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ABSTRACT

Prompt-based learning has emerged as a successful paradigm in natural language1

processing, where a single general-purpose language model can be instructed to2

perform any task specified by input prompts. Yet task specification in robotics3

comes in various forms, such as imitating one-shot demonstrations, following lan-4

guage instructions, and reaching visual goals. They are often considered different5

tasks and tackled by specialized models. This work shows that we can express a6

wide spectrum of robot manipulation tasks with multimodal prompts, interleaving7

textual and visual tokens. We design a transformer-based robot agent, VIMA,8

that processes these prompts and outputs motor actions autoregressively. To train9

and evaluate VIMA, we develop a new simulation benchmark with thousands of10

procedurally-generated tabletop tasks with multimodal prompts, 600K+ expert tra-11

jectories for imitation learning, and four levels of evaluation protocol for systematic12

generalization. VIMA achieves strong scalability in both model capacity and data13

size. It outperforms prior SOTA methods in the hardest zero-shot generalization14

setting by up to 2.9× task success rate given the same training data. With 10× less15

training data, VIMA still performs 2.7× better than the top competing approach.16

Video demos are available at https://iclr3081.github.io/.17

1 INTRODUCTION18

Transformers have given rise to remarkable multi-task consolidation across many AI domains. For19

example, users can describe a task using natural language prompt to GPT-3 (Brown et al., 2020),20

allowing the same model to perform question answering, machine translation, text summarization,21

etc. Prompt-based learning provides an accessible and flexible interface to communicate a natural22

language understanding task to a general-purpose model.23

We envision that a generalist robot agent should have a similarly intuitive and expressive interface24

for task specification. What does such an interface for robot learning look like? As a motivating25

example, consider a personal robot tasked with household activities. We can ask the robot to bring us26

a cup of water by a simple natural language instruction. If we require more specificity, we can instead27

instruct the robot to “bring me <image of the cup>”. For tasks requiring new skills, the robot28

should be able to adapt preferably from a few video demonstrations (Duan et al., 2017). Tasks that29

need interaction with unfamiliar objects can be easily explained via a few image examples for novel30

concept grounding (Hermann et al., 2017). Finally, to ensure safe deployment, we can further specify31

visual constraints like “do not enter <image> room”.32

To enable a single agent with all these capabilities, we make three key contributions in this work: 1)33

a novel multimodal prompting formulation that converts a wide spectrum of robot manipulation34

tasks into one sequence modeling problem; 2) a new robot agent model capable of multi-task35

and zero-shot generalization; and 3) a large-scale benchmark with diverse tasks to systematically36

evaluate the scalability and generalization of our agents.37

We start with the observation that many robot manipulation tasks can be formulated by multimodal38

prompts that interleave language and images or video frames (Fig. 1). For example, Rearrange-39

ment (Batra et al., 2020), a type of Visual Goal, can be formulated as “Please rearrange objects to40

match this {scene image}”; Novel Concept Grounding looks like “This is a dax {new object}141

and this is a blicket {new object}2. Put two metal dax on the marble blicket.”; Few-shot Imita-42

tion can embed video snippet in the prompt “Follow this motion trajectory for the wooden cube:43
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Figure 1: Multimodal prompts for task specification. We observe that many robot manipulation
tasks can be expressed as multimodal prompts that interleave language and image/video frames. We
propose VIMA, an embodied agent model capable of processing mulitimodal prompts (left) and
controlling a robot arm to solve the task (right).

{frame1}, {frame2}, {frame3}, {frame4}”; and expressing Visual Constraint is as simple as44

adding the clause “without touching {safety boundary}”.45

Multimodal prompts not only have more expressive power than individual modalities, but also enable46

a uniform sequence IO interface for training generalist robot agents. Previously, different robot47

manipulation tasks require distinct policy architectures, objective functions, data pipelines, and48

training procedures (Aceituno et al., 2021; Stengel-Eskin et al., 2022; Lynch & Sermanet, 2021),49

leading to siloed robot systems that cannot be easily combined for a rich set of use cases. Instead, our50

multimodal prompt interface allows us to harness the latest advances in large transformer models (Lin51

et al., 2021; Tay et al., 2020; Khan et al., 2021) for developing scalable multi-task robot learners.52

To this end, we design a novel VisuoMotor Attention model (VIMA). The architecture follows the53

encoder-decoder transformer design proven to be effective and scalable in NLP (Raffel et al., 2020).54

VIMA encodes an input sequence of interleaving textual and visual prompt tokens with a pre-trained55

language model (Tsimpoukelli et al., 2021), and decodes robot control actions autoregressively56

for each environment interaction step. The transformer decoder is conditioned on the prompt via57

cross-attention layers that alternate with the usual causal self-attention. Instead of operating on raw58

pixels, VIMA adopts an object-centric approach. We parse all images in the prompt or observation59

into objects by off-the-shelf detectors (He et al., 2017), and flatten them into sequences of object60

tokens. All these design choices combined deliver a conceptually simple architecture with strong61

model and data scaling properties.62

To systematically evaluate our proposed algorithm, we introduce a new benchmark (VIMA-BENCH)63

built on the Ravens simulator (Zeng et al., 2020; Shridhar et al., 2021). We provide 17 representative64

meta-tasks with multimodal prompt templates, which can be procedurally instantiated into thou-65

sands of individual tasks by various combinations of textures and tabletop objects. VIMA-BENCH66

establishes a 4-level protocol to evaluate progressively stronger generalization capabilities, from ran-67

domized object placement to novel tasks altogether (Fig. 2). To demonstrate the scalability of VIMA,68

we train a spectrum of 7 models ranging from 2M to 200M parameters. Our approach outperforms69

strong prior SOTA methods such as Gato (Reed et al., 2022), Decision Transformer (Chen et al.,70

2021), and Flamingo (Alayrac et al., 2022) across all 4 levels of zero-shot generalization and all71

model capacities, sometimes by a large margin (up to 2.9× task success rate given the same amount of72

training data, and 2.7× better even with 10× less data). We plan to open-source the simulation envi-73

ronment, training dataset, algorithm code, and pre-trained model checkpoints to ensure reproducibility74

and facilitate future works from the community. We attach supplementary materials as Appendix to75

this PDF, and present video demos and anonymized code at https://iclr3081.github.io/.76
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2 RELATED WORK77

Multi-task Learning by Sequence Modeling. Transformers have enabled task unification across78

many AI domains (Raffel et al., 2020; Brown et al., 2020; Chen et al., 2022a;b; Lu et al., 2022; Wang79

et al., 2022c; Alayrac et al., 2022). For example, in NLP, T5 (Raffel et al., 2020) unifies all language80

problems into the same text-to-text format. GPT-3 (Brown et al., 2020), PaLM (Chowdhery et al.,81

2022), and Megatron (Shoeybi et al., 2019) demonstrate emergent behaviours of intuitive task speci-82

fications by zero-shot prompting. In computer vision, Florence (Yuan et al., 2021), BiT (Kolesnikov83

et al., 2020), and MuST (Ghiasi et al., 2021) pre-train a shared backbone model at scale for general84

visual representations and transfer it to downstream tasks. Pix2Seq (Chen et al., 2022b) casts many85

vision problems into a unified sequence format. In multimodal learning, Flamingo (Alayrac et al.,86

2022) and Frozen (Tsimpoukelli et al., 2021) design a universal API that ingests an interleaving87

sequence of images and text and generates free-form text. Gato (Reed et al., 2022) is a massively multi-88

task model across NLP, vision, and embodied agents. Our work is most similar in spirit to Gato, but we89

focus primarily on enabling an intuitive, multimodal prompting interface for a generalist robot agent.90

Foundation Models for Embodied Agents. Foundation models (Bommasani et al., 2021; Brown91

et al., 2020; Raffel et al., 2020; Ramesh et al., 2022; Wei et al., 2022) have demonstrated strong emer-92

gent properties like zero-shot prompting and complex reasoning. There are many ongoing efforts to93

replicate this success for embodied agents, focusing on 3 aspects: 1) Transformer agent architecture:94

Decision Transformer (Chen et al., 2021; Janner et al., 2021; Zheng et al., 2022; Xu et al., 2022) and95

Gato (Reed et al., 2022) leverage the powerful self-attention models for sequential decision making.96

CLIPort (Shridhar et al., 2021) and Perceiver-Actor (Shridhar et al., 2022) apply large transformers to97

robot manipulation tasks. Methods such as Dasari & Gupta (2020) and MOSAIC (Zhao et al., 2022)98

also leverage transformers to achieve superior performance in one-shot video imitation tasks. 2) Pre-99

training for better representations: Masked ViT (Gupta et al., 2022b), R3M (Nair et al., 2022), and100

Parisi et al. (2022) pre-train general visual representations for robotic perception. Li et al. (2022); Reid101

et al. (2022) finetune from LLM checkpoints to accelerate policy learning. MineDojo (Fan et al., 2022)102

and Ego4D (Grauman et al., 2021) provide large-scale multimodal databases to facilitate scalable pol-103

icy training. 3) Large language models for robot learning: SayCan (Ahn et al., 2022) leverages the104

500B PaLM (Chowdhery et al., 2022) for zero-shot concept grounding. Socratic Models (Zeng et al.,105

2022) composes multiple vision and language foundation models (VLMs) for multimodal reasoning106

in videos. Huang et al. (2022a), Inner Monologue (Huang et al., 2022b) and LM-Nav (Shah et al.,107

2022) successfully apply LLMs to long-horizon robot planning. VIMA differs from these works in108

our novel multimodal prompting formulation, which existing LLMs and VLMs do not easily support.109

Robot Manipulation and Benchmarks. There are a wide range of robot manipulation tasks that110

require different skills and task specification formats, such as instruction following (Stepputtis et al.,111

2020; Shridhar et al., 2021; Lynch & Sermanet, 2021), one-shot imitation (Finn et al., 2017; Dasari112

& Gupta, 2020; Duan et al., 2017), rearrangement (Batra et al., 2020; Weihs et al., 2021; Szot et al.,113

2021), constraint satisfaction (Brunke et al., 2021a; Srinivasan et al., 2020; Thananjeyan et al., 2021),114

and reasoning (Shridhar et al., 2020; Gupta et al., 2019; Ahmed et al., 2021; Toyer et al., 2020; Lim115

et al., 2021). Multiple physics simulation benchmarks are introduced to study the above tasks. For116

example, iGibson (Shen et al., 2020; Li et al., 2021; Srivastava et al., 2021) simulates interactive117

household scenarios. Ravens (Zeng et al., 2020) and Robosuite (Zhu et al., 2020; Fan et al., 2021)118

design various tabletop manipulation tasks with realistic robot arms. MOSAIC (Zhao et al., 2022)119

features a challenging benchmark built on top of Zhu et al. (2020) for one-shot imitation learning. Our120

VIMA-BENCH is the first robot learning benchmark to support multimodal-prompted tasks. We also121

standardize the evaluation protocol to systematically measure an agent’s generalization capabilities.122

A more extended literature review can be found in Appendix, Sec. F.123

3 MULTIMODAL PROMPTS FOR TASK SPECIFICATION124

A central and open problem in robot learning is task specification (Agrawal, 2022). In prior liter-125

ature (Stepputtis et al., 2020; Dasari & Gupta, 2020; Brunke et al., 2021b), different tasks often re-126

quire diverse and incompatible interfaces, resulting in siloed robot systems that do not generalize well127

across tasks. Our key insight is that various task specification paradigms (such as goal conditioning,128
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Figure 2: Evaluation Protocol in VIMA-BENCH. We design 4 levels of evaluation settings to
measure the zero-shot generalization capability of an agent systematically. Each level deviates more
from the training distribution, and thus is strictly more challenging than the previous level.

video demonstration, natural language instruction) can all be instantiated as multimodal prompts129

(Fig. 1). Concretely, a multimodal prompt P of length l is defined as an ordered sequence of arbitrarily130

interleaved texts and images P := [x0, x1, . . . , xl], where each element xi ∈ {text, image}.131

Task Suite. The flexibility afforded by multimodal prompts allows us to specify and build models132

for a huge variety of task specification formats. Here we consider the following six task categories.133

1. Simple object manipulation: simple tasks like “put <object> into <container>”, where134

each image in the prompt corresponds to a single object; 2. Visual goal reaching: manipulating135

objects to reach a goal configuration, e.g., Rearrangement (Batra et al., 2020); 3. Novel concept136

grounding: the prompt contains unfamiliar words like “dax” and “blicket”, which are explained by137

in-prompt images and then immediately used in an instruction. This tests the agent’s ability to rapidly138

internalize new concepts; 4. One-shot video imitation: watching a video demonstration and learning139

to reproduce the same motion trajectory for a particular object; 5. Visual constraint satisfaction:140

the robot must manipulate the objects carefully and avoid violating the (safety) constraints; 6. Visual141

reasoning: tasks that require reasoning skills, such as appearance matching “move all objects with142

same textures as <object> into a container”, and visual memory, “put <object> in container143

and then restore to their original position”.144

Note that these six categories are not mutually exclusive. For example, a task may introduce a145

previously unseen verb (Novel Concept) by showing a video demonstration, or combine goal reaching146

with visual reasoning. More details about the task suite are discussed in Appendix, Sec. B.147

4 VIMA-BENCH: BENCHMARK FOR MULTIMODAL ROBOT LEARNING148

Simulation Environment. Existing benchmarks are generally geared towards a particular task149

specification. To our knowledge, there is no benchmark that provides a rich suite of multimodal tasks150

and a comprehensive testbed for targeted probing of agent capabilities. To this end, we introduce151

a new benchmark suite for multimodal robot learning that we call VIMA-BENCH. We built our152

benchmark by extending the Ravens robot simulator (Zeng et al., 2020). VIMA-BENCH supports153

extensible collections of objects and textures to compose multimodal prompts and procedurally154

generate a large number of tasks. Specifically, we provide 17 meta-tasks with multimodal prompt155

templates, which can be instantiated into 1000s of individual tasks. Each meta-task belongs to one or156

more of 6 task categories mentioned above. VIMA-BENCH can generate large quantities of imitation157

learning data via scripted oracle agents. More details are elaborated in Appendix, Sec. A.158

Observation and Actions. The observation space of our simulator includes RGB images rendered159

from both frontal view and top-down view. Groundtruth object segmentations and bounding boxes are160

also provided for training object-centric models (Sec. 5). We inherit the high-level action space from161

Zeng et al. (2020), which consists of primitive motor skills like “pick and place” and “wipe”. These162

are parameterized by poses of the end effector. Our simulator also features scripted oracle programs163

that can generate expert demonstrations by using privileged simulator state information, such as the164

precise location of all objects, and the groundtruth interpretation of the multimodal instruction.165

Training Dataset. We leverage the pre-programmed oracles to generate a large offline dataset of166

expert trajectories for imitation learning. Our dataset includes 50K trajectories per meta-task, and167

650K successful trajectories in total. We hold out a subset of object models and textures for evaluation,168

and designate 4 out of 17 meta-tasks as a testbed for zero-shot generalization.169
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Figure 3: VIMA. We encode the multimodal prompts with a pre-trained T5 model, and condition the
robot controller on the prompt through cross-attention layers. The controller is a causal transformer
decoder consisting of alternating self and cross attention layers that predicts motor commands
conditioned on prompts and interaction history.

Evaluating Zero-Shot Generalization. Each task in VIMA-BENCH has a binary success criterion170

and does not provide partial reward signals. During test time, we execute the agent policies in the171

physics simulator for multiple episodes to compute a success rate in percentage. The average success172

rate over all evaluated meta-tasks will be the final reported metric.173

We design a 4-level evaluation protocol (Fig. 2) to systematically probe the generalization capabilities174

of learned agents. Each level deviates more from the training distribution, and is thus strictly175

harder than the previous one — Level 1) placement generalization: all prompts are seen verbatim176

during training, but only the placement of objects on the tabletop is randomized at testing; Level 2)177

combinatorial generalization: all materials (adjectives) and 3D objects (nouns) are seen during178

training, but new combinations of them appear in testing; Level 3) novel object generalization:179

test prompts and the simulated workspace include novel adjectives and objects; Level 4) novel task180

generalization: new meta-tasks with novel prompt templates at test time.181

5 VIMA: VISUOMOTOR ATTENTION MODEL182

Our goal is to build a robot agent capable of performing any task specified by multimodal183

prompts. To learn an effective multi-task robot policy, we propose VIMA, a minimalistic multi-184

task encoder-decoder architecture with object-centric design (Fig. 3). Concretely, we learn a robot185

policy π(at|P,H), where H := [o1, a1, o2, a2, . . . , ot] denotes the past interaction history, and186

ot ∈ O, at ∈ A are observations and actions at each interaction steps. We encode multimodal prompts187

via a frozen pre-trained langauge model and decode robot motor commands conditioned on the en-188

coded prompts via cross-attention layers. Unlike prior works (Florence et al., 2019; Sieb et al., 2019),189

VIMA adopts an object-centric token representation that computes features from bounding box coor-190

dinates and cropped RGB patches.191

Tokenization. There are 3 formats of raw input in the prompt — text, image of a single object, and192

image of a full tabletop scene (e.g., for Rearrangement or imitation from video frames). For text193

inputs, we use pre-trained T5 tokenizer and word embedding to obtain word tokens. For images194

of full scenes, we first extract individual objects using off-the-shelf Mask R-CNN (He et al., 2017).195

Each object is represented as a bounding box and a cropped image. We then compute object tokens by196

encoding them with a bounding box encoder and a ViT, respectively. Since Mask-RCNN is imperfect,197

5



Under review as a conference paper at ICLR 2023

2 4 8 16 32 64 128 256
Model Size (M)

0

20

40

60

80

S
uc

ce
ss

 R
at

e 
(%

)

L1

2 4 8 16 32 64 128 256
Model Size (M)

0

20

40

60

80
L2

2 4 8 16 32 64 128 256
Model Size (M)

0

20

40

60

80
L3

2 4 8 16 32 64 128 256
Model Size (M)

0

20

40

60

80
L4

6 x 10² 10³ 10 10
Data Size

0

20

40

60

80

S
uc

ce
ss

 R
at

e 
(%

)

L1

6 x 10² 10³ 10 10
Data Size

0

20

40

60

80
L2

6 x 10² 10³ 10 10
Data Size

0

20

40

60

80
L3

6 x 10² 10³ 10 10
Data Size

0

20

40

60

80
L4

Model Scalability

Data Scalability

Ours Gato Flamingo Multimodal GPT Agent

Figure 4: Scaling model and data. Top: We compare performance of different methods with model
sizes ranging from 2M to 200M parameters. Across all model sizes and generalization levels VIMA
outperforms prior works. Bottom: For a fixed model size of 92M parameters we compare the effect of
imitation learning dataset size of 0.1%, 1%, 10%, and full imitation data. VIMA is extremely sample
efficient and can achieve performance comparable to other methods with 10× less data.

the bounding boxes can be noisy and the cropped image may have irrelevant pixels. For images of198

single objects, we obtain tokens in the same way except with a dummy bounding box. Prompt tok-199

enization produces a sequence of interleaved textual and visual tokens. We then follow the practice in200

Tsimpoukelli et al. (2021) and encode the prompt via a pre-trained T5 encoder (Raffel et al., 2020).201

Since T5 has been pre-trained on large text corpora, VIMA inherits the semantic understanding202

capability and robustness properties. To accommodate tokens from new modalities, we insert MLPs203

between the non-textual tokens and T5. To prevent catastrophic forgetting, VIMA finetunes the last204

two layers of the language encoder with layer-wise learning rate decay (He et al., 2021) but freezes205

all other layers. Our positional embedding is learnable and absolute.206

Robot Controller. A challenging aspect of designing multi-task policy is to select a suitable207

conditioning mechanism. In our schema (Fig. 3), the robot controller (decoder) is conditioned on208

the prompt sequence P by a series of cross-attention layers between P and the trajectory history209

sequence H. We compute key KP and value VP sequences from the prompt and query QH from210

the trajectory history, following the encoder-decoder convention in T5 (Raffel et al., 2020). Each211

cross-attention layer then generates an output sequence H′ = softmax
(

QHK⊺
P√

d

)
VP , where d is the212

embedding dimension. Residual connections (He et al., 2015) are added to connect higher layers213

with the input rollout trajectory sequence. The cross-attention design enjoys three advantages: 1)214

strengthened connection to prompt; 2) intact and deep flow of the original prompt tokens; and 3)215

better computational efficiency, as demonstrated in VideoGPT (Yan et al., 2021) as well. VIMA216

decoder consists of L alternating cross-attention and self-attention layers. Finally, we follow common217

practice (Baker et al., 2022) to map predicted action tokens to discretized coordinates of the robot218

arm. See Appendix, Sec. C.2 for more details.219

Training. We follow behavioral cloning to train our models by minimizing the negative220

log-likelihood of predicted actions. Concretely, for a trajectory with T steps, we minimize221

minθ
∑T

t=1 − log πθ(at|P,H). The entire training is conducted on an offline dataset with no simula-222

tor access. To make VIMA robust to detection inaccuracies and failures, we apply object augmentation223

by randomly injecting false-positive detection outputs. After training, we select model checkpoints224

for evaluation based on the aggregated accuracy on a held-out validation set. The evaluation involves225

interacting with the physics simulator. We follow the best practices to train Transformer models226

using the AdamW optimizer (Loshchilov & Hutter, 2019), learning rate warm-up, cosine annealing227

(Loshchilov & Hutter, 2016), etc. See Appendix Sec. D for comprehensive training hyperparameters.228

229
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6 EXPERIMENTS230

In this section, we aim to answer three main questions: (1) How does VIMA compare with prior231

SOTA transformer-based agents on a diverse collection of multimodal-prompted tasks? (2) What are232

the scaling properties of our approach in model capacity and data size? (3) How do different visual233

tokenizers, prompt conditioning, and prompt encoding affect decision making?234

6.1 BASELINES235

Gato (Reed et al., 2022) introduces a decoder-only model that solves tasks from multiple domains236

where tasks are specified by prompting the model with the observation and action subsequence. For237

fair comparison, we provide the same conditioning as VIMA, i.e., our multimodal embedded prompt.238

Input images are divided into patches and encoded by a ViT (Dosovitskiy et al., 2020) model to239

produce observation tokens.240

Flamingo (Alayrac et al., 2022) is a vision-language model that learns to generate textual completion241

in response to multimodal prompts. It embeds a variable number of prompt images into a fixed242

number of tokens via a Perceiver Resampler (Jaegle et al., 2021b), and conditions the language243

decoder on the encoded prompt by cross-attention. Flamingo does not work with embodied agents244

out of the box. We adapt it to support decision-masking by replacing the output layer with robot245

action heads.246

Multimodal GPT agent is a GPT-based behavior cloning agent conditioned on tokenized multimodal247

prompts. It autoregressively decodes next actions given instructions and interaction histories. Similar248

to prior works of casting RL problems as sequence modeling (Chen et al., 2021; Janner et al., 2021),249

it encodes an image into a single state token by a ViT encoder, and prepends the rollout trajectory250

with prompt tokens. This baseline does not involve cross-attention.251

A more detailed comparison between these methods can be found in Appendix, Sec. C.1.252

6.2 EVALUATION RESULTS253

We compare VIMA against other SOTA methods on the four levels of generalization provided in our254

benchmark for different model and training dataset sizes.255

Model scaling. We train all methods for a spectrum of model capacities from 2M to 200M parameters,256

evenly spaced on the log scale. The encoder size is kept constant (pre-trained T5-Base) for all methods257

and excluded from the parameter count. Across all levels of zero-shot generalization, we find that258

VIMA strongly outperforms prior work. Although models like Gato and Flamingo show improved259

performance with bigger model sizes, VIMA consistently achieves superior performance over all260

model sizes. We note that this can only be achieved with both cross-attention and object token261

sequence representation without any downsampling — altering any component will degrade the262

performance significantly, especially in the low model capacity regime (ablations in Sec. 6.3).263

Data scaling. Next we investigate how different methods scale with varying dataset sizes. We264

compare model performance at 0.1%, 1%, 10% and full imitation learning dataset provided in265

VIMA-BENCH (Fig. 4). VIMA is extremely sample efficient and with just 1% of the data can266

achieve performance similar to baseline methods trained with 10× more data for L1 and L2 levels of267

generalization. In fact, for L4 we find that with just 1% of training data, VIMA already outperforms268

prior work trained with entire dataset. Finally, across all levels with just 10% of the data, VIMA269

can outperform prior work trained with the full dataset by a significant margin. We hypothesize that270

the data efficiency can be attributed to VIMA’s object-centric representation, which is less prone to271

overfitting than learning directly from pixels in the low-data regime. This is consistent with findings272

from Sax et al. (2018), which demonstrates that embodied agents conditioned on mid-level visual273

representations tend to be significantly more sample-efficient than end-to-end control from raw pixels.274

Progressive Generalization. Finally, we compare the relative performance degradation as we test the275

models on progressively challenging zero-shot evaluation levels without further finetuning (Fig. 5).276

Our method exhibits a minimal performance regression, especially between L1 → L2 and L1 → L3.277

In contrast, other methods can degrade as much as 20%, particularly in more difficult generalization278

scenarios. Although all methods degrade significantly when evaluated on L4 (Novel Tasks), the drop279
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in performance for VIMA is only half as severe as all other baselines. This results suggest that VIMA280

has developed more generalizable policy and robust representations than the competing approaches.281

6.3 ABLATION STUDIES282
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Figure 5: VIMA incurs much less per-
formance drop than baselines as we eval-
uate on progressively harder zero-shot
generalization.

Through extensive experiments, we ablate different design283

choices in VIMA and study their impact on robot decision284

making. We focus on the following 4 aspects: visual tok-285

enization, prompt encoding, prompt conditioning variants,286

and robustness against distractors and imperfect prompts.287

Visual tokenization. As explained in Sec. 5, VIMA pro-288

cesses the prompt and observation images into a variable289

number of object tokens with an off-the-shelf Mask R-290

CNN implementation. How important is this particular291

choice of visual tokenizer? We study 5 different variants292

and empirically evaluate their 4 levels of generalization293

performance on VIMA-BENCH. (1) Ours (Oracle): in-294

stead of using Mask R-CNN, we directly read out the295

groundtruth bounding box from the simulator. In other296

words, we use a perfect object detector to estimate the297

upper bound on the performance of this study; (2) Object298

Perceiver: we apply a Perceiver module (Jaegle et al.,299

2021b;a) to convert the variable number of objects detected in each frame to a fixed number of tokens.300

Perceiver is more computationally efficient because it reduces the average sequence length; (3) Image301

Perceiver: the same architecture as the Perceiver Resampler in Flamingo, which converts an image302

to a small, fixed number of tokens; (4) Image patches: following Gato, we divide an RGB frame into303

square patches, and extract ViT embedding tokens. The number of patches is more than the output of304

Image Perceiver; (5) Single image: Decision Transformer’s tokenizer, which encodes one image into305

a single token.306

Fig. 6 shows the ablation results. We highlight a few findings. First, we note that our Mask R-CNN307

detection pipeline (Appendix, Sec. A.20) incurs a minimal performance loss compared to the oracle308

bounding boxes, thanks to the object augmentation (Sec. 5) that boosts robustness during training.309

Second, tokenizing from raw pixels (Image Perceiver, patches, or single embedding) consistently310

underperforms our object-centric format. We hypothesize that these tokenizers have to allocate extra311
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Figure 7: Ablation: Prompt conditioning. We compare our method (xattn: cross-attention prompt
conditioning) with a vanilla transformer decoder (gpt-decoder) across different model sizes. Cross-
attention is especially helpful in low-parameter regime and for harder generalization tasks.

internal capacity to parse the objects from low-level pixels, which likely impedes learning. Sax312

et al. (2018) echoes our finding that using mid-level vision can greatly improve agent generalization313

compared to an end-to-end pipeline. Third, even though Ours and Object Perceiver both use the same314

object bounding box inputs, the latter is significantly worse in decision making. We conclude that315

it is important to pass the variable sequence of objects directly to the robot controller rather than316

downsampling to a fixed number of tokens.317

Prompt Conditioning. VIMA conditions the robot controller (decoder) on the encoded prompt by318

cross-attention. A simple alternative is to concatenate the prompt P and interaction history H into one319

big sequence, and then apply a decoder-only transformer like GPT (Radford et al., 2018) to predict320

actions. In this ablation, we keep the object tokenizer constant, and only switch the conditioning321

mechanism to causal sequence modeling. Note that this variant is conceptually “Gato with object322

tokens”. Fig. 7 shows the comparison of VIMA (xattn) and the gpt-decoder variant across 4323

generalization levels. While the variant achieves comparable performance in larger models, cross-324

attention still dominates in the small-capacity range and generalizes better in the most challenging L4325

(Novel Task) setting. Our hypothesis is that cross-attention helps the controller stay better focused on326

the prompt instruction at each interaction step. This bears resemblance to the empirical results in327

Sanh et al. (2021); Wang et al. (2022b), which show that well-tuned encoder-decoder architectures328

can outperform GPT-3 in zero-shot generalization.329

Prompt Encoding. We vary the size of the pre-trained T5 encoder to study the effect of prompt330

encoding. We experiment with three T5 capacities: small (30M), base (111M), to large (368M).331

For all T5 variants, we fine-tune the last two layers and freeze all other layers. We find no significant332

difference among the variants (Appendix, Sec. E.2), thus we set base as default for all our models.333

Policy Robustness. We study the policy robustness against increased amounts of distractors and334

imperfect task specifications. See Appendix, Sec. E.3 for exact setup and results. VIMA exhibits335

minimal performance degradation with increased distractors and corrupted prompts. We attribute this336

robustness to the high-quality, pre-trained T5 language backbones.337

7 CONCLUSION338

Similar to GPT-3, a generalist robot agent should have an intuitive and expressive interface for human339

users to convey their intent. In this work, we introduce a novel multimodal prompting formulation that340

converts diverse robot manipulation tasks into a uniform sequence modeling problem. We propose341

VIMA, a conceptually simple transformer-based agent capable of solving tasks like visual goal,342

one-shot video imitation, and novel concept grounding with a single model. VIMA exhibits superior343

model and data scaling properties, and provides a strong starting point for future work.344

The current VIMA experiments are not without limitations. We identify the following weaknesses:345

(1) limited action primitives (only pick-and-place and wipe for now); (2) limited simulator realism;346

(3) reliance on domain-finetuned Mask R-CNN to provide object tokens. However, VIMA’s algorithm347

design is general-purpose and does not make assumptions about the particular observation and action348

formats. This opens the door to future works that may address many of these weaknesses with349

more sophisticated environments (e.g. BEHAVIOR (Srivastava et al., 2021)), stronger vision pipeline350

(large-scale open-vocabulary models like ViLD (Gu et al., 2021)), and temporally-extended robot351

controllers (such as MAPLE (Nasiriany et al., 2021)). With these stronger modules, VIMA could352

potentially scale to more challenging problems. We open-source all code to facilitate future research.353
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8 REPRODUCIBILITY STATEMENT354

We provide comprehensive details to reproduce our work in the Appendix. Concretely, the specifi-355

cations of each meta-task in the benchmarking suite are explained in Sec. B. Model architectures356

are elaborated in Sec. C. Hyperparameter configurations are listed in Sec. D. Furthermore, we host357

anonymized code at https://iclr3081.github.io/ for review.358

359
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R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran709

Associates, Inc., 2019.710

Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler, and Antonio Torralba.711

Virtualhome: Simulating household activities via programs. In 2018 IEEE Conference on Computer712

Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18-22, 2018, pp.713

8494–8502. Computer Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.714

2018.00886. URL http://openaccess.thecvf.com/content_cvpr_2018/html/715

Puig_VirtualHome_Simulating_Household_CVPR_2018_paper.html.716

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-717

standing by generative pre-training. OpenAI, 2018.718

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,719

Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual720

models from natural language supervision. In International Conference on Machine Learning, pp.721

8748–8763. PMLR, 2021.722

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi723

Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-724

text transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020. URL http://jmlr.org/725

papers/v21/20-074.html.726

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-727

conditional image generation with clip latents. arXiv preprint arXiv: Arxiv-2204.06125, 2022.728

Harish Ravichandar, Athanasios S Polydoros, Sonia Chernova, and Aude Billard. Recent advances in729

robot learning from demonstration. Annual review of control, robotics, and autonomous systems, 3:730

297–330, 2020.731

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov,732

Gabriel Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom733

Eccles, Jake Bruce, Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell,734

Oriol Vinyals, Mahyar Bordbar, and Nando de Freitas. A generalist agent. arXiv preprint arXiv:735

Arxiv-2205.06175, 2022.736

Machel Reid, Yutaro Yamada, and Shixiang Shane Gu. Can wikipedia help offline reinforcement737

learning? arXiv preprint arXiv: Arxiv-2201.12122, 2022.738

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang A. Sutawika, Zaid Alyafeai,739

Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari, Canwen740

Xu, Urmish Thakker, Shanya Sharma, Eliza Szczechla, Taewoon Kim, Gunjan Chhablani, Nihal V.741

Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han Wang, Matteo Manica,742

Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden, Thomas Wang, Trishala Neeraj,743

Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault Févry, Jason Alan Fries, Ryan Teehan,744

Stella Rose Biderman, Leo Gao, T. Bers, Thomas Wolf, and Alexander M. Rush. Multitask745

prompted training enables zero-shot task generalization. Iclr, 2021.746

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,747

Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A748

platform for embodied ai research. In Proceedings of the IEEE/CVF International Conference on749

Computer Vision (ICCV), October 2019.750

Alexander Sax, Bradley Emi, Amir R. Zamir, Leonidas Guibas, Silvio Savarese, and Jitendra751

Malik. Mid-level visual representations improve generalization and sample efficiency for learning752

visuomotor policies. arXiv preprint arXiv: Arxiv-1812.11971, 2018.753

Dhruv Shah, Blazej Osinski, Brian Ichter, and Sergey Levine. Lm-nav: Robotic navigation with large754

pre-trained models of language, vision, and action. arXiv preprint arXiv: Arxiv-2207.04429, 2022.755

Noam Shazeer. Glu variants improve transformer. arXiv preprint arXiv: Arxiv-2002.05202, 2020.756

17

http://openaccess.thecvf.com/content_cvpr_2018/html/Puig_VirtualHome_Simulating_Household_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Puig_VirtualHome_Simulating_Household_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Puig_VirtualHome_Simulating_Household_CVPR_2018_paper.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html


Under review as a conference paper at ICLR 2023

Bokui Shen, Fei Xia, Chengshu Li, Roberto Martı́n-Martı́n, Linxi Fan, Guanzhi Wang, Claudia757
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Sebastian Platen, and Sönke Mäter. Blender online libraries for textures, 2022. URL https:862

//cloud.blender.org/p/textures/.863

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,864
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A SIMULATOR DETAILS914

We build our VIMA-BENCH simulation suite upon the Ravens physics simulator (Zeng et al., 2020;915

Shridhar et al., 2021). Specifically, it is supported by PyBullet (Coumans & Bai, 2016–2021) with a916

Universal Robot UR5 arm. The size of the tabletop workspace is 0.5× 1m. Our benchmark contains917

extensible sets of object geometries and textures. Instantiated from an object-texture combination,918

all object instances can be rendered as RGB images appeared in multimodal prompts. Figure A.1919

displays all object geometries. Figure A.2 displays all textures.920

The observation space of VIMA-BENCH includes RGB images from both frontal and top-921

down views. It also includes a one-hot vector ∈ {0, 1}2 to indicate type of the end-effector922

∈ {suction cup, spatula}. While a suction cup is equipped in most manipulation tasks, a spat-923

ula is used in particular for visual constraint tasks, where an agent is asked to “wipe” objects.924

VIMA-BENCH inherits the same action space from Zeng et al. (2020) and Shridhar et al. (2021),925

which consists of primitive actions of “pick and place” for tasks with a suction cup as the end effector,926

or “push” for tasks with a spatula. Both primitive actions contain two poses ∈ SE(2) specifying927

target poses of the end effector. For the “pick and place” primitive, they represent the pick pose and928

the place pose. Fir the “push” primitive, they represent the push starting pose and push ending pose.929

Similar to prior work (Zeng et al., 2020; Shridhar et al., 2021), VIMA-BENCH provides scripted930

oracles to generate successful demonstrations for all tasks. We leverage them to construct an offline931

imitation dataset for behavioral cloning. Given a prompt, these pre-programmed bots can access932

privileged information such as the correct object to pick and target location to place.933

B TASK SUITE934

We develop 17 meta tasks that belong to 6 diverse categories. Thousands of individual tasks and their935

corresponding multimodal prompts can be procedually generated from these meta-task templates. We936

use PyBullet (Coumans & Bai, 2016–2021) as our backend and the default renderer to produce the937

RGB frames for training data and interactive test environments. For demonstration purpose, we apply938

the NVISII (Morrical et al., 2020) raytracing renderer to enhance the visual quality. We elaborate939

each meta task in the following subsections.940

B.1 SIMPLE OBJECT MANIPULATION941

This task category asks agents to follow basic instructions specified by multimodal prompts.942

Task 01: Pick the specified object(s) and place it into the specified object.943

• Prompt: Put the {object}1 into the {object}2.944

• Description: The image placeholder {object}1 is the object to be picked and945

the {object}2 is the container object. The agent requires to recognize the ob-946

jects with the correct color-shape combinations. To extend the difficulties, it sup-947

ports more than one object to be picked or placed. For example, the prompt948

Put the {object}1 and {object}2 into the {object}3. asks to pick two949

different objects and place into a target container. We uniformly sample different color-shape950

combos for objects to be picked and containers.951

• Success Criteria: All specified object(s) to pick are within the bounds of the container952

object(s), with specified shapes and textures provided in the prompt.953

• Oracle Trajectory: Shown in Fig. A.3 with its multimodal prompt.954

Task 02: In the workspace, put the objects with a specified texture shown in the scene image in the955

prompt into container object(s) with a specified color. This task requires the agent to find the correct956

object to manipulate by grounding the textural attributes from both natural language descriptions and957

the visual scene images.958

• Prompt: Put the {texture}1 object in {scene} into the {texture}2959

object.960
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L-shaped block block bowl container cross diamond

flower frame heart hexagon letter A letter E

letter G letter M letter R letter T letter V line

pallet pan pentagon ring round shorter block

small block square star three-sided
 rectangle

triangle

Figure A.1: Object Gallery in VIMA-BENCH textured with random textures. Bowl and pan are
from Google Scanned Objects (Downs et al., 2022) while others are from Ravens (Zeng et al., 2020)
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Figure A.2: Texture Gallery in VIMA-BENCH. The first row of image-based textures are from
Blender Cloud Libraries (Weikert et al., 2022), while others are hard-coded.
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Put the             into the                      .

Figure A.3: Simple Object Manipulation: Task 01

• Description: The text placeholder {texture}1 and {texture}2 are sampled textures for961

objects to be picked and the container objects, respectively. The number of dragged objects962

with the same texture can be varied. {scene} is the workspace-like image placeholder.963

There is a designated number of distractors with different textures (and potentially different964

shapes) in the scene. For each distractor in the workspace, it has 50% chance to be either965

dragged or container distractor object with different textures from those specified in the966

prompt.967

• Success Criteria: All objects in the workspace with {texture}1 are within the bounds of968

the container object with {texture}2.969

• Oracle Trajectory: Shown in Fig. A.4 with its multimodal prompt.970

Put the green and blue stripe object in into the yellow paisley object.

Figure A.4: Simple Object Manipulation: Task 02

Task 03: Rotate objects clockwise by certain degrees along z-axis. Only rotationally asymmetric971

objects are considered in this task.972

• Prompt: Rotate the {object}1 {angles} degrees.973

• Description: The agent is required to rotate all objects in the workspace specified by974

the image placeholder {object}1. There are also objects with different color-shape975

combinations in the workspace as distractors. {angles} is the sampled degree that the976

dragged object needs to be rotated. A target angle is sampled from 30◦, 60◦, 90◦, 120◦, and977

150◦.978

• Success Criteria: The position of the specified object matches its original position, and the979

orientation matches the orientation after rotating specific angles.980

• Oracle Trajectory: Shown in Fig. A.5 with its multimodal prompt.981

B.2 VISUAL GOAL REACHING982

This task category requires agents to manipulate objects in the workspace to reach goal states983

represented as images shown in prompts.984
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Rotate the             120 degrees.

Figure A.5: Simple Object Manipulation: Task 03

Task 04: Rearrange target objects in the workspace to match goal configuration shown in prompts.985

Note that to achieve the goal configuration, distractors may need to be moved away first.986

• Prompt: Rearrange to this {scene}.987

• Description: Objects in the scene placeholder {scene} are target objects to be manipulated988

and rearranged. In the workspace, the same target objects are spawned randomly, potentially989

with distractors randomly spawned as well. With a defined distractor conflict rate, the990

position of each distractor has this probability to occupy the position of any target object991

such that the rearrangement can only succeed if moving away that distractor first.992

• Success Criteria: The configuration of target objects in the workspace matches that specified993

in the prompt.994

• Oracle Trajectory: Shown in Fig. A.6 with its multimodal prompt. .995

Rearrange to this                                                .

Figure A.6: Visual Goal Reaching: Task 04

Task 05: Extend the task 04 by requiring the agent to restore rearranged objects to the initial setup996

after the “rearranging” phase.997

• Prompt: Rearrange objects to this setup {scene} and then restore.998

• Description: Same as the task 04, except introducing the instruction ”restore”.999

• Success Criteria: Meet the success criteria of the task 04, and then within the allowed max1000

steps restore all target objects to their initial configurations.1001

• Oracle Trajectory: Shown in Fig. A.7 with its multimodal prompt.1002
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Rearrange objects to this setup                                                   and then restore.

Figure A.7: Visual Goal Reaching: Task 05

B.3 NOVEL CONCEPT GROUNDING1003

This task category requires agents to ground new concepts of adjectives, nouns, or verbs via visual per-1004

ception and language understanding. Similar task design can be found in prior work (Hill et al., 2021).1005

Completing these tasks are challenging, because the model should a) first understand prompts with1006

interleaved texts, images, and even video frames; b) quickly internalize new concepts that are different1007

across task instances, which even tests the ability to meta learn; and c) do complicated reasoning such1008

as comparing between “taller” vs “less taller” vs “shorter” and then ground this reasoning into the1009

robot action space.1010

Prompts consist of two parts: a definition part followed by an instruction part. In the definition1011

part, novel conceptions are defined by multimodal illustrations with multiple support examples. In1012

the instruction part, agents are asked to achieve the goal by properly applying concepts from the1013

definition part. The assignment of unique nonsense words is varied and independent for each task1014

instance such that tasks can only be solved if the agent applies the reasoning correctly. This ability is1015

also referred to as fast-mapping (Heibeck & Markman, 1987).1016

Task 06: Ground comparative adjectives by comparing the size or the textural saturation of objects1017

and manipulating the correct object(s) instructed in the prompt.1018

• Prompt:{demo object}1 is {novel adj} than {demo object}2. Put the1019

{adv} {novel adj} {object}1 into the {object}2.1020

• Description: The sampled adjective {novel adj} is a dummy adjective placeholder1021

for agent to ground. By default, the novel adjective set is {daxer, blicker,1022

modier, kobar}. The real meaning can be related to size (smaller/larger) or textu-1023

ral saturation (lighter/darker texture). The image placeholders {demo object}1 and1024

{demo object}2 illustrate how the novel adjective is defined. For example, if the1025

real comparison is ”taller”, then the sampled object in {demo object}1 is taller than1026

{demo object}2. The choices of the novel adjective and the real meaning are indepen-1027

dently sampled for different task instances. For the instruction part, this task is similar to1028

task 01, where the agent is required to pick the specified dragged object(s) with the novel1029

adjective attribute and then place it into the specified container object. To avoid revealing the1030

correct object to manipulate, we use a neutral texture for objects appeared in the instruction1031

part.1032

• Success Criteria: All target objects with the specified adjective attribute are within the1033

bounds of the specified container object.1034

• Oracle Trajectory: Shown in Fig. A.8 with its multimodal prompt.1035

Task 07: Orthogonal to task 06 by requiring to learn mappings of novel nouns.1036

27



Under review as a conference paper at ICLR 2023

            is kobar than              .               is kobar than          .                is kobar than               .   Put the kobar             into the                      .

Figure A.8: Novel Concept Grounding: Task 06

• Prompt: This is a {novel name}1 {object}1. This is a {novel name}21037

{object}2. Put {novel name}1 into a {novel name}2.1038

• Description: Novel noun words are defined with the text placeholders {novel name}11039

and {novel name}2, following their image placeholders {object}1 and {object}2,1040

for the target object and container object, respectively. Novel nouns are sampled from {dax,1041

blicket, wug, zup}. In the instruction part, objects are expressed as novel nouns1042

defined in the previous definition part. Distractors are defined the same as task 01.1043

• Success Criteria: All target object(s) are within the bounds of the container object(s).1044

• Oracle Trajectory: Shown in Fig. A.8 with its multimodal prompt.1045

This is a blicket                  . This is a zup               . Put a zup into a blicket.

Figure A.9: Novel Concept Grounding: Task 07

Task 08: Combination of tasks 06 and 07.1046

• Prompt: This is a {novel name}1 {object}1. This is a {novel name}21047

{object}2. {demo object}1 is {adj} than {demo object}2. Put the1048

{adv} {novel adj} {novel name}1 into the {novel name}2.1049

• Description: see task description for task 06 and task 07.1050

• Success Criteria: Similar as tasks 06 and 07.1051

• Oracle Trajectory: Shown in Fig. A.10 with its multimodal prompt.1052

Task 09: A novel verb ”twist” is defined as rotating a specific angle conveyed by several examples.1053

This task is similar to task 03, but it requires the agent to infer what is the exact angle to rotate from1054

the prompt and to ground novel verbs that are semantically similar but different in exact definitions.1055

• Prompt: "Twist" is defined as rotating object a specific angle.1056

For examples: From {before twist}i to {after twist}i. Now twist1057

all {texture} objects.1058

• Description: Both {before twist}i and {after twist}i are scene placehold-1059

ers where {before twist}i shows a randomly sampled object before ”twist” and1060

{after twist}i shows the same object pose after ”twist”. All examples illustrate the1061
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This is a wug              . This is a zup            .             is blicker than            .             is blicker than           .

              is blicker than            . Put the blicker zup into the wug.

Figure A.10: Novel Concept Grounding: Task 08

same sampled angle of the rotation. In the workspace, the target objects have the texture1062

specified by {texture} and randomly sampled shapes.1063

• Success Criteria: Same as the task 03.1064

• Oracle Trajectory: Shown in Fig. A.11 with its multimodal prompt.1065
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Figure A.11: Novel Concept Grounding: Task 09

B.4 ONE-SHOT VIDEO IMITATION1066

This task category requires agents to imitate motions demonstrated through videos shown in prompts.1067

We follow prior works (Finn et al., 2017; Dasari & Gupta, 2020; Duan et al., 2017) to formulate the1068

problem by giving one video demonstration (represented as consecutive frames in prompts), then1069

test the learned imitator’s ability to produce target trajectories. This setup is challenging because1070

a) only one demonstration is available to the agent; b) the model needs to understand video frames1071

interleaved with textual instructions; and c) missing correspondences between demonstrations and1072

target trajectories since demonstrations only show partial key frames.1073

Task 10: Follow motions for specific objects.1074

• Prompt: Follow this motion for {object}: {frame}1...{frame}i...1075

{frame}n.1076

• Description: Image placeholder {object} is the target object to be manipulated and1077

{{frame}i} is set of workspace-like scene placeholders to represent a video trajectory,1078

where n is the trajectory length. There is an object spawned at the center in both the1079
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workspace and the prompt video but with different textures as a distractor. The initial1080

position of the target object matches that in {frame}1.1081

• Success Criteria: In each step, the pose of the target object matches the pose in the1082

corresponding video frame. Incorrect manipulation sequences are considered as failures.1083

• Oracle Trajectory: Shown in Fig. A.12 with its multimodal prompt.1084

Follow this motion for                      :                                                                                                                           .

Figure A.12: One-shot video imitation: Task 10

Task 11: Stack objects with the order illustrated in the prompt video.1085

• Prompt: Stack objects in this order {frame}1...{frame}i...{frame}n.1086

• Description: There are multiple objects with the same shape but different textures spawned1087

in the workspace without any stacking initially. Distractor objects with different shapes are1088

spawned in the workspace but not in the prompt video. At each step of the prompt video,1089

one of the top objects is stacked over another object or put at an empty position.1090

• Success Criteria: Similar as task 10.1091

• Oracle Trajectory: Shown in Fig. A.13 with its multimodal prompt.1092

Stack objects in this order                                                                                                                                        ..

Figure A.13: One-shot video imitation: Task 11

B.5 VISUAL CONSTRAINT SATISFACTION1093

This task category requires agents to wipe a specific number of objects in the workspace to a goal1094

region while also satisfy the given visual constraint.1095

Task 12: Sweep the designated number of objects into a specified region without exceeding the1096

boundary.1097

• Prompt: Sweep {quantifier} {object} into {bounds} without1098

exceeding {constraint}.1099

• Description: {object} is the image placeholder of the target object to be swept spawned1100

with a random amount in the workspace. Distractors have the same amount, same shape, but1101

different color from target objects. {quantifier} is the text placeholder to determine1102

the target quantity of objects to be wiped, sampled from any, one, two, three, and1103

all. {bounds} is the image placeholder for a three-sided rectangle as the goal region. {1104

constraint} is the constraint line.1105
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• Success Criteria: The exact number of target objects to be swept are all inside the specified1106

region. Failure reasons include 1) any distractor being wiped into the region, 2) target object1107

exceeding the constraint, or 3) incorrect number of target objects being swept into the goal1108

region.1109

• Oracle Trajectory: Shown in Fig. A.14 with its multimodal prompt.1110

Sweep any             into                           without exceeding                       .

Figure A.14: Visual Constraint Satisfaction: Task 12

Task 13: Sweep the designated number of objects into a specified region without touching the1111

constraint.1112

• Prompt: Sweep {quantifier} {object} into {bounds} without1113

touching {constraint}.1114

• Description: Similar as task 12 but requiring different way to satisfy the constraint. The1115

agent has to learn to avoid ”touching” the constraint line in this case.1116

• Success Criteria: Similar as task 12 except that the constraint is to not touch the red line.1117

• Oracle Trajectory: Shown in Fig. A.15 with its multimodal prompt.1118

Sweep two             into                           without touching                       .

Figure A.15: Visual Constraint Satisfaction: Task 13

B.6 VISUAL REASONING1119

This task category requires agents to make decisions by reasoning over or memorizing information1120

conveyed through multimodal prompts.1121

Task 14: By reasoning the ”same texture”, the agent is required to pick all objects in the workspace1122

with the same texture as the container objects specified in the prompt and place them into it.1123

• Prompt: Put all objects with the same texture as {object} into1124

it.1125
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• Description: {object} is the sampled goal container object. In the workspace, there are1126

objects with the same texture as the container but potentially different shapes. Distractors1127

with different textures are spawned.1128

• Success Criteria: All objects with the same texture as the goal container are within the1129

bounds of the container.1130

• Oracle Trajectory: Shown in Fig. A.16 with its multimodal prompt.1131

Put all objects with the same texture as                          into it.

Figure A.16: Visual Reasoning: Task 14

Task 15: By reasoning the ”same shape”, the agent is required to pick all objects in the workspace1132

with the same top-down shape as the goal container specified in the prompt and place them into it.1133

For example, blocks and boxes have the same rectangular shape.1134

• Prompt: Put all objects with the same profile as {object} into1135

it.1136

• Description: Similar to the task 14 except the objects to be picked and placed are with1137

the same shape. There are three different shapes: rectangular-like (e.g. block and pallet),1138

circle-like (e.g. ring and bowl), and undetermined for the rest.1139

• Success Criteria: All objects with the same shape as the container are within the container.1140

• Oracle Trajectory: Shown in Fig. A.17 with its multimodal prompt.1141

Put all objects with the same profile as                      into it.

Figure A.17: Visual Reasoning: Task 15

Task 16: Put the target object into the container, and then put one of its old neighbors into the same1142

container.1143

• Prompt: First put {object}1 into {object}2 then put the object1144

that was previously at its {direction} into the same {object}2.1145

• Description: Objects in image placeholders {object}1 and {object}2 are the target1146

object to be picked and the container, respectively. We then ask the agent to put one of old1147

neighbors of the previous target object into the same container. The old neighboring object1148

is specified through cardinal directions {north, south, west, east}.1149

• Success Criteria: The target object and the correct neighboring object are inside the1150

container.1151

• Oracle Trajectory: Shown in Fig. A.18 with its multimodal prompt.1152
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First put into then put the object that was previously at its west into the same .

Figure A.18: Visual Reasoning: Task 16

Task 17: Pick and place the target object specified in the prompt into different containers in order1153

then restore to the initial container.1154

• Prompt: Put {object}1 into {object}2. Finally restore it into1155

its original container.1156

• Description: The object in the image placeholder {object}1 is the target ob-1157

ject to be manipulated across the task. There are more than one target containers (e.g.1158

Put {object}1 into {object}2 then {object}3.Finally restore it1159

into its original container. for two target base objects to be placed in order).1160

The rest of spawned containers naturally becomes distractors.1161

• Success Criteria: The target object are first put into multiple containers following the1162

specific order. Finally it should be restored into its original container.1163

• Oracle Trajectory: Shown in Fig.A.19 with its multimodal prompt.1164

Put              into                       then                    .  Finally restore it into its original container.

Figure A.19: Visual Reasoning: Task 17

C MODEL ARCHITECTURE1165

In this section, we provide comprehensive details about VIMA model architecture as well as other1166

adapted baseline methods. We implement all models in PyTorch (Paszke et al., 2019) and adapt1167

Transformer-related implementation from Wolf et al. (2019).1168

C.1 SUMMARY OF DIFFERENT METHODS1169

We summarizes differences between VIMA and other baseline methods in Table 1. In the column1170

“Prompt Conditioning”, an alternative of cross-attention is to first concatenate prompt and interaction1171

into a big sequence, then repetitively apply transformer decoders to predict actions. It is referred1172

to as “direct modeling”. The relative computation cost is quadratically proportional to number of1173

observation tokens.1174
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Table 1: Comparison of different methods.

Visual Tokenizer Prompt Conditioning Number of Observation Tokens per Step

Ours Object tokens consisting of
cropped images and bounding boxes Cross-attention Equal to number of objects, typically 3 to 8

Gato
(Reed et al., 2022) Image patch tokens encoded by a ViT Direct modeling Equal to number of image patches, 16

Flamingo Agent
(Alayrac et al., 2022)

Image patch tokens encoded by a ViT,
further downsampled by a Perceiver module Cross-attention Equal to number of learned query vectors, 4

Multimodal GPT Agent
(Brown et al., 2020) Single image token encoded by a ViT Direct modeling Single visual feature, 1

Table 2: Model hyperparameters for multimodal prompt tokenization.

Hyperparameter Value

Text Tokenization

Tokenizer t5-base tokenizer
Embedding Dimension 768

Image Tokenization

ViT Input Image Size 32 × 32
ViT Patch Size 16
ViT Width 768
ViT Layer 4
ViT Number of Heads 24

Bounding Box MLP

Hidden Dimension 768
Hidden Depth 2

Prompt Encoding

Pre-trained LM t5-base
Unfreeze Last N Layers 2
Positional Embedding Absolute
Token Adapter MLP Depth 2

C.2 VIMA ARCHITECTURE1175

C.2.1 MULTIMODAL PROMPT TOKENIZATIONS1176

As introduced in Section 5, there are 3 types of input formats in multimodal prompts, namely (1) text1177

inputs, (2) images of full scenes, and (3) images of single objects.1178

For text inputs, we follow the standard pipeline in NLP to first tokenize raw languages to discrete1179

indices through pre-trained t5-base tokenizer. We then obtain corresponding word tokens from the1180

embedding look-up of the pre-trained t5-base model. For images of full scenes, we first parse the1181

scene through a fine-tuned mask R-CNN detection model (He et al., 2017; Wu et al., 2019) to extract1182

individual objects. Each object representation contains a bounding box and a cropped image. The1183

bounding box is in the format of [xcenter, ycenter, height,width]. We normalize it to be within [0, 1] by1184

dividing each dimension with corresponding upper-bound value. We then pass it through a bounding1185

box encoder MLP and obtain a feature vector. To process the cropped image, we first pad non-square1186

image to a square by padding along the shorter dimension. We then resize it to a pre-configured size1187

and pass it through a ViT (trained from scratch) to obtain the image feature. Finally, an object token1188

is obtained by concatenating the bounding box feature and the image feature and mapping to the1189

embedding dimension. For images of single objects, we obtain tokens in the same way except with a1190

dummy bounding box. Detailed model hyperparameters about tokenizations are listed in Table 2.1191
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After obtaining a sequence of prompt tokens, we follow Tsimpoukelli et al. (2021) to pass it through1192

a pre-trained t5-base encoder to obtain encoded prompt. Note that we add adapter MLP be-1193

tween object tokens and the T5 encoder. We adopt learned absolute positional embedding. Model1194

hyperparameters are listed in Table 2 as well.1195

Table 3: Model hyperparameters for observation encoding.

Hyperparameter Value

Observation Token Dimension 768
End Effector Embedding Dimension 2

Positional Embedding Absolute

Table 4: Model hyperparameters for action decoders.

Hyperparameter Value

Hidden Dimension 512
Hidden Depth 2

Activation ReLU
X-axis Discrete Bins 50
Y-axis Discrete Bins 100

Rotation Discrete Bins 50

C.2.2 OBSERVATION ENCODING1196

Since all RGB observations are images of full scenes, we follow the same procedure discussed1197

above to obtain flattened object tokens. Because we provide RGBs from two views (frontal and1198

top-down), we order object tokens by following the order of [frontal, top-down]. We one-hot encode1199

the state of the end effector. We then concatenate object tokens with the end-effector state and1200

transform to observation tokens. We adopt learned absolute positional embedding. Detailed model1201

hyperparameters about observation encoding is provided in Table 3.1202

C.2.3 ACTION ENCODING1203

Since our model is conditioned on observation-action interleaved history, we also tokenize past1204

actions. We follow common practice in Chen et al. (2021); Zheng et al. (2022) to encode past actions1205

with a two-layer MLP. It has a hidden dimension of 256. We then map outputs to token dimension1206

and obtain action tokens.1207

C.2.4 SEQUENCE MODELING1208

The robot controller in VIMA is a causal decoder that autoregressively predicts actions. To condition1209

the decoder on prompt tokens, we perform cross-attention between history tokens and prompt tokens1210

(Figure 3). Concretely, we pass history tokens as the query sequence and prompt tokens as the1211

key-value sequence into cross-attention blocks. The output prompt-aware trajectory tokens then go1212

through causal self-attention blocks. We alternate cross-attention and self-attention L times. This1213

procedure is technically described in Pseudocode 1.1214

Table 5: Model hyperparameters for ViT used in baseline methods.

Hyperparameter Value

Image Size 64 x 128
Patch Size 32
ViT Width 768
ViT Layers 4
ViT Heads 24
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Table 6: Model hyperparameters for Perceiver Resampler used in Flamingo method.

Hyperparameter Value

Number of Latent Queries 4
Number of Blocks 4
Self-attn per Block 4

Self-attn Heads 24
Cross-attn Heads 24

def xattn_sequence_modeling(
prompt_tokens, # the [L, d] prompt tokens (L=prompt length)
obs_tokens, # the [T, d] obs tokens (T=time step)
act_tokens, # the [T-1, d] action tokens
traj_pos_embd, # learned positional embedding for trajectory
prompt_pos_embd, # learned positional embedding for prompt

):
# interleave obs and action tokens
traj_tokens = interleave(obs_tokens, act_tokens) # [2T-1, d]
# add positional embedding to trajectory tokens
x = traj_tokens + traj_pos_embd
# add positional embedding to prompt tokens
prompt_tokens = prompt_tokens + prompt_pos_embd

# apply xattn and causal self-attn
for i in range(num_layers):

# cross-attention
x = x + attn_i(q=x, kv=prompt_tokens)
# feed forward
x = x + ffw_xattn_i(x)
# self-attention
x = x + causal_attn_i(q=x, kv=x)
# feed forward
x = x + ffw_i(x)

# the last token is the predicted action token
predicted_act_token = x[-1]
return predicted_act_token

Pseudocode 1: Cross-attention operation that conditions the trajectory history on prompt. We
repetitively alternate cross-attention and self-attention to model the trajectory given a specific task.

1215

1216

C.2.5 ACTION DECODING1217

After obtaining the predicted action token, we map it to the action space A and obtain the predicted1218

action. This is achieved though a group of action heads. Since the action space consists of two1219

SE(2) poses, for each pose we use six independent heads to decode discrete actions (two for xy1220

coordinate and four for rotation represented in quaternion). These discrete actions are then de-1221

discretized and mapped to continuous actions through affine transformation. The two poses are1222

modeled independently. Early ablations show that this independent modeling is equally good as1223

alternatives techniques like autoregressive decoding (Vinyals et al., 2019; OpenAI et al., 2019).1224

Detailed model hyperparameters are listed in Table 4.1225

C.3 BASELINES ARCHITECTURES1226

In this section, we elaborate model architectures for baseline methods. Some components such as the1227

action decoder are same across all baseline methods and ours. Therefore, we only discuss unique1228

model components.1229
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C.3.1 GATO1230

Gato (Reed et al., 2022) introduces a decoder-only model that solves tasks from multiple domains1231

including robotics, video game, image captioning, language modeling, etc. Different tasks are speci-1232

fied by supplying the model with an initial sequence of corresponding tokens. For example, in tasks1233

involving decision making, these tokens include observation and action tokens. For fair comparison,1234

we provide the same conditioning as VIMA, i.e., our multimodal tokenized prompts. Similar to our1235

method, Gato also predicts actions in an autoregressive manner. Gato and our method share the same1236

training philosophy to only optimize the causal behavior cloning objective. However, unlike our1237

method that adopts an object-centric representation to treat individual objects as observation tokens,1238

Gato divides input images into patches and encodes them by a ViT (Dosovitskiy et al., 2020) model1239

to produce observation tokens. Furthermore, Gato relies on causal self-attention to model entire1240

trajectory sequences starting with prompt tokens. Hyperparameters of Gato’s ViT is listed in Table 5.1241

The transformer-decoder style sequence modeling is technically illustrated in Pseudocode 2.1242

def causal_sequence_modeling(
prompt_tokens, # the [L, d] prompt tokens (L=prompt length)
sep_token, # the [1, d] learned token to separate prompt and
trajectory history
obs_tokens, # the [T, d] obs tokens (T=time step)
act_tokens, # the [T-1, d] action tokens
pos_embd, # learned positional embedding

):
# interleave obs and action tokens
traj_tokens = interleave(obs_tokens, act_tokens) # [2T-1, d]
# assemble input tokens
x = concat([prompt_tokens, sep_token, traj_tokens])
x = x + pos_embd

# apply GPT layers with causal mask
for i in range(num_layers):

# self-attention
x = x + causal_attn_i(q=x, kv=x)
# feed forward
x = x + ffw_i(x)

# the last token is the predicted action token
predicted_act_token = x[-1]
return predicted_act_token

Pseudocode 2: Plain sequence modeling that temporally concatenates prompt and trajectory history
and repetitively perform causal self-attention operation.

1243

1244

C.3.2 FLAMINGO1245

Flamingo (Alayrac et al., 2022) is a vision-language model that learns to generate textual completion1246

in response to multimodal prompts. It embeds a variable number of prompt images into a fixed number1247

of tokens via the Perceiver Resampler module (Jaegle et al., 2021b), and conditions the language1248

decoder on encoded prompts by cross-attention. Flamingo does not work with embodied agents out1249

of the box. We adapt it by replacing the output layer with robot action heads (hyperparameters listed1250

in Table 4) and using tokenized rollout histories as inputs. We train it end-to-end with causal behavior1251

cloning loss. The modified Flamingo agent differs from ours since it processes image observations1252

into a fixed number of visual tokens through a learned Perceiver Resampler. Model hyperparameters1253

for our reimplementation of the Perceiver Resampler is listed in Table 6.1254

C.3.3 MULTIMODAL GPT AGENT1255

37



Under review as a conference paper at ICLR 2023

Multimodal GPT agent (Brown et al., 2020) is a behavior cloning agent conditioned on tok-1256

enized multimodal prompts with the GPT architecture. It autoregressively decodes next actions1257

given multimodal prompts and interaction histories. We optimize this method end-to-end with1258

causal behavior cloning loss. Similar to prior works of casting RL problems as sequence mod-1259

eling (Chen et al., 2021; Janner et al., 2021; Zheng et al., 2022), it encodes an image into a single1260

“state” token through a learned ViT encoder. It also directly models entire trajectory sequences1261

prepended with prompt tokens. Therefore, it differs from our method in the representation of ob-1262

servation tokens and prompt conditioning. For visual tokenizer, we employ a learned ViT with1263

hyperparameters listed in Table 5.1264

C.4 MASK R-CNN DETECTION MODEL1265

Finally, we elaborate the mask R-CNN model (He et al., 2017) for scene parsing and object extraction.1266

We fine-tuned a pre-trained lightweight mask R-CNN (mask rcnn R 50 FPN 3x) from Wu et al.1267

(2019) to adapt to scenes and images in our tabletop environment. A visualization of its output is1268

provided in Figure A.20. We do not use the predicted object names in our models.1269

Figure A.20: Visualization of fine-tuned mask R-CNN. Left: Prediction from the detection model.
Right: Ground-truth scene parsing. The detection model agrees well with ground-truth objects.

D VIMA TRAINING DETAILS1270

We follow the best practices to train Transformer models using the AdamW optimizer (Loshchilov1271

& Hutter, 2019), learning rate warm-up, cosine annealing (Loshchilov & Hutter, 2017), etc. Train-1272

ing hyperparameters are provided in Table 7. We use GEGLU activation (Shazeer, 2020) inside1273

Transformer models across all methods.1274

Table 7: Hyperparameters used during training.

Hyperparameter Value

Learning Rate 0.0001
Warmup Steps 7K

LR Cosine Annealing Steps 17K
Weight Decay 0

Dropout 0.1
Gradient Clip Threshold 1.0

To make trained models robust to detection inaccuracies and failures, we apply object augmentation1275

by randomly injecting false-positive detection outputs. Concretely, for observation at each time step,1276

we sample number of augmented objects i.i.d. naugmented objects ∼ Cat(K,p), where Cat(·) denotes a1277

multi-categorical distribution with K supports parameterized by p. For each augmented object, we1278

then randomly sample a bounding box and corresponding cropped image to add to object tokens. In1279

our experiments, we set p = {0 : 0.95, 1 : 0.05} with K = 2.1280
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D.1 VARY MODEL CAPACITY1281

We train a spectrum of 7 models ranging from 2M to 200M parameters. To vary the model capacity,1282

we follow prior work (Chowdhery et al., 2022) to change embedding dimension and number of layers.1283

We list configurations for methods with cross-attention prompt conditioning (i.e., ours and Flamingo)1284

in Table 8, and configurations for methods only with causal self-attention (i.e., Gato and DT) in1285

Table 9.1286

Table 8: Configurations for different sized models with cross-attention prompt conditioning.

Model Size (M) Embedding Dimension Num Blocks X-attn Heads Self-attn Heads

2 256 1 8 8
4 256 2 8 8
9 320 3 10 10
20 384 4 12 12
43 512 5 16 16
92 640 7 20 20

200 768 11 24 24

Table 9: Configurations for different sized models with causal self-attention prompt conditioning.

Model Size (M) Embedding Dimension Num Blocks Self-attn Heads

2 64 1 2
4 96 2 3
9 192 3 6

20 320 4 10
43 512 5 16
92 768 7 24

200 768 18 24

E MORE EXPERIMENT RESULTS1287

E.1 BREAKDOWN RESULTS1288

We show breakdown results for Figure 4 in Tables 10, 11, 12, and 13, respectively.1289

E.2 VARY T5 ENCODER SIZES1290

We vary the size of the pre-trained T5 encoder (Raffel et al., 2020) to study the effect of prompt1291

encoding. We experiment with three T5 model capacities: t5-small (30M), t5-base (111M), to1292

t5-large (368M). For all T5 variants, we fine-tune the last two layers and freeze all other layers.1293

We fix the parameter count of the decision-making part to be 200M. As shown in Table 14, we find1294

no significant difference among the variants. Thus we set the standard t5-base as default for all1295

our models.1296

E.3 POLICY ROBUSTNESS1297

Increased Amounts of Distractors. We study the policy robustness against increased amounts of1298

distractors in scenes. For all tasks being evaluated, we add one more distractor object. We ran our1299

largest VIMA model with 200M parameters. The result is presented in Table 15.1300

It turns out that the performance of VIMA degrades minimally with more distractors than the training1301

distribution. This indicates that our agent has learned a reasonably robust policy against objects that1302

are irrelevant to the task.1303
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Table 10: L1 level generalization results. Model indicates robot controller parameter count.

Model Method Task 01 Task 02 Task 03 Task 04 Task 05 Task 06 Task 07 Task 09 Task 11 Task 12 Task 15 Task 16 Task 17

2M

Ours 100.0 100.0 100.0 96.0 37.0 100.0 100.0 9.5 87.0 64.0 93.5 45.0 63.0
Gato 62.0 61.0 22.5 13.5 7.0 44.5 54.0 4.0 48.0 85.0 44.5 43.0 0.0

Flamingo 56.0 56.0 53.5 36.5 37.5 45.0 55.5 3.5 54.0 83.5 40.5 28.5 2.0
Multimodal GPT 59.5 50.5 7.5 7.0 0.5 43.5 49.5 2.0 61.5 76.5 27.5 5.0 0.0

20M

Ours 100.0 100.0 100.0 99.5 59.5 100.0 100.0 13.5 74.0 72.5 96.5 39.5 47.5
Gato 61.5 62.0 32.5 49.0 38.0 46.0 60.0 5.0 68.0 83.0 47.0 46.5 2.0

Flamingo 63.0 61.5 55.0 50.0 42.5 41.5 58.0 6.0 62.0 83.0 44.0 38.5 1.0
Multimodal GPT 60.5 64.0 50.5 44.0 41.0 48.0 61.5 7.0 85.0 84.0 44.5 39.0 2.5

200M

Ours 100.0 100.0 99.5 100.0 56.5 100.0 100.0 18.0 77.0 93.0 97.0 76.5 43.0
Gato 79.0 68.0 91.5 57.0 44.5 54.0 74.0 18.0 61.0 88.5 83.5 33.5 2.5

Flamingo 56.0 58.5 63.0 48.5 38.0 48.5 62.5 3.5 66.5 86.0 40.0 43.5 2.5
Multimodal GPT 62.0 57.5 41.0 55.5 45.5 47.5 54.5 8.5 77.0 81.5 41.0 38.0 0.5

Table 11: L2 level generalization results. Model indicates robot controller parameter count.

Model Method Task 01 Task 02 Task 03 Task 04 Task 05 Task 06 Task 07 Task 09 Task 11 Task 12 Task 15 Task 16 Task 17

2M

Ours 100.0 100.0 100.0 95.5 37.5 100.0 100.0 17.5 87.5 67.0 97.5 46.0 54.5
Gato 49.5 49.0 23.0 17.5 0.5 47.5 46.5 5.5 50.0 82.5 49.0 42.0 0.5

Flamingo 45.5 46.0 56.0 39.5 35.5 49.0 47.0 9.0 53.0 80.0 43.0 29.5 1.0
Multimodal GPT 51.0 45.5 9.5 7.0 0.5 45.5 45.0 0.0 65.0 81.5 32.0 5.0 0.0

20M

Ours 100.0 100.0 100.0 100.0 61.0 100.0 100.0 16.5 75.5 75.0 96.0 37.5 47.5
Gato 44.0 51.5 39.0 51.0 38.5 47.5 52.5 6.0 65.5 84.0 52.5 40.5 1.0

Flamingo 48.5 49.0 55.5 48.0 42.5 46.5 52.0 6.0 66.0 82.0 47.5 37.0 0.5
Multimodal GPT 50.5 49.5 53.0 44.5 43.5 47.0 46.0 8.0 83.5 80.0 46.5 41.0 2.5

200M

Ours 100.0 100.0 99.5 100.0 54.5 100.0 100.0 17.5 77.0 93.0 98.5 75.0 45.0
Gato 56.5 53.5 88.0 55.5 43.5 55.5 53.0 14.0 63.0 90.5 81.5 33.0 4.0

Flamingo 51.0 52.5 61.5 49.5 38.5 47.5 55.5 5.5 70.5 82.0 42.0 39.0 3.0
Multimodal GPT 52.0 52.0 49.5 54.5 45.5 52.5 51.0 11.0 76.5 84.0 43.0 38.0 0.5

Table 12: L3 level generalization results. Model indicates robot controller parameter count.

Model Method Task 01 Task 02 Task 03 Task 04 Task 05 Task 06 Task 07 Task 09 Task 11 Task 15 Task 16 Task 17

2M

Ours 100.0 100.0 100 98.0 34.5 100.0 99.5 17.0 97.5 94.0 48.5 39.0
Gato 45.5 48 28.0 23.0 3.0 45.5 45.0 2.5 40.5 29.5 37.0 1

Flamingo 41.5 54.5 50.5 39.5 29 45.0 49.5 5.5 57.5 22.5 25.0 0.0
Multimodal GPT 48.5 50.0 5.0 7.0 2.5 47 45.5 2.0 69.5 22.5 5.0 0.0

20M

Ours 98.0 100.0 100 98.5 55.5 100.0 99.5 15.0 88.5 99.5 44.0 29.5
Gato 46.5 55 44.5 57.0 31.5 47.5 51.5 2.5 72.5 30.5 44.0 0

Flamingo 47.0 54.5 53.0 55.0 36 42.5 48.0 6.5 70.0 33.0 41.5 0.0
Multimodal GPT 50.0 60.5 56.5 48.0 33.5 51 46.0 6.5 92.5 32.5 43.5 1.5

200M

Ours 99.0 100.0 100 97.0 54.5 100.0 99.0 17.5 90.5 97.5 46.0 43.5
Gato 51.0 58 84.5 56.5 35.5 53.5 49.0 15.0 65.0 52.0 33.0 0

Flamingo 49.0 50.0 66.5 47.0 35 47.5 50.0 4.0 66.0 30.5 43.5 0.5
Multimodal GPT 52.0 51.0 55.0 49.5 40.0 46 50.5 5.0 82.0 37.0 38.0 1.5

Table 13: L4 level generalization results. Model indicates robot controller parameter count.

Model Method Task 08 Task 10 Task 13 Task 14

2M

Ours 6.5 0 0 96.5
Gato 21.0 0.5 0 32

Flamingo 22.0 0 0 27.5
Multimodal GPT 22.5 0.0 0 22.0

20M

Ours 100.0 0 0 95.5
Gato 20.5 0.0 0 29

Flamingo 21.0 0 0 27.5
Multimodal GPT 20.5 0.5 0 36.0

200M

Ours 100.0 0 0 94.5
Gato 30.5 0.0 0 37

Flamingo 24.5 0 0 24.0
Multimodal GPT 20.0 0.0 0 28.5

Imperfect Prompts. We then study the policy robustness against imperfect prompts, including incom-1304

plete prompts (randomly masking out words with <UNK> token) and corrupted prompts (randomly1305

swapping words, which could have changed the task meaning altogether). We ran our largest VIMA1306

model with 200M parameters, results are shown in Table 16.1307
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Table 14: Performances of our method with different sized pre-trained T5 prompt encoder. We fix the
parameter count of the decision-making part to be 200M.

t5-small (30M) t5-base (111M) t5-large (368M)

L1 78.8 81.5 80.8
L2 79.0 81.5 81.0
L3 80.3 78.7 81.0
L4 49.1 48.6 49.3

Table 15: Evaluation results on tasks with increased amounts of distractors. We fix the parameter
count of the decision-making part to be 200M.

L1 L2 L3 L4

Original 81.5 81.5 78.7 48.6
More Distractors 78.5 78.6 72.9 47.8

Relevant Performance Decrease (%) 3.6 3.5 7.3 1.6

Our well-trained model exhibits minimal performance decrease when evaluated on masked prompts1308

and minor decrease on corrupted prompts. We attribute this robustness to the high-quality, pre-trained1309

T5 language backbones.1310

Table 16: Evaluation results with incomplete and corrupted prompts. We fix the parameter count of
the decision-making part to be 200M.

L1 L2 L3 L4

Original 81.5 81.5 78.7 48.6
Incomplete Prompts 80.8 81.1 77.0 48.0
Corrupted Prompts 78.2 78.1 73.8 45.3

Relevant Performance Decrease w/ Incomplete Prompts (%) 0.8 0.4 2.1 1.2
Relevant Performance Decrease w/ Corrupted Prompts (%) 4.2 4.3 6.6 7.2

F EXTENDED RELATED WORK1311

In this section, we provide an extended review of related work as complementary to Section 2.1312

Multi-task Learning by Sequence Modeling. In NLP domain, the Natural Language De-1313

cathlon (McCann et al., 2018) adopts a consistent question-answering format for a suite of 101314

NLP tasks. In computer vision, Mask R-CNN (He et al., 2017), UberNet (Kokkinos, 2016), and 12-1315

in-1 (Lu et al., 2020) leverage a single backbone model with multiple independent heads for different1316

tasks. UVim (Kolesnikov et al., 2022) is another unified approach for vision that uses a language1317

model to generate the guiding code for a second model to predict raw vision outputs. In multimodal1318

learning, numerous works (Lu et al., 2022; Wang et al., 2022a; Zellers et al., 2021; 2022; Buch et al.,1319

2022; Fu et al., 2021; Yang et al., 2022) investigate the unification of image, video, audio, and/or lan-1320

guage modalities to deliver multi-purpose foundation models, though most of which are not equipped1321

with decision-making facilities. Perceivers (Jaegle et al., 2021b;a) propose an efficient architecture1322

to handle general-purpose inputs and outputs. BEiT-3 (Wang et al., 2022c) performs masked data1323

modeling on images, texts and image-text pairs to pre-train a backbone for various downstream tasks.1324

MetaMorph (Gupta et al., 2022a) learns a universal controller over a modular robot design space.1325

Foundation Models for Embodied Agents. Embodied agent research (Duan et al., 2022; Batra1326

et al., 2020; Ravichandar et al., 2020; Collins et al., 2021) is adopting the large-scale pre-training1327

paradigm, powered by a collection of learning environments (Abramson et al., 2020; Shridhar1328

et al., 2020; Savva et al., 2019; Puig et al., 2018; Team et al., 2021; Toyama et al., 2021; Shi et al.,1329
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2017). From the aspect of pre-training for better representations, LaTTe (Bucker et al., 2022) and1330

Embodied-CLIP (Khandelwal et al., 2021) leverage the frozen visual and textual representations of1331

CLIP (Radford et al., 2021) for robotic manipulation. From the perspective of leveraging transformer1332

as agent architecture, methods such as Dasari & Gupta (2020) and MOSAIC (Zhao et al., 2022)1333

achieve superior performance in one-shot video imitation tasks. They both use the self-attention1334

mechanism with auxiliary losses such as inverse dynamics loss (Dasari & Gupta, 2020) and1335

contrastive loss (Zhao et al., 2022) to learn robot controllers. Our work differs from them mainly1336

in three aspects: a) our method employs a transformer backbone to autoregressively predict1337

actions; b) we utilize pre-trained language models (Raffel et al., 2020) and best practices from1338

Tsimpoukelli et al. (2021) to learn policies conditioned on prompts with interleaved texts, images,1339

and even videos; and c) while these works mainly focus on solving the single task of one-shot video1340

imitation with highly customized objectives, conceptually simple but effective, our model is learned1341

in a multi-task way with only the behavior cloning objective to solve a strict superset of tasks.1342

Robot Manipulation and Benchmarks. There are many prior works that are not mentioned in the1343

main paper that study different robotic manipulation tasks, such as constraint satisfaction (Bharadhwaj1344

et al., 2021), one-shot imitation (Paine et al., 2018; Huang et al., 2019; Aceituno et al., 2021;1345

Zhao et al., 2022), and rearrangement (Liu et al., 2021; Ehsani et al., 2021; Gan et al., 2021;1346

Stengel-Eskin et al., 2022). Multiple simulation benchmarks are introduced to study the above1347

tasks: 1) Indoor simulation environments: Habitat (Savva et al., 2019; Szot et al., 2021) is1348

equipped with a high-performance 3D simulator for fast rendering and proposes a suite of common1349

tasks for assistive robots. AI2-THOR (Ehsani et al., 2021; Deitke et al., 2022) is a framework1350

that supports visual object manipulation and procedural generation of environments. 2) Tabletop1351

environments: Meta-World (Yu et al., 2019), RLBench (James et al., 2019), and SURREAL (Fan1352

et al., 2018; 2019) are widely used simulator benchmarks studying robotics manipulation with1353

tabletop settings. CausalWorld (Ahmed et al., 2021) is a benchmark for causal structure and transfer1354

learning in manipulation, requiring long-horizon planning and precise low-level motor control.1355

MOSAIC (Zhao et al., 2022) features a challenging benchmark built on top of Zhu et al. (2020)1356

to evaluate one-shot imitation learning. It proposes a three-step test setting to evaluate the1357

representational and generalization capability. Compared to it, ours supports a wide spectrum of1358

manipulation tasks, including one-shot imitation learning. All these aforementioned simulators and1359

benchmarks do not natively support task specification and prompting with multiple modalities.1360
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