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ABSTRACT

Question Answering (QA) has been a long-standing research topic in AI and NLP
fields, and a wealth of studies have been conducted to attempt to equip QA systems
with human-level reasoning capability. To approximate the complicated human
reasoning process, state-of-the-art QA systems commonly use pre-trained language
models (LMs) to access knowledge encoded in LMs together with elaborately
designed modules based on Graph Neural Networks (GNNs) to perform reasoning
over knowledge graphs (KGs). However, many problems remain open regarding
the reasoning functionality of these GNN-based modules. Can these GNN-based
modules really perform a complex reasoning process? Are they under- or over-
complicated for QA? To open the black box of GNN and investigate these problems,
we dissect state-of-the-art GNN modules for QA and analyze their reasoning
capability. We discover that even a very simple graph neural counter can outperform
all the existing GNN modules on CommonsenseQA and OpenBookQA, two popular
QA benchmark datasets which heavily rely on knowledge-aware reasoning. Our
work reveals that existing knowledge-aware GNN modules may only carry out
some simple reasoning such as counting. It remains a challenging open problem to
build comprehensive reasoning modules for knowledge-powered QA.

1 INTRODUCTION

Accessing and reasoning over relevant knowledge is the key to Question Answering (QA). Such
knowledge can be implicitly encoded or explicitly stored in structured knowledge graphs (KGs).
Large pre-trained language models (Devlin et al., 2018; Radford et al., 2018; 2019; Brown et al., 2020)
are found to be effective in learning broad and rich implicit knowledge (Petroni et al., 2019; Bosselut
et al., 2019; Talmor et al., 2020) and thus demonstrate much success for QA tasks. Nevertheless, pre-
trained LMs struggle a lot with structured reasoning such as handling negation (Ribeiro et al., 2020;
Yasunaga et al., 2021). In contrast, the explicit knowledge such as knowledge graphs (KGs) (Speer
et al., 2017; Bollacker et al., 2008) works better for structured reasoning as it explicitly maintains
specific information and relations and often produces interpretable results such as reasoning chains
(Jhamtani & Clark, 2020; Khot et al., 2020; Clark et al., 2020b).

To utilize both implicit and explicit knowledge for QA, many existing works combine large pre-trained
LMs with Graph Neural Networks (GNNs; Scarselli et al. (2008); Kipf & Welling (2017); Veličković
et al. (2018)), which are shown to achieve prominent QA performance. These approaches commonly
follow a two-step paradigm to process KGs: 1) schema graph grounding and 2) graph modeling for
inference. In Step 1, a schema graph is a retrieved sub-graph of KG related to the QA context and
grounded on concepts; such sub-graphs include nodes with concept text, edges with relation types,
and their adjacency matrix. In Step 2, graph modeling is carried out via an elaborately designed
graph-based neural module. For instance, Lin et al. (2019) uses GCN-LSTM-HPA which combines
graph convolutional networks (Kipf & Welling, 2017) and LSTM (Hochreiter & Schmidhuber, 1997)
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Figure 1: We analyze state-of-the-art GNN modules for the task of KG-powered question answering,
and find that the counting of edges in the graph plays an essential role in knowledge-aware reasoning.
Accordingly, we design an efficient, effective and interpretable graph neural counter module for
knowledge-aware QA reasoning.

with a hierarchical path-based attention mechanism for path-based relational graph representation.
Feng et al. (2020) extends the single-hop message passing of RGCN (Schlichtkrull et al., 2018) as
multi-hop message passing with structured relational attention to obtain the path-level reasoning
ability and intractability, while keeping the good scalability of GNN. Yasunaga et al. (2021) uses a
LM to encode QA context as a node in the scheme graph and then utilized graph attention networks
(Veličković et al., 2018) to process the joint graph.

Given that today’s QA systems have become more and more complicated, we would like to revisit
those systems and ask several basic questions: Are those GNN-based modules under- or over-
complicated for QA? What is the essential role they play in reasoning over knowledge? To answer
these questions, we first analyze current state-of-the-art GNN modules for QA and their reasoning
capability. Building upon our analysis, we then design a simple yet effective graph-based neural
counter that achieves even better QA performance on CommonsenseQA and OpenBookQA, two
popular QA benchmark datasets which heavily rely on knowledge-aware reasoning.

In the analysis part, we employ Sparse Variational Dropout (SparseVD; Molchanov et al. (2017)) as a
tool to dissect existing graph network architectures. SparseVD is proposed as a neural model pruning
method in the literature, and its effect of model compressing serves as an indicator to figure out
which part of the model can be pruned out without loss of accuracy. We apply SparseVD to the inner
layers of GNN modules, using their sparse ratio to analyze each layer’s contribution to the reasoning
process. Surprisingly, we find that those GNN modules are over-parameterized: some layers in GNN
can be pruned to a very low sparse ratio, and the initial node embeddings are dispensable.

Based on our observations, we design Graph Soft Counter (GSC), a very simple graph neural model
which basically serves as a counter over the knowledge graph. The hidden dimension of GSC layers
is only 1, thus each edge/node only has a single number as the hidden embedding for graph-based
aggregation. As illustrated in Figure 1, GSC is not only very efficient but also interpretable, since
the aggregation of 1-dimensional embedding can be viewed as soft counting of edge/node in graphs.
Although GSC is designed to be a simplistic model, which has less than 1% trainable parameters
compared to existing GNN modules for QA, it outperforms state-of-the-art GNN counterparts on two
popular QA benchmark datasets. Our work reveals that the existing complex GNN modules may just
perform some simple reasoning such as counting in knowledge-aware reasoning.

The key contributions of our work are summarized as follows:

• Analysis of existing GNN modules: We employ SparseVD as a diagnostic tool to analyze
the importance of various parts of state-of-the-art knowledge-aware GNN modules. We
find that those GNN modules are over-complicated for what they can accomplish in the QA
reasoning process.

• Importance of edge counting: We demonstrate that the counting of edges in the graph
plays a crucial role in knowledge-aware reasoning, since our experiments show that even
a simple hard counting model can achieve QA performance comparable to state-of-the-art
GNN-based methods.

• Design of GSC module: We propose Graph Soft Counter (GSC), a simple yet effective neural
module as the replacement for existing complex GNN modules. With less than 1% trainable
parameters compared to existing GNN modules for QA, our method even outperforms those
complex GNN modules on two benchmark QA datasets.
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Figure 2: The retrieved sub-graph of KG is formulated as entity nodes representing concepts connected
by edges representing relations and the central context node connected to all question entity nodes
and answer entity nodes. The pre-processed graph data generally has the following ingredients: node
embedding initialized with pre-trained KG embeddings, relevance score computed by LM, adjacency
matrix representing the topological graph structure, edge embeddings to encode the node types, and
edge information of relation types. We adapt SparseVD as a diagnostic tool to dissect GNN-based
reasoning modules for QA, getting the sparse ratio of each layer to indicate its importance. We find
that some layers and ingredients are completely dispensable, which inspires us to design a simple,
efficient and effective GNN module as the replacement of existing complex GNN modules.

2 ANALYSIS

2.1 PRELIMINARIES

The knowledge required by QA systems typically comes from two sources: implicit knowledge in
pre-trained language models and explicit knowledge in knowledge graphs.

To use the implicit knowledge, existing works commonly use LMs as the encoder to encode textual
input sequence x to contextualized word embeddings, and then pool the embedding of the start token
(e.g., [CLS] for BERT) as the sentence embedding. In addition, a MLP (we use a one layer fully
connected layer) is used to map the sentence embedding to the score for the choice.

To process the explicit knowledge in knowledge graphs, existing works commonly follow a two-step
paradigm: schema graph grounding and graph modeling for inference. The schema graph is a
retrieved sub-graph of KG grounding on concepts related to the QA context. We define the sub-graph
as a multi-relational graph G = (V, E), where V is the set of entity nodes (concepts) in the KG and
E ⊆ V ×R×V is the set of triplet edges that connect nodes in V with relation types inR. Following
prior works (Lin et al., 2019; Yasunaga et al., 2021), we link the entities mentioned in the question q
and answer choice a ∈ C to the given sub-graph G.

A wealth of existing works have explored to incorporate pre-trained language models with knowledge-
aware graph neural modules. These methods usually have complex architecture design to process
complex input knowledge. As shown in Figure 2, the processed retrieved sub-graph can be summa-
rized as four main components:
Node embeddings. Many existing works on GNN-based QA employ external embeddings to
initialize the node embeddings in the graph. For example, Lin et al. (2019) employs TransE (Wang
et al., 2014) with GloVe embeddings (Pennington et al., 2014) as the initial node embeddings. Feng
et al. (2020) and Yasunaga et al. (2021) use mean-pooled BERT embeddings of entities across the
graph as the initialization of node embeddings.
Relevance score. Yasunaga et al. (2021) uses an extra embedding of relevance score in the input
node features to estimate the importance of KG nodes relative to the given QA context. The relevance
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Figure 3: The sparse ratio curves obtained from the SparseVD training of GNN reasoning modules:
1) the left plot shows the curves for the embedding layers in QA-GNN, where the node score and the
node type reach a low ratio, while the edge encoder preserves a large ratio; 2) the middle plot shows
the curves for the layers within the QA-GNN graph attention layer, where the key and query layers
converge to a fairly low ratio, while the value layer has a relatively large ratio; 3) the right plot shows
the curves of the initial node embedding layers of three representative GNN-based QA methods,
where all the ratios are close to 0, indicating that the initial node embeddings are dispensable.

score is computed by the masked LM loss of the stitched sequence with the QA context and the
retrieved concept.

Adjacency matrix. The original adjacency matrix of the sub-graph is asymmetric. Typically, the
adjacency matrix is converted to be symmetric before feeding into the GNN module: each KG relation
is double recorded with opposite directions as symmetric edges in the processed adjacency matrix.

Edge embeddings. Existing works use various ways to obtain the edge embeddings. Yasunaga
et al. (2021) uses concatenated one-hot vector [us, est, ut] to encode edge triplets, where us, ut
indicates the node type and est indicates the edge type. Lin et al. (2019) uses TransE (Wang et al.,
2014) initialized with GloVe embeddings to generate edge embeddings. Feng et al. (2020) designs
product-based edge embeddings to approximate the multi-hop relations in the graph.

2.2 DISSECTION

To investigate the mechanism of these complex systems and how they use the complex information, we
introduce a neural model pruning method named Sparse Variational Dropout (SparseVD) (Molchanov
et al., 2017) as a diagnostic tool to automatically dissect the graph network architecture. Note that
our dissection tool is pruning method agnostic; other pruning schemes (Han et al., 2015; He et al.,
2017; Liu et al., 2017) may also be applicable. Here we choose SparseVD since it prunes not only the
weights with smaller scale but also the weights with higher variance, and it is theoretically supported
by stochastic variational inference (Hoffman et al., 2013; Kingma & Welling, 2013; Rezende et al.,
2014; Kingma et al., 2015).

Despite the fact that SparseVD was originally proposed in the field of model compression (Han et al.,
2016; He et al., 2018; Lin et al., 2017; Zhou et al., 2018; Wang et al., 2018), we use it to investigate
which parts of GNN can be pruned out (sparse ratio to zero) without loss of accuracy, which indicates
that part of the model is redundant. To be specific, we keep the target model architecture unchanged,
and parameterize each part of the weights in the model as a Gaussian distribution. Afterwards,
this probabilistic model will be trained with a cross-entropy loss jointly with a KL-divergence
regularization term. So the joint loss constrains the weights to our pruning prior. We implement
the SparseVD with the default threshold as in Molchanov et al. (2017). Eventually, we get the
pruned model with different sparsified ratios for the layers. As shown in Table 1, we investigate three
representative GNN-based QA methods, and the sparsified models could achieve the accuracy of
their original counterparts. This indicates that our dissection regularization does not hurt the model
performance, so we then dive into each layer to see which parts play the most important role.

w/o SparseVD w/ SparseVD
Methods IHdev-Acc. (%) IHtest-Acc. (%) IHdev-Acc. (%) IHtest-Acc. (%)
KagNet (Lin et al., 2019) 73.47 (±0.22) 69.01 (±0.76) 75.18 (±1.05) 70.48 (±0.77)
MHGRN (Feng et al., 2020) 74.45 (±0.10) 71.11 (±0.81) 77.15 (±0.32) 72.66 (±0.61)
QAGNN (Yasunaga et al., 2021) 76.54 (±0.21) 73.41 (±0.92) 77.64 (±0.50) 73.57 (±0.48)

Table 1: To preserve the reasoning ability for analysis, our SparseVD tool prunes the GNN-based
models without loss of accuracy on CommonsenseQA dataset. As the official test is hidden, here we
report the in-house dev (IHdev) and test (IHtest) accuracy, following the data split of Lin et al. (2019).
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Figure 4: Graph Soft Counter (right) extremely simplifies the architecture of conventional GNNs
(left). The GSC layers are parameter-free and only keep the basic graph operations: 1) update each
edge embedding with incoming node (in-node) embeddings; 2) update each node embedding by
aggregating the edge embeddings. Since we reduce the hidden dimension to only 1, GSC can be
viewed as a soft counter over the graph for generating the final score of the output node.

2.3 OBSERVATIONS AND HYPOTHESIS

In Figure 3, we plot the sparse ratio of some representative layers during the SparseVD training of
GNN reasoning modules. Due to the limited space, refer to Appendix A.3 for the full plots of curves.
According to these plots, we summarize our key observations as follows: 1) the left plot shows
that the edge encoder encoding edge triplets (edge / node type information) preserves a relatively
higher sparse ratio, while the node score embedding layer can be fully pruned; 2) the middle plot
shows the layers inside GNN, and all the sparse ratios are low while the value layer has a relatively
higher sparse ratio than key/query layers; 3) the right plot shows the concept embedding layers of
three representative GNN methods, which process the initial node embeddings, can be completely
discarded. Inspired by these findings, we come up with the following design guidelines for a much
simpler yet effective graph neural module for knowledge-aware reasoning:
Node embeddings & relevance score. We observe that both the initial node (concept) embeddings
and the relevance score embeddings are dispensable in our experiments. Therefore, we may directly
remove the initial node embedding layer and the relevance score embedding layer.
Edge embeddings. The edge encoder layers are hard to prune which indicates that edge/node type
information is essential for reasoning, so we keep the edge embeddings.

Algorithm 1 PyTorch-style code of GSC

# qa_context: question answer pair context
# adj: edge index with shape 2 x N_edge
# edge_type: edge type with shape 1 x N_edge
# node_type: node type with shape 1 x N_node
edge_emb = edge_encoder(adj, edge_type, node_type)
node_emb = torch.zeros(N_node)
for i_layer in range(num_gsc_layers):

# propagate from node to edge
edge_emb += node_emb[adj[1]]
# aggregate from edge to node
node_emb = scatter(edge_emb, adj[0])

graph_score = node_emb[0]
context_score = fc(roberta(qa_context))
qa_score = context_score + graph_score

Message passing layers. The linear lay-
ers inside GNN layers (query, key, value,
etc) can be pruned to a very low sparse
ratio, suggesting that GNN may be over-
parameterized in these systems, and we can
use fewer parameters for these layers.
Graph pooler. The final attention-based
graph pooler aggregates node representa-
tions over the graph to get the graph repre-
sentation. We observe that the key/query
layers inside the pooler can be pruned out;
as a result, the graph pooler can be reduced
to a linear transformation.

3 GRAPH SOFT COUNTER

Based on our findings in Section 2, we design the Graph Soft Counter (GSC), a simplistic graph
neural module to process the graph information. As demonstrated in Algorithm 1, there are only two
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basic components in GSC to compute the graph score: Edge encoder and Graph Soft Counter layers.
We can get the QA choice score by simply summing up the graph score and context score.

KagNet MHGRN QA-GNN GSC (ours)

Adjacency matrix X X X X
Edge types X X X X
Node types × X X X
Node embeddings X X X ×
Relevance score × × X ×
#Learnable params 700K 547K 2845K 3K
Model size 819M 819M 821M 3K

Table 2: Our GSC does not use initial node em-
beddings and relevance score as in previous works,
making our model get rid of concept embedding pa-
rameters and thus its model size is extremely small.
Since our model does not have any learnable pa-
rameters except the edge encoder, our model has
much less chance to be over-parameterized.

Model Time Space
G is a dense graph

L-hop KagNet O
(
|R|L|V|L+1L

)
O
(
|R|L|V|L+1L ·D

)
L-hop MHGRN O

(
|R|2|V|2L

)
O (|R||V|L ·D)

L-layer QA-GNN O
(
|V|2L

)
O (|R||V|L ·D)

L-layer GSC O (|V|L) O (|R||V|L)

G is a sparse graph with maximum node degree ∆� |V|
L-hop KagNet O

(
|R|L|V|L∆L

)
O
(
|R|L|V|L∆L ·D

)
L-hop MHGRN O

(
|R|2|V|L∆

)
O (|R||V|L ·D)

L-layer QA-GNN O (|V|L∆) O (|R||V|L ·D)
L-layer GSC O (|V|L) O (|R||V|L)

Table 3: GSC is extremely efficient compared to
the computation complexity of L-hop reasoning
models with hidden dimension D on a dense /
sparse graph G = (V, E) with the relation setR.

The edge encoder is a two-layer MLP with di-
mension [46 × 32 × 1] followed by a Sigmoid
function to encode the edge triplets to a float
number in the range of (0, 1). The triplets is
represented as a concatenated one-hot vector
[us, est, ut], where us, ut indicates 4 node types
and est indicates 38 relation types (17 regular
relations plus question/answer entity relations
and their reversions).

GSC layers are parameter-free and only keep
the basic graph operations: Propagation and ag-
gregation. To overcome over-parameterization,
one straightforward way is to reduce the hidden
size, and the extreme case is reducing it to only
1. As shown in Figure 4, the GSC layer simply
propagates and aggregates the numbers on the
edges and node following the two-step scheme:
1) update the edge value with in-node value, and
this is done by simply indexing and adding; 2)
update the node value by aggregating the edge
values, and this is done by scattering edge values
to out-node.

Since we reduce the hidden size to only 1, GSC
is basically propagating and aggregating num-
bers on the graph. We can interpret these num-
bers as soft counts representing the importance
of the edges and nodes. The aggregation of GSC
can be regarded as accumulating the soft counts,
so call it Graph Soft Counter. In addition, we
can also formulate GSC as an extremely effi-
cient variant of current mainstream GNN such
as GAT and GCN. As shown in Table 3, the
computation complexity of GSC is much smaller than the baselines regard to both time and space.
Table 2 shows that the trainable parameters in GSC is remarkably less than previous methods since
our message-passing layers are parameter-free. The model size of GSC is also extremely small since
we do not use any initial node embedding.

To draw a more conclusive conclusion, we handcraft a counting-based feature and use a simple
two-layer MLP to map it to graph score. The feature is computed by counting the occurrence of each
possible edge triplet. Surprisingly, this simple model could achieve similar performance and can even
outperform baselines, which further proves that Counter is a basic and crucial part in QA.

4 EXPERIMENTS

4.1 SETTINGS
Datasets and KG. We conduct extensive experiments on CommonsenseQA (Talmor et al., 2019)
and OpenBookQA (Mihaylov et al., 2018), two popular QA benchmark datasets that heavily rely on
knowledge-aware reasoning capability. CommonsenseQA is a 5-way multiple choice QA task that
requires reasoning with commonsense knowledge, which contains 12,102 questions. The test set of
CommonsenseQA is not publicly available, and the model predictions can only be evaluated once
every two weeks via the official leaderboard. Hence, following the data split of Lin et al. (2019), we
experiment and report the accuracy on the in-house dev (IHdev) and test (IHtest) splits. We also report
the accuracy of our final system on the official test set. OpenBookQA is a 4-way multiple choice QA
task that requires reasoning with elementary science knowledge, which contains 5,957 questions.
Following Clark et al. (2020a), methods with AristoRoBERTa use textual evidence as an external
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input of the QA context. In addition, we use ConceptNet (Speer et al., 2017), a general commonsense
knowledge graph, as our structured knowledge source G for both of the above tasks. Given each QA
context (question and answer choice), we retrieve the sub-graph Gsub from G following Feng et al.
(2020). We only use the concepts that occur in the QA context, as detailed in Table 8.

Model IHdev-Acc. (%) IHtest-Acc. (%)

RoBERTa-large (w/o KG) 73.07 (±0.45) 68.69 (±0.56)

+ RGCN (Schlichtkrull et al., 2018) 72.69 (±0.19) 68.41 (±0.66)
+ GconAttn (Wang et al., 2019) 72.61( ±0.39) 68.59 (±0.96)
+ KagNet (Lin et al., 2019) 73.47 (±0.22) 69.01 (±0.76)
+ RN (Santoro et al., 2017) 74.57 (±0.91) 69.08 (±0.21)
+ MHGRN (Feng et al., 2020) 74.45 (±0.10) 71.11 (±0.81)
+ QA-GNN (Yasunaga et al., 2021) 76.54 (±0.21) 73.41 (±0.92)

+ GSC (Ours) 79.11 (±0.22) 74.48 (±0.41)

Table 4: Performance comparison on CommonsenseQA
in-house split (controlled experiments). As the official
test is hidden, here we report the in-house dev (IHdev)
and test (IHtest) accuracy, following the data split of
Lin et al. (2019).

Implementation and training details.
We use a two-layer MLP with hidden di-
mension 47 × 32 × 1 followed by a Sig-
moid function as our edge encoder, and the
number of GSC layers is 2. Since GSC
is extremely efficient, we set the dropout
(Srivastava et al., 2014) rate to 0. We use
RAdam (Liu et al., 2020) as the optimizer
and set the batch size to 128. The learning
rate is 1e-5 for RoBERTa and 1e-2 for GSC.
The maximum number of epoch is set to
30 for CommonsenseQA and 75 for Open-
BookQA. On a single Quadro RTX6000
GPU, each GSC training only takes about
2 hours to converge, while other methods
often take 10+ hours.

Model Test

RoBERTa (Liu et al., 2019) 72.1
RoBERTa + FreeLB (Zhu et al., 2020) (ensemble) 73.1
RoBERTa + HyKAS (Ma et al., 2019) 73.2
RoBERTa + KE (ensemble) 73.3
RoBERTa + KEDGN (ensemble) 74.4
XLNet + GraphReason (Lv et al., 2020) 75.3
RoBERTa + MHGRN (Feng et al., 2020) 75.4
ALBERT + PG (Wang et al., 2020) 75.6
RoBERTa + QA-GNN (Yasunaga et al., 2021) 76.1
ALBERT (Lan et al., 2019) (ensemble) 76.5
UnifiedQA (11B)* (Khashabi et al., 2020) 79.1

RoBERTa + GSC (Ours) 76.4

Table 5: Test accuracy on CommonsenseQA’s of-
ficial leaderboard. The existing top system, Uni-
fiedQA (11B params) is 30x larger than our model.

Baselines. For GSC and all the other methods,
RoBERTa-large (Liu et al., 2019) is used for
both CommonsenseQA and OpenBookQA, and
AristoRoBERTa (Clark et al., 2020a) is used for
OpenBookQA as an additional setting for fair
comparison. We experiment to compare GSC
with existing GNN-based QA methods, includ-
ing RN (Santoro et al., 2017), GconAttn (Wang
et al., 2019), RGCN (Schlichtkrull et al., 2018),
KagNet (Lin et al., 2019), MHGRN (Feng et al.,
2020) and QA-GNN (Yasunaga et al., 2021),
which only differ in the design of GNN reason-
ing modules. We report the performance of base-
lines referring to Yasunaga et al. (2021) and all
the test results are evaluated on the best model
on the dev split.

4.2 RESULTS

Model RoBERTa-large AristoRoBERTa
Fine-tuned LMs (w/o KG) 64.80 (±2.37) 78.40 (±1.64)

+ RGCN 62.45 (±1.57) 74.60 (±2.53)
+ GconAtten 64.75 (±1.48) 71.80 (±1.21)
+ RN 65.20 (±1.18) 75.35 (±1.39)
+ MHGRN 66.85 (±1.19) 80.6
+ QA-GNN 67.80 (±2.75) 82.77 (±1.56)

+ GSC (Ours) 70.33 (±0.81) 86.67 (±0.46)

Table 6: Test accuracy on OpenBookQA. Methods with
AristoRoBERTa use the textual evidence by Clark et al.
(2020a) as an additional input to the QA context.

CommonsenseQA. As shown in Table 4,
GSC outperforms the previous best model
with 2.57% mean accuracy on In-house dev
split and 1.07% mean accuracy on the in-
house test split. We observe that the per-
formance variance of GSC is smaller than
the baselines, indicating that our GSC are
both effective and stable. On the official
leaderboard of CommonsenseQA in Table 5,
GSC also outperforms all the GNN-based
QA systems. Note that the previous top
system UnifiedQA (11B params) uses T5
(Raffel et al., 2020) as the pre-trained LM
model, which is 30x larger than our model
and uses much more pre-training data.

OpenBookQA. From Table 6 our GSC outperforms the previous best model with 2.53% mean
test accuracy with normal setting and 3.90% test accuracy with the AristoRoBERTa setting. More
remarkably, as shown in Table 7, our GSC ranks top one on the official leaderboard of OpenBookQA,
which even surpasses the performance of UnifiedQA (11B), which is 30x larger than our model.
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Figure 5: Venn diagrams for the prediction overlap of different models and ground truth (GT) of
the IHtest split of CommonsenseQA. The ALBERT has the least overlap since all the left four use
RoBERTa to encode the QA context. The order of the percentage of overlap of left four exactly
matches the order of the performance of each models: GSC > QA-GNN > MHGRN > RoBERTa.
This indicates that the reasoning capability learned by our GSC basically covers that of other GNNs.

4.3 DISCUSSION

Model Test

Careful Selection (Banerjee et al., 2019) 72.0
AristoRoBERTa 77.8
KF + SIR (Banerjee & Baral, 2020) 80.0
AristoRoBERTa + PG (Wang et al., 2020) 80.2
AristoRoBERTa + MHGRN (Feng et al., 2020) 80.6
ALBERT + KB 81.0
AristoRoBERTa + QA-GNN 82.8
T5* (Raffel et al., 2020) 83.2
UnifiedQA (11B)* (Khashabi et al., 2020) 87.2

AristoRoBERTa + GSC (Ours) 87.4

Table 7: Test accuracy on OpenBookQA leader-
board. All listed methods use the provided science
facts as an additional input to the language con-
text. The previous top 2 systems, UnifiedQA (11B
params) and T5 (3B params) are 30x and 8x larger
than our model.

As mentioned above, we observe that the ini-
tial node embeddings are dispensable. Then we
start to explore how the maximum number of
retrieved nodes (also related to edges) affects
the model. We experiment various numbers of
nodes for our GSC, and summarize the results
in Table 8. We find that larger maximum num-
ber of node does not benefit the model, and the
model achieves the best performance when we
use all and only the entity nodes directly occur in
question and answer, whose number of nodes is
generally less than 32. This indicates that 1-hop
retrieval is adequate for our methods, and this
could be done super efficiently than multi-hop
retrieval.

To further analyze the reasoning capacity of
GSC, we draw the Venn diagram for the pre-
dictions of different methods and ground truth
(GT) in Figure 5. We find that even for the dif-
ferent runs of the same GSC model, the correct overlap is only 69%, showing that the datasets are
relatively noisy and there exists decent variance in the prediction results. We also observe that GSC
has a larger overlap for GNN-based systems (e.g., QA-GNN and MHGRN), while at the same time
having less overlap for non-GNN methods. The ALBERT model has the least overlap since all the
other methods use RoBERTa as the text encoder.

Model IHdev-Acc. (%) IHtest-Acc. (%)

MLP + Counter (1-hop) 78.02 (±0.05) 73.62 (±0.12)
MLP + Counter (2-hop) 78.30 (±0.09) 74.13 (±0.08)

GSC w/ QA nodes 79.11 (±0.22) 74.48 (±0.41)

w/ 32 nodes 78.52 (±0.58) 74.40 (±0.25)
w/ 64 nodes 78.53 (±0.77) 73.93 (±1.09)
w/ 128 nodes 78.50 (±0.96) 72.78 (±1.15)
w/ 256 nodes 78.32 (±0.60) 73.89 (±0.63)

Table 8: Ablation study on the hard counter with MLP
(upper) and the maximum number of retrieved nodes
(bottom), showing that 1) the hard counter achieves
performance on par with GNN-based methods; 2) GSC
works well even when only using entities occurred in
QA context, which typically contains less than 32 nodes.

We also observe that the order of the per-
centage of overlap of left four exactly
matches the order of the performance of
each model: GSC > QA-GNN > MHGRN
> RoBERTa. This indicates that GSC has
quite similar behaviors versus other GNN-
based systems, and the reasoning capability
of GSC is on par with existing GNN coun-
terparts. This further reveals that counting
plays an essential role in knowledge-aware
reasoning for QA.

To verify our observations, we handcraft a
hard edge counting feature feeding into a
simple two-layer MLP for ablation study.
As shown in Table 8, this hard count-
ing model with 2-hop edge feature could
achieve a comparable performance of GSC, which even outperforms other GNN baselines. These
impressive results not only show that our GSC is effective, but also prove that counting is an essential
functionality in the process of the current knowledge-aware QA systems.
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Figure 6: Our GSC is highly interpretable. For the retrieved sub-graph of each answer choice, we can
directly observe the behavior of the model by print out the output edge/node values of each layer, so
that we can trace back to see how the model scores the answer.

As shown in Figure 6, for the retrieved sub-graph of each answer choice, we can directly observe the
behavior of the GSC by printing out the output edge/node values (soft count) of each layer. In this
way, we can trace back to see why the model scores the answers like that. We list the runtime soft
counts of GSC’s edge encoder in Appendix A.4. A higher soft count means that the edge/node is
more important, and can contribute more to the final graph score. This demonstrates the advantage of
GSC as an interpretable reasoning module. In addition, GSC only reasons over the edges in the graph
so that the concept embedding is not used, which makes our model better generalize to graph with
new entities.

5 RELATED WORK
KG-powered QA. For KG-powered QA, traditional methods use semantic parsers to map the
question to logical form (Berant et al., 2013; Yih et al., 2015) or executable program on KG (Liang
et al., 2016), which typically require domain-specific rules and fine-grained annotations, making
them difficult to handle the noise in questions and KG. To address these challenges, various deep
neural models have been applied to KG-powered QA, such as memory networks (Kumar et al., 2015;
Sukhbaatar et al., 2015; Miller et al., 2016), neural programmer for knowledge table QA (Neelakantan
et al., 2016), neural knowledge-aware reader (Xiong et al., 2019; Sun et al., 2019), etc.
GNN for KG-powered QA. To further improve the neural reasoning capability, recent studies
have explored applying GNNs to KG-powered QA, where GNNs naturally fit the graph-structured
knowledge and show prominent results. KagNet (Lin et al., 2019) proposes GCN-LSTM-HPA for
path-based relational graph representation. MHGRN (Feng et al., 2020) extend Relation Networks
(Santoro et al., 2017) to multi-hop relation scope and unifies both path-based models and RGCN
Schlichtkrull et al. (2018) to enhance the interpretability and the scalability. QA-GNN (Yasunaga
et al., 2021) proposes a LM+GAT framework to joint reasoning over language and KG. We do not use
conventional GNNs and our GSC is extremely simple and efficient even without parameters inside
the GSC layers. KG embeddings are generally used in these systems. Zhang et al. (2018) employs
propagation of KG embeddings to perform multi-hop reasoning. KagNet pre-trains KG Embedding
using TransE initialized with GloVe embeddings. Recently, MHGRN and QA-GNN are proposed,
which leverage pre-trained LM to generate embeddings for KG. In addition, QA-GNN also scores
KG node relevance using LM as extra node embedding. We follow the data pre-processing procedure
of QA-GNN and MHGRN, but our model does not use any KG embedding or node score embedding.

6 CONCLUSION

We investigate state-of-the-art GNN-based QA systems, and discover that they are over-parameterized
and over-complex. Our diagnostic analysis using SparseVD shows that the initial node embeddings
and some GNN layers are completely dispensable. Furthermore, our work reveals that GNN es-
sentially works as a counter in the QA reasoning process. To verify this point, we design soft /
hard counter models, which achieve comparable or even better experimental results than existing
GNN-based methods. Our work is more of an explorative and investigational research, which points
out how far we go in the area of knowledge-powered QA and provides helpful insights for the QA
community to enlighten future research.
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A APPENDIX

A.1 MULTI-HOP QA EXPERIMENTS

To apply our GSC to the task of multi-hop QA, we use a popular dataset MetaQA (Zhang et al.,
2018), which contains more than 400k single and multi-hop (up to 3-hop) questions in the domain
of movies. The questions were constructed using the knowledge base provided by the WikiMovies
(Miller et al., 2016) dataset. We use the “vanilla” version of the QA pairs in the dataset, and we use
the KG provided by the paper which consists of about 43k entities and 135k triples.

We do not encode the entities information in GSC, since our node embedding is initialized with zero.
The edges in the KG are encoded with concatenated one-hot vectors according to the edge type (9
types of relation) and the node type (question/answer entity). Since the task of multi-hop QA does
not provide answer choices, thus there is no context node inside the retrieved knowledge graph. We
then adapt 3 units of GSC to align with this scenario:

Methods 1-hop 2-hop 3-hop
KV-Mem (Miller et al., 2016) 96.2 82.7 48.9
VRN (Zhang et al., 2018) 97.5 89.9 62.5
GraftNet (Sun et al., 2018) 97.0 94.8 77.7
GSC (ours) 97.6 99.8 76.8

Table 9: Our GSC achieves comparable performance
with the baselines on the MetaQA dataset, which indi-
cates that our observations and hypotheses keep consis-
tent multi-hop QA.

Edge encoder We equip each GSC layer
with a independent edge encoder to learn
edge information for different hop. The
input of the edge encoder is also adapted.
Since various of questions can be asked
to the same question entity, which means
the retrieved graph for different question
may be identical, we concatenate the LM
encoded question text representation vector
with edge type vector as the input of the
edge encoder. So that the model could learn
different edges embedding for different question text. Except the edge encoder is changed, we keep
other parts of or GSC architecture the same.
Output mechanism Since all the retrieved nodes can be the answer entities, we output all the node
values as scores and the highest scored entity is our final answer. In the hit@1 setting, if our final
answer is in the set of all the answer labels, we mark it correct.
Supervision Since there could be multiple correct answers in the KG given a question, we process
the labels for each question as a multi-hot vector and use MSE loss instead of Cross Entropy as the
supervision to the node scores.

We compared our GSC with three standard baselines KV-Mem (Miller et al., 2016), VRN (Zhang
et al., 2018) and GraftNet (Sun et al., 2018) on MetaQA and report the hit@1 accuracy in Table 9. We
can see that our GSC achieves comparable performance with the baselines on the MetaQA dataset,
which indicates that our observations and hypotheses keep consistent multi-hop QA.

A.2 HOW WE CONCLUDE THAT GNN IS A COUNTER

Methods IHdev-Acc. (%) IHtest-Acc. (%)

GAT w/ hidden=2 77.32 (±0.62) 74.08 (±0.12)
w/ hidden=4 77.07 (±0.08) 74.30 (±0.42)
w/ hidden=8 77.12 (±0.33) 74.65 (±0.33)
w/ hidden=16 77.01 (±0.21) 74.59 (±0.68)
w/ hidden=32 77.26 (±0.19) 74.62 (±0.43)
w/ hidden=64 77.37 (±0.43) 73.97 (±0.29)
w/ hidden=128 77.40 (±0.38) 74.21 (±0.37)
w/ hidden=256 77.56 (±0.30) 74.27 (±0.61)
w/ hidden=512 76.80 (±0.54) 73.35 (±0.70)
w/ hidden=1024 75.87 (±0.50) 71.34 (±1.09)

Table 10: Ablation study on the hidden dimension
size of the GAT model, where we find that the model
still works when the hidden size is extremely small,
and the model get worse when the hidden size is
extremely large due to the problem of over-fitting.

The process we conclude that GNN is a
counter is not direct, our finding is based on
sufficient experiments and obtained by a step
by step process:

1. We find that the initial node embedding is
dispensable and the layers inside the GNN pre-
serve relatively low sparse ratio via the Spar-
seVD analysis.

2. So we remove the initial node embedding
layers and try to set different hidden dimen-
sion for GNN layers to see how the number of
parameters affect the performance. The exper-
iments result can be found at Table 10, where
we do ablation study on the hidden dimension
size of the message passing layers in the GAT
model, where we find that the model still works when the hidden size is extremely small, and the
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model get worse when the hidden size is extremely large due to the problem of over-fitting. And
we keep the hidden size of edge encoder with 32 since we find if the hidden size of edge encoder is
extremely small the model will dis-converge.

3. Since the hidden dimension size of the message passing layers in the GAT model can not be set to
even smaller, we design our own model with hidden dimension equal to 1 and simplify the attention
based message passing layers to a non-parameterized operation. We surprisingly find that this model
can still work and even work better. So we further study this model and find it works like a counter,
so we name it Graph Soft Counter.

4. To further verify our perspective that the GNN works like a Counter, we design the hard counter
setting, and find that it also works and could achieve comparable performance.

5. We may conclude that current GNNs in QA tasks work like a counter and counting for edges in
graph are crucial in reasoning.

A.3 SPARSE RATIO CURVE

We attach the details of the training curve of SparseVD dissection for QA-GNN as following. We
find the linear query and key layers inside GNN layers and graph pooler generally can be compressed
to a relatively low sparse ratio and this is more obvious at the fist three GNN layers. This indicated
the these layers may be over-parameterized and the attention mechanism (Vaswani et al., 2017;
Veličković et al., 2018) may degenerate to linear function in this case if we remove these layers.

As expected, the final fully connected layer (FC) preserved the highest sparse ratio, since it serves
for directly generating the overall score of a choice and it is very efficient (the output dimension
is 1). Except that, the edge encoder with a two-layer MLP has very high sparse ratio, which can
be explained as the edge encoding is essential for GNN reasoning in these tasks. This is also why
we only keep the edge encoder with relatively more learnable parameters and simplify the other
components in GNN to design our Graph Soft Counter.

A.4 SOFT COUNT OF EDGES

We list the top-30 edge triplets with highest soft counts that encoded by the edge encoder of our GSC
as following. These combinations of edge types and node types have relatively higher counts, which
means they can contribute more to the final graph score.

A.5 SPARSEVD

To take a deep scope of the graph neural networks based knowledge-aware systems, we introduce
a neural model pruning method Sparse Variational Dropout (SparseVD, (Molchanov et al., 2017))
into this scenario as a dissection tool to automatically dissect the graph network architecture. We
implemented the SparseVD optimization based layer refer to the PyTorch code* released by the
author. To keep the dissection in strict accordance with the theoretical derivation of Molchanov et al.
(2017), we apply regulation to all the linear layers in the GNN modules. We attach the SparseVD
problem formulation as well as the optimization target as following.

Consider a datasetD which is constructed fromN pairs of objects (xn, yn)Nn=1. Our goal is to tune the
parameters w of a model p(y |x,w) that predicts y given x and w. In Bayesian Learning we usually
have some prior knowledge about weights w, which is expressed in terms of a prior distribution p(w).
After data D arrives, this prior distribution is transformed into a posterior distribution p(w | D) =
p(D |w)p(w)/p(D). This process is called Bayesian Inference. Computing posterior distribution
using the Bayes rule usually involves computation of intractable multidimensional integrals, so we
need to use approximation techniques.

One of such techniques is Variational Inference. In this approach the posterior distribution p(w | D)
is approximated by a parametric distribution qφ(w). The quality of this approximation is measured in
terms of the Kullback-Leibler divergence DKL(qφ(w) ‖ p(w | D)). The optimal value of variational

*https://colab.research.google.com/github/bayesgroup/deepbayes-2019/
blob/master/seminars/day6/SparseVD-solution.ipynb
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1

Figure 7: The sparse ratio curve when do SparseVD training for the QA-GNN systems.

parameters φ can be found by maximization of the variational lower bound:

L(φ) = LD(φ)−DKL(qφ(w) ‖ p(w))→ max
φ∈Φ

(1)

LD(φ) =

N∑
n=1

Eqφ(w)[log p(yn |xn, w)] (2)

It consists of two parts, the expected log-likelihood LD(φ) and the KL-divergence
DKL(qφ(w) ‖ p(w)), which acts as a regularization term.

17



Published as a conference paper at ICLR 2022

Head Node Type Relation Type Head Node Type Soft Count Value
Q entity desires (inverse) Q entity 0.9632
Q entity desires Q entity 0.8902
Q entity has subevent (inverse) Q entity 0.8775
Q entity is Q entity 0.8470
Q entity has property Q entity 0.7344
Q entity does not desires Q entity 0.6995
Q entity does not desires (inverse) Q entity 0.6790
Q entity causes Q entity 0.6252
Q entity has property (inverse) Q entity 0.3531
A entity is Q entity 0.3073
Q entity causes (inverse) Q entity 0.2868
Q entity is part of Q entity 0.2758
Q entity is capable of (inverse) Q entity 0.2706
A entity has property Q entity 0.2424
A entity desires Q entity 0.2207
Q entity is the antonym of (inverse) Q entity 0.2137
Q entity is created by (inverse) Q entity 0.1720
Q entity is capable of Q entity 0.1681
Q entity is part of (inverse) Q entity 0.1581
Q entity desires (inverse) A entity 0.1310
Q entity is at location of Q entity 0.1006
Q entity is created by Q entity 0.0990
Q entity is at location of (inverse) Q entity 0.0914
Q entity is A entity 0.0737
Q entity has property A entity 0.0636
Q entity has subevent (inverse) A entity 0.0617
O entity is Q entity 0.0606
O entity has property Q entity 0.0512
Q entity desires A entity 0.0445
Q entity is the antonym of Q entity 0.0399

Table 11: We list the top-30 edge triplets with highest soft counts here, and it is generated by the edge
encoder of GSC model. The combination of edge types and node types with a higher count means it
can contribute more to the final graph score.

We formulate the model prunings (parsification) problem pruning problem as a variational inference
problem and use the Kullback-Leibler Divergence approximation following (Achterhold et al., 2018;
Molchanov et al., 2017) to constrain the model parameters to converge to the pruning prior: Original
−DKL was obtained by averaging over 107 samples of ε with less than 2 × 10−3 variance of the
estimation.

−DKL(q(wij | θij , αij) ‖ p(wij)) ≈
≈ k1σ(k2 + k3 logαij))− 0.5 log(1 + α−1

ij ) + C

k1 = 0.63576 k2 = 1.87320 k3 = 1.48695

(3)

Where σ(·) denotes the sigmoid function. We can see that −DKL term increases with the growth of
α. It means that this regularization term favors large values of α. The case of αij →∞ corresponds
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to a Binary Dropout rate pij → 1 (recall α = p
1−p ). Intuitively it means that the corresponding

weight is almost always dropped from the model. Therefore its value does not influence the model
during the training phase and is put to zero during the testing phase.

We can also look at this situation from another angle. Infinitely large αij corresponds to infinitely
large multiplicative noise in wij . It means that the value of this weight will be completely random
and its magnitude will be unbounded. It will corrupt the model prediction and decrease the expected
log likelihood. Therefore it is beneficial to put the corresponding weight θij to zero in such a way
that αijθ2

ij goes to zero as well. It means that q(wij | θij , αij) is effectively a delta function, centered
at zero δ(wij).

θij → 0, αijθ
2
ij → 0

⇓
q(wij | θij , αij)→ N (wij | 0, 0) = δ(wij)

(4)

In the case of linear regression this fact can be shown analytically. We denote a data matrix as XN×D

and α, θ ∈ RD. If α is fixed, the optimal value of θ can also be obtained in a closed form.

θ = (X>X + diag(X>X)diag(α))−1X>y (5)

Assume that (X>X)ii 6= 0, so that i-th feature is not a constant zero. Then from (5) it follows that
θi = Θ(α−1

i ) when αi → +∞, so both θi and αiθ2
i tend to 0.

In our dissection scenario, we optimize the weight θij to zero no longer for compressing the model
but for figuring out which part of the model can be pruned out (sparse ratio to zero) without loss of
accuracy, which indicates that part of model is not important and its output information is unused in
optimization.
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