observation: This image shows a wide street with various buildings, including commercial establishments and a bank.
1742 There are no visible signs of Wi-Fi availability or specific places like cafes or libraries that are typically known for Wi-Fi access.
Perspective Observation: {"A": "There are residential or commercial buildings on the left side of the street.”, "B": " On the right
1743 side of the street, there are more buildings, including what appears to be a larger commercial structure.”}
Thoughts: Since the goal is to find a suitable place with Wi-Fi and there are no clear indicators of such places in the image, it
1744 would be best to continue exploring the area.
Action: 1
1745 Action Direction: Step Forward
1746 Score: 085
1747 e
1748
1749
1750
1751

Current Position: ViewP ointPosition(filename='00004008 jpg ', longitude=121.505673, latitude=31.27508587)
1752 Overall Observation: A street view with urban buildings, vehicles, and a bus. No specific places with Wi-Fi are visible.
Perspective Observation: {"A": " The left side of the street has older buildings and less commercial activity, making it less

1753 likely to have public Wi-Fi.", "B": "The right side features a modern building with a sign, suggesting a commercial area like a
1754 mall or office space, where public Wi-Fiis more common."}
Thoughts: The scene shows a busy street with buildings, cars, and a bus. There are no visible signs of a Wi-Fi-enabled place
1755 like a cafe or a library. Since the user is looking for a place to work with Wi-Fi, it's best to continue searching.
Action: 1
1756 Action Direction: Step Forward
Score: 0.85
1757
1758
1759
1760
1761 - - ; -
1762 Current Position: ViewP ointPosition(filename=00004024 [pg’, longitude=121.505507 5, latitude=31.27 5027 46)
Overall Observation: There is a wide road with multiple lanes, bordered by trees and modern buildings. There are no visible
1763 signs indicating the presence of Wi-Fi hotspots or cafes.
Perspective Observation: {"A": "This perspective shows a clear path forward with buildings and shops on either side, which
1764 could be potential places with Wi-Fi.", "B": " This perspective shows a backward view, which is less likely to lead to a place
1765 with Wi-Fi since it's already passed."}
Thoughts: Since there are no visible signs of a place with Wi-Fi, such as cafes or public Wi-Fi zones, | should continue
1766 exploring the area by moving forward to find a suitable place.
Action: 0
Action Direction: Step Forward
1767 Score: 095
1768
1769
1770
1771
1772
1773 Current Position: ViewP ointPosition(filename=00004025 jpg ', longitude=121.5053419, latitude=31.27496906)
1774 Overall Observation: There is a Starbucks Coffee shop visible in this image, which typically offers WiFi for customer.
Perspective Observation: {'A": "The FRONT image displays a wide street with buildings and potential Wi-Fi spots ahead.",
1775 "B": "This perspective is on your LEFT and shows a street with some restaurants and a seating area visible." "C" "The
BACK image is not visible, but stepping BACK is discouraged"}
oughts: Since the goal is to find a place wi Fi, and a Starbucks fee shop is asuitable place for this need, | shoul
177 Thoughts: Since th lis to find a pl ith WkFi, and a Starbucks Coffee shop i itable place for this need, | should
stop here.
1777 Action: -1
Action Direction: Stop
1778 Score: 095
1779
1780
1781

Figure 17: Further illustrative examples drawn from the CitySeeker benchmark.
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Table 14: Performance with combined BCR strategies.

Model Baseline TCP % Combined BCR TCP %
InternVL3-8B 15.0 18.96
Qwen2.5-VL-32B 19.9 27.38

G ERROR ANALYSIS

Error Type Distribution Comparison

Visual Observation Errors Under/Overthinking Termination/Overshooting
Observation-Think Mismatch Critical Decision Errors Instruction Parsing Errors

Qwen2.5-VL-32B Error Distribution InternVL3-8B Error Distribution

6.3%
° o 14.6% LBz
22.2%

17.7% 10.1%
5.7%

4.4%

24.7%

22.8% 32.9%

27.8%

Figure 18: Error Distribution of Primary Error Types in Qwen2.5-VL-32B and InternVL3-8B for
Embodied Urban Navigation.

To identify the main bottlenecks in VLMs for Embodied Urban Navigation with implicit human
needs, we thoroughly examine and analyze the primary error patterns observed in the 300-sample
mini-size subset of the CitySeeker benchmark. By manually inspecting model outputs — including
observations, rationales and actions, with corresponding street-view images, we categorize failure
modes into six distinct types (visually exemplified in Figure [I9):

(1) Visual Observation Errors: These arise from failure to recognize target or misidentification of
critical visual cues (e.g., overlooking signage while fixating on irrelevant street objects).

(2) Observation—Think Mismatch: Even when the VLM correctly observes the target, the rationale
diverges from the observation. For example, the model visually identifies a target restaurant but fails
to prioritize advancing toward it in its rationale.

(3) Underthinking or Overthinking: Underthinking is particularly evident when the model lacks
knowledge of non-primary functional affordances of a POI. For example, while recognizing Starbucks,
the model ignores its potential to provide Wi-Fi, leading to a missed target. Overthinking might draw
unfounded conclusions from limited evidence, leading to incorrect conclusions, such as assuming a
store labeled ‘CVS Pharmacy’ is a convenience store.

(4) Critical Decision Errors at Waypoints: Incorrect routing choices at pivotal junctions, leading to
irreversible deviations. This occurs when the target is observed within the right field of view, yet the
model erroneously selects the leftward path, or when perceptual inaccuracies lead to the choice of a
non-viable route that cannot reach the target.

(5) Premature Termination or Overshooting: Over-anticipatory stopping before reaching targets or
passing by the target leads to not reaching or missing the target.

(6) Instruction Parsing Errors: Generation of malformed JSON outputs violating predefined action
schemas (e.g., missing "action" fields), rendering trajectories unexecutable.
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1836
1837
1838 Visual Observation Errors
1839
1840 A End
1841 —— Real Path \O/isual s
b tion E|
1842 Pred. Path &y
1843 + Optimal path .
1844 + Detour path
1845 [% Failed path
1846 Question: "Please find the nearest parking lot.",
1847 Overall Observation: The scene depicts a busy city intersection with tall buildings. There is an open
area with a bus and other vehicles parked, which appears to be a parking lot.
1848 Perspective Observation: {"A": "The BACK view shows a row of commercial buildings.", "B": "The RIGHT view
shows a straight road with urban buildings on both sides.", "C": "The FRONT view clearly shows a blue and
1849 yellow bus parked in a designated paved area, suggesting the presence of a parking lot.", "D": "The LEFT view
1850 shows the street leading away from the intersection."}
S Thoughts: The visual information from perspective C shows a designated area with parked vehicles,
1851 including a bus. | identify this as the target parking lot. Therefore, | have reached the destination.
Action: -1
1852 Action Direction: Stop
S : 0.95
1853 core
1854 )
1855 ~— VLM: GPT-4o City: Beijing — —
Trajectory (qidx: 32) Underthinking or Overthinking
1856
QO Start =1
1857 :
o /\ End
1858 ’
859 — Real Path
es Pred. Path gndgﬁhiﬂ}(ing/
1860 verhinking
. + Optimal path % i
- ong
V' Detour path ~ [romA=TmmmamrT 5,
1862 )
. Failed path
1863 ) ) )
Question: "Please find the nearest Apple or Huawei.",
1864 Overall Observation: The image shows a city street intersection with large, modern buildings on both
1865 sides. There is a prominent building with a large sign.
Perspective Observation: {"A": " The FRONT view features a large, modern building with glass windows and a
1866 sign that is partially visible, resembling a tech store style.”, "B": " The BACK view shows a road leading towards
a cluster of commercial buildings in the distance."}
1867 Thoughts: The building on the FRONT has a modern design often associated with tech companies, and
1868 the partially visible sign could be related to Huawei. | will infer that this is the correct direction.
Action: 0
1869 Action Direction: Step Forward
Score: 0.88
1870
e = VLM: GPT-4o City : Beij - :
1872 Trajectory ( Decision Errors at Waypoints
1873 O start |
1874 A End e ==t
e \, Decision Errors
1875 —— Real Path \at Waypointso -
1876 Pred. Path A | ..g
i ave |
1877 + Optimal path i
1878 + Detour path =] -
1879 | T S — S —
1880 Question: "Please find the nearest Adidas or Nike.",
1881 Overall Observation: The scene is a complex urban intersection with multiple diverging roads. Tall
modern buildings surround the area, and there is a mix of commercial and office structures.
1882 Perspective Observation: {“A”: “The LEFT view shows a narrower side street lined with smaller shops and
trees.”, “B”: “The FRONT view leads down a wide, main avenue with heavy traffic and large office buildings in
1883 the distance.”, “C”: “The BACK view leads down a wide avenue. The buildings in the distance appear to become
more sparse."}
1884 Thoughts: | need to find a sportswear store like Adidas or Nike. The Perspective B seems to lead
1885 towards a major commercial district with large buildings, which is a likely location for flagship stores.
Action: 1
1886 Action Direction: Step Forward
1887 Score: 0.90
1888
1889 Figure 19: Qualitative examples of primary VLM failure modes in CitySeeker.
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Figure [I8 compares two representative VLMs - Qwen2.5-VL-32B and InternVL3-8B - revealing
distinct error profiles. Both exhibit significant critical decision errors (Type 4: 22.8% vs. 24.7%),
highlighting persistent challenges in spatial reasoning at navigation waypoints. The larger Qwen
model demonstrates stronger visual perception (Type 1: 14.6% vs. 22.2%) but suffers more under-
thinking/overthinking errors (Type 3: 32.9% vs. 27.8%). This discrepancy likely stems from the
model’s lack of human-like urban living experience, which limits its ability to discern primary/sec-
ondary affordances of POIs. Additionally, the model occasionally draws unfounded conclusions
from sparse visual evidence - potentially due to overcompensation for missing contextual knowledge.
Conversely, InternVL3-8B struggles with instruction parsing (Type 6: 10.8% vs. 6.3%) and basic
visual recognition, with more misidentifications of street POIs and hallucination. This contrast reveals
a scale-driven tradeoff: larger models develop nuanced visual grounding but introduce complex
reasoning failures, while smaller models face fundamental perception and instruction-compliance
challenges.

Deeper Dive: Human vs. VLM Failure Modes Through analysis of error trajectories and participant
interviews, a deeper analysis of failure modes reveals a crucial distinction between human and VLM
bottlenecks. As summarized in Table VLM failures are predominantly cognitive, stemming
from a lack of commonsense knowledge. In contrast, the dominant failure mode for humans is
strategic. Faced with unfamiliar environments and a strict step limit, humans possess the necessary
world knowledge to understand the task, but often falter in devising an optimal exploratory plan.
This manifests as inefficient, intuition-driven exploration—leading to forgotten paths and repeated
loops—or poor management of the step budget, such as overshooting a valid target.

Table 15: Detailed comparison of primary failure modes between humans and the top-performing

VLM (Qwen2.5-VL-32B).

Failure Mode Cate-
gory

Human Error Profile & Rationale

Model Error Profile & Rationale
(Qwen2.5-VL-32B)

Strategic & Naviga-
tional

(e.g., Termina-
tion/Overshooting)

Cognitive Failures
(e.g., Under/Over-
thinking)

Visual & Execution
Errors

(e.g., Visual, Parsing,
Mismatch)

60.7% (Primary Human Failure)
Humans understand the goal but strug-
gle with devising an optimal ex-
ploratory plan. Failures are intuition-
driven and stem from:

1. Inefficient Exploration: Partici-
pants noted that poor signage or visu-
ally similar streets often led to confu-
sion and forgetting previously explored
paths, causing inefficient loops that ex-
haust the 35-step limit.

2. Overshooting: A human might find
a valid target but continue walking past
it “just to see what’s around the next cor-
ner,” a reasonable exploratory behavior
that fails under a strict step budget.

19.1%

Humans rarely fail basic inferences. Er-
rors occur on nuanced tasks, such as
failing to consider a convenience store’s
secondary function of recharging phone
credit, or overthinking whether a restau-
rant is truly “upscale”.

20.2%

In an unfamiliar city and under pressure,
human perception can falter. This is
exacerbated by language barriers (e.g.,
non-native participants processing En-
glish storefront signs) and cultural un-
familiarity with local brands, leading to
overlooked or misidentified cues.

40.5%

The model’s errors here are less strate-
gic. It does not suffer from imperfect
memory but can still misjudge distance
to a visible target or fail to recognize it,
leading to premature stops or passing
the goal.

32.9%

The model’s key bottleneck. It strug-
gles to infer non-obvious functions of
POIs and lacks the real-world experi-
ence to make flexible logical leaps, re-
vealing a critical gap in commonsense
reasoning.

26.6%

The model is prone to a mix of errors:
misidentifying visual cues (14.6%), fail-
ing to adhere to the output format
(6.3%), or having a disconnect between
its visual observation and textual ratio-
nale (5.7%).
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This contrast reveals a fascinating trade-off. An Al agent has a theoretical advantage with its perfect
memory, which should prevent the inefficient looping that humans are prone to. However, this
is counteracted by its lack of deep, intuitive commonsense. While humans possess the necessary
real-world knowledge to understand the implicit needs, they are hampered by imperfect memory
and an intuition-driven approach to planning that can be inefficient in unfamiliar environments. This
suggests that future work should focus not just on improving VLM perception, but on endowing them
with more robust, human-like intuitive and strategic reasoning capabilities.

H LIMITATIONS AND FUTURE WORK

Despite the advancements enabled by CitySeeker, our study highlights several limitations of current
VLMs in embodied urban navigation, which in turn point to promising directions for future research.

First, generalization and adaptability to specific contexts remain challenges. Physically, while
models perform modestly in familiar urban layouts, their effectiveness declines in irregular road
networks due to training data biases. Semantically, our framework currently relies on foundational
spatial consensus and does not yet account for personalized user preferences or historical behavioral
patterns, limiting the model’s ability to provide tailored assistance.

Second, long-context reasoning and memory retention are key bottlenecks. Long-horizon naviga-
tion requires processing extensive sequences of visual and textual information, which consumes a
large number of tokens. This poses a challenge for models with context length limitations and can
lead to the forgetting of crucial information from earlier steps, resulting in inefficient paths with loops
and repeated errors.

Third, our ablation study on map-augmented navigation (Appendix D) revealed a fundamental weak-
ness in aligning 2D maps with first-person street views. The models’ poor cognition of orientation
and distance on the 2D map often led to confusion and hallucinations, degrading performance rather
than improving it. This highlights a critical gap in the models’ ability to fuse these two distinct modes
of spatial information.

Lastly, real-time adaptability is limited by computational inefficiencies. The significant latency
in VLM decision-making, stemming from redundant visual processing, currently restricts practical
deployment in real-time applications.

Addressing these limitations requires a multi-faceted approach. Future work should focus on:

* Enhancing Commonsense and Affordance Reasoning: A key area for improvement is
the model’s understanding of functional affordances (e.g., that a café provides Wi-Fi), a
weakness particularly evident in smaller models. New training methodologies could focus
on enriching models with this kind of real-world, commonsense knowledge.

* Integrating Personalized Behavioral Priors: While CitySeeker focuses on universal
common sense, real-world navigation is often personalized. A promising future direction is
to incorporate behavioral priors derived from GPS traces or check-in data. Once a VLM
demonstrates robust spatial common sense, these empirical signals can be used to rank valid
candidates, moving from general capability to personalized assistance.

e Improving Geometric and Orientational Understanding: Future research should ex-
plicitly target the model’s ability to understand orientation and perform “mental rotations”,
bridging the gap between abstract 2D map representations and the first-person visual world.

* Developing More Efficient Architectures: Innovations in persistent memory architectures
and more efficient inference frameworks are needed to tackle the challenges of long-horizon
reasoning and real-time performance.

I LLM USAGE STATEMENT

In preparing this manuscript, LLM was used as a general-purpose assistive tool. Its application
was confined to the final stages of writing, specifically for minor polishing and refinement of the
English prose to improve clarity and readability. The LLM did not contribute to the research ideation,
experimental methodology, data analysis, or the generation of results and conclusions in this work.
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