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Abstract

Semi-supervised algorithms aim to learn prediction functions from a small set of labeled training
set and a large set of unlabeled observations. Because these approaches are relevant in many ap-
plications, they have received a lot of interest in both academia and industry. Among the existing
techniques, self-training methods have undoubtedly attracted greater attention in recent years. These
models are designed to find the decision boundary on low density regions without making additional
assumptions about the data distribution, and use the unsigned output score of a learned classifier,
or its margin, as an indicator of confidence. The working principle of self-training algorithms is
to learn a classifier iteratively by assigning pseudo-labels to the set of unlabeled training samples
with a margin greater than a certain threshold. The pseudo-labeled examples are then used to enrich
the labeled training data and to train a new classifier in conjunction with the labeled training set.
In this paper, we present self-training methods for binary and multi-class classification as well as
their variants and two related approaches, namely consistency-based approaches and transductive
learning. We also provide brief descriptions of self-supervised learning and reinforced self-training,
two distinct approaches despite their similar names. Finally, we present the most popular applica-
tions where self-training is employed. For pseudo-labeling, fixed thresholds usually lead to subpar
results, highlighting the significance of dynamic thresholding for best results. Moreover, improv-
ing pseudo-label noise enhances generalization and class differentiation. The performance is also
impacted by augmenting initial labeled training samples. These findings highlight the complex in-
terplay in self-training efficacy between threshold selection, noise control, and labeled training size.
They emphasize the need for meticulous parameter tuning and data preprocessing to fully exploit
semi-supervised learning’s potential and pave the way for future research in refining methodologies
and expanding applicability across domains. To the best of our knowledge, this is the first thorough
and complete survey on self-training.

1 Introduction

Semi-supervised learning has risen to prominence within the machine learning domain, tackling the core challenge of
making inference from both the structure of the unlabeled data and the label information from existing labeled training
sets (Altun et al., 2005). The framework is particularly useful in scenarios where there are limited labeled examples
but an abundance of unlabeled data available for training. This is highly relevant in a range of applications, such as
computer vision, natural language processing and speech recognition, where the acquisition of labeled data can be a
costly endeavor (Yu et al., 2022; Cheng et al., 2023; Gheini et al., 2023; Qu et al., 2023).

1.1 Central hypothesis

In general, it remains unclear how unlabeled data can be used in training and what value it can bring. The basic
assumption in semi-supervised learning, called smoothness, stipulates that two examples in a high density region
should have identical class labels (Chapelle et al., 2010; Amini & Usunier, 2015). This means that if two points are
part of the same group or cluster, their class labels will most likely be the same. If they are separated by a low density
zone, on the other hand, their desired labels should be different. Hence, if the examples of the same class form a
partition, unlabeled training data might aid in determining the partition boundary more efficiently than if just labeled
training examples were utilized.
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1.2 Three main semi-supervised learning families

There are three main families of semi-supervised methods, each with its own adaptation of the smoothness hypothesis.
These adaptations are usually referred to as assumptions, albeit loosely, since they rather represent different paradigms
for implementing semi-supervised learning.

Data clustering uses a mixture model and assigns class labels to groups using the labeled data they include; and it
constitutes the working principle of generative approaches (Nigam et al., 2006; Kingma et al., 2014). The cluster
assumption, which underpins these approaches, asserts that if two examples are in the same group, they are likely to
be in the same class (Figure 1 (a)). This hypothesis may be explained as follows: if a group is formed by a large
number of instances, it is rare that they belong to different classes. This does not imply that a class is constituted by
a single group of examples, but rather that two examples from distinct classes are unlikely to be found in the same
cluster (Abu-Mostafa, 1995).

If we consider the partitions of instances to be high density areas, a form of the cluster assumption known as low
density separation entails determining the decision boundary over low density regions (Figure 1 (b)), and it constitutes
the basis of discriminant techniques. The main difference between generative and discriminant techniques is that
discriminant approaches find directly the prediction function without making any assumption on how the data are
generated (Amini & Gallinari, 2002; Grandvalet & Bengio, 2004; Oliver et al., 2018).

Density estimation is often based on a notion of distance, which may become meaningless for high dimensional
spaces. A third hypothesis, known as the manifold assumption, stipulates that in high-dimensional spaces, instances
reside on low-dimensional topological spaces that are locally Euclidean (Figure 1 (c)), which is supported by a variety
of semi-supervised models called graphical approaches (Belkin & Niyogi, 2004; Chong et al., 2020).

Figure 1: Illustration of three main hypotheses made in semi-supervised learning: (a) cluster assumption, (b) low-density separation
and (c) manifold assumption.

1.3 Compatibility

Although semi-supervised algorithms have been successfully applied in many situations, there have been cases where
unlabeled data have been shown to have no effect on the performance of a learning task (Singh et al., 2008). Several
attempts have been made in recent years to investigate the value of unlabeled data in the training process (Castelli
& Cover, 1995; Li & Zhou, 2011), and the capacity of semi-supervised learning approaches to generalize (Rigollet,
2007; Maximov et al., 2018). The bulk of these studies are founded on the notion of compatibility defined by Balcan
& Blum (2006), and they strive to exhibit the connection between the marginal data distribution and the target function
to be learned. According to these findings, unlabeled data will be beneficial for training only if such a relationship
exists.

In generative approaches, the marginal distribution is viewed as a mixture of class conditional distributions, and when
compared to the supervised case, semi-supervised learning has been shown to achieve lower finite-sample error bounds
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in some general cases, or a faster rate of error convergence in others (Castelli & Cover, 1995; Rigollet, 2007; Maximov
et al., 2018; Singh et al., 2008). In this line, Ben-David et al. (2008) showed that accessing the marginal distribution
on unlabeled training data would not provide sample size guarantees superior to those obtained by supervised learning
unless very strong assumptions about conditional distribution on class labels are made.

For graph-based approaches, Niyogi (2013); Altun (2005) provided a context in which such algorithms may be studied
and perhaps justified; the key finding of the study is that unlabeled data can help learning in some situations by
explicitly defining the structure of the data through a manifold.

Finally, discriminant approaches mostly embed a margin maximization method that searches the decision boundary in
low-density regions by pushing it from the unlabeled data (Joachims, 1999). In this survey we focus on self-training
algorithms that follow this principle by assigning pseudo-labels to high-confidence unlabeled training examples and
include these pseudo-labeled samples in the learning process. While various surveys have explored semi-supervised
learning in recent years (Van Engelen & Hoos, 2020; Yang et al., 2023), none have specifically emphasized self-
training, which has emerged as the predominant approach in the field, widely applied across various applications.

1.4 Paper structure

The reminder of this paper is organized as follows.

In Section 2, we go over the self-training method in detail. First, we present the framework and notations used
throughout the paper in Section 2.1, then we describe the general self-training algorithm in Section 2.2, also introduced
in Algorithm 1. Then, we describe pseudo-labeling methods and its variants in Section 2.3, and we discuss the self-
training with two classifiers in Section 2.4. Those methods are summed up in Table 1. Finally, we provide some
insights into current theoretical studies in Section 2.6.

Other related approaches are described in Section 3. First, we detail the transductive learning context in Section
3.1, and the consistency-based approaches in Section 3.2. Going beyond traditional semi-supervised learning, we
investigate the extension of self-training in domain adaptation in Section 2.5, delve into self-supervised learning in
Section 3.3, and explore reinforced self-training in Section 3.4.

Section 4 reviews application of self-training methods in different domains, such as natural language processing in
Section 4.1, computer vision in Section 4.2 and more generally in knowledge-driven applications in Section 4.3, with
speech recognition, anomaly detection and genomics and proteomics.

The views and future prospects are discussed in Section 5.

2 Self-Training

Within this section, we present the fundamental aspects of the self-training approach. Initially, we introduce the frame-
work and notation, followed by a comprehensive exploration of the core concept behind the self-training algorithm,
which is further delineated in Algorithm 1. In Section 2.3 and Section 2.4, we present significant contributions directly
linked to the standard algorithm. We organize these contributions effectively in Table 1. To conclude, we delve into
the theoretical aspects in Section 2.6.

2.1 Semi-supervised framework and notations

We consider classification problems where the input and the output spaces are respectivelyX ⊆ Rd andY = {−1, +1}
or Y = {1, . . . , K}. We further suppose available a set of labeled training examples S = (xi, yi)1⩽i⩽m ∈ (X ×Y)m

generated from a joint probability distribution P(x, y) (denoted as D) and a set of unlabeled training examples XU =
(xi)m+1⩽i⩽m+u ∈ X u supposed to be drawn from the marginal distribution P(x).

The classic case corresponds to when m ≪ u, and the issue is thrown into the unsupervised learning framework if
S is empty. The opposite extreme scenario is when XU is empty and the problem is reduced to supervised learning.
Given a hypothesis set of functions H mapping X to Y , the learner receives a labeled set S and an unlabeled set XU
and outputs a hypothesis h ∈ H which is assumed to have a generalization error R(h) = E(x,y)∼D[1h(x)̸=y] smaller
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than if just S was used to find the prediction function, where by 1π we denote the indicator function equal to 1 if the
predicate π is true and 0 otherwise.

In practice, classifiers are defined based on a scoring function f from a class of functions F = {f : X ×Y → R}, and
for an example x the corresponding classification function h outputs the class for which the score of f is the highest:

h(x) = argmaxy∈Yf(x, y).

We define the margin ρf (x, y) of a function f for an example x ∈ X and a class y ∈ Y as

ρf (x, y) = f(x, y)−max
y′ ̸=y

f(x, y′).

In the binary case, Y = {−1, +1}, we define the unsigned margin of a classification function f ∈ F over an example
x ∈ X (d’Alché Buc et al., 2001; Amini et al., 2008) as

mf (x) = |ρf (x, +1)|.

In the multi-class classification case, Y = {1, . . . , K}, the unsigned margin (d’Alché Buc et al., 2001; Feofanov et al.,
2019) is defined as

mf (x) =
∑
y∈Y

f(x, y)ρf (x, y).

The maximization of the unsigned margin tends to find a decision boundary that passes through low density regions
and hence follows the low density separation assumption.

2.2 Self-training: the idea

Self-training, also known as decision-directed or self-taught learning machine, is one of the earliest approach in semi-
supervised learning (Scudder, 1965; Fralick, 1967) that has risen in popularity in recent years.

To determine the decision boundary on low density regions, the idea behind self-training algorithms is to consider a
pseudo-labeling strategy for assigning pseudo-labels to the examples of XU . This strategy can be characterized by a
function, called pseudo-labeler:

Φℓ : X × F → X × Y.

We denote ỹ the pseudo-label of an unlabeled x ∈ XU for a score function f ∈ F assigned by Φℓ and XŪ the set of
pseudo-labeled examples.

The self-learning strategy is an iterative wrapper algorithm that starts by learning a supervised classifier on the labeled
training set S. Then, at each iteration, the current classifier selects a part of the unlabeled data, XŪ , and assigns
pseudo-labels to them using the classifier’s predictions.

These pseudo-labeled unlabeled examples are removed from XU and a new supervised classifier is trained over S∪XŪ ,
by considering these pseudo-labeled unlabeled data as additional labeled examples. To do so, the classifier h ∈ H that
is learned at the current iteration is the one that minimizes a regularized empirical loss over S and XŪ :

1
m

∑
(x,y)∈S

ℓ(h(x), y) + γ

|XŪ |
∑

(x,ỹ)∈XŪ

ℓ(h(x), ỹ) + λ∥h∥2

where ℓ : Y×Y → [0, 1] is an instantaneous loss most often chosen to be the cross-entropy loss, γ is a hyperparameter
for controlling the impact of pseudo-labeled data in learning, and λ is the regularization hyperparameter. This process
of pseudo-labeling and learning a new classifier continues until the unlabeled set XU is empty or there is no more
unlabeled data to pseudo-label. The pseudo-code of the self-training algorithm is shown in Algorithm 1.

2.3 Pseudo-labeling strategies

At each iteration, the self-training selects just a portion of unlabeled data for pseudo-labeling, otherwise, all unlabeled
examples would be pseudo-labeled after the first iteration, which would actually result in a classifier with performance
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Algorithm 1. Self-Training

Input : S = (xi, yi)1⩽i⩽m, XU = (xi)m+1⩽i⩽m+u.
k ← 0, XŪ ← ∅.
repeat

Train f (k) on S ∪XŪ
Πk ← {Φℓ(x, f (k)), x ∈ XU} ▷ Pseudo-labeling
XŪ ← XŪ ∪Πk

XU ← XU \ {x | (x, ỹ) ∈ Πk}
k ← k + 1

until XU = ∅ ∨Πk = ∅
Output : f (k), XU , XŪ

identical to the initial classifier (Chapelle et al., 2010). Thus, the implementation of self-training arises the following
question: how to determine the subset of examples to pseudo-label?

A classical assumption, that stems from the low density separation hypothesis, is to suppose that the classifier learned
at each step makes the majority of its mistakes on observations close to the decision boundary. In the case of binary
classification, preliminary research suggested to assign pseudo-labels only to unlabeled observations for which the
current classifier is the most confident (Tür et al., 2005). Hence, considering thresholds θ− and θ+ defined for respec-
tively the negative and the positive classes, the pseudo-labeler assigns a pseudo-label ỹ to an instance x ∈ XU such
that:

ỹ =
{

+1, if f(x, +1) ⩾ θ+,

−1, if f(x,−1) ⩽ θ−,
(1)

and Φℓ(x, f) = (x, ỹ). An unlabeled example x that does not satisfy the conditions equation 1 is not pseudo-labeled;
i.e. Φℓ(x, f) = ∅.

Intuitively, thresholds should be set to high absolute values as pseudo-labeling examples with low confidence would
increase chances of assigning wrong labels. However, thresholds of very high value imply excessive trust in the
confidence measure underlying the model, which, in reality, can be biased due to the small labeled sample size. Using
several iterations makes also the situation more intricate as at every iteration the optimal threshold might be different.

One way to select the thresholds is to set them equal to the average of respectively positive and negative predictions
(Tür et al., 2005). In this line, and in the context of multi-class classification (Lee, 2013) used Neural Networks as
the supervised classifier and chose the most confident class to infer pseudo-labels for unlabeled data using the current
model’ outputs. The pseudo-labeled examples were then added to the labeled training set and treated similarly as
labeled examples.

Zou et al. (2018) adapted the idea of Tür et al. (2005) for multi-class classification by not choosing thresholds but rather
fixing a proportion p of the most confident unlabeled data to be pseudo-labeled and then increasing this proportion at
each iteration of the algorithm until p = 0.5 was reached. Following this idea, Cascante-Bonilla et al. (2021) revisited
the concept of pseudo-labeling by discussing the iterative process of assigning pseudo-labels to unlabeled data and
emphasized the resilience of pseudo-labeling to out-of-distribution samples.

Zhang et al. (2021) also proposed an adaptation of curriculum learning to pseudo-labeling, which entails in learning a
model using easy-to-learn observations before moving on to more complex ones. The principle is that at the step k of
the algorithm, the pseudo-labeler selects unlabeled examples having predictions that are in the (1−αk)th percentile of
the distribution of the maximum probability predictions assumed to follow a Pareto distribution, and where αk ∈ [0, 1]
is an hyperparameter that varies from 0 to 1 in increments of 0.2.

Considering the distribution of predictions over unlabeled data, and the majority vote classifiers, such as Random
Forest or Adaboost (Schapire et al., 1997), it is possible to automatically choose a threshold for pseudo-labeling.
Formally, the learning of a majority vote classifier with partially labeled data can be defined as follows.
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After observing the training set S ∪ XŪ , the task of the learner is to choose a posterior distribution Q over a set of
hypothesisH such that the Q-weighted majority vote classifier BQ defined by:

∀x ∈ X , BQ(x) = argmaxy∈YEh∼Q

[
1h(x)=y

]
,

will have the smallest possible risk on examples of XU . The associated Gibbs classifier, GQ, is defined as the random
choice of a classifier h according to the distribution Q, and its error over an unlabeled set XU is given by:

R̂u(GQ) = 1
u

∑
x′∈XU

Eh∼Q[1h(x′ )̸=y′ ],

where, for every unlabeled example x′ ∈ XU we refer to y′ as its true unknown class label. For binary and multi-class
classification respectively, Amini et al. (2008) and Feofanov et al. (2019) showed that a tight upper-bound on the Gibbs
classifier’s risk that holds with high probability over the random choice of S and XU , guarantees a tight bound on the
error of the Bayes classifier over the unlabeled training set:

R̂u(BQ) = 1
u

∑
x′∈XU

1BQ(x′ )̸=y′ .

This bound is mainly based on the distribution of predictions over unlabeled data and the derivations can be extended
to bound the risk of voted majority classifiers having margins greater than a threshold θ, R̂u∧θ(BQ), defined as:

R̂u∧θ(BQ) = 1
u

∑
x′∈XU

1BQ(x′ )̸=y′∧mBQ
(x′)>θ,

with a slight abuse of notation for mBQ
. One of the practical aspects that arises from this result is the possibility to

specify a threshold θ which minimizes an upper-bound of the conditional risk of a voted majority classifier BQ over
the unlabeled training set, XU , defined as:

R̂u|θ(BQ) = R̂u∧θ(BQ)
1
u

∑
x∈XU

1mBQ
(x)⩾θ

,

where the denominator is the proportion of the unlabeled examples with the confidence higher than the threshold θ,
and the numerator is the joint Bayes risk on XU . Thus, the criterion can be interpreted as a trade-off between the
number of examples going to be pseudo-labeled and the error they induce. Furthermore, these bounds are shown
to be tight in the case where the majority vote classifier makes its error mostly on low margin regions. Feofanov
et al. (2019) demonstrated that this technique outperforms conventional fixed-threshold pseudo-labeling strategies on
different multi-class classification problems.

Chen et al. (2022) highlighted two major issues with self-training: the snowball effects of cascading pseudo-labeling
mistakes and random sampling of tiny samples (called data bias). The authors suggest two-phase solutions to address
these problems for image classification using deep learning. First, they proposed a classification head to separate
the creation and use of pseudo labels in order to reduce training errors. An additional head is utilized to receive the
pseudo-labels and carry out training on unlabeled data while the default head is used for classification and pseudo-
labeling.

2.4 Self-training with two classifiers

In the wake of works utilizing only a single classifier in self-training algorithms, new studies have been proposed with
the use of two classifiers, where each model learns on the output of the other (Xie et al., 2020b; Chen et al., 2021;
Karamanolakis et al., 2021). Most of these techniques are based on the idea of consensus in predictions between two
classifiers and were inspired by the seminal work of Blum & Mitchell (1998) who proposed the co-training algorithm.

In co-training, examples are defined by two modalities that are comparable but not entirely correlated. Each view of
an example is expected to contain complementary information about the data and if there are enough labeled training
data, each of them is supposed to be sufficient for learning. The main principle is to learn a classifier on each view,
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Base classifier Classification Threshold Noise
Single Double Binary Multi-class Fixed Optimized Account

Scudder [1965] ✓ − ✓ − ✓ − −
Joachims. [1999] ✓ − ✓ − ✓ − −
Amini et al. [2008] ✓ − ✓ − − ✓ −
Hadjadj et al. [2023] ✓ − ✓ − − ✓ ✓
Tur et al. [2005] ✓ − − ✓ ✓ − −
Xie et al. [2020a] ✓ − − ✓ ✓ − −
Cascante et al. [2021] ✓ − − ✓ ✓ − −
Chen et al. [2022] ✓ − − ✓ ✓ − ✓
Feofanov et al. [2019] ✓ − − ✓ − ✓ −
Zhang et al. [2021] ✓ − − ✓ − ✓ −
Blum et al. [1998] − ✓ ✓ − ✓ − ✓
Yaslan et al. [2010] − ✓ − ✓ ✓ − −
Tarvainen and Valpola [2017] − ✓ − ✓ ✓ − −
Xie et al. [2020b] − ✓ − ✓ ✓ − −
Karamanolakis et al. [2021] − ✓ − ✓ ✓ − −
Chen et al. [2021] − ✓ − ✓ ✓ − −
Ghiasi et al. [2021] − ✓ − ✓ ✓ − −
Du et al. [2022] − ✓ − ✓ ✓ − −

Table 1: A summary of principal self-training algorithms, based on pseudo-labeling with one or two classifiers, introduced
in Section 2.3 and 2.4.

taking initially the available labeled examples as the training set. Then, one of the classifiers assigns pseudo-labels
to unlabeled data, and the other one uses them to retrain the model by including them into its training set. At each
iteration, the classifiers alternately switch their roles, thereby co-training each other. As for self-training algorithms
with a single classifier, this procedure continues until there are no more unlabeled instances to be pseudo-labeled. In
practice, several studies artificially generated the two modalities for classification problems where examples are mono-
viewed and described by a vector representation. These approaches create the two modalities out of one by selecting at
random the set of features that should correspond to each modality from the initial set of features; and their efficiency
was empirically proved on various applications (Yaslan & Cataltepe, 2010). Co-training can thus be thought of as a
form of self-training: rather than training a classifier on its own previous predictions, each classifier is trained on the
predictions of another classifier that was trained on the predictions of the former. Without splitting the input feature set,
Chen et al. (2021) proposed Cross Pseudo Supervision for semantic segmentation in images. This method employs two
neural networks as supervised classifiers having the same images as inputs. Each neural-network is learned at every
mini-batch by considering the pseudo-labels generated by the other network for unlabeled instances as ground-truths.
In multi-task learning, Ghiasi et al. (2021) proposed to independently train specialized teachers using labeled datasets.
These teachers then label an unlabeled dataset, creating a multitask pseudo-labeled dataset. Subsequently, a student
model is trained using the pseudo-labeled dataset, employing multi-task learning to learn from various datasets and
tasks simultaneously. Finally, the feature representations of the student model are evaluated across six vision tasks,
including image recognition, to assess its performance and generalization capabilities.

The learnability of co-training was studied under the PAC framework (Valiant, 1984), which also accounts for noise in
the class labels of unlabeled examples caused by pseudo-labeling. The injection of noisy labels in the pseudo-labeling
step is in fact inherent to any self-training algorithm. Taking into account noisy labels in training a model was first
considered in supervised learning, following the paradigm of learning with an imperfect supervisor in which training
data contains an unknown portion of imperfect labels (Natarajan et al., 2013; Han et al., 2018). Most of these studies
tackle this problem from an algorithmic point of view, employing regularization (Miyato et al., 2019) or estimating
mislabeling errors by modeling the transition probability between noisy and true labels (Patrini et al., 2017).

Table 1 summarizes the main self-training approaches presented so far by emphasizing their key aspects.

2.5 Self-training under Domain Shift

Recently, self-training has expanded its scope beyond semi-supervised learning and has found extensive application
to the learning problems where available data is subject to a distribution shift. In unsupervised domain adaptation,
where the objective is to transfer knowledge from a labeled source domain to an unlabeled target one, self-training
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become a popular alternative to discrepancy minimization methods (Ganin et al., 2016). In this case, self-training aims
to progressively correct the domain shift by including more and more pseudo-labeled target examples to the source
training set. This is particularly relevant for gradual domain adaptation, where unlabeled instances from intermediate
domains are available (Shi & Liu, 2024).

When intermediate domains are not given, it is important to ensure that pseudo-labeled target examples are reliable
and are not biased towards the source data. While Inoue et al. (2018) and Zou et al. (2018) approached this issue
by carefully choosing a pseudo-labeling policy, Saito et al. (2017) learn a representation via a tri-training scheme, in
which the student is trained on target data pseudo-labeled by agreement of two teachers. Liu et al. (2021) alternate
between two gradient steps: (1) to train a source classification head that generates pseudo-labels, (2) to train a target
classification head using pseudo-labeled data under the constraint that it predicts well on source data.

As the discrepancy between the source and the target can be large, the prediction confidence may exhibit a strong bias
failing to distinguish between correct and wrong pseudo-labels. Therefore, several works focus specifically on model
calibration and uncertainty estimation including the negative entropy regularization (Zou et al., 2019), the Monte-Carlo
dropout (Mukherjee & Awadallah, 2020), and prediction agreement of diversified linear heads (Odonnat et al., 2024).

2.6 Theoretical studies

Several studies have recently looked into the theoretical properties of self-training algorithms.

In this line, Wei et al. (2021) suggest a new concept of expansion defined as the quantity of data dispersion in an
example’s neighbor, where the term neighbor refers to adding adversarial perturbations (Miyato et al., 2019) or aug-
mentations (Sohn et al., 2020) to the example. The study establishes distributional guarantees of self-training when
the label distribution meets such expansion properties and classes are suitably separated according to neighbors. The
study generates finite sample bounds for Deep Neural Networks (DNNs) by combining generalization bounds with
DNN generalization bounds. Experiments with a Generative Adversarial Network (GAN) are also used to verify the
expansion assumption.

Frei et al. (2022) examine a self-training algorithm with linear models for the binary classification using gradient-based
optimization of the cross-entropy loss after supervised learning with a small number of samples. The classifier is a mix-
ture model with concentration and anti-concentration properties. The authors show that utilizing O(d/ϵ2) unlabeled
observations in the self learning algorithm, with d the number of input variables, suffices to achieve the classification
error of the Bayes-optimal classifier up to an ϵ error if the initial pseudo-labeling strategy has a classification error
smaller than an absolute constant Cerr. Furthermore, the authors demonstrate that a constant number of labeled exam-
ples is sufficient for optimal performance in a self-training algorithm by demonstrating that using only O(d) labeled
examples, the standard gradient descent algorithm can learn a pseudo-labeling strategy with a classification error no
more than Cerr.

Zhang et al. (2022) study the generalization ability of self-training in the case where the base classifier is a two-layer
neural network with the second layer weights all fixed to one, and assuming that the ground truth is realizable, the
labels are observed without noise, and the labeled and unlabeled instances are drawn from two isotropic Gaussian
distributions. The authors show that, given some plausible assumptions about the initial point and the amount of
unlabeled training examples, the algorithm converges to the ground truth with fewer observations than needed when
no unlabeled data is provided. The reader can refer to Zhong et al. (2017) for a broader context. Zhang et al. (2022)
extend their main result to a more general setting, where it is shown that the model still converges towards a given
convex combination of the ground truth and the initial point, and is guaranteed to outperform the initial supervised
model, without fixing any requirement on the number of labeled training examples.

Hadjadj et al. (2023) propose a first bound over the misclassification error of a self-training method which utilizes
half-spaces as the base classifier in the case where class labels of examples are supposed to be corrupted by a Massart
noise model. Under this assumption, it is shown that the use of unlabeled data in the proposed self-training algorithm
does not degrade the performance of the first half-space trained over the labeled training data.

Sportisse et al. (2023) study the identifiability of self-training approaches. In addressing the bias in the conventional
risk estimator, the proposed method, named Inverse Propensity Weighting, involves assigning weights to examples
based on the inverse of their propensity scores-representing the probability of a class label being observed. The study
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introduces two estimators for the missing data mechanism, one of which is derived through the maximization of the
observed likelihood. Furthermore, a likelihood ratio test is suggested to evaluate the informativeness of the labels,
determining whether they exhibit non-random missing patterns.

Some other works studied self-training from a theoretical perspective when a distribution shift takes place. Chen et al.
(2020) proves that self-training can help to avoid spurious features, while Kumar et al. (2020) derived an upper-bound
on the error of self-training in the case of gradual shifts.

3 Related and unrelated approaches

In semi-supervised learning, there are two main other areas of research that are related to self-training. The first,
known as transductive learning, is based on the low density separation assumption and tends to give class labels for
only the set of unlabeled training samples. The second method, referred to as consistency learning, uses classifier
predictions over unlabeled data as a confidence indicator and constrains model outputs to be comparable for similar
unlabeled examples without assigning pseudo-labels.

In this section, we also go a bit further, and introduce different context where self-training has been used and extended.
First, we present self-supervised learning, which, despite its similar name with self-training, is an entirely separate
technique that employs unlabeled data to train or pre-train a model. Finally, we introduce reinforced self-training, that
merges elements of reinforcement learning with self-training principles by integrating a scoring function based on a
learned reward model and employing offline reinforcement learning objectives for model fine-tuning.

3.1 Transductive learning

The goal of transductive learning, as previously stated, is to assign pseudolabels to samples from an unlabeled training
set, XU . As this set is finite, the considered function class F , for finding the transductive prediction function, is also
finite. F can be defined using a nested structure according to the structural risk minimization principle, F1 ⊆ F2 ⊆
. . . ⊆ F (Vapnik, 1998). Transductive techniques often employ the distribution of unsigned margins of unlabeled
examples to guide the search for a prediction function, limiting it to following the low density separation assumption
in order to find the best function class among the current ones.

Transductive approaches also assume that the function class’s structure should reflect prior knowledge of the learning
problem at hand, and that it should be built in such a way that the correct prediction of class labels of labeled and
unlabeled training examples is contained in a function class Fj of small size with a high probability. In particular,
Derbeko et al. (2004) show that with high probability the error on the unlabeled training set of a function from a class
function Fj is bounded by its empirical loss on the labeled training set plus a complexity term that depends on the
number of labeled examples m, the number of unlabeled examples u, and the size of the class function Fj .

The Transductive Support Vector Machines (TSVM) (Joachims, 1999) developed for the binary case is based on this
paradigm, and is looking for the optimal hyperplane in a feature space that separates the best labeled examples while
avoiding high density areas. TSVM does this by building a structure on a function class F and sorting the outputs
of unlabeled samples by their margins. The solutions to the associated optimization problem are the pseudo-labels of
unlabeled examples for which the resulting hyperplane separates the examples of both labeled and unlabeled training
sets with the largest margin.

Shi et al. (2018) extended this idea to the multi-class classification case with Neural Networks. Similar to TSVM, class
labels of unlabeled examples are treated as variables, and the algorithm tries to determine their optimal values, along
with the optimal NNs parameter set get by minimizing a cross-entropy loss estimated over both labeled and unlabeled
training sets through an iterative training process. The authors employ the MinMax Feature regularization to constrain
the neural network to learn features of same-class images to be close, and features of different classes to be separated
by a preset margin, in order to overcome incorrect label estimations on outliers and noisy samples.

3.2 Consistency-based approaches

Early studies in this line, see for example Zhu et al. (2003) for binary classification, were proposed to learn a single
classifier defined from a scoring function f : X × Y → R penalized for quick changes in its predictions. The
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similarity matrix W = [Wij ]1⩽i⩽u
1⩽j⩽u

, constructed over the unlabeled training data, is used to measure the similarity

between instances. The penalization is mostly expressed as a regularization term in the learning objective. As an
example, adapting the work of Zhu et al. (2003) to multi-class classification, the penalization term can be written as:

ΩW(XU ) =
u∑

i,j=1
Wij∥f(xm+i, .)− f(xm+j , .)∥2

where for a given example x, f(x, .) = (f(x, k))k∈Y is the vector class predictions of f . In terms of learning, ΩW can
be seen as a regularization term, constraining the model to have the same predictions on similar unlabeled instances.

Other types of penalization have been studied in the literature. Maximov et al. (2018) suggested an approach that
partitions partially labeled data and then uses labeled training samples to identify dense clusters having predominant
classes with a fraction of non-predominant classes below a given threshold extending earlier results on supervised
classification (Joshi et al., 2017). In this situation, the proposed penalization term measures the learner’s inability
to predict the predominant classes of the identified clusters which in turn constrains the supervised classifier to be
consistent with the structure of the dense clusters.

In this line, Rangwani et al. (2022) consider non-decomposable metrics with consistency regularization by giving a
cost-sensitive framework that consists of minimizing a cost-sensitive error on pseudo labels and consistency regulariza-
tion. They demonstrate theoretically that they can build classifiers that can maximize the required non-decomposable
measure more effectively than the original model used to produce pseudo-labels under comparable data distribution
assumptions.

Without explicitly stating a penalization term, consistency learning was extended to cases with two classifiers. The
Mean-Teacher approach (Tarvainen & Valpola, 2017) is perhaps one of the earliest popular techniques that have been
proposed in this context. This method employs Neural Networks (NNs) as supervised classifiers, and it is based on
the assumption that two close models with the same input should make the same prediction. One of the models is
called the teacher, while the other is referred to as the student. These two NN models are structurally identical, and
their weights are related in that the teacher’s weights are an exponential moving average (Laine & Aila, 2017) of the
student’ weights. In this scenario, the student model is the only one that is trained over the labeled training set, and
the consistency loss is computed between the teacher’s probability distribution prediction and the student’s one using
the mean square error or the Kullback-Leibler divergence.

Other studies refined the Mean-Teacher approach with a data-augmentation technique by combining two images with
random patches to improve prediction consistency (French et al., 2020; Xie et al., 2020a). More recently, Du et al.
(2022) provide a two-stage method to reduce label propagation errors; where in the first phase, the gradients of the
student loss are computed and utilized to update the teacher. In the second stage, the teacher assigns pseudo-labels
which are then utilized to train the current student.

3.3 Self-supervised Learning

Although similar in names, self-training is a completely different approach than self-supervised learning which has
demonstrated encouraging results and has become an active area of research (Ozbulak et al., 2023).

In self-supervised learning, a model acquires the ability to make predictions regarding various facets of its input data,
all without the necessity of explicit labeled training data. Rather than depending on labeled data, self-supervised
learning harnesses the inherent structure present in the input data and autonomously generates guidance to train the
model. This procedure involves the formulation of a pretext task, also referred to as a proxy task, wherein the model
is trained to make predictions concerning a specific relationship inherent in the data. For instance, in the domain of
computer vision, a pretext task might involve rotating images within a predefined range of angles, followed by training
a supervised model to predict these angles.

Once the model has undergone training on the pretext task, the knowledge it has gained in this process can be applied
to downstream tasks that do require labeled data. Consequently, by learning from extensive amounts of unlabeled data,
self-supervised learning empowers the acquisition of robust data representations, capitalizing on the abundant, freely
available unlabeled data resources.
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Common approaches in self-supervised learning include predicting missing parts of an image (Lee et al., 2021), pre-
dicting the order of shuffled image patches or their orientation (Shorten & Khoshgoftaar, 2019), reconstructing cor-
rupted images (Fang et al., 2023), filling in missing words in a sentence (Donahue et al., 2020), or predicting future
frames in a video sequence (Schiappa et al., 2022). These pretext tasks encourage the model to capture meaningful
representations of the input data, which can then be used for various downstream tasks, such as image classification,
object detection, or natural language processing.

3.4 Reinforced self-training

A recent innovative approach, called Reinforced self-training (ReST) has emerged, particularly notable for its appli-
cation in conditional language modeling (Gulcehre et al., 2023; Singh et al., 2023). This approach operates through
two distinct loops: the inner loop, called “Improve”, which concentrates on refining the policy using a fixed dataset,
and the outer loop, called “Grow”, which involves expanding the dataset by sampling from the most recent policy.

In the domain of conditional language modeling, ReST follows a systematic sequence of steps. Initially, during the
Grow phase, the language model policy, originally a supervised policy, generates multiple output predictions for each
context, thereby enriching the training dataset. Subsequently, in the Improve stage, the expanded dataset undergoes
ranking and filtering using a scoring function. The language model then undergoes fine-tuning on the refined dataset
using an offline reinforcement learning objective, with the potential for repeating this process with an increasing
filtering threshold. The resultant policy from this iterative process is subsequently employed in the following Grow
phase.

ReST may find niche suitability in specific applications or scenarios where reinforcement learning principles enhance
model performance through learned reward signals. In contrast, classical self-training techniques possess a broader
applicability and have been employed across a wide spectrum of semi-supervised learning tasks without necessitating
reinforcement learning frameworks.

4 Applications

In this section, we will concentrate on the most popular applications where self-training was employed, although this
technique may be extended and used to a variety of additional machine learning tasks. The goal of our presentation
here is not to be thorough, but rather to focus on the main features of self-training that were used in the literature
among the selected applications.

4.1 Natural Language Processing

Co-training is perhaps one of the preliminary self-training techniques which was applied to web pages classification
(Blum & Mitchell, 1998). In the paper, the content of a web page has been divided into two sets of words: those
that appear on the page and those that appear in hyperlinks pointing to the page. The main hypothesis here is that
each of the set of words contain sufficient information for the classification task and that there are enough labeled
data to efficiently learn two supervised classifiers. Both theoretical and empirical studies of co-training show that
if examples have two redundant but not entirely correlated views, then unlabeled data may be used to augment the
original labeled training data to find more robust classifiers. However, the drawback of this strategy is that in general,
text data is mono-view. For bag-of-word representation of texts, a solution was to split the set of words in two random
sets, considered as two distinct views of a text (Nigam & Ghani, 2000), as mentioned in Section 2.4. However, this
idea cannot be generalized to sequential models that could be used as base classifiers in co-training.

Other current self-training techniques in NLP are mostly built on the concept of co-training and employ two base
classifiers that are learned over each other’s predictions. In this line, Wu et al. proposed a Named Entity Recognition
(NER) strategy that consists in automatically detecting and classifying named entities, with a first NER model trained
on labeled training data serving as a teacher to predict the probability distribution of entity labels for each token in
the unlabeled set. The pseudo-labeled data with such soft labels are then used to train a student NER model for the
unlabeled set and the process of pseudo-labeling and training is repeated until convergence as in co-training. For the
task of Relation Extraction (RE) which consists in obtaining a predefined semantic relation between two entities in a
given sentence, Yu et al. (2022) proposed an approach which classifies the pseudo-labeled instances generated from
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a teacher into confident, ambiguous and hard sets. In the training of the student model, the confident and ambiguous
instances are subsequently interpreted as positive and set-negatives observations, respectively.

Lately, Meng et al. (2020) proposed an approach to leverage the power of language models that have been pre-trained
on large corpora of text to generate pseudo-labels for unlabeled text data. The pseudo-labeled data along with a smaller
set of labeled data are then used to train and fine-tune the text classifier, and the process of assigning pseudo-labels
and retraining of the classifier is repeated until convergence. A challenge that arises when using a single base classifier
in self-training for NLP tasks is to minimize the impact of label noise in the pseudo-labeling policy. To cope with this
problem, Zadeh & Rasoul (2010) devised a bootstrapping technique for semantic role labeling that consists randomly
selecting a subset of the most confident samples for pseudo-labeling. In the same vein, for the sentiment analysis task,
Gupta et al. (2021) advocated selecting the top most confident samples for pseudo-labeling. However, as we shall see
in the next section, the use of a fixed threshold in the pseudo-labeling policy may be suboptimal in general.

4.2 Computer Vision

As in NLP, the two variants of self-training with one or two classifiers, mainly referred to as student and teacher in
the literature, are mainly considered for image classification. Most recent approaches use neural networks as base
classifiers and rely on these models’ ability to learn efficient representations of images, proposing various strategies
to either improve the representation or reduce the effect of noise injection during the pseudo-labeling phase of self-
training.

The most common strategy with student and teacher base classifiers is arguably the one proposed by Xie et al. (2020b),
in which an EfficientNet model trained on labeled ImageNet images is used as a teacher to create pseudo labels on
unlabeled ones. A larger EfficientNet is subsequently employed as a student model, being trained on a mix of labeled
and pseudo-labeled images. This training involves altering the input images using various techniques like dropout,
stochastic depth, and data augmentation. The objective is for the model to learn a representation of images that
remains consistent despite these alterations. This procedure is repeated by reversing the roles of the student and the
teacher. The input of the teacher model is not altered throughout the training process. The main motivation advanced
is to ensure that the pseudo labels be as accurate as possible. Empirical evidence from various image collections
demonstrates the effectiveness of this strategy.

Sohn et al. (2020) proposed a self-training approach called FixMatch that combines consistency regularization with
a confidence-based mechanism to select high-confidence pseudo-labeled examples for training. The algorithm ap-
plies to the same image two different data augmentations procedures, called weak (flip-and-shift) and strong (more
heavy distortions) augmentations. As in the previous case, these perturbations helps to increase diversity and improve
the model’s robustness on the unlabeled images. The authors introduce a consistency loss term that encourages the
consistency between the model’s hard output of the weakly-augmented version and the model’s soft output of the
strongly-augmented version of the same unlabeled image. They demonstrate that the model learns to provide more
trustworthy and accurate results by minimizing the discrepancy between these predictions. In order to decrease the
influence of possibly inaccurate pseudo-labels on the learning process, the loss is evaluated only on those unlabeled
data from the batch that have the confidence higher than a fixed threshold.

This idea has then been adapted to various correlated tasks, including object detection, image segmentation (Cheng
et al., 2023), remote sensing (Huang et al., 2023) and video anomaly detection (Lv et al., 2023), among others. Chen
et al. (2022) proposed an improvement of FixMatch by introducing two novel features. First of all, they introduce
a separate classification head that is used to assign pseudo-labels and trained using labeled data only in order to
avoid possible label noise from wrong pseudo-labels. Secondly, they improve the feature learning by introducing
an adversarial classification head whose goal is to approximate the worst possible error on unlabeled data. All these
approaches employ a constant predefined threshold across all classes to choose unlabeled data for training, disregarding
varying learning conditions and complexities among different classes.

To tackle this concern, Zhang et al. (2021) introduced a curriculum learning technique to utilize unlabeled data based
on the model’s learning progress. The essence of this strategy involves dynamically adapting thresholds for distinct
classes during each time step, enabling the inclusion of insightful unlabeled data and their corresponding pseudo-
labels. This approach has been successfully applied to many domains, including object detection (Li et al., 2022),
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medical image classification (Peng et al., 2023), human action recognition (Wang et al., 2023) and facial expression
identification (Shabbir & Rout, 2023).

4.3 Knowledge-driven applications

Through the incorporation of domain expertise, recent studies have developed more sophisticated self-training sys-
tems that reduce label noise in the pseudo-labeling phase across diverse applications. In the subsequent sections, we
will consider advances made in this context in the domains of speech recognition, anomaly detection, genomics and
proteomics.

4.3.1 Speech Recognition

Newly developed methods have introduced filtering mechanisms that are congruent with domain knowledge for end-
to-end speech recognition. These mechanisms establish rules that assess pseudo-labels using criteria specific to the
domain. For example by using filters to verify if certain phonetic patterns that are common in the domain, are present
in the pseudo-labels (Gheini et al., 2023). Similar techniques incorporate phonetic information relevant to the domain
to validate pseudo-labels. In these approaches, incorrectly labeled examples that violate phonetic constraints are
discarded from training the model (Ling et al., 2022).

Other approaches integrate domain-specific language models in the the pseudo-label generation process in order to
ensure that the generated labels adhere to the linguistic nuances and terminologies of the domain. In this line, Kahn
et al. (2020) introduced a self-training approach, with one base classifier combined with a language model for pseudo-
labeling. Their approach involves implementing tailored filtering methods designed to address common errors arising
from sequence-to-sequence models, alongside an inventive ensemble technique for enhancing the breadth of pseudo-
label variations. Building upon this idea, Xu et al. (2021) showcased that the synergy between self-training and
unsupervised pre-training using wav2vec 2.0 (Baevski et al., 2020) offers mutual benefits across diverse scenarios
involving labeled and unlabeled data.

As in image classification, alternative methods for speech recognition apply data-augmentation techniques, tailored to
the unique aspects of the domain, to enhance the robustness of the model’s predictions and consequently the quality
of pseudo-labels. In this sense, Bartelds et al. (2023) employed a text-to-speech system to generate audio training data
from text-only sources.

4.3.2 Anomaly Detection

Leveraging domain knowledge to mitigate label noise in pseudo-labels within self-training approaches has also been
considered in anomaly detection. In this case, the understanding of the anomaly patterns and characteristics specific
to the domain are incorporated in the model. In this regard, Li et al. (2012) identified common anomaly types, their
features and potential sources of noise and Qu et al. (2023) performed time domain analysis. Also, Feng et al. (2021)
created features that capture domain-specific information for video anomaly detection. It was demonstrated that these
features highlight the crucial elements for anomaly detection in videos, leading to their utilization for enhancing the
pseudo-labeling phase within self-training. Alternate strategies focus on simulating anomalies within the unlabeled
dataset using domain knowledge. This aids the model in learning from a broad spectrum of anomalies, mitigating the
potential of becoming overly specialized in a particular anomaly type (Qiu, 2023).

4.3.3 Genomics and proteomics

Furthermore, datasets in the field of genomics and proteomics encompass a variety of characteristics including gene
expression levels, epigenetic markers, and genetic variants. These characteristics have been shown to increase the
effectiveness of features used in self-training approaches, together with the selection of important features and their
physiologically coherent transformation.

Brubaker et al. (2019) incorporated biological context into feature engineering that integrate unsupervised modeling
of datasets relating to human disease with the supervised component that concentrated on training with mouse data.
In this context, Ravinder (2021) amalgamated expression data from three distinct humanized mouse models that were
subjected to live attenuated yellow fever vaccine challenges in self-training with different base classifiers. The results
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of this study show that self-training coupled with NRG-HIS/Fluc mice exhibited the most favorable outcomes across
the tested human cohorts.

Additionally, El-Manzalawy et al. (2016) employed self-training in conjunction with bioinformatic tools in silico
to anticipate secreted and protective proteins. This was done to eliminate pseudo-label errors from the identified
P. falciparum SEPs obtained through proteomics experiments and to anticipate new SEPs within the P. falciparum
proteome.

Huang et al. (2021) applied domain-specific quality control steps to clean and pre-process the data. This included fil-
tering out low-quality samples, normalizing data to account for technical biases, and addressing batch effects that can
introduce noise. By doing so, they ensured that the unlabeled data that is feed into the self-training pipeline is as accu-
rate as possible. Chan et al. (2017) utilized reference databases and annotation resources related to genomics. These
resources provide information about genes, functional elements, pathways, and biological processes. Incorporating
this information into the pseudo-labeling process has been shown to lead to more accurate predictions by aligning
them with known biological knowledge. Yu et al. (2023) applied network analysis techniques to identify interactions
between genes and proteins. The authors demonstrated that Pathway enrichment analysis can help identify genes that
are functionally related and likely to be co-regulated. This information has been shown to guide the self-training
process to produce more coherent and biologically plausible pseudo-labels.

General observations The key observations made in these applications reveal that, in pseudo-labeling, employing
fixed thresholds often yields suboptimal outcomes, underscoring the importance of dynamic thresholding for optimal
results. Furthermore, enhancing pseudo-label noise improves both generalization and class differentiation. In Ap-
pendix A, we will show the impact of dynamic thresholding on pseudo-labeling across general benchmarks proposed
in Feofanov et al. (2019) and examine the noise considerations in two image classification collections studied in Chen
et al. (2022).

5 Conclusion and Perspectives

In this survey, we provided an overview of self-training approaches for semi-supervised learning that have received
increasing attention in recent years.

First, we discussed the various strategies for selecting unlabeled samples for pseudo-labeling that have been proposed.
We emphasized the significance of considering margin distributions across unlabeled data as a pivotal factor in the
development of these strategies. Next, we provided an overview of the diverse variants of self-training explored in the
literature, along with relevant approaches. Furthermore, we examined recent theoretical advancements in this research
domain and outlined the principal characteristics of self-training employed in several widely recognized applications.
Lastly, we explored the impact of fundamental aspects of self-training on a range of benchmark datasets.

While the self-training approach is currently in widespread use, there are extensive opportunities for future research.
Presently, the majority of studies have concentrated on perturbation-based deep learning, particularly in the domains
of visual, text, and audio applications. However, there exist numerous other domains, such as industrial time-series or
medical data, where the application of self-training could prove highly beneficial.

Recent research emphasizes the potential of exploring self-training methods from a theoretical standpoint, particularly
in addressing the challenge of training a final classifier on data with noisy labels Hadjadj et al. (2023). It has also been
demonstrated that accurately estimating the confidence of pseudo-labels is crucial for effective self-training (Odonnat
et al., 2024). Therefore, theoretically establishing the correlation between performance and the level of uncertainty
in pseudo-labeling could be a valuable direction for future research, especially in analyzing self-training within the
context of learning problems affected by domain shifts.

References

Y. S. Abu-Mostafa. Machines that learn from hints. Scientific American Magazine, 272(4):64–85, 1995.

Y. Altun. Discriminative Methods for Label Sequence Learning. PhD thesis, Brown University, USA, 2005.

14



Under review as submission to TMLR

Y. Altun, D. A. McAllester, and M. Belkin. Margin semi-supervised learning for structured variables. In Advances in
Neural Information Processing Systems 18, pp. 33–40, 2005.

M.-R. Amini and P. Gallinari. Semi-supervised logistic regression. In European Conference in Artificial Intelligence
- ECAI, pp. 390–394, 2002.

M.-R. Amini and N. Usunier. Learning with Partially Labeled and Interdependent Data. Springer, 2015.

M.-R. Amini, F. Laviolette, and N. Usunier. A transductive bound for the voted classifier with an application to
semi-supervised learning. In Advances in Neural Information Processing Systems 21, pp. 65–72, 2008.

A. Baevski, Y. Zhou, A. Mohamed, and M. Auli. wav2vec 2.0: A framework for self-supervised learning of speech
representations. In Advances in Neural Information Processing Systems, volume 33, pp. 12449–12460, 2020.

M.-F. Balcan and A. Blum. An augmented PAC model for semi-supervised learning. In Semi-Supervised Learning,
pp. 396–419. MIT, 2006.

M. Bartelds, N. San, B. McDonnell, D. Jurafsky, and M. Wieling. Making more of little data: Improving low-resource
automatic speech recognition using data augmentation. In Proceedings of the 61st Annual Meeting of the Association
for Computational Linguistics, pp. 715–729, 2023.

M. Belkin and P. Niyogi. Semi-supervised learning on riemannian manifolds. Machine Learning, 56(1-3):209–239,
2004.

S. Ben-David, T. Lu, and D. Pál. Does unlabeled data provably help? worst-case analysis of the sample complexity of
semi-supervised learning. In Conference on Learning Theory - COLT, pp. 33–44, 2008.

A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-training. In Conference on Learning Theory
- COLT, pp. 92–100, 1998.

D. K. Brubaker, E. A Proctor, K. M. Haigis, and D.A. Lauffenburger. Computational translation of genomic responses
from experimental model systems to humans. PLoS computational biology, 15(1):e1006286, 2019.

P. Cascante-Bonilla, F. Tan, Y. Qi, and V. Ordonez. Curriculum labeling: Revisiting pseudo-labeling for semi-
supervised learning. In AAAI Conference on Artificial Intelligence, pp. 6912–6920, 2021.

V. Castelli and T.M. Cover. On the exponential value of labeled samples. Pattern Recognit. Lett., 16(1):105–111,
1995.

K.-L. Chan, R. Rosli, T. V. Tatarinova, M. Hogan, M. Firdaus-Raih, and L. Eng-Ti Low. Seqping: gene prediction
pipeline for plant genomes using self-training gene models and transcriptomic data. BMC Bioinformatics, 17, 2017.

O. Chapelle, B. Schölkopf, and A. Zien. Semi-Supervised Learning. The MIT Press, 1st edition, 2010. ISBN
0262514125, 9780262514125.

B. Chen, J. Jiang, X. Wang, P. Wan, J. Wang, and M. Long. Debiased self-training for semi-supervised learning. In
Advances in Neural Information Processing Systems - NeurIPS, pp. 32424–32437, 2022.

X. Chen, Y. Yuan, G. Zeng, and J. Wang. Semi-supervised semantic segmentation with cross pseudo supervision. In
Conference on Computer Vision and Pattern Recognition - CVPR, pp. 2613–2622, 2021.

Yining Chen, Colin Wei, Ananya Kumar, and Tengyu Ma. Self-training avoids using spurious features under domain
shift. In Advances in Neural Information Processing Systems - NeurIPS, pp. 21061–21071, 2020.

T. Cheng, X. Wang, S. Chen, Q. Zhang, and W. Liu. Boxteacher: Exploring high-quality pseudo labels for weakly
supervised instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 3145–3154, June 2023.

Y. Chong, Y. Ding, Q. Yan, and S. Pan. Graph-based semi-supervised learning: A review. Neurocomputing, 408:
216–230, 2020.

15



Under review as submission to TMLR

F. d’Alché Buc, Y. Grandvalet, and C. Ambroise. Semi-supervised marginboost. In Advances in Neural Information
Processing Systems - NeurIPS, pp. 553–560, 2001.

P. Derbeko, R. El-Yaniv, and R. Meir. Explicit learning curves for transduction and application to clustering and
compression algorithms. Journal of Artificial Intelligence Research, 22:117–142, 2004.

C. Donahue, M. Lee, and P. Liang. Enabling language models to fill in the blanks. In 58th Annual Meeting of the
Association for Computational Linguistics - ACL, pp. 2492–2501. Association for Computational Linguistics, 2020.

Y. Du, Y. Shen, H. Wang, J. Fei, W. Li, L. Wu, R. Zhao, Z. Fu, and Q. Liu. Learning from future: A novel self-
training framework for semantic segmentation. In Advances in Neural Information Processing Systems - NeurIPS,
pp. 4749–4761, 2022.

D. Dua and C. Graff. UCI machine learning repository, 2017. URL https://archive.ics.uci.edu/ml/index.php.

Y El-Manzalawy, EE Munoz, SE Lindner, and V Honavar. Plasmosep: Predicting surface-exposed proteins on the
malaria parasite using semisupervised self-training and expert-annotated data. Proteomics, 16(23):2967–2976,
2016.

Y. Fang, L. Dong, H. Bao, X. Wang, and F. Wei. Corrupted image modeling for self-supervised visual pre-training. In
The 11th International Conference on Learning Representations - ICLR, 2023.

J.-C. Feng, F.-T. Hong, and W.-S. Zheng. Mist: Multiple instance self-training framework for video anomaly detection.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition - CVPR, pp. 14009–
14018, June 2021.

V. Feofanov, E. Devijver, and M.-R. Amini. Transductive bounds for the multi-class majority vote classifier. In AAAI
Conference on Artificial Intelligence, pp. 3566–3573, 2019.

S. C. Fralick. Learning to recognize patterns without a teacher. IEEE Transactions on Information Theory, 13(1):
57–64, 1967.

S. Frei, D. Zou, Z. Chen, and Q. Gu. Self-training converts weak learners to strong learners in mixture models. In
International Conference on Artificial Intelligence and Statistics - AISTATS, pp. 8003–8021, 2022.

G. French, S. Laine, T. Aila, M. Mackiewicz, and G. D. Finlayson. Semi-supervised semantic segmentation needs
strong, varied perturbations. In British Machine Vision Conference - BMVC, pp. 1–14, 2020.

Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. March, and V. Lempitsky. Domain-
adversarial training of neural networks. Journal of Machine Learning Research, 17(59):1–35, 2016.

M. Gheini, T. Likhomanenko, M. Sperber, and H. Setiawan. Joint speech transcription and translation: Pseudo-
labeling with out-of-distribution data. In Findings of the Association for Computational Linguistics: ACL 2023, pp.
7637–7650, 2023.

Golnaz Ghiasi, Barret Zoph, Ekin D. Cubuk, Quoc V. Le, and Tsung-Yi Lin. Multi-task self-training for learning
general representations. In International Conference on Computer Vision - ICCV, pp. 8836–8845, 2021.

Y. Grandvalet and Y. Bengio. Semi-supervised learning by entropy minimization. In Advances in Neural Information
Processing Systems 17, pp. 529–536, 2004.

C. Gulcehre, T. Le Paine, S. Srinivasan, K. Konyushkova, L. Weerts, A. Sharma, A. Siddhant, A. Ahern, M. Wang,
C. Gu, W. Macherey, A. Doucet, O. Firat, and N. de Freitas. Reinforced self-training (rest) for language modeling.
2023.

A. Gupta, S. Menghani, S. K. Rallabandi, and A. W. Black. Unsupervised self-training for sentiment analysis of code-
switched data. In Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching,
2021.

L. Hadjadj, M.-R. Amini, and S. Louhichi. Self-training of halfspaces with generalization guarantees under massart
mislabeling noise model. In International Joint Conference on Artificial Intelligence - IJCAI, pp. 3777–3785, 2023.

16



Under review as submission to TMLR

B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and M. Sugiyama. Co-teaching: Robust training of deep
neural networks with extremely noisy labels. In Advances in Neural Information Processing Systems - NeurIPS, pp.
3124–3132, 2018.

K. Huang, C. Xiao, L. M. Glass, C. W. Critchlow, G. Gibson, and J. Sun. Machine learning applications for therapeutic
tasks with genomics data. Patterns, 2(10), 2021.

W. Huang, Y. Shi, Z. Xiong, Q. Wang, and X. X. Zhu. Semi-supervised bidirectional alignment for remote sensing
cross-domain scene classification. ISPRS Journal of Photogrammetry and Remote Sensing, 195:192–203, 2023.

N. Inoue, R. Furuta, T. Yamasaki, and K. Aizawa. Cross-domain weakly-supervised object detection through progres-
sive domain adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
5001–5009, 2018.

T. Joachims. Transductive inference for text classification using support vector machines. In International Conference
on Machine Learning - ICML, pp. 200–209, 1999.

B. Joshi, M.-R. Amini, I. Partalas, F. Iutzeler, and Y. Maximov. Aggressive sampling for multi-class to binary reduction
with applications to text classification. In Advances in Neural Information Processing Systems - NeurIPS, pp. 4235–
4243, 2017.

J. Kahn, A. Lee, and A. Hannun. Self-training for end-to-end speech recognition. In International Conference on
Acoustics, Speech and Signal Processing - ICASSP, pp. 7084–7088, 2020.

G. Karamanolakis, S. Mukherjee, G. Zheng, and A. Awadallah. Self-training with weak supervision. In North Ameri-
can Conference on Chinese Linguistics - NAACL, pp. 845–863, 2021.

D.P. Kingma, S. Mohamed, D. Jimenez, and M. Welling. Semi-supervised learning with deep generative models. In
Advances in Neural Information Processing Systems - NeurIPS, 2014.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s thesis, Department of
Computer Science, University of Toronto, 2009.

A. Kumar, T. Ma, and P. Liang. Understanding self-training for gradual domain adaptation. In International Confer-
ence on Machine Learning, pp. 5468–5479. PMLR, 2020.

S. Laine and T. Aila. Temporal ensembling for semi-supervised learning. In International Conference on Learning
Representations - ICLR, 2017.

D.-H. Lee. Pseudo-label : The simple and efficient semi-supervised learning method for deep neural networks. In
ICML 2013 Workshop on Challenges in Representation Learning, 2013.

J. D. Lee, Q. Lei, N. Saunshi, and J. Zhuo. Predicting what you already know helps: Provable self-supervised learning.
In Advances in Neural Information Processing Systems - NeurIPS, pp. 309–323, 2021.

G. Li, X. Li, Y. Wang, W. Yichao, D. Liang, and S. Zhang. Dtg-ssod: Dense teacher guidance for semi-supervised
object detection. In Advances in Neural Information Processing Systems, volume 35, pp. 8840–8852, 2022.

Y. Li, Y. Yin, L. Liu, S. Pang, and Q. Yu. Semi-supervised gait recognition based on self-training. In 9th International
Conference on Advanced Video and Signal-Based Surveillance, pp. 288–293, 2012.

Y.-F. Li and Z.-H. Zhou. Towards Making Unlabeled Data Never Hurt. In Proceedings of the 28th International
Conference on Machine Learning, pp. 1081–1088, 2011.

S. Ling, C. Shen, M. Cai, and Z. Ma. Improving pseudo-label training for end-to-end speech recognition using gradient
mask. In International Conference on Acoustics, Speech and Signal Processing - ICASSP, pp. 8397–8401, 2022.

H. Liu, J. Wang, and M. Long. Cycle self-training for domain adaptation. Advances in Neural Information Processing
Systems, 34:22968–22981, 2021.

17



Under review as submission to TMLR

H. Lv, Z. Yue, Q. Sun, B. Luo, Z. Cui, and H. Zhang. Unbiased multiple instance learning for weakly supervised video
anomaly detection. In Conference on Computer Vision and Pattern Recognition - CVPR, pp. 8022–8031, 2023.

Y. Maximov, M.-R. Amini, and Z. Harchaoui. Rademacher complexity bounds for a penalized multi-class semi-
supervised algorithm. Journal of Artificial Intelligence Research, 61:761–786, 2018.

Y. Meng, Y. Zhang, J. Huang, C. Xiong, H. Ji, C. Zhang, and J. Han. Text classification using label names only: A
language model self-training approach. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 9006–9017. Association for Computational Linguistics, 2020.

T. Miyato, S. Maeda, M. Koyama, and S. Ishii. Virtual adversarial training: A regularization method for supervised
and semi-supervised learning. Pattern Anal. Mach. Intell., 41(8):1979–1993, 2019.

S. Mukherjee and A. Awadallah. Uncertainty-aware self-training for few-shot text classification. Advances in Neural
Information Processing Systems - NeurIPS, 33:21199–21212, 2020.

N. Natarajan, I. S Dhillon, P. K. Ravikumar, and A. Tewari. Learning with noisy labels. In Advances in Neural
Information Processing Systems, pp. 1196–1204, 2013.

K. Nigam and R. Ghani. Analyzing the effectiveness and applicability of co-training. In Proceedings of the Interna-
tional Conference on Information and Knowledge Management - CIKM, pp. 86–93, 2000.

K. Nigam, A. McCallum, and T. Mitchell. Semi-supervised text classification using EM. In Semi-Supervised Learning,
pp. 32–55. MIT, 2006.

P. Niyogi. Manifold regularization and semi-supervised learning: Some theoretical analyses. Journal of Machine
Learning Research, 14(1):1229–1250, 2013.

A. Odonnat, V. Feofanov, and I. Redko. Leveraging ensemble diversity for robust self-training in the presence of
sample selection bias. International Conference on Artificial Intelligence and Statistics - AISTATS, 2024.

A. Oliver, A. Odena, C. Raffel, E.-D. Cubuk, and I. Goodfellow. Realistic evaluation of deep semi-supervised learning
algorithms. In Advances in Neural Information Processing Systems - NeurIPS, 2018.

U. Ozbulak, H. J. Lee, B. Boga, E. Timothy Anzaku, H. Park, A. Van Messem, W. De Neve, and J. Vankerschaver.
Know your self-supervised learning: A survey on image-based generative and discriminative training. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856. URL https://openreview.net/forum?id=Ma25S4ludQ.
Survey Certification.

G. Patrini, A. Rozza, A. K. Menon, R. Nock, and L. Qu. Making deep neural networks robust to label noise: A loss
correction approach. In Conference on Computer Vision and Pattern Recognition - CVPR, pp. 2233–2241, 2017.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
and V. Dubourg. Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12:2825–2830,
2011.

Z. Peng, D. Zhang, S. Tian, W. Wu, L. Yu, S. Zhou, and S. Huang. Faxmatch: Multi-curriculum pseudo-labeling for
semi-supervised medical image classification. Medical Physics, 50(5):3210–3222, 2023.

C. Qiu. Self-Supervised Anomaly Detection with Neural Transformations. doctoral thesis, Rheinland-Pfälzische Tech-
nische Universität Kaiserslautern-Landau, 2023.

C. Qu, H. Zhang, R. Zhang, S. Zou, L. Huang, and H. Li. Multiclass anomaly detection of bridge monitoring data
with data migration between different bridges for balancing data. Applied Sciences, 13(13), 2023.

H. Rangwani, S. Ramasubramanian, S. Takemori, K. Takashi, Y. Umeda, and V.B. Radhakrishnan. Cost-sensitive
self-training for optimizing non-decomposable metrics. In Advances in Neural Information Processing Systems -
NeurIPS, pp. 26994–27007, 2022.

18



Under review as submission to TMLR

D. Ravinder. Using machine learning to increase the predictive value of humanized mouse models for the human
immune response to YFV-17D. Masters of engineering in biomedical engineering, Massachusetts Institute of Tech-
nology, 2021.

P. Rigollet. Generalization error bounds in semi-supervised classification under the cluster assumption. Journal of
Machine Learning Research, 8:1369–1392, 2007.

K. Saito, Y. Ushiku, and T. Harada. Asymmetric tri-training for unsupervised domain adaptation. In International
Conference on Machine Learning, pp. 2988–2997. PMLR, 2017.

R.E. Schapire, Y. Freund, P. Barlett, and W. S. Lee. Boosting the margin: A new explanation for the effectiveness of
voting methods. In International Conference on Machine Learning, pp. 322–330, 1997.

M. C. Schiappa, Y. S. Rawat, and M. Shah. Self-supervised learning for videos: A survey. ACM Computing Surveys,
2022.

H. Scudder. Adaptive communication receivers. IEEE Transactions on Information Theory, 11(2):167–174, 1965.

N. Shabbir and R. Kumar Rout. Fgbcnn: A unified bilinear architecture for learning a fine-grained feature representa-
tion in facial expression recognition. Image and Vision Computing, 137, 2023.

L. Shi and W. Liu. Adversarial self-training improves robustness and generalization for gradual domain adaptation.
Advances in Neural Information Processing Systems, 36, 2024.

W. Shi, Y. Gong, C. Ding, Z. Ma, X. Tao, and N. Zheng. Transductive semi-supervised deep learning using min-max
features. In European Conference on Computer Vision - ECCV, pp. 311–327, 2018.

C. Shorten and T.-M. Khoshgoftaar. A survey on image data augmentation for deep learning. Journal of Big Data, 6
(1), 2019.

A. Singh, R. Nowak, and J. Zhu. Unlabeled data: Now it helps, now it doesn't. In Advances in Neural Information
Processing Systems - NeurIPS, pp. 513–521, 2008.

A. Singh, J. Co-Reyes, R. Agarwal, A. Anand, P. Patil, X. Garcia, P. Liu, J. Harrison, J. Lee, K. Xu, A. Parisi,
A. Kumar, A. Alemi, A. Rizkowsky, A. Nova, B. Adlam, B. Bohnet, G. Elsayed, H. Sedghi, I. Mordatch, I. Simpson,
I. Gur, J. Snoek, J. Pennington, J. Hron, K. Kenealy, K. Swersky, K. Mahajan, L. Culp, L. Xiao, M. Bileschi,
N. Constant, R. Novak, R. Liu, T. Warkentin, Y. Qian, Y. Bansal, E. Dyer, B. Neyshabur, J. Sohl-Dickstein, and
N. Fiedel. Beyond human data: Scaling self-training for problem-solving with language models, 2023.

K. Sohn, D. Berthelot, N. Carlini, Z. Zhang, H. Zhang, C. Raffel, E. Cubuk, A. Kurakin, and C.-L. Li. Fixmatch: Sim-
plifying semi-supervised learning with consistency and confidence. In Advances in Neural Information Processing
Systems - NeurIPS, pp. 596–608, 2020.

A. Sportisse, H. Schmutz, O. Humbert, C. Bouveyron, and P.-A. Mattei. Are labels informative in semi-supervised
learning? Estimating and leveraging the missing-data mechanism. In Proceedings of the 40th International Confer-
ence on Machine Learning - ICML, pp. 32521–32539, 2023.

A. Tarvainen and H. Valpola. Mean teachers are better role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In Advances in Neural Information Processing Systems - NeurIPS, pp.
1195–1204, 2017.

G. Tür, D. Tür, and R.-E. Schapire. Combining active and semi-supervised learning for spoken language understand-
ing. Speech Communication, 45(2):171–186, 2005.

L.G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

J. E. Van Engelen and H. H. Hoos. A survey on semi-supervised learning. Machine Learning, 109(2):373–440, 2020.

V. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

19



Under review as submission to TMLR

C. Wang, Jingzhou Luo, Xing L., H. Qi, and Z. Jin. V-dixmatch: A semi-supervised learning method for human action
recognition in night video sensing. IEEE Sensors Journal, pp. 1–1, 2023. doi: 10.1109/JSEN.2023.3294360.

C. Wei, K. Shen, Y. Chen, and T. Ma. Theoretical analysis of self-training with deep networks on unlabeled data. In
International Conference on Learning Representations - ICLR, 2021.

Q. Wu, Z. Lin, B. F. Karlsson, J.-G. Lou, and B. Huang. Single-/multi-source cross-lingual ner via teacher-student
learning on unlabeled data in target language. In Annual Conference of the Association for Computational Linguis-
tics - ACL.

Q. Xie, Z. Dai, E. H. Hovy, T. Luong, and Q. Le. Unsupervised data augmentation for consistency training. In
Advances in Neural Information Processing Systems - NeurIPS, pp. 6256–6268, 2020a.

Q. Xie, M.-T. Luong, E. H. Hovy, and Q. V. Le. Self-training with noisy student improves imagenet classification. In
Conference on Computer Vision and Pattern Recognition - CVPR, pp. 10684–10695, 2020b.

Q. Xu, A. Baevski, T. Likhomanenko, P. Tomasello, A. Conneau, R. Collobert, G. Synnaeve, and M. Auli. Self-training
and pre-training are complementary for speech recognition. In International Conference on Acoustics, Speech and
Signal Processing - ICASSP, pp. 3030–3034, 2021.

X. Yang, Z. Song, I. King, and Z. Xu. A survey on deep semi-supervised learning. IEEE Transactions on Knowledge
and Data Engineering, 35(9):8934–8954, 2023. doi: 10.1109/TKDE.2022.3220219.

Y. Yaslan and Z. Cataltepe. Co-training with relevant random subspaces. Neurocomputing, 73(10-12):1652–1661,
2010.

J. Yu, X. Wang, J. Zhao, C. Yang, and W. Chen. STAD: self-training with ambiguous data for low-resource relation
extraction. In Proceedings of the 29th International Conference on Computational Linguistics - COLING, pp.
2044–2054, 2022.

Z. Yu, Y. Su, Y. Lu, Y. Yang, F. Wang, S. Zhang, Y. Chang, K.-C. Wong, and X. Li. Topological identification
and interpretation for single-cell gene regulation elucidation across multiple platforms using scMGCA. Nature
Communications, 14(400), 2023.

K. Zadeh and S. Rasoul. Adapting self-training for semantic role labeling. In Proceedings of the ACL 2010 Student
Research Workshop, pp. 91–96, 2010.

S. Zagoruyko and N. Komodakis. Wide residual networks. In Proceedings of the British Machine Vision Conference
- BMVC. BMVA Press, 2016.

B. Zhang, Y. Wang, W. Hou, H. Wu, J. Wang, M. Okumura, and T. Shinozaki. Flexmatch: Boosting semi-supervised
learning with curriculum pseudo labeling. In Advances in Neural Information Processing Systems - NeurIPS, pp.
18408–18419, 2021.

S. Zhang, M. Wang, S. Liu, P.-Y. Chen, and J. Xiong. How unlabeled data improve generalization in self-training? a
one-hidden-layer theoretical analysis. In International Conference on Learning Representations - ICLR, 2022.

K. Zhong, Z. Song, P. Jain, P. L. Bartlett, and I. S. Dhillon. Recovery guarantees for one-hidden-layer neural networks.
In International Conference on Machine Learning - ICML, pp. 4140–4149, 2017.

X. Zhu, Z. Ghahramani, and J.D. Lafferty. Semi-supervised learning using gaussian fields and harmonic functions. In
International Conference on Machine Learning - ICML, pp. 912–919, 2003.

Y. Zou, Z. Yu, B. Kumar, and J. Wang. Unsupervised domain adaptation for semantic segmentation via class-balanced
self-training. In European conference on computer vision - ECCV, pp. 289–305, 2018.

Y. Zou, Z. Yu, X. Liu, B. Kumar, and J. Wang. Confidence regularized self-training. In International Conference on
Computer Vision - ICCV, pp. 5981–5990, 2019.

20



Under review as submission to TMLR

Data set # of labeled examples # of unlabeled examples Dimension # of classes
m u d K

Vowel 99 891 10 11
Protein 129 951 77 8
PageBlocks 1094 4379 10 5
Isolet 389 7408 617 26
HAR 102 10197 561 6
Pendigits 109 10883 16 10
Letter 400 19600 16 26
Fashion 175 69825 784 10
MNIST 175 69825 784 10

Table 2: Characteristics of data sets used in our experiments, d and K correspond to respectively the dimension of the input space
and the number of classes.

A Empirical Study

Within this section, we will evaluate the effectiveness and performance of the self-training algorithm. This assessment
will be based on various key features presented in the preceding sections, and it will be conducted across multiple
benchmark scenarios. Our primary focus will be on scenarios characterized by severely limited labeled training data,
where the utilization of complex baseline classifiers like deep learning models is unfeasible. Additionally, we will
address the prevalent scenario where there are sufficient labeled training data, enabling the development of an initial
supervised complex model.

The impact of threshold selection. We first study the effect of selecting automatically the threshold for pseudo-
labeling on 9 publicly available data sets proposed for semi-supervised learning (Dua & Graff, 2017). The character-
istics of these datasets are presented in Table 2. It is worth noting that certain datasets contain only a limited number
of labeled training examples, comprising just a few hundred instances and accounting for less than 1% of the total
training examples. This condition underscores the suitability of employing complex base classifiers.

In the experimentation, Random Forest was employed instead using the scikit-learn implementation (Pedregosa et al.,
2011) with 200 trees of maximum depth while leaving other parameters at their default values. The primary objective
was to assess and contrast the classifier’s performance in two scenarios: the supervised scenario (denoted by RF)
and the self-training scenario where pseudo-labeling is automatically conducted following the approach introduced
by Feofanov et al. (2019)1 (denoted by PL∗). Additionally, we investigated the impact of setting the pseudo-labeling
threshold at predefined values from the set θ ∈ {0.5, 0.7, 0.9} (denoted by PLθ).

The automatic pseudo-labeling strategy selects the threshold which minimizes the bound of the error of the Random
Forest classifier over the unlabeled training samples.

Results are resumed in Table 3. Experiments are repeated 20 times by choosing randomly the labeled training ex-
amples, and ↓ indicates that performance is statistically worse than the best result, shown in bold, according to the
Wilcoxon rank-sum test.

These results suggest that the effectiveness of self-training heavily relies on the method used to determine the pseudo-
labeling threshold. When the threshold is automatically determined, self-training (i.e. PL∗ ) can perform competitively,
indicating that this approach has the potential to improve results compared to the supervised RF.

However, when a fixed threshold is applied, self-training tends to yield inferior results compared to the supervised
learning approach. This suggests that an arbitrarily chosen threshold might not effectively capture the underlying
patterns in the data for the pseudo-labeling process, leading to suboptimal performance.

Moreover, when the threshold is too low as for θ ∈ {0.5, 0.7}, pseudo-labeling is likely to produce label noise and
degrade the performance of self-training with respect to the supervised RF classifier in all cases. When the threshold
it is too high (i.e. θ = 0.9), self-training becomes competitive compared to RF on Isolet and MNIST, but the quantity
of pseudo-labeled unlabeled examples seems not to be sufficient to learn efficiently.

1https://github.com/vfeofanov/trans-bounds-maj-vote
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Data set RF PL θ=0.5 PL θ=0.7 PL θ=0.9 PL⋆

Vowel .586 ± .028 .489↓± .016 .531↓± .034 .576↓± .028 .586 ± .026

Protein .764↓± .032 .653↓± .024 .687↓ ± .036 .724↓ ± .018 .781 ± .034

PageBlocks .965 ± .003 .931↓± .003 .964 ± .004 .965 ± .002 .966 ± .002

Isolet .854↓ ± .016 .648↓ ± .018 .7↓ ± .04 .861↓ ± .08 .875 ± .014

HAR .851 ±.024 .76↓± .04 .81↓± .041 .823↓± .035 .854 ± .026

Pendigits .863↓± .022 .825↓± .022 .839↓± .036 .845↓± .024 .884 ± .022

Letter .711 ± .011 .062↓± .011 .651↓± .015 .673 ↓± .015 .717 ± .013

Fashion .718 ± .022 .625↓± .014 .64↓± .04 .68↓± .014 .723 ± .023

MNIST .798↓± .015 .665↓± .012 .705↓± .055 .823↓± .045 .857 ± .013

Table 3: Classification performance using the accuracy score on 9 publicly available data set. Best results are shown in bold and
the sign ↓ shows if the performance is statistically worse than the best result on the level 0.01 of significance.

In summary, the findings emphasize the importance of a dynamic and adaptive threshold selection mechanism when
implementing self-training.

Noise Account. We now consider the case where the initial labeled training set allows to train deep neural networks
and examine the effects of taking into account noise in the pseudo-labeling process along with the dynamic selection
of the threshold on CIFAR-10 and CIFAR-100 (Krizhevsky & Hinton, 2009). Both datasets contain 32x32 pixel RGB
images belonging to respectively 10 and 100 classes; 50000 examples are used for training and 10000 samples for test.

We consider the debiased self-training approach (DST) (Chen et al., 2022) to address the presence of noise in pseudo-
labeling, in conjunction with the FlexMatch method (Zhang et al., 2021) for the dynamic threshold determination
in pseudo-labeling. As outlined in Section 2.3, DST involves training a dedicated head on pseudo-labeled examples,
allowing the model to implicitly capture and account for noise inherent in the pseudo-labels.

For FlexMatch, we followed the same experimental protocol than Zhang et al. (2021). In this case, Wide ResNet (WRN)
(Zagoruyko & Komodakis, 2016) was used as the base classifier in self-training. Parameter learning was accomplished
using stochastic gradient descent (SGD) with a momentum coefficient of 0.9. The initial rate was set to η0 = 0.03 with
a cosine learning rate decay schedule as η = η0 cos(7πt/16T ), where t denotes the current training step and T is the
total training step set at 220. Additionally, exponential moving averaging with a momentum of 0.999 was implemented
and the batch size for labeled data was fixed to 64. For DST, we used the code made available by the authors2.

We compared FlexMatch with and without the DST approach denoted respectively by FM and FM+DST. We also com-
pared self-training with WRN trained in fully supervised manner. Each experiment was repeated 5 times by changing
the seed at each time. Figure 2 presents the average accuracy of different models on the test set for the same number of
initial labeled training samples per class within the set {4, 10, 20, 50} for both datasets. In both datasets, considering
label noise within pseudo-labels leads to improved performance, with the improvement being more pronounced in the
case of CIFAR-100.

In CIFAR-100, classes are structured into 20 superclasses, each comprising 5 related classes, addressing noise in this
more complex task aids in class differentiation and enhances the model’s ability to generalize. It is worth noting that
with a greater number of initial labeled training examples, the gap between the FM and FM+DST approaches narrows,
as the model becomes more proficient with the increased labeled data and makes fewer errors in pseudo-labeling.

2https://github.com/thuml/Debiased-Self-Training
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Figure 2: Comparisons in terms of Accuracy on CIFAR-10 and CIFAR-100 for a varying number of labeled training data. “Super-
vised” refers to the fully supervised learning (m = 50000, u = 0).
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