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Abstract

We study large deviations and metastability of heavy-tailed stochastic dynamical
systems and provide the heavy-tailed counterparts of the classical Freidlin-Wentzell
and Eyring-Kramers theory. Our findings address the rare-event analysis for
sufficiently general events and heavy-tailed dynamical systems. We also unveil
an intricate phase transitions in the first exit problems under truncated heavy-
tailed noises. Furthermore, our results provide tools to systematically study the
connection between the global dynamics of the stochastic gradient descent (SGD)
under heavy-tailed noises and the generalization mystery of deep learning.

1 Introduction

The study of large deviations and metastability for stochastic systems has a long and illustrious
history. For instance, the Freidlin-Wentzell theorem (see Ventsel’ and Freidlin [1970]) characterized
the large deviations for Itô diffusions at the sample-path level. During the last few decades, the
Freidlin-Wentzell theorem has received several significant extensions, including the discrete-time
results (see, e.g., Kifer [1990]), results under relaxed assumptions (see, e.g., Donati-Martin [2008],
Dupuis and Ellis [2011]), and generalizations to infinite dimensional processes (see, e.g., Budhiraja
and Dupuis [2000]). When it comes to metastability analysis, the Eyring–Kramers law (refer to
Eyring [1935], Kramers [1940]) is arguably the most renowned result. It provides a comprehensive
characterization of the asymptotics of first exit times for dynamics driven by Brownian motion. See
also theoretical advancements such as the characterization of the most likely exit path for Brownian
particles in more complicated settings (e.g., M. I. Freidlin [1998]).

Given the prevalence of heavy-tailed phenomena in various deep learning tasks (for example, see
Simsekli et al. [2019], Gurbuzbalaban et al. [2021]), it becomes particularly important to investigate
the fundamental properties of algorithms in the heavy-tailed contexts, including convergence rates
(see, e.g., Wang et al. [2021], Zhang et al. [2020]) and stationary distributions (see, e.g., Hodgkinson
and Mahoney [2020], Gurbuzbalaban et al. [2020]). In particular, it is worth noticing that, in sharp
contrast to the classical light-tailed analyses, stochastic dynamical systems exhibit fundamentally
different large deviations and metastability behaviors under heavy-tailed perturbations. As shown in
Imkeller and Pavlyukevich [2006], Imkeller et al. [2010, 2009], Imkeller, Peter and Pavlyukevich, Ilya
[2008], when the continuous-time stochastic differential equations (SDEs) are driven by heavy-tailed
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dynamics, the exits are typically caused by large perturbations of a small number of components
rather than smooth tilting of the dynamics. Recently, Nguyen et al. [2019] established that, when
viewed as a discretized version of SDEs driven by α-stable Lévy motions, heavy-tailed stochastic
gradient descents (SGDs) exhibit first exit behaviors similar to their continuous-time counterparts (i.e.,
heavy-tailed SDEs). Besides, Wang et al. [2022] made observations of a much richer mathematical
structure in the first exit times and global dynamics of SGD algorithms when heavy-tailed noises
are truncated using gradient clipping, which is commonly employed in many contexts; see, e.g.,
Engstrom et al. [2020], Gorbunov et al. [2020].

In this article, we characterize the sample-path large deviations and metastability of heavy-tailed
stochastic difference equations, thus offering the heavy-tailed counterparts of Freidlin–Wentzell and
Eyring–Kramers theorems. Specifically, we (i) establish a version of sample-path large deviations
that is uniform w.r.t. the initial values, (ii) obtain the sharp asymptotics of the joint law of (scaled) exit
times and exit locations for heavy-tailed dynamical systems, and (iii) study the global dynamics of
heavy-tailed SGDs over a multi-well potential. Our findings systematically characterize a fascinating
phenomena that, under truncated heavy-tailed noises, SGD can almost always avoid narrow minima
of the potential. In particular, such global behavior is known to improve the test performance of deep
neural networks trained with SGD (see, e.g., Keskar et al. [2017], Jiang et al. [2020], Wang et al.
[2022]). Compared to existing works, our results bring several substantial theoretical advancements.
First, our results accommodate general and state-dependent noise structure in heavy-tailed SGDs (see
the diffusion coefficient σ(·) in (1)). This level of generality greatly surpasses the scope of SGDs
driven by iid noises as studied in Wang et al. [2022]. It offers a much more realistic representation of
the actual dynamics in deep learning. Second, our results can address the continuous-time stochastic
differential equations driven by heavy-tailed perturbations. The formal statements are omitted in this
paper due to space limit, but are collected in the preprint Wang and Rhee [2023]. Next, Theorem 1
develops sample-path large deviations for heavy-tailed dynamical systems, which is a fundamental
framework for studying how rare events arise in heavy-tailed systems. It is applicable to fairly general
events and processes beyond the first exit problem in the machine learning context. Besides, the
first exit analysis in Theorem 2 does not require any condition on the second-order derivative of the
potential U . Technical proofs are all collected in the preprint Wang and Rhee [2023]. For clarity of
the exposition, we focus on results in R1, but we stress that our approach can be adapted to provide
multi-dimensional analogues.

The rest of this article is organized as follows. Section 2 studies sample-path large deviations of
heavy-tailed dynamical systems. Section 3 conducts first exit analysis, where we characterize a notion
of asymptotic atom, develop a general framework of first exit analysis for Markov processes, and
discuss the implication of our results in the context of machine learning.

2 Sample-Path Large Deviations

Let Z1, Z2, . . . be the iid copies of some random variable Z. The goal of this section is to study the
sample-path large deviations for

{
X

η|b
j (x) : j ≥ 0

}
defined through the recursion

X
η|b
0 (x) = x; X

η|b
j (x) = X

η|b
j−1(x) + φb

(
ηa

(
X

η|b
j−1(x)

)
+ ησ

(
X

η|b
j−1(x)

)
Zj

)
∀j ≥ 1. (1)

Here, for any c ∈ (0,∞), we set φc(·) as the projection operator from R onto [−c, c]. We also set
φ∞(x) = x as the identity mapping. Besides, we focus on the case where the heavy-tailedness
in Zi’s is captured by the notion of regular variation. For any measurable function ϕ : (0,∞) →
(0,∞), we say that ϕ is regularly varying as x → ∞ with index β (denoted as ϕ ∈ RVβ) if
limx→∞ ϕ(tx)/ϕ(x) = tβ for all t > 0. For details on the definition and properties of regularly
varying functions, see, for example, chapter 2 of Resnick [2007]. Let

H(+)(x) ≜ P(Z > x), H(−)(x) ≜ P(Z < −x), H(x) ≜ H(+)(x) +H(−)(x) = P(|Z| > x).

Now, we impose the following conditions on the perturbation Z and a(·) and σ(·), i.e., the drift and
diffusion coefficients in (1).
Assumption 1. EZ = 0. Besides, there exist α > 1 and p(+), p(−) ∈ (0, 1) with p(+) + p(−) = 1
such that

H(x) ∈ RV−α as x → ∞; lim
x→∞

H(+)(x)

H(x)
= p(+); lim

x→∞

H(−)(x)

H(x)
= p(−) = 1− p(+).
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Meanwhile, there exists some D ∈ (0,∞) such that

|σ(x)− σ(y)| ∨ |a(x)− a(y)| ≤ D|x− y| ∀x, y ∈ R.

Furthermore, σ(x) > 0 ∀x ∈ R. Lastly, in case that b = ∞, there is some C ∈ (0,∞) such that

|a(x)| ∨ |σ(x)| ≤ C ∀x ∈ R.

In short, we assume that Zi’s are heavy-tailed noises with index α > 1, the drift and diffusion
coefficients are Lipschitz continuous, and the diffusion coeffcient σ(·) is non-degenerate. In case
that the truncation threshold b in (1) is set as ∞ (that is, φb is simply the identity mapping and no
truncation is involved), we further impose the boundedness condition on a(·) and σ(·).
To present the main results, we set a few notations. Let (D,dJ1) be a metric space where D is the
space of all RCLL functions on [0, 1], and dJ1 is the Skorokhold J1 metric. Given any A ⊆ R, let
Ak↑ =∆

{
(t1, · · · , tk) ∈ Ak : t1 < t2 < · · · < tk

}
be the set of sequences of increasing real numbers

with length k on A. For any k ∈ N and b ∈ (0,∞], define mapping h(k)|b : R× Rk × (0, 1]k↑ → D
as follows. Given any x0 ∈ R, w = (w1, · · · , wk) ∈ Rk, and t = (t1, · · · , tk) ∈ (0, 1]k↑, let
ξ = h(k)|b(x0,w, t) ∈ D be the solution to (under the initial condition ξ0 = x0)

dξt
dt

= a(ξt) ∀t ∈ [0, 1], t ̸= t1, · · · , tk, (2)

ξt = ξt− + φb

(
σ(ξt−) · wj

)
if t = tj for some j ∈ [k]. (3)

Here, recall that the truncation operator φc(w) simply projects w ∈ R onto [−c, c]; for any ξ ∈ D
and t ∈ (0, 1], we use ξt− = lims↑t ξs to denote the left limit of ξ at t. In essence, the mapping
h(k)|b(x0,w, t) produces the ODE path perturbed by jumps w1, · · · , wk (modulated by the diffusion
coefficient σ(·) and with sizes truncated under b) at times t1, · · · , tk. We also adopt the convention
that ξ = h(0)|b(x0) is the solution to the ODE dξs

ds = a(ξs) ∀s ∈ [0, 1]. For any A ⊆ R, let
D(k)|b

A =∆ h(k)|b(A× Rk × (0, 1]k↑
)
.

Let Xη|b(x) =∆
{
X

η|b
⌊t/η⌋(x) : t ∈ [0, 1]

}
with ⌊x⌋ =∆ max{n ∈ Z : n ≤ x} and ⌈x⌉ =∆ min{n ∈

Z : n ≥ x}. Note that Xη(x) is a D-valued random element. Also, recall that H(·) = P(|Z1| > ·),
and let λ(η) =∆ η−1H(η−1). Over a metric space (S,d), we use A− and A◦ to denote the closure
and interior of as set A ⊆ S, and we say that set A ⊆ S is bounded away from another set B ⊆ S if
infx∈A,y∈B d(x, y) > 0. Throughout this paper, all measurable functions and sets are understood
as Borel measurable. We establish the following theorem in Wang and Rhee [2023], where we also
present the precise definition of measures C(k)|b( · ; x).
Theorem 1. Let Assumption 1 hold. There exists a family of (Borel) measures

{
C(k)|b( · ; x) : k ≥

0, x ∈ R
}

, with each C(k)|b( · ; x) supported on D(k)|b
{x} , such that the following claims hold. Given

any k ∈ N, any compact A ⊆ R, and any measurable set B ∈ D that is bounded away from D(k−1)|b
A ,

inf
x∈A

C(k)|b(B◦;x
)
≤ lim inf

η↓0

infx∈A P
(
Xη|b(x) ∈ B

)
λk(η)

≤ lim sup
η↓0

supx∈A P
(
Xη|b(x) ∈ B

)
λk(η)

≤ sup
x∈A

C(k)|b(B−;x
)
< ∞.

(4)

Furthermore, let Xη|b
|B (x) be a process having the conditional law of Xη|b(x) given that Xη|b(x) ∈

B. If B is bounded away from D(k−1)|b
{x} with k = min{j ≥ 0 : D(j)|b

{x} ∩B ̸= ∅}, then X
η|b
|B (x) ⇒

X
∗|b
|B (x) as η ↓ 0, where the law of X∗|b

|B (x), denoted as P|B( · ;x), is given by

P|B( · ;x) =∆
C(k)|b(· ∩B;x)

C(k)|b(B;x)
.

This result presents the heavy-tailed counterpart of the classical Freidlin-Wentzell theorem. It is
also a clear manifestation of the catastrophe principle in heavy-tailed dynamical systems, which has
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been established at sample-path level in Rhee et al. [2019] but only for Lévy processes and random
walks. Specifically, the weak convergence for the conditional law X

η|b
|B (x) indicates the most likely

causes of a rare event {Xη|b(x) ∈ B}, that is, through k large perturbations in Xη|b(x) where k is
the smallest number of perturbations (truncated under threshold b) needed for the nominal path (i.e.,
the ODE path initialized at x under drift coefficient a(·)) to fall into set B; the sample-path large
deviations result (4) gives us the polynomial rate of decay λk(η) for P(Xη|b(x) ∈ B). In particular,
due to the regularly varying nature of H(·), we know that λk(η) is roughly of order ηk(α−1) for small
η, which essentially tells us how rare the events {Xη|b(x) ∈ B} are.

3 First Exit Analysis

Throughout this section, we fix an open interval I =∆ (sleft, sright) where sleft < 0 < sright, and impose
the following assumption on a(·).
Assumption 2. a(0) = 0. Besides, it holds for all x ∈ I \ {0} that a(x)x < 0.

Henceforth in this article, we interpret a(·) as the derivative of a potential U ∈ C1(R) with a(·) =
−U ′(·). Note that Assumption 2 then implies that U has a unique local minimum at x = 0 over the
domain I . Moreover, since U ′(x)x = −a(x)x > 0 for all x ∈ I \ {0}, we know that the domain I
is a subset of the attraction field of the origin in the following sense: the limit limt→∞ yt(x) = 0

holds for all x ∈ I where yt(x) is the solution of ODE dyt(x)
dt = a

(
yt(x)

)
under initial condition

y0(x) = x. We add a remark that Assumption 2 is at least as flexible as standard assumptions in
related works. For instance, compared to Imkeller, Peter and Pavlyukevich, Ilya [2008], Imkeller
and Pavlyukevich [2006], our results accommodate non-constant diffusion coefficient σ(·), allow for
truncation in the dynamics and remove conditions such as U ∈ C3(R) or non-degeneracy of U ′′(·) at
the boundary of I .

Specifically, our goal is to characterize (after a proper scaling) the asymptotic laws of

τη|b(x) =∆ min
{
j ≥ 0 : X

η|b
j (x) /∈ I

}
,

i.e., the first exit time of Xη|b
j (x) from I , as η ↓ 0. Let

r =∆ |sleft| ∧ sright, J ∗
b =∆ ⌈r/b⌉ ∀b ∈ (0,∞). (5)

Here, r is the distance between the origin and I∁, and J ∗
b is the minimum number of jumps required

to exit from I if the size of each jump is bounded by b. As a convention, we set J ∗
∞ = 1. Recall that

H(·) = P(|Z1| > ·) and λ(η) = η−1H(η−1). Let Z be the collection of all integers. We obtain the
following result regarding the first exit times and exit locations of Xη|b

j (x) from I , which provides
the heavy-tailed counterparts of the classical Erying-Kramers theorem. In Wang and Rhee [2023] we
present a detailed version of the theorem with the precise definition of measures Č(k)|b.

Theorem 2. Let Assumptions 1 and 2 hold. There exists a family of (Borel) measures
{
Č(k)|b(·)

}
k≥1

on R such that the following claims hold.

1. Suppose that b ∈ (0,∞) such that sleft/b /∈ Z and sright/b /∈ Z. For any ϵ > 0, t > 0, and
measurable set B ⊆ I∁,

lim sup
η↓0

sup
x∈Iϵ

P

(
C∗

b η · λJ ∗
b (η)τη|b(x) > t; X

η|b
τη|b(x)

(x) ∈ B

)
≤ Č(J ∗

b )|b(B−)

C∗
b

· exp(−t),

lim inf
η↓0

inf
x∈Iϵ

P

(
C∗

b η · λJ ∗
b (η)τη|b(x) > t; X

η|b
τη|b(x)

(x) ∈ B

)
≥ Č(J ∗

b )|b(B◦)

C∗
b

· exp(−t)

where C∗
b =∆ Č(J ∗

b )|b(I∁) and Iϵ = (sleft + ϵ, sright − ϵ) is the ϵ-shrinkage of I .

2. Suppose that b = ∞. Then for any t > 0 and measurable set B ⊆ I∁,

lim sup
η↓0

sup
x∈Iϵ

P

(
C∗η · λ(η)τη(x) > t; X

η|∞
τη|∞(x)

(x) ∈ B

)
≤ Č(1)|∞(B−)

C∗ · exp(−t),
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lim inf
η↓0

inf
x∈Iϵ

P

(
C∗η · λ(η)τη(x) > t; X

η|∞
τη|∞(x)

(x) ∈ B

)
≥ Č(1)|∞(B◦)

C∗ · exp(−t)

where C∗ =∆ Č(1)|∞(I∁).

We conclude this section with a few remarks. First, instead of focusing on a certain fixed x ∈ I ,
the asymptotics established above hold uniformly for initial values over any compact set within
I . Next, in Theorem 2 we can further relax Assumption 1: that is, if b = ∞, then the claims still
hold even if we remove the boundedness condition in Assumption 1. Lastly, note that our results
characterize an intricate phase transition in the asymptotics of τη|b(x). To be specific, the first exit
time τη|b(x) is roughly of order 1/η1+J∗

b ·(α−1) for small η. In other words, the order of the first
exit time τη|b(x) does not vary continuously with b; rather, it exhibits a discretized dependency on
b through the minimum number of jumps J∗

b = ⌈|sleft| ∨ sright/b⌉ required for the exit. This phase
transition phenomenon further exemplifies the catastrophe principle under regularly varying noises,
as the quantity J∗

b dictates not only the most likely cause (i.e., through J∗
b large noises) but also the

rarity of the exit (i.e., occuring roughly once every 1/η1+J∗
b ·(α−1) steps).

3.1 General Framework

Underlying Theorem 2 is a general framework of first exit analysis for general Markov processes.
Consider a general metric space S and a family of S-valued Markov chains

{
{V η

j (x) : j ≥ 0} :

η > 0
}

parameterized by η, where x ∈ S denotes the initial state and j denotes the time index.
We use the notation V η

[0,T ](x) =∆ {V η
⌊t/η⌋(x) : t ∈ [0, T ]} to denote the scaled sample path. For

a given set E, let τηE(x) =∆ min{j ≥ 0 : V η
j (x) ∈ E} be {V η

j (s) : j ≥ 0}’s first hitting time
of E. We consider an asymptotic domain of attraction I ⊆ S, within which V η

[0,T ](x) typically
(i.e., as η ↓ 0) stays throughout any given time horizon [0, T ] as far as x ∈ I . We will make these
informal descriptions precise in Condition 1. In many cases, however, V η

· (x) is bound to escape I
eventually due to the stochasticity if we do not constrain the time horizon. The goal of this section is
to establish an asymptotic limit of the joint distribution of the exit time τη

I∁(x) and the exit location
V η
τη

I∁
(x)

(x). Throughout this section, we will denote V η
τη

I(ϵ)∁
(x)

(x) and V η
τη

I∁
(x)

(x) with V η
τϵ(x) and

V η
τ (x), respectively, for notation simplicity.

To facilitate the analysis, we introduce the notion of asymptotic atom, where the process recurrently
enters and (almost) regenerates. Let {I(ϵ) ⊆ I : ϵ > 0} and {A(ϵ) ⊆ S : ϵ > 0} be collections of
subsets of I such that

⋃
ϵ>0 I(ϵ) = I and

⋂
ϵ>0 A(ϵ) ̸= ∅. Let C(·) is a probability measure on S \ I

satisfying C(∂I) = 0. In Wang and Rhee [2023], we introduced the following concept.

Definition 1 (Asymptotic Atoms).
{
{V η

j (x) : j ≥ 0} : η > 0
}

possesses an asymptotic atom
{A(ϵ) ⊆ S : ϵ > 0} associated with the domain I , location measure C(·), scale γ : (0,∞) → (0,∞),
and covering {I(ϵ) ⊆ I : ϵ > 0} if the following holds: For each measurable set B ⊆ S, there exist
δB : (0,∞)× (0,∞) → (0,∞), ϵB > 0, and TB > 0 such that for any ϵ ≤ ϵB and T ≥ TB ,

C(B◦)− δB(ϵ, T ) ≤ lim inf
η↓0

infx∈A(ϵ) P
(
τη
I(ϵ)∁

(x) ≤ T/η; V η
τϵ(x) ∈ B

)
γ(η)T/η

≤ lim sup
η↓0

supx∈A(ϵ) P
(
τη
I(ϵ)∁

(x) ≤ T/η; V η
τϵ(x) ∈ B

)
γ(η)T/η

≤ C(B−) + δB(ϵ, T )

lim sup
η↓0

supx∈I(ϵ) P
(
τη
(I(ϵ)\A(ϵ))∁

(x) > T/η
)

γ(η)T/η
= 0

lim inf
η↓0

inf
x∈I(ϵ)

P
(
τηA(ϵ)(x) ≤ T/η

)
= 1

where γ(η)/η → 0 as η ↓ 0 and δB’s are such that limϵ→0 limT→∞ δB(ϵ, T ) = 0.

In short, when studying the first exit of V η
· from the domain I , asymptotic atoms identify regions at

which the process recurrently visits and (almost) regenerates upon each visit, thus providing tight
controls over the behavior of the process afterwards regardless of the exact initial values. In particular,
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it leads to a sharp characterization of the first exit times and locations for V η
· . The following theorem

is the key result of the general framework. See Wang and Rhee [2023] for the detailed statement and
the proof of the theorem.
Condition 1. A family

{
{V η

j (x) : j ≥ 0} : η > 0
}

of Markov chains possesses an asymptotic atom
{A(ϵ) ⊆ S : ϵ > 0} associated with the domain I , location measure C(·), scale γ : (0,∞) → (0,∞),
and covering {I(ϵ) ⊆ I : ϵ > 0}.
Theorem 3. If Condition 1 holds, then the first exit time τη

I∁(x) scales as 1/γ(η), and the distribution
of the location V η

τ (x) at the first exit time converges to C(·). Moreover, the convergence is uniform
over I(ϵ) for any ϵ > 0. That is, for each ϵ > 0, measurable B ⊆ I∁, and t ≥ 0,

C(B◦) · e−t ≤ lim inf
η↓0

inf
x∈I(ϵ)

P
(
γ(η)τη

I∁(x) > t, V η
τ (x) ∈ B

)
≤ lim sup

η↓0
sup

x∈I(ϵ)

P
(
γ(η)τη

I∁(x) > t, V η
τ (x) ∈ B

)
≤ C(B−) · e−t.

In light of Theorem 3, the proof of Theorem 2 boils down to verifying Condition 1. Specifically, we
set V η

j (x) = X
η|b
j (x), use covering I(ϵ) = (sleft + ϵ, sright − ϵ), and let

C( · ) =∆ Č(J ∗
b )|b( · \ I)
C∗

b

, γ(η) =∆ C∗
b · η ·

(
λ(η)

)J ∗
b .

This allows us to verify that A(ϵ) = (−ϵ, ϵ), i.e., the neighborhoods of the local minimum, are
asymptotic atoms. Theorem 2 then follows immediately from the results in Theorem 3. See Section 4
of Wang and Rhee [2023] for the detailed proofs.

3.2 Implications in Deep Learning

The success of modern machine learning algorithms, especially deep learning, is often attributed to
the algorithms’ ability to avoid sharp local minima in the loss landscape, as sharp minima are often
associated with poor generalization performance during test phase; see, e.g., Keskar et al. [2017],
Jiang et al. [2020]. A direct implication of Theorem 2 is that, under truncated heavy-tailed noises,
SGD spends much longer time around the wider minima, especially when η is small. In fact, a
much stronger result can be stated about the global dynamics of truncated heavy-tailed SGD. As η
approaches 0, the truncated heavy-tailed SGD almost always stays around the widest minima of a
multi-well potential. For clarity of the article, we present an informal version of the theorem below.
See Section 2.4 of Wang and Rhee [2023] for the formal statement of the theorem.
Theorem 4 (Informal). Under proper structural conditions, there exists some (deterministic) scale
function λ∗

b : (0,∞) → (0,∞) such that

1

T

∫ T

0

I

{
X

η|b
⌊t/λ∗

b (η)⌋
(x) ∈ widest minima

}
dt

P−→ 1 as η ↓ 0.

In light of Theorem 4, it is natural to consider implementing training algorithms for deep learning
tasks by capitalizing the elimination of sharp minima under truncated heavy-tailed dynamics. In
particular, Theorem 4 implies that truncated heavy-tailed SGDs are almost guaranteed to stay at
a flat and wide basin. As a result, there is no need to devise a specific mechanism for evaluating
the sharpness of the solution obtained at the end of the training. Indeed, as has been confirmed
in numerical experiments, by injecting and then truncating heavy-tailed noises during the training
phase, better test performances can be achieved (see Wang et al. [2022]). It is also worth mentioning
that the observed improvements in test performance are achievable only when we combine the
injection of heavy-tailed noises with the truncation mechanism (i.e., gradient clipping). In fact, it is
equally important to emphasize that, without truncation, the presence of heavy-tailed noises leads to
notably inferior performance, which is aligned with observations in existing works such as Gorbunov
et al. [2020] and Zhang et al. [2020]. In other words, the truncation mechanism is integral to the
performance of SGD in practice under heavy-tailed noises.
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