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Abstract

A major problem in motor control is understanding how the brain plans and executes
proper movements in the face of delayed and noisy stimuli. A prominent framework
for addressing such control problems is Optimal Feedback Control (OFC). OFC
generates control actions that optimize behaviorally relevant criteria by integrating
noisy sensory stimuli and the predictions of an internal model using the Kalman
filter or its extensions. However, a satisfactory neural model of Kalman filtering
and control is lacking because existing proposals have the following limitations:
not considering the delay of sensory feedback, training in alternating phases, and
requiring knowledge of the noise covariance matrices, as well as that of systems
dynamics. Moreover, the majority of these studies considered Kalman filtering
in isolation, and not jointly with control. To address these shortcomings, we
introduce a novel online algorithm which combines adaptive Kalman filtering with
a model free control approach (i.e., policy gradient algorithm). We implement this
algorithm in a biologically plausible neural network with local synaptic plasticity
rules. This network performs system identification and Kalman filtering, without
the need for multiple phases with distinct update rules or the knowledge of the
noise covariances. It can perform state estimation with delayed sensory feedback,
with the help of an internal model. It learns the control policy without requiring
any knowledge of the dynamics, thus avoiding the need for weight transport. In
this way, our implementation of OFC solves the credit assignment problem needed
to produce the appropriate sensory-motor control in the presence of stimulus delay.

1 Introduction

The sensorimotor control system has exceptional abilities to perform fast and accurate movements
in a variety of situations. To achieve such skillful control, this system faces two key challenges: (i)
sensory stimuli are noisy, making estimation of current state of the system difficult, and (ii) sensory
stimuli is often delayed, which if unaccounted, results in movements that are inaccurate and unstable
[1]. Optimal Feedback Control (OFC) has been proposed as a solution to this control problem [2, 3].
OFC approaches these problems by building an internal model of the system dynamics, and using
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this internal model to generate control actions. OFC often employs Kalman filtering to optimally
integrate the predictions of this internal model and the noisy/delayed sensory stimuli.

Because of the power and flexibility of the OFC framework, biologically plausible neural architectures
capable of building such internal models has been under active investigation. Specifically, earlier
works used attractor dynamics implemented through a recurrent basis function network [4] or a
line attractor network [5] to implement Kalman filters. Kalman filtering and control has also been
implemented through different phases of estimation, system identification and control [6], and more
recently, using a particle filtering method for Kalman filtering [7].

Nonetheless, these works suffer from major limitations. Importantly, none of these considered
that sensory feedback is delayed [4, 6, 5, 7, 8], although it has been prominent in the original
computational-level OFC proposal [2], or merely considered the case of Kalman filtering, and not
the combination of it with control [4, 5, 7, 8]. These works also required knowledge of the noise
covariances, either a priori [4, 5, 7, 8] or obtained in a separate ‘offline sensor’ mode [6]. Moreover,
many of these works lack biological plausibility and realism one would expect from a viable model
of brain function [4, 5, 7, 8]. Crucially, biological plausibility requires the network to operate online,
(i.e. receive a stream of noisy measurement data and process them on the fly), and also requires
synaptic plasticity rules to be local (i.e. learn using rules that only depend on variables represented
in pre and postsynaptic neurons and/or on global neuromodulatory signals). Lastly, several of these
models suffer from combinatorial explosion as the dimensionality of the input grows [4, 5], require
running an inner loop until convergence at each time step [8, 6], or require separate learning and
execution phases [6], cf. Table 1.

We address these shortcomings and present a complete neural implementation of optimal feedback
control, thus tackling an open issue in biological control [9]. In this model, which we call Bio-OFC,
the state space, the prediction error [10, 11] (i.e., the mismatch between the network’s internal
prediction and delayed sensory feedback), and the control are represented by different neurons, cf.
Fig. 1. The network also receives scalar feedback related to the objective function, as a global signal,
and utilizes this signal to update the synaptic connection according to policy gradient method [12, 13].
To test the performance of our network, we simulate Bio-OFC in episodic (finite horizon) tasks (e.g.,
a discrete-time double integrator model, a hand reaching task [1], and a simplified fly simulation).

Summary of contributions:

• We introduce Bio-OFC, a biologically plausible neural network that combines adaptive
model based state discovery via adaptive Kalman filtering with a model free control agent.

• Our implementation does not require knowledge of noise covariances nor the system dy-
namic, considers delayed sensory feedback, and has no separate learning/execution phases.

• Our model-free control agent enables closed-loop control, thus avoiding the weight transport
problem, a challenging problem even in non-biological control. [14, 15]

Table 1: Limitations of previously proposed neural implementations of OFC. Presence or absence
of different properties in previously proposed neural models, and their comparison to Bio-OFC. Guide
to symbols: 3: true, 7: false, 37: partially true, N/A: not applicable.

[4] [6] [5] [7] [8] Bio-OFC

delayed sensory feedback 7 7 7 7 7 3
control included 7 3 7 7 7 3

noise covariance agnostic 7 3 7 7 7 3
online system identification 7 3 7 3 37 3

local learning rules N/A 3 N/A 7 3 3
tractable latent size 7 3 7 3 3 3

absence of inner loop 3 7 3 3 7 3
single phase learning/execution N/A 7 N/A 3 3 3
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Figure 1: The circuit and learning rules of the Bio-OFC algorithm. Our circuit is comprised
of two main parts. First (in blue), the circuit performs Kalman filtering. Then (in red), the circuit
performs control using policy gradients with eligibility traces. Triangular arrowheads denote synaptic
connections and the flat arrowhead denotes the modulatory effect of the cost signal.

2 Background

We review classical Kalman estimation and control in this section, using boldface lowercase/uppercase
letters for vectors/matrices and I for the identity matrix.

2.1 Problem formulation

We model the environment as a linear dynamical system driven by control input and perturbed by
Gaussian noise. The true state of the system x is hidden and all the animal has access to are the
observations y that are assumed to be linear functions of the state corrupted by Gaussian noise.

dynamics: xt+1 = Axt +But + vt (1)
observation: yt = Cxt +wt (2)

Here vt ∼ N (0;V ) and wt ∼ N (0,W ) are independent Gaussian random variables and the initial
state has a Gaussian prior distribution x0 ∼ N (x̂0,Σ0).

The goal is to estimate the latent state x̂ in order to design a control u that minimizes expected cost

expected cost: J = E

[
T∑
t=0

c(xt,ut)

]
(3)

control: ut = k(x̂t) = arg min J (4)

where c(xt,ut) is the instantaneous cost associated with state xt and action ut. As the environment
dynamics is not known to the animal a priori, the parametersA,B,C must be learned online.

2.2 Kalman estimation and control

The Kalman filter [16, 2] is an estimator of the latent state x̂t (and its variance) via a weighted
summation of the current observation and the prediction of the internal model based on prior
measurements. However, in biologically realistic situations the sensory feedback is always delayed.
This means that the control signal ut has to be issued, and thus the state xt estimated, before yt
has been observed. The appropriately modified Kalman filter computes the posterior probability
distribution of xt given observations yt−τ , ...,y0 where τ ≥ 1 is the delay. We start here with the
case of τ = 1 for which the recursive updates of the mean x̂t and the variance Σt are

x̂t+1 = Ax̂t +But +Lt(yt −Cx̂t) (5)

Σt+1 = (A−LtC)ΣtA
> + V (6)

where Lt is known as the Kalman gain matrix which optimally combines the noisy observations yt
with the internal model and is given by

Lt = AΣtC
>(CΣtC

> +W )−1. (7)
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The Kalman filter is optimal in the sense that it minimizes the mean-squared error E[et>et] with
prediction error (innovation) et = yt −Cx̂t.
The output feedback law, also known as policy, (4) simplifies if the cost J is quadratic in ut and xt:

ut = −Kx̂t (8)

and is known as linear-quadratic regulator (LQR). The control gain,K, is found by solving a matrix
Riccati equation (cf. Supplementary Material). Linear policies have been successfully applied to a
variety of control tasks [17].

3 Neural network representation for optimal feedback control

3.1 Inference

For now, let us assume that the system dynamics, the Kalman gain and the control gainA,B,−C,
L, andK are constant and known. Then, the latent state x̂ can be obtained by the Kalman estimator
Eq. (5). This algorithm naturally maps onto the network in Fig. 1 and Supplementary Fig. S1A
with neural populations representing x̂, e := y −Cx̂, and u that are connected by synapses whose
weights represent the elements of the matrices A,B,−C and L. The computation of the control
variable u according to Eq. (8) can be implemented by synapses whose weights represent the elements
of the matrix −K.

If the sensory stimulus delay is τ = 1, our network implements the Kalman prediction reviewed
in the previous section. In case τ > 1, the latent state must be recomputed throughout the delay
period which requires a biologically implausible circuit (cf. Supplementary Fig. S1C). To overcome
this, we adapt an alternative solution from online control [18, 19]. Specifically, we combine delayed
measurements with the similarly delayed latent state estimation. Such inference can be performed by
the network of the same architecture and adjusting the synaptic delay associated with matrix C to
match with the sensory delay, in accordance with the following expression:

x̂t+1 = Ax̂t +But +L (yt+1−τ −Cx̂t+1−τ )︸ ︷︷ ︸
et

(9)

As we show in Results (Fig. 3) this reduces predictive performance only modestly compared to the
biologically unrealistic scheme. More details on the inference process and the temporal order in
which our recurrent network performs the above steps is shown in Supplementary Fig. S1B.

3.2 Learning

3.2.1 System identification and Kalman gain

Next, we turn our attention to the system identification/learning problem, which was not addressed
by some of the previous proposals, cf. Table 1. Given a sequence of observations {y0, · · · ,yT }, we
use a least squares approach [20] to find the parameters that minimize the mean-square prediction
error 1

T

∑T
t=0 e

>
t et. We perform this optimization in an online manner, that is at each time-step

t + 1, after making the delayed observation yt+1−τ , we update the parameter estimates Â, B̂, Ĉ
using steps that minimize e>t et, assuming that the state estimate and actions corresponding to prior
observations (e.g. x̂t−τ , ut−τ etc.) are fixed. To obtain L we would like to avoid solving the Riccati
equation (6) as it requires matrix operations difficult to implement in biology. So, we use the same
optimization procedure to update the Kalman gain L. Using Eq. (9) and explicitly writing out the
matrix/vector indices as superscripts yields the following stochastic gradient with respect toA:

− ∂

∂Aij
1

2

∑
k

(
ekt
)2

= −
∑
k

ekt
∂ekt
∂Aij

= −
∑
k

ekt
∂
(
ykt+1−τ −

∑
l C

klx̂lt+1−τ
)

∂Aij
=

=
∑
k,l

ektC
kl
∂
(∑

mA
lmx̂mt−τ +

∑
nB

lnunt +
∑
p L

lpept

)
∂Aij

=

=
∑
k,l,m

ektC
klδliδmj x̂mt−τ =

∑
k

ektC
kix̂jt−τ (10)
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Performing similar derivations for the other synaptic weights, our optimization procedure would rely
on the following stochastic gradients:

−∇A
1
2e
>
t et = C>etx̂

>
t−τ −∇B

1
2e
>
t et = C>etu

>
t−τ (11)

−∇L
1
2e
>
t et = C>ete

>
t−τ −∇C

1
2e
>
t et = etx̂

>
t+1−τ (12)

This yields a classical Hebbian rule between (a memory trace of) presynaptic activity x̂t+1−τ and
postsynaptic activity et for weights C. However, it suggests non-local learning rules forA,B,L,
which runs contrary to biological requirements. We can circumvent this problem by replacing C>
with L, which corresponds to left-multiplication of the gradients with a positive definite matrix (see
Supplementary Material Sec. 4). This still decreases the mean-square prediction error under some
mild initialization constraints on C and L and yields local plasticity rules, cf. Fig. 1,

∆Ât ∝ Let x̂>t−τ (13)

∆Lt ∝ Let e>t−τ (14)
∆B̂t ∝ Let u>t−τ (15)

∆Ĉt ∝ et x̂>t+1−τ (16)

where the input current Let is locally available at neurons representing x̂. The first three rules are
local, but non-Hebbian, capturing correlations between presynaptic activity x̂t−τ ,ut−τ , et−τ and
postsynaptic current Let. Note that these updates do not require knowledge of the noise covariances
V andW , an advantage over previous work, cf. Table 1.

3.2.2 Control

Next, we consider optimal control a neural implementation of which was missing in most previous
proposals, cf. Table 1. Traditionally, optimal control law is computed by iterating a matrix Riccati
equation, cf. Supplementary Material, posing a difficult challenge for a biological neural implementa-
tion (but see [21]). To circumvent this problem, we propose to learn the controller weightsK using a
policy gradient method [12, 22] instead. Policy gradient methods directly parametrize a stochastic
controller πK(u|x). Representing the total cost for a given trajectory τ as c(τ), they optimize the pa-
rametersK by performing gradient descent on the expected cost J = EπK

[c(τ)] = EπK

[∑T
t=0 ct

]
.

∇KJ =

∫
c(τ)∇πK(τ)dτ = EπK

[c(τ)∇K log πK(τ)] (17)

= EπK

[(
T∑
t=0

ct

)(
T∑
s=0

∇K log πK(us|xs)

)]
(18)

The term in square brackets is an unbiased estimator of the gradient and can be used to perform
stochastic gradient decent. As already hinted at by [12], due to causality, costs ct are not affected by
later controls us, s > t, and the variance of the estimator can be reduced by excluding those terms,
which yields

∆K ∝ −
T∑
t=0

ct

(
t∑

s=0

∇K log πK(us|xs)

)
. (19)

We simply keep an eligibility trace of the past, Zt =
∑t
s=0∇K log πK(us|xs), and perform

parameter updates ∆K ∝ −ctZt at each time step t. A similar update rule has been suggested
by [23, 24] for the infinite horizon case. Global convergence of policy gradient methods for linear
quadratic regulator has been recently studied by Fazel et al. [25].

We assume the output of neurons encoding control u is perturbed by Gaussian noise

ut = −Kx̂t − ξt with ξt ∼ N (0, σ2I). (20)

The synapses are endowed with a synaptic tag [26] Z, an eligibility trace that tracks correlations
between pre-synaptic activity x̂ and post-synaptic noise ξ. It is reset to zero at the beginning of each
trajectory, though instead of a hard reset it could also softly decay with a time constant of the same
order O(T ) as trajectory duration [27]. The weight update assigns cost ct to the synapses according
to their eligibilityZt. The cost is e.g. provided by a diffuse neuromodulatory signal such as dopamine.
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The optional use of momentum m ∈ [0, 1) adds a low-pass filter to the synaptic plasticity cascade:

Zt = Zt−1 + ξtx̂
>
t

(
= σ2∑t

s=0∇K log πK(us|x̂s)
)

(21)

Gt = mGt−1 + ctZt (22)
∆Kt ∝ −Gt (23)

4 Experiments

In this section we look at three different experiments to demonstrate various features of the Bio-OFC
algorithm. In Sec. 4.1, we look at a discrete-time double integrator and discuss how our approach
performs not only Kalman filtering (learning the optimal Kalman gain), but also full system-ID in the
open-loop setting (system-ID followed by control) as well as in the more challenging closed-loop
setting (simultaneous system-ID and control). In each case, we provide quantitative comparisons
and discuss the effect of increased delay. In Secs. 4.2 and 4.3, we apply our methodology to two
biologically relevant control tasks, that of reaching movements and flight.

4.1 Discrete-time double integrator

As a simple test case, we follow along the lines of [28] and consider the classic problem of a
discrete-time double integrator with the dynamical model

xt+1 ∼ N (Axt +But,V ) where A =

(
1 1
0 1

)
, B =

(
0
1

)
, V =

(
.01 0
0 .01

)
. (24)

Such a system models the position and velocity (respectively the first and second components of the
state) of a unit mass object under force u. As an instance of LQR, we can try to steer this system to
reach point (0, 0)> from initial condition x0 = (−1, 0)> without expending much force:

J =

T∑
t=0

x>t Qxt +R

T−1∑
t=0

u2t where Q =

(
1 0
0 0

)
, R = 1, T = 10 (25)

We assume that the initial state estimate x̂0 is at the true initial state (x̂0 = Ĉ+Cx0).

We go beyond LQR (cf. Supplementary Fig. S2A) and assume x is not directly observable (cf.
Supplementary Fig. S2B,C), but we merely have access to noisy observations, y ∼ N (Cx,W ). We
consider two observation models, one where the state is only observed with some uncorrelated noise,
and one where the observation noise covariance is not diagonal and an additional mixture of the 2
state components is observed:

LDS1: C =
(
1 0
0 1

)
,W =

(
.04 0
0 .25

)
LDS2: C =

(
1 0
0 −1
.5 .5

)
,W =

(
.04 .09 0
.09 .25 0
0 0 .04

)
(26)

We denote these two systems as linear dynamical systems 1 and 2 (LDS1 and LDS2).

Learning the Kalman gain. A major advantage of our work is that it does not require knowledge
of the covariance matrices V andW to determine the Kalman filter gain L. We studied this using
LDS1 in a scenario where the observation noise varies; changing the covariance matrix W from
diag(.04, .25) to diag(.04, .01) after 2500, to diag(.01, .01) after 5000, and back to diag(.04, .25)
after 7500 episodes. In this experiment we fix A,B,C at the ground truth, and initialize L at the
optimal value for W = diag(.04, .25), and updated the latter according to Eq. (14). Fig. 2 shows
how the elements of the filter matrix L adapt in time, to optimize performance as measured by the
mean squared prediction error. The learning rate was tuned to minimize the average MSE over all
episodes. Although the Kalman gain can be slow to converge in some cases (Fig. 2A), performance
is quickly close to optimal (Fig. 2B).

Fig. 3 shows the achievable optimal control cost as a function of delay for four different controllers: the
optimal linear-quadratic-Gaussian (LQG) controller that uses time-dependent gains, the biologically
implausible ANN (cf. Supplementary Fig. S1C) that uses time-invariant gains, a model-free1 approach

1Note that LQG uses the model for state inference as well as for control. Our Bio-OFC uses the model
only to infer the latent state, but uses a model-free controller. In contrast, model-based reinforcement learning
algorithms typically assume knowledge of the current state and use the model only for control.
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Figure 2: Bio-OFC adapts to changing noise statistics. (A) Filter gain (colors denote different
elements of the gain matrix) and (B) mean squared prediction error (MSE) in the simple LQG task
with 2 latent dimensions and 2-d observations (LDS1, see text for details). Solid lines show the
mean over 20 runs. Dashed lines indicate the optimal filter gain and the corresponding average MSE.
After 2500 episodes the observation noise covarianceW decreased to diag(.04, .01), after 5000 to
diag(.01, .01), and after 7500 back to diag(.04, .25).
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Figure 3: Optimal cost of Bio-OFC is close to that of LQG for various delays. Optimal cost as
function of measurement delay obtained by different methods. We used the simple LQG tasks with
2 latent dimensions and (A) 2-d observations (LDS1, see text for details) and (B) 3-d observations
(LDS2). LQG uses the optimal time-dependent filter and feedback gains, ANN uses the network
of Supplementary Fig. S1C, Bio-OFC the network of Fig. 1 (cf. Supplementary Figs. S1B and
S2D), and model-free directly maps from noisy delayed observations to control, ut = Kyt−τ (cf.
Supplementary Fig. S2E). Shown is the mean cost ± SEM over 10000 episodes.

using policy gradient method applied directly to observations (inset), and Bio-OFC that update the
current state estimate x̂t directly using the delayed measurement yt−τ (cf. Eq. (9) and Fig. 1). For
the sake of biological plausibility, we imposed time-invariant gains and direct state estimate updates
based on delayed measurement. These results clearly demonstrate that Bio-OFC is robust to sensory
delays. Specifically, while it is expected that Bio-OFC will not learn a solution quite as good as LQG,
our results show that the solution found by it is not very far off. In general, a model can be useful in
two ways: It facilitates a filtered estimate that is useful even in the absence of measurement delays
(see LQG vs model-free for delay 0 in Fig. 3), and in the presence of delays the model helps to bridge
the gap by predicting forward in time.

Full system identification. We next considered the case of system identification, i.e. learning
the weight matrices A,B,C in addition to L, using Eqs. (13-16). We initialized A and B with
small random numbers drawn from N (0, 0.01). For LDS1, C and L were initialized as diagonal
dominated random matrices, with diagonal elements drawn uniformly randomly from [0.5, 1] and
off-diagonal ones from [0, 0.5]. For LDS2, they were drawn from N (0, 0.01) under the constraint
that the symmetric part of LC has positive eigenvalues. Controls ut were drawn from N (0, 0.25).
Fig. 4A,B show how the mean squared prediction error converges to the optimal values from Fig. 3
(dashed horizontal lines). We also considered a Bio-OFC that learns in environment LDS2, but
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over-represents the latent space, assuming it is 3-d instead of 2-d. The square matrices C and L
were initialized analogously to LDS1. Fig. 4C shows that this over-representation does not affect
performance.
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Figure 4: Open-loop Bio-OFC converges to optimally achievable MSE and cost given the delay.
The solid (shaded) curve depicts the mean (±SEM) of 20 runs with different random initial weights,
smoothed using a running median with window size 51. The dashed horizontal lines show the
asymptotic values from Fig. 3. The dashed vertical line depicts the time when learning was stopped
and the exploratory stochasticity in the controller removed. Mean squared prediction error during
system identification, using plasticity rules Eqs. (13-16) for the filter and random Gaussian controller
input, as function of episodes for (A) 2-d observations (LDS1), (B) 3-d observations (LDS2) and (C)
3-d observations (LDS2) with an over-representing Bio-OFC that assumes 3 instead of the actual 2
latent dimensions. Cost as function of episodes, using plasticity rules Eqs. (21-23) for the controller,
for (D) 2-d observations (LDS1, see text for details), (E) 3-d observations (LDS2) and (F) 3-d
observations (LDS2) with an over-representing Bio-OFC that assumes 3 instead of the actual 2 latent
dimensions.

System identification followed by control. After performing system identification for 5000
episodes, we keptA,B,C,L fixed and transitioned to learning the controllerK using Eqs. (21-23)
for another 5000 episodes with controller noise ξ ∼ N (0, 0.04), cf. Eq. (20) and Fig. 4D-F. The
stochasticity in the controller results in an excess cost. Using a deterministic controller (ξ = 0) for
another 1000 episodes reveals that the network converged to the optimal cost from Fig. 3 (dashed
horizontal lines). We used two learning rates, one forA,B,C,L and one forK with momentum
m = 0.99 for the latter. Learning rates that quickly yield good final performance were chosen by
minimizing the sum of average reward during and after learning using Optuna [29], a hyperparameter
optimization framework freely available under the MIT license. Different noise levels σ and momenta
m are considered in Supplementary Figs. S6 and S7 respectively.

Simultaneous system ID and control. Performing system identification prior to learning a con-
troller is known as open-loop adaptive control and a common approach in control theory. Recent
advances in the control community tackle the more challenging problem of closed-loop control [14], 2

simultaneously identifying both while controlling the system. Our network is capable of closed-loop
control with no separate phases for system identification and control optimization necessary. In
contrast to our work, the only other proposed neural implementation that also includes control [6]
requires separate phases for system-ID and control. Fig. 5 shows how the control cost evolves in time
when the weights are updated according to Eqs. (13-16) and Eqs. (21-23) while using the controller
designed inputs of Eq. (20). Again, using a deterministic controller (ξ = 0) for another 1000 episodes

2When a controller designs the inputs based on the history of inputs and observations, the inputs become
highly correlated with the past process noise sequences, which prevents consistent and reliable parameter
estimation with standard system identification techniques.
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Figure 5: Closed-loop Bio-OFC converges to optimally achievable cost given the delay. The solid
(shaded) curve depicts the mean (±SEM) of 20 runs with different random initial weights, smoothed
using a running median with window size 51. The dashed horizontal lines show the asymptotic
values from Fig. 3. The dashed vertical line depicts the time when learning was stopped and the
exploratory stochasticity in the controller removed. Cost as function of episodes, using plasticity rules
Eqs. (13-16) for the filter and Eqs. (21-23) for the controller simultaneously, for (A) 2-d observations
(LDS1, see text for details), (B) 3-d observations (LDS2) and (C) 3-d observations (LDS2) with an
over-representing Bio-OFC that assumes 3 instead of the actual 2 latent dimensions.
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Figure 6: Bio-OFC captures human performance when learning to adapt to a force field. (A)
Model trajectories during training. Performance plotted during the first, second, third, and final
250 targets. Dots show the mean and are 10 ms apart, shaded area shows a kernel density estimate
thresholded at 0.04. (B) Averages±SD of human hand trajectories during training [1]. Copyright
©1994 Society for Neuroscience.

reveals that the network converged to the optimal cost. Different noise levels σ and momenta m are
considered in Supplementary Figs. S8 and S9 respectively.

4.2 Reaching movements

To connect back to a biological sensory-motor control task, we considered the task of making
reaching movements in the presence of externally imposed forces from a mechanical environment [1]
(Supplementary Material). We initialized the weights of our network to the values that are optimal
in a null force field, using a unit time of 10 ms and a sensory delay of 50 ms (i.e. τ = 5), as has
been measured experimentally [30]. Bio-OFC successfully captures the characteristics of human
trajectories in the null field as well as the force field, cf. Fig. S10. Bio-OFC adapts to the force field
by updating its weights according to plasticity rules Eqs. (13-16) for the filter and Eqs. (21-23) for
the controller. Figs. 6 and S11 show that this captures human performance during the training period.
Switching off learning in the controller yields virtually identical results, cf. Fig. S12, thus learning is
driven primarily by changes in the estimator. Using signal-dependent motor noise in the plant [31],
which increases with the magnitude of the control signal, also yields similar results, cf. Figs. S13-S14.
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4.3 Simplified winged flight

For our final example, we designed an OpenAI gym [32] environment which simulates winged flight
in 2-d with simplified dynamics (cf. Fig. S15). Here, the agent controls the flapping frequency of
each wing individually, producing an impulse up and away from the wing (i.e. direction up and left
when flapping the right wing). The agent receives sensory stimuli which are delayed by 100 ms
(equivalent to τ = 5 time-steps of the simulation). The goal of the agent is to fly to a fixed target and
stabilize itself against gravity, the environment wind, and stochastic noise in the control system. The
agent suffers a cost that is proportional to the L1 distance to the target, and the L1 magnitude of the
control variables. This L1 cost was chosen to verify the flexibility of our algorithm when the cost
deviates from the assumptions of LQR, where the cost is quadratic. We compare the performance of
Bio-OFC to policy gradient. We find that, because of the delay, the agent trained with policy gradient
overshoots the target and needs to backtrack, cf. Fig. S16a. However, the agent trained with Bio-OFC
flies directly towards the target with no significant overshoot, cf. Fig. S16b. For more details and a
video demonstration (gym-fly-demo.mp4) see the Supplementary Material.

5 Discussion

In this work, we developed a biologically plausible neural algorithm for sensory-motor control that
learns a model of the world, and uses the ability to preview future, through a neurally plausible
version of the Kalman filter, to learn an appropriate control policy. This neural circuit has the capacity
to build an adequate representation of the appropriate state space, can deal with sensory delays, and
actively explores the action space to execute appropriate control strategies.

We used a model-free controller, primarily due to its simplicity and biological plausibility. A model-
based controller would need access to the model, i.e. weight matricesA andB, which can result in
a weight transport problem. However, model-based control has advantages such as higher sample
efficiency and the ability to be transferable to other goals and tasks. An interesting question for future
work would be how to combine state estimation via the Kalman filter with model-based control in a
biologically plausible manner.

One limitation of this work is that it is in the framework of linear control theory. Locally linearized
dynamics [33] has been suggested to generalize the Kalman filter. The inputs could also be processed
using additional neural network layers to obtain a representation that renders the dynamics linear
[34]. In several normative approaches towards neurally plausible representation learning, simply
constraining neural activity to be nonnegative while retaining the same objective functions, allowed
one to move from, say, PCA [35] to clusters [36] and manifolds [37]. Our work could be the starting
point of a similar generalization.

We considered a uniform delay for all stimuli. In the case of motor control, proprioceptive feedback is
faster than visual feedback [30]. Our model readily extends to the case of various, but known, delays
for different modalities. The prediction error coding neurons merely need to combine predictions and
measurements adequately, i.e. the synaptic delay associated with prediction has to match with the
sensory delay for that modality. We believe learning the appropriate delay could be implemented by
extending the state space using lag vectors [2], which we leave for future work.

In line with overall brain architecture [38] and the predictive coding framework [10], our model
suggests the brain employs a recurrent network to generate predictions and actions by constantly
attempting to match incoming sensory inputs with top-down predictions [11]. Our model can also be
mapped to brain regions putatively contributing to optimal feedback control [30, 39]. Specifically, it
has been proposed that the cerebellum performs system identification, parietal cortex performs state
estimation, and primary and premotor cortices implement the optimal control policy by transforming
state estimates into motor commands. Also, basal ganglia may be involved in processing cost/reward
[39, 40].

This work proposed a concrete neural architecture that takes up the challenge of online control in a
changing world [41], with delay, and using biologically plausible synaptic update rules. The learning
algorithm performs well for several tasks, even with some drastic approximations. Future exploration
of its limitations would provide further insights into the general nature of biologically constrained
control systems.
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