
Published as a conference paper at ICLR 2025

DEEP DISTRIBUTED OPTIMIZATION FOR
LARGE-SCALE QUADRATIC PROGRAMMING

Augustinos D. Saravanos, Hunter Kuperman, Alex Oshin, Arshiya Taj Abdul,
Vincent Pacelli and Evangelos A. Theodorou
Georgia Institute of Technology, USA
{asaravanos, kup, alexoshin, aabdul6, vpacelli3, evangelos.theodorou}@gatech.edu

ABSTRACT

Quadratic programming (QP) forms a crucial foundation in optimization, appear-
ing in a broad spectrum of domains and serving as the basis for more advanced al-
gorithms. Consequently, as the scale and complexity of modern applications con-
tinue to grow, the development of efficient and reliable QP algorithms becomes
increasingly vital. In this context, this paper introduces a novel deep learning-
aided distributed optimization architecture designed for tackling large-scale QP
problems. First, we combine the state-of-the-art Operator Splitting QP (OSQP)
method with a consensus approach to derive DistributedQP, a new method tai-
lored for network-structured problems, with convergence guarantees to optimality.
Subsequently, we unfold this optimizer into a deep learning framework, leading
to DeepDistributedQP, which leverages learned policies to accelerate reaching to
desired accuracy within a restricted amount of iterations. Our approach is also the-
oretically grounded through Probably Approximately Correct (PAC)-Bayes the-
ory, providing generalization bounds on the expected optimality gap for unseen
problems. The proposed framework, as well as its centralized version DeepQP,
significantly outperform their standard optimization counterparts on a variety of
tasks such as randomly generated problems, optimal control, linear regression,
transportation networks and others. Notably, DeepDistributedQP demonstrates
strong generalization by training on small problems and scaling to solve much
larger ones (up to 50K variables and 150K constraints) using the same policy.
Moreover, it achieves orders-of-magnitude improvements in wall-clock time com-
pared to OSQP. The certifiable performance guarantees of our approach are also
demonstrated, ensuring higher-quality solutions over traditional optimizers.

1 INTRODUCTION

Quadratic programming (QP) serves as a fundamental cornerstone in optimization with a wide va-
riety of applications in machine learning (Cortes & Vapnik, 1995; Tibshirani, 1996), control and
robotics (Garcia et al., 1989; Rawlings et al., 2017), signal processing (Mattingley & Boyd, 2010),
finance (Cornuejols et al., 2018), and transportation networks (Mota et al., 2014) among other
fields. Beyond its standalone applications, QP also acts as the core component of many advanced
non-convex optimization algorithms such as sequential quadratic programming (Nocedal & Wright,
1999), trust-region methods (Conn et al., 2000), augmented Lagrangian approaches (Houska et al.,
2016), mixed-integer optimization (Belotti et al., 2013), etc. For these reasons, the pursuit of more
efficient QP algorithms remains an ever-evolving area of research from active set (Wolfe, 1959) and
interior point methods (Nesterov & Nemirovskii, 1994) during the previous century to first-order
methods such as the state-of-the-art Operator Splitting QP (OSQP) algorithm (Stellato et al., 2020).

As the scale of modern decision-making applications rapidly increases, there is an emerging in-
terest in developing effective optimization architectures for addressing high-dimensional problems.
Given the fundamental role of QP in optimization, there is a clear demand for algorithms capable
of solving large-scale QPs with thousands, and potentially much more, variables and constraints.
Such problems arise in diverse applications including sparse linear regression (Mateos et al., 2010)
and support vector machines (Navia-Vazquez et al., 2006) with decentralized data, multi-agent con-
trol (Van Parys & Pipeleers, 2017), resource allocation (Huang et al., 2014), network flow (Mota
et al., 2014), power grids (Lin et al., 2012) and image processing (Soheili & Eftekhari-Moghadam,
2020). Traditional centralized optimization algorithms are inadequate for solving such problems at

1

Published as a conference paper at ICLR 2025

scale (see for example Fig. 1), prompting the development of distributed methods that leverage the
underlying network/decentralized structure to parallelize computations. In this context, the Alter-
nating Direction Method of Multipliers (ADMM) has gained widespread popularity as an effective
approach for deriving distributed algorithms (Boyd et al., 2011; Mota et al., 2013). Nevertheless,
as scale increases, such algorithms continue to face significant challenges such as their need for
meticulous tuning, the absence of generalization guarantees and restrictions on the allowed number
of iterations imposed by computational or communication limitations.

62ms

129ms

3s

8.2s

146ms

511ms

22.4s

90.1s

61ms
86ms

9m 58s

N/A

Figure 1: Wall-clock time comparison:
DeepDistributedQP, DistributedQP (ours)
and OSQP on large-scale QPs.

Learning-to-optimize has recently emerged as a
methodology for enhancing existing optimizers or de-
veloping entirely new ones through training on sample
problems (Chen et al., 2022b; Amos et al., 2023). A
notable approach within this paradigm is deep unfold-
ing, which unrolls optimizer iterations as layers of a
deep learning network and learns the optimal param-
eters for improving performance (Monga et al., 2021;
Shlezinger et al., 2022). Our key insight is that deep
unfolding is particularly well-suited for overcoming
the limitations of distributed constrained optimization,
as it can eliminate the need for extensive tuning, man-
age iteration restrictions and enhance generalization.
However, its combination with distributed ADMM has
only recently been explored in Noah & Shlezinger
(2024). While this framework shows promising initial results, it relies on a relatively simple setup
that studies unconstrained problems, assumes local updates consisting of gradient steps, focuses
solely on parameter tuning, and is not accompanied by any formal performance guarantees.

Contributions. This paper introduces a novel deep learning-aided distributed optimization archi-
tecture for solving large-scale constrained QP problems. Our approach relies on unfolding a newly
introduced distributed QP algorithm as a supervised learning framework for a prescribed number of
iterations. To our best knowledge, this is the first work to present a deep learning architecture for
distributed constrained optimization using ADMM, despite the widespread popularity of the latter.
Our framework demonstrates remarkable scalability, being trained on small problems and then ef-
fectively applied to much larger ones. Furthermore, its performance is theoretically supported by
establishing guarantees based on generalization bounds from statistical learning theory. We believe
that this work lays the foundation for developing learned distributed optimizers capable of handling
large-scale constrained optimization problems without requiring training at such scales.

Our specific contributions can be summarized as follows:

• First, we introduce DistributedQP, a new decentralized method that combines the well-
established OSQP solver with a consensus approach. We further prove that the algorithm
is guaranteed to converge to optimality, even under varying local algorithm parameters.

• Then, we propose DeepDistributedQP, a deep learning-aided distributed architecture that
unrolls the iterations of DistributedQP in a supervised manner, learning feedback policies
for the underlying algorithm parameters. As a byproduct, we also present DeepQP, its
centralized counterpart which corresponds to unfolding the standard OSQP solver.

• To certify the performance of the learned solver, we establish generalization guarantees on
the optimality gap of the final solution of DeepDistributedQP for unseen problems using
Probably Approximately Correct (PAC)-Bayes theory.

• Finally, we present an extensive experimental evaluation that validates the following:
– For centralized QPs, DeepQP consistently outperforms OSQP requiring 1.5-3 times

fewer iterations for achieving the desired accuracy.
– DeepDistributedQP successfully scales for high-dimensional problems (up to 50K

variables and 150K constraints) while being trained exclusively on much smaller ones.
Furthermore, both DeepDistributedQP and DistributedQP outperform OSQP in wall-
clock time by orders of magnitude as the problem dimensionality increases.

– The proposed PAC bounds offer valuable guarantees on the quality of solutions pro-
duced by DeepDistributedQP for unseen problems from the same class.

2

Published as a conference paper at ICLR 2025

2 RELATED WORK

This section provides an overview of existing related literature from the angles of distributed opti-
mization and learning-to-optimize. An extended discussion is provided in Appendix A.

Distributed optimization with ADMM. Distributed ADMM algorithms have emerged as a scal-
able approach for addressing large-scale optimization problems (Boyd et al., 2011; Mota et al.,
2013). Despite their significant applicability to machine learning (Mateos et al., 2010), robotics
(Shorinwa et al., 2024) and many other fields, their successful performance has been shown to be
highly sensitive to the proper tuning of underlying parameters (Xu et al., 2017a; Saravanos et al.,
2023a). Moreover, tuning parameters for large-scale problems is often tedious and time-consuming,
making it desirable to develop effective learned optimizers that can be trained on smaller problems
instead. Furthermore, even if an distributed optimizer performs well for a specific problem instance,
its generalization to new problems remains challenging to verify. These challenges constitute our
main motivation for studying learning-aided distributed ADMM architectures. We also note that an
ADMM-based distributed QP solver resembling a simpler version of DistributedQP was presented
in Pereira et al. (2022), but focusing on multi-robot control and lacking any theoretical analysis.

Learning-to-optimize. The area of learning-to-optimize methods has emerged as an effective ap-
proach for enhancing existing optimizers or even deriving new algorithmic updates through training
on sample problems (Chen et al., 2022a; Shlezinger et al., 2022; Amos et al., 2023). A prominent
technique in this paradigm is deep unfolding, which under the realistic assumption of computational
budget restrictions, unrolls a fixed number of iterations as layers of a deep learning framework and
learns the optimal parameters for improving performance on a specific problem class (Monga et al.,
2021; Zhang et al., 2020). Nevertheless, combining deep unfolding with distributed ADMM has only
been investigated recently in Noah & Shlezinger (2024). Although this framework demonstrates
promising results, it is limited to an unconstrained problem formulation, assumes gradient-based
local updates, focuses exclusively on parameter tuning and lacks formal performance guarantees. A
reinforcement learning algorithm for accelerating OSQP was presented in Ichnowski et al. (2021).
While this approach also explores learning policies for algorithm parameters, it is limited to central-
ized quadratic programming, lacks guarantees and its training comes at a significant computational
cost. In the context of establishing generalization bounds for learned optimizers, Sambharya &
Stellato (2024a) recently explored incorporating PAC-Bayes bounds in learned optimizers, yet our
approach differs fundamentally, as their method employs a binary error function, whereas ours di-
rectly establishes bounds based on the optimality gap of the final solution. The works in Sucker &
Ochs (2023) and Sucker et al. (2024) are also investigating generalization bounds for learned opti-
mizers, considering the update function as a gradient step or a multi-layer perceptron, respectively.

3 DISTRIBUTED QUADRATIC PROGRAMMING

3.1 PROBLEM FORMULATION

Global variable components

Local variables

w1 w2 w3 w4

[x1]1 = w1

[x1]2 = w2 [x2]1 = w2

[x2]2 = w3

[x3]1 = w3

[x3]2 = w4

x1 x2 x3

Figure 2: Example of consensus
mapping G in problem (2).

A convex (centralized) QP problem is expressed in general as

min
1

2
x⊤Qx+ q⊤x s.t. Ax ≤ b, (1)

where x ∈ Rn is the decision vector and ζ = {Q ∈ Sn++, q ∈
Rn,A ∈ Rm×n, b ∈ Rm} are the problem data. 1 As the scale
of such problems increases to higher dimensions, there is often
an underlying networked/decentralized structure that could be
leveraged for achieving distributed computations. This work specifically aims to address problems
characterized by such structures. Let w ∈ Rn be the main global variable and xi ∈ Rni be local
variables i ∈ V = {1, . . . , N}. Then, assume a mapping (i, j) 7→ G(i, j) from all index pairs (i, j)
of local variable components [xi]j to indices l = G(i, j) of global components wl

2 - for an example
see Fig. 2. We consider QP problems of the following distributed consensus form:

min
∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi s.t. Aixi ≤ bi, xi = w̃i, i ∈ V, (2)

1Note that equality constraints can also be captured as pairs of inequalities.
2This formulation is adopted from the standard consensus ADMM framework (Boyd et al., 2011), wherein

local variables are typically associated with their respective computational nodes.

3

Published as a conference paper at ICLR 2025

where the problem data are now given by ζ = {ζi}Ni=1 with ζi = {Qi ∈ Sni
++, qi ∈ Rni ,Ai ∈

Rmi×ni , bi ∈ Rmi}. The vector x = [{xi}i∈V] is the concatenation of all local variables, while
w̃i ∈ Rni , defined as w̃i = [{wl}l∈G(q,j):q=i], is the selection of global variable components that
correspond to the components of xi. This form captures a wide variety of large-scale QPs found
in machine learning (Mateos et al., 2010; Navia-Vazquez et al., 2006), optimal control (Van Parys
& Pipeleers, 2017), transportation networks, (Mota et al., 2014), power grids (Lin et al., 2012),
resource allocation (Huang et al., 2014) and many other fields.

3.2 DISTRIBUTEDQP: THE UNDERLYING OPTIMIZATION ALGORITHM

This section introduces a new distributed algorithm named DistributedQP for solving problems of
the form (2). The proposed method can be viewed as a combination of consensus ADMM (Boyd
et al., 2011) and OSQP (Stellato et al., 2020) using local iteration-varying penalty parameters.

Let us introduce the auxiliary variables zi, si ∈ Rmi , such that problem (2) can be reformulated as

min
∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi s.t. Aixi = zi, si ≤ bi, zi = si, xi = w̃i, i ∈ V. (3)

The proposed DistributedQP method is summarized below, where k = 0, 1, . . . , denotes iterations:

1. Local updates for xi, zi. For each node i ∈ V , solve in parallel:[
Qi + µk

i I A⊤
i

Ai −1/ρki I

] [
xk+1
i

νk+1
i

]
=

[
−qi + µk

i w̃i − yi

zi − 1/ρki λi

]
, (4)

and then update in parallel:
zk+1
i = ski + 1/ρki (ν

k+1
i − λk

i). (5)
2. Local updates for si and global update for w. For each node i ∈ V , update in parallel:

sk+1
i = Πsi≤bi

(
αkzk+1

i + (1− αk)ski + λk
i /ρ

k
i

)
. (6)

In addition, each global variable component wl is updated through:

wk+1
l = αk

∑
G(i,j)=l µ

k
i [xi]j∑

G(i,j)=l µ
k
i

+ (1− αk)wk
l . (7)

3. Local updates for dual variables λi,yi. For each node i ∈ V , update in parallel:
λk+1
i = λk

i + ρki (α
kzk+1

i + (1− αk)ski − sk+1
i), (8)

yk+1
i = yk

i + µk
i (α

kxk+1
i + (1− αk)w̃k

i − w̃k+1
i). (9)

The Lagrange multipliers νi,λi and yi correspond to the equality constraints Aixi = zi, zi = si
and xi = w̃i, respectively. The penalty parameters ρi, µi > 0 correspond to zi = si and xi = w̃i,
while αk ∈ [1, 2) are over-relaxation parameters. A complete derivation is provided in Appendix B.

3.3 CONVERGENCE GUARANTEES

Prior to unrolling DistributedQP into a deep learning framework, it is particularly important to estab-
lish that the underlying optimization algorithm is well-behaved even for varying parameters, i.e., it
is expected to asymptotically converge to the optimal solution. This property is especially important
in deep unfolding where parameters are expected to be distinct between different iterations.

In the simpler case of αk = 1, ρki = ρ, µk
i = µ, the standard convergence guarantees of two-

block ADMM would apply directly (Deng & Yin, 2016); for a detailed discussion, see Appendix
C. Nevertheless, the introduction of local iteration-varying penalty parameters ρki , µ

k
i , as well as

the over-relaxation with varying parameters αk makes proving the convergence of this algorithm
non-trivial. In the following, we provide convergence guarantees to optimality for DistributedQP.

We consider the following assumption for the penalty parameters.
Assumption 1. As k → ∞, the parameters ρki = ρk−1

i , µk
i = µk−1

i , for all i ∈ V .

The following theorem states the convergence guarantees of DistributedQP to optimality. The proof,
as well as necessary intermediate results, are provided in Appendix D.
Theorem 1 (Convergence guarantees for DistributedQP). If Assumption 1 holds and αk ∈ [1, 2),
then the iterates wk converge to the optimal solution w∗ of problem (2), as k → ∞.

4

Published as a conference paper at ICLR 2025

Layer k = 1 Layer k = K

Node i = 1

Node i = N

Lo
ca

lP
ro

bl
em

D
at

a
&

In
iti

al
iz

at
io

ns
Lo

ca
lP

ro
bl

em
D

at
a

&
In

iti
al

iz
at

io
ns

Lo
ca

lu
pd

at
e

(4
)-

(5
)

Lo
ca

lu
pd

at
e

(4
)-

(5
)

Lo
ca

lu
pd

at
e

(6
)

Lo
ca

lu
pd

at
e

(6
)

G
lo

ba
lu

pd
at

e
(7

) D
ua

lu
pd

at
e

(8
)-

(9
)

D
ua

lu
pd

at
e

(8
)-

(9
)

Lo
ca

lu
pd

at
e

(4
)-

(5
)

Lo
ca

lu
pd

at
e

(4
)-

(5
)

G
lo

ba
lu

pd
at

e
(7

)

ρ01, µ0
1

ρ0N , µ0
N

ᾱ0

Local
residuals

Local
residuals

Feed-forward
params

Feedback
FC layer

Feed-forward
params

Feedback
FC layer

x1
1, z

1
1

x1
N , z1

N

x1
2, z

1
2

x1
N−1, z

1
N−1

s11

s1N

w1

w̃1
1

w̃1
N

y1
1 ,λ

1
1

y1
N ,λ1

N

ρK−1
1

µK−1
1

ρK−1
N

µK−1
N

Local
residuals

Local
residuals

ᾱK−1

xK
1 , zK

1

xK
N , zK

N

xK
2 , zK

2

xK
N−1, z

K
N−1

wK

Feed-forward
params

Feedback
FC layer

Feed-forward
params

Feedback
FC layer

Tr
ai

ni
ng

Lo
ss

Figure 3: The DeepDistributedQP architecture. The proposed framework relies on unrolling the
DistributedQP optimizer as a supervised deep learning framework. In particular, we interpret its
iterations (4)-(9) as sequential network layers and introduce learnable components (orange blocks)
to facilitate reaching the desired accuracy after a predefined number of allowed iterations.

4 THE DEEPDISTRIBUTEDQP ARCHITECTURE

The proposed DeepDistributedQP architecture emerges from unfolding the iterations of the Dis-
tributedQP optimizer into a deep learning framework. Section 4.1 illustrates the main architecture,
key aspects of our methodology, as well as the centralized variant DeepQP. Section 4.2 leverages
implicit differentiation during backpropagation to facilitate the training of our framework.

4.1 MAIN ARCHITECTURE

Architecture overview. The DeepDistributedQP architecture arises from unrolling the Distribut-
edQP optimizer within the supervised learning paradigm. (Fig. 3). This is accomplished through
treating the updates (4)-(9) as blocks in sequential layers of a deep learning network. The number of
layers is equal to the predefined number of allowed iterations K, with each layer corresponding to
an iteration k = 1, . . . ,K. The inputs of the network are the local problem data ζi and initializations
x0
i , z0

i , w̃0
i , s0i , λ0

i and y0
i . These are initially passed to N parallel local blocks corresponding to

(4)-(5), which output the new variables x1
i and z1

i . Then, all z1
i are fed into N new parallel local

blocks (6), yielding the new iterates s1i . In the meantime, all x1
i are communicated to a central node

that computes the new iterate w1 through the weighted averaging step (7). Subsequently, the global
variable components w̃i are communicated back to each local node i, to perform the updates (8)-
(9) which output the updated dual variables λi,yi. This group of blocks is then repeated K times,
yielding the output of the network which is the final global variable iterate wK .

Learning feedback policies. Standard deep unfolding typically leverages data to learn algorithm
parameters tailored for a specific problem (Shlezinger et al., 2022). From a control theoretic point
of view, this process can be interpreted as seeking open-loop policies without the incorporating any
feedback. In our setup, this is equivalent with learning the optimal parameters ρ̄ki , µ̄k

i , ᾱk, with

ρki = SoftPlus(ρ̄ki), µk
i = SoftPlus(µ̄k

i), αk = Sigmoid1,2(ᾱ
k), (10)

for all i = 1, . . . , N and k = 1, . . . ,K, where the SoftPlus(·) function is used to guarantee the
positivity of ρki , µk

i , and the sigmoid function Sigmoid1,2(·) restricts each αk to lie between (1, 2).

In the meantime, the predominant practice for online adaptation of the ADMM penalty parameters
relies on observing the primal and dual residuals every few iterations (Boyd et al., 2011). The
widely-used rule suggests that if the ratio of primal-to-dual residuals is high, the penalty parameter
ρ should be increased; conversely, if the ratio is low, ρ should be decreased. Despite its heuristic
nature, this approach includes a notion of “feedback” since the current state of the optimizer is used
to adapt the parameters, and as a result, it can be interpreted as a closed-loop policy. Based on this
point of view, our goal is to learn the optimal closed-loop policies for the local penalty parameters

ρki = SoftPlus
(
ρ̄ki + πk

i,ρ(r
k
i,ρ, s

k
i,ρ; θ

k
i,ρ)
)
, µk

i = SoftPlus
(
µ̄k
i + πk

i,µ(r
k
i,µ, s

k
i,µ; θ

k
i,µ)
)
, (11)

5

Published as a conference paper at ICLR 2025

Layer k = 1 Layer k = K

P
ro

bl
em

D
at

a
&

In
iti

al
iz

at
io

ns

Fi
rs

tu
pd

at
e

(9
0)

-(
91

)

S
ec

on
d

up
da

te
(9

3)

D
ua

lu
pd

at
e

(9
4)

Fi
rs

tu
pd

at
e

(9
0)

-(
91

)

x1

z1
t1

s1 λ1

Tr
ai

ni
ng

Lo
ss

ᾱ0

Feed-forward
params

Feedback
FC layer

ρ0Residuals Residuals
Feed-forward

params

Feedback
FC layer

xKρK−1

Figure 4: The DeepQP architecture: The simplified variant for centralized QP.

where the feedback components are obtained through the policies πk
i,·(r

k
i,·, s

k
i,·; θ

k
i,·), parameterized

by fully-connected neural network layers with inputs rki,·, s
k
i,· and weights θki,·. The terms rki,· and

ski,· represent the local primal and dual residuals of node i at layer k and are detailed in Appendix E.

Solving the local updates. The most computationally demanding block in DeepDistributedQP is
solving the local updates (4), as this requires solving a linear system of size ni+mi. Similar to OSQP
(Stellato et al., 2020), this can be accomplished using either a direct or an indirect method. The direct
method factors the KKT matrix, solving the system via forward and backward substitution. This
approach is particularly efficient when penalty parameters remain fixed, as the same factorization
can then be reused accross iterations. Nevertheless, at larger scales, this factorization might become
impractical. In contrast, with the indirect method, we eliminate νk+1

i to solve the linear system:

(Qi + µk
i I +A⊤

i ρ
k
iAi)︸ ︷︷ ︸

Q̄k
i

xk+1
i = −qi + µk

i w̃i − yi +A⊤
i ρ

k
i zi −A⊤

i λi︸ ︷︷ ︸
b̄k
i

. (12)

This new linear system is solved for xk+1
i using an iterative scheme such as the conjugate gradi-

ent (CG) method. We then substitute νk+1
i = ρki (Aix

k+1
i − zi) + λi. The indirect method has

three important properties that make it particularly attractive in our setup. First, its computational
complexity scales better w.r.t. the dimension of the local problem, while no additional overhead is
introduced by changing the penalty parameters. Second, it can be warmstarted using the solution
from the previous iteration, greatly reducing the number of iterations required to converge to a solu-
tion. The final important property, which is critical for the scalability of the DeepDistributedQP, is
that training with the indirect method can be much more memory efficient as shown in Section 4.2.

Training loss. Let S = {ζj}Hj=1 be a dataset consisting of H problem instances ζj =

{(Qi, qi,Ai, bi)
N
i=1,w

∗}j subject to the known mapping G of problem (2). The loss we are us-
ing for training is the average of the γk-scaled distances of the global iterates w1, . . . ,wN from the
known optimal solution w∗ of each problem instance ζj , provided as

ℓ(S; θ) = 1

H

H∑
j=1

K∑
k=1

γk∥wk(ζj ; θ)−w∗(ζj)∥2, (13)

where θ corresponds to the concatenation of all learnable parameters/weights.

Centralized version. While this work primarily focuses on distributed optimization, we also intro-
duce DeepQP, the centralized version of our framework, for addressing general QPs of the form (1).
In the centralized case, our architecture simplifies to N = 1, eliminating the need for distinguishing
between local and global variables. Under this simplification, the DistributedQP optimizer coin-
cides with OSQP. Hence, DeepQP consists of unfolding the OSQP updates (see Appendix F) and
learning policies for adapting its penalty and over-relaxation parameters. The resulting framework
is illustrated in Fig. 4. Additional details on DeepQP are provided in Appendix F.

4.2 IMPLICIT DIFFERENTIATION

When solving for the local updates in (12) using the indirect method, it is computationally intractable
to backpropagate through all CG iterations. This is especially important in the context of unfolding,
as it would become necessary to unroll multiple inner CG optimization loops. To address this, we
leverage the implicit function theorem (IFT) to express the solution of (12) as an implicit function

6

Published as a conference paper at ICLR 2025

of the local problem data. This allows us to compute gradients in a manner that avoids unrolling the
CG iterations and requires solving a linear system with the same coefficient matrix, but with a new
RHS, achieved by rerunning the CG method. This result is formalized in the following theorem.
Theorem 2 (Implicit Differentiation of Indirect Method). Let xk+1

i be the unique solution to the
linear system Q̄k

i x
k+1
i = b̄ki in (12). Let ∇xL(x

k+1
i) be a backward pass vector computed through

reverse-mode automatic differentiation of some loss function L. Then, the gradient of L with respect
to Q̄k

i and b̄ki is given by

∇Q̄k
i
L =

1

2
(xk+1

i ⊗ dxk+1
i + dxk+1

i ⊗ xk+1
i),

∇b̄k
i
L = −dxk+1

i ,

where dxk+1
i is the unique solution to the linear system Q̄k

i dx
k+1
i = −∇xL(x

k+1
i).

The proof is provided in Appendix G and is a straightforward application of the IFT, similar to the
results established by Amos & Kolter (2017) and Agrawal et al. (2019).

5 GENERALIZATION BOUNDS

In this section, we establish guarantees on the expected performance of DeepDistributedQP. To
achieve this, we leverage the PAC-Bayes framework (Alquier, 2024), a well-known statistical learn-
ing methodology for providing bounds on expected loss metrics that hold with high probability. In
our case, we provide bounds on the expected progress of the final iterate wK towards reaching the
optimal solution w∗ for unseen problems drawn from the same distribution as the training dataset.

Learning stochastic policies. PAC-Bayes theory is applicable to frameworks that learn weight
distributions rather than fixed weights. For this reason, in order to establish such guarantees, we
switch to learning a Gaussian distribution of weights P = N (µΘ,ΣΘ) based on a prior P0 =
N (µ0

Θ,Σ
0
Θ). This choice is motivated by the fact that PAC-Bayes bounds include Kullback–Leibler

(KL) divergence terms which can be easily evaluated and optimized for Gaussian distributions.

Generalization bound for DeepDistributedQP. To facilitate the exhibition of our performance
guarantees, we provide necessary preliminaries on PAC-Bayes theory in Appendix H. To establish a
generalization guarantee for DeepDistributedQP, a meaningful loss function must first be selected.
This quantity will be denoted q(ζ; θ) to differentiate from the loss used for training. To capture the
progress the optimizer makes towards optimality, we propose the following progress metric:

q(ζ; θ) = min

{
∥wK(ζ; θ)−w∗(ζ)∥2
∥w0(ζ)−w∗(ζ)∥2

, 1

}
. (14)

This loss function measures progress by comparing the distance between the final iterate wK(ζ; θ)
and problem solution w∗(ζ) with the distance between the initialization w0(ζ; θ) and the solution.
This choice satisfies the requirement of being bounded between 0 and 1 while being more informa-
tive than the indicator losses used in prior work that simply determine whether the final iterate is
within a specified neighborhood of the optimal solution (Sambharya & Stellato, 2024a). Moreover,
this loss is invariant to the scale of the problem data since it is a relative measurement.

As in Appendix H, let qD(P) be the true expected loss and qS(P) the empirical expected loss. To
evaluate the PAC-Bayes bounds in (101), the expectation Eθ∼P [q(ζ; θ)] must be computed as part
of the definition of qS(P). Since no closed-form solution is available, an empirical estimate using
M sampled weights (θj)

M
j=1 is required to upper bound qS(P) with high probability. We adopt a

standard approach involving a sample convergence bound (Majumdar et al. (2021), Dziugaite & Roy
(2017), Langford & Caruana (2001)). Specifically, define the empirical estimate of qS(P) as:

q̂S(P;M) =
1

MH

H∑
i=1

M∑
j=1

q(ζi; θj). (15)

Then, the following sample convergence bound provides an upper bound on qS(P),

qS(P) ≤ q̄S(P;M, ϵ) := DKL
(
q̂S(P;M) ∥ M−1 log (2/ϵ)

)
, (16)

with probability 1− ϵ. The following theorem summarizes the PAC-Bayes bound we use to evaluate
the generalization capabilities of our framework.

7

Published as a conference paper at ICLR 2025

Figure 5: Small-scale centralized comparison of DeepQP and OSQP. Across all tested problems,
DeepQP consistently outperforms OSQP (same per-iteration complexity using the indirect method).

Theorem 3 (Generalization bound for DeepDistributedQP). For problems ζ ∈ Z drawn from dis-
tribution D, the true expected progress metric of DeepDistributedQP with policy P , i.e.,

qD(P) = Eζ∼D Eθ∼P

[
min

{
∥wK(ζ; θ)−w∗(ζ)∥2
∥w0(ζ)−w∗(ζ)∥2

, 1

}]
, (17)

is bounded with probability at least 1− δ − ϵ by:

qD(P) ≤ D−1
KL

(
q̄S(P;M, ϵ)

∥∥∥(DKL(P∥P0) + log(2
√
H/δ)

)
/H
)
, (18)

where q̄S(P;M, ϵ) is the estimate of qS(P;M, ϵ) described in (16).

We explain in detail how we train for optimizing this bound in Appendix I.

6 EXPERIMENTS

We conduct extensive experiments to highlight the effectiveness, scalability and generalizability
of the proposed methods. Section 6.1 shows the advantageous performance of DeepQP against
OSQP on a variety of centralized QPs. In Section 6.2, we address large-scale problems, showcasing
the scalability of DeepDistributedQP despite being trained exclusively on much lower-dimensional
instances. Additionally, we discuss the advantages of learning local policies over shared ones and
evaluate the proposed generalization bounds, which provide guarantees for the performance of our
framework on unseen problems. An overall discussion and potential limitations are provided in
Section 6.3. All experiments were performed on an system with an RTX 4090 GPU 24GB, a 13th
Gen Intel(R) Core(TM) i9-13900K and 64GB of RAM.

6.1 SMALL-SCALE CENTRALIZED EXPERIMENTS: DEEPQP VS OSQP

Setup. We begin with comparing DeepQP against OSQP for solving centralized QPs (1). The
following problems are considered: i,ii) random QPs without/with equality constraints, iii, iv) opti-
mal control for double integrator and oscillating masses, v) portfolio optimization, and vi) LASSO
regression. For all problems, we set a maximum allowed amount of iterations K for DeepQP within
[10, 30] and examine how many iterations OSQP requires to reach the same accuracy. We train
DeepQP using both open-loop and closed-loop policies and with a dataset of size H ∈ [500, 2000].
For OSQP, we consider both constant and adaptive penalty parameters ρ and we set α to be either
1.0 or 1.6. Additional details on DeepQP, OSQP and the problems can be found in Appendix J.
Performance comparison. The comparison between DeepQP and OSQP is illustrated in Fig. 5.
Note that both methods share the same per-iteration complexity from solving (92). We evaluate
their performance by comparing the (normalized) optimality gap ∥xk − x∗∥2/

√
n. For all tested

problems, DeepQP provides a consistent improvement over OSQP, requiring 1.5 − 3 times fewer
iterations to reach the desired accuracy. Furthermore, the advantage of incorporating feedback in
the policies is shown, as closed-loop policies outperform open-loop ones in all cases.

8

Published as a conference paper at ICLR 2025

50ms
129ms

514ms 703ms

63ms
159ms

3.03s
8.2s

75ms
240ms

693ms 956ms

83ms

371ms

5.83s
11.6s

146ms
285ms

22.4s
90.1s

317ms
628ms

N/A N/A

92ms149ms

5.45s

132s

133ms
305ms

243s

N/A

21ms 32ms

8.73s 11.6s

61ms86ms

558s

N/A

31ms 51ms

85.9s
343s

69ms
130ms

N/A N/A

Figure 6: Scaling DeepDistributedQP to high-dimensional problems. Left: Comparison be-
tween DeepDistributedQP and its traditional optimization counterpart DistributedQP (same per-
iteration complexity). Right: Total wall-clock time required by DeepDistributedQP, DistributedQP
and OSQP (using indirect or direct method) to achieve the same accuracy.

6.2 LARGE-SCALE DISTRIBUTED EXPERIMENTS: SCALING DEEPDISTRIBUTEDQP
Setup. The purpose of the following analysis is to compare the performance and scalability of
DeepDistributedQP (ours), DistributedQP (ours) and OSQP for large-scale QPs of the form (2). We
consider the following six problems: i,ii) random networked QPs without/with equality constraints,
iii, iv) multi-agent optimal control for coupled pendulums and oscillating masses, v) network flow,
and vi) distributed LASSO. We select a maximum allowed number of iterations K for DeepDis-
tributedQP within [20, 50] and examine what is the computational effort required by DistributedQP
and OSQP to achieve the same accuracy measured by the optimality gap ∥wk −w∗∥2/

√
n. More

details about our experimental setup are provided in Appendix J.
Training on low-dimensional problems. One of the key advantages of DeepDistributedQP is that
it only requires using small-scale problems for training. The training dimensions for each problem
are detailed in Table 1. Both open-loop and closed-loop versions are trained using shared policies
on datasets of size H ∈ [500, 1000]. We employ the shared policies version of DeepDistributedQP
to enable the same policies to be applied to larger problems during testing.
Scaling to high-dimensional problems. Subsequently, we evaluate DeepDistributedQP on prob-
lems with significantly larger scale than those used during training. The maximum problem dimen-
sions tested are shown in Table 1. On the left side of Fig. 6, we highlight the superior performance
of DeepDistributedQP over its standard optimization counterpart DistributedQP (same per-iteration
complexity). In all cases, the learned algorithm achieves the same level of accuracy while requiring
1.5-3.5 times fewer iterations. Additionally, the right side of Fig. 6 compares the total wall-clock
time between DeepDistributedQP, DistributedQP and OSQP (using indirect or direct method). For a
complete illustration, we refer the reader to Table 6 in Appendix J.5. The provided results emphasize
the superior scalability of the two proposed distributed methods against OSQP for large-scale QPs,
as well as the advantage of our deep learning-aided approach over traditional optimization.
Local vs shared policies. When applying a policy to a problem with the same dimensions as used
during training, leveraging local policies instead of shared ones can be advantageous for better ex-
ploiting the structure of the problem. On the left side of Fig. 7, we compare the performance of
local and shared policies on random QPs (N = 16) and coupled pendulums (N = 10). For the cou-
pled pendulums problem, which exhibits significant underlying structure, local policies demonstrate
clear superiority. For the random QPs problem, where structural patterns are less pronounced, the
advantage of local policies is smaller but still significant.
Performance guarantees. Next, we verify the guarantees of our framework for generalizing on
unseen random QPs (N = 10) and coupled pendulums (N = 5) problems. We switch from learning
deterministic weights to learning stochastic ones and follow the procedure described in Appendix
I with H = 15000 training samples, M = 30000 sampled weights for the bounds evaluation,
δ = 0.009 and ϵ = 0.001. The resulting generalization bounds, illustrated in Fig. 7 (right), are
expressed in terms of the the expected final relative optimality gap - the progress metric used for

9

Published as a conference paper at ICLR 2025

Table 1: Training and maximum testing dimensions for DeepDistributedQP. The metric
nnz(Q,A) denotes the total number of non-zero elements in Q and A.

Training Max Testing
Problem Class N n m nnz(Q,A) N n m nnz(Q,A)
Random QPs 16 160 120 4,000 1,024 10,240 9,920 300,800

Random QPs w/ Eq. Constr. 16 160 168 4,960 1,024 10,240 9,920 300,800
Coupled Pendulums 10 470 640 3,690 1,000 47,000 64,000 380,880

Coupled Osc. Masses 10 470 1,580 4,590 300 28,200 47,400 141,180
Network Flow 20 100 140 600 5,000 25,000 35,000 150,000

Distributed LASSO 10 1,100 3,000 29,000 500 50,100 150,000 1,450,000

Figure 7: Left: Local vs shared policies. We showcase the advantage of learning local policies
over shared ones. Right: Performance guarantees. The obtained generalization bounds guarantee
the performance of DeepDistributedQP and its improvements over DistributedQP.

deriving bounds in Section 5, implying that with 99% probability the average performance of our
framework will be bounded by this threshold. The bounds are observed to be tight compared to
actual performance, underscoring their significance. Moreover, they outperform the standard opti-
mizers, providing a strong guarantee of improved performance for DeepDistributedQP.

6.3 DISCUSSION

In which cases can we use the direct method? As illustrated in Fig. 6 and Table 6, and further
discussed in Stellato et al. (2020), the indirect method is generally preferred for solving systems
of the form (4) - or (90) for DeepQP/OSQP - once the problem reaches a certain scale. In this
work, we adopt this approach both for training, due the memory and computational advantages out-
lined in Section 4.2, and evaluating DeepDistributedQP/DeepQP. However, it is worth considering
whether the direct method might be advantageous during evaluation, a choice that depends on the
problem scale and capabilities of the available hardware. Overall, the results of this work show that
learning policies for the algorithm parameters is significantly beneficial in the context of both dis-
tributed and centralized QP assuming the indirect method is used. In future work, we wish to also
explore schemes that adapt the parameters less frequently using the direct method and/or designing
mechanisms to dynamically switch between the two approaches.

Limitations. One limitation of the proposed framework is its reliance on a supervised training
loss, requiring a dataset of pre-solved problems. In future work, we aim to explore training through
directly minimizing the problem residuals rather than the optimality gaps. Furthermore, while PAC-
Bayes theory provides an important probabilistic bound on average performance, stronger guaran-
tees may be necessary for safety-critical applications to ensure reliability and robustness.

7 CONCLUSION AND FUTURE WORK

In this work, we introduced DeepDistributedQP, a new deep learning-aided distributed optimiza-
tion architecture for solving large-scale QP problems. The proposed method relies on unfolding the
iterations of a novel optimizer named DistributedQP as layers of a supervised deep learning frame-
work. The expected performance of our learned optimizer on unseen problems is also theoretically
established through PAC-Bayes theory. DeepDistributedQP exhibits impressive scalability in effec-
tively tackling large-scale optimization problems while being trained exclusively on much smaller
ones. In addition, both DeepDistributedQP and DistributedQP significantly outperform OSQP in
terms of required wall-clock time to reach the same accuracy as dimension increases. Furthermore,
we showcase that the proposed PAC-Bayes bounds provide meaningful practical guarantees for the
performance of the learned optimizer on new problems. In future work, we wish to extend the pro-
posed framework to a semi-supervised version that relies less on pre-solved problems for training.
In addition, we wish to explore incorporating more complex learnable components such as LSTMs
for feedback within our architecture. Finally, we wish to consider other classes of distributed con-
strained optimization methods outside of quadratic programming.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

This work is supported by the National Aeronautics and Space Administration under ULI Grant
80NSSC22M0070 and the ARO Award #W911NF2010151. Augustinos Saravanos acknowledges
financial support by the A. Onassis Foundation Scholarship. The authors also thank Alec Farid for
helpful discussions on PAC-Bayes Theory.

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J. Zico Kolter.
Differentiable convex optimization layers. Advances in neural information processing systems,
32, 2019.

Pierre Alquier. User-friendly introduction to PAC-Bayes bounds. Foundations and Trends in Ma-
chine Learning, 17(2):174–303, 2024.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International conference on machine learning, pp. 136–145. PMLR, 2017.

Brandon Amos et al. Tutorial on amortized optimization. Foundations and Trends® in Machine
Learning, 16(5):592–732, 2023.

Pietro Belotti, Christian Kirches, Sven Leyffer, Jeff Linderoth, James Luedtke, and Ashutosh Ma-
hajan. Mixed-integer nonlinear optimization. Acta Numerica, 22:1–131, 2013.

David Biagioni, Peter Graf, Xiangyu Zhang, Ahmed S Zamzam, Kyri Baker, and Jennifer King.
Learning-accelerated admm for distributed dc optimal power flow. IEEE Control Systems Letters,
6:1–6, 2020.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine learning, 3(1):1–122, 2011.

Steven W Chen, Tianyu Wang, Nikolay Atanasov, Vijay Kumar, and Manfred Morari. Large scale
model predictive control with neural networks and primal active sets. Automatica, 135:109947,
2022a.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to optimize: A primer and a benchmark. Journal of Machine Learning
Research, 23(189):1–59, 2022b.

Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. Trust region methods. SIAM, 2000.

Christian Conte, Tyler Summers, Melanie N Zeilinger, Manfred Morari, and Colin N Jones. Compu-
tational aspects of distributed optimization in model predictive control. In 2012 IEEE 51st IEEE
conference on decision and control (CDC), pp. 6819–6824. IEEE, 2012a.

Christian Conte, Niklaus R Voellmy, Melanie N Zeilinger, Manfred Morari, and Colin N Jones. Dis-
tributed synthesis and control of constrained linear systems. In 2012 American control conference
(ACC), pp. 6017–6022. IEEE, 2012b.

Gerard Cornuejols, Javier Peña, and Reha Tütüncü. Optimization methods in finance. Cambridge
University Press, 2018.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 1995.

Wei Deng and Wotao Yin. On the global and linear convergence of the generalized alternating
direction method of multipliers. Journal of Scientific Computing, 66:889–916, 2016.

Gintare Karolina Dziugaite and Daniel M. Roy. Computing nonvacuous generalization bounds for
deep (stochastic) neural networks with many more parameters than training data. arXiv preprint
arXiv:1703.11008, 2017.

11

Published as a conference paper at ICLR 2025

Gintare Karolina Dziugaite, Kyle Hsu, Waseem Gharbieh, Gabriel Arpino, and Daniel Roy. On
the role of data in PAC-Bayes bounds. In International Conference on Artificial Intelligence and
Statistics, pp. 604–612. PMLR, 2021.

Tomaso Erseghe. Distributed optimal power flow using admm. IEEE transactions on power systems,
29(5):2370–2380, 2014.

Daniel Gabay and Bertrand Mercier. A dual algorithm for the solution of nonlinear variational
problems via finite element approximation. Computers & mathematics with applications, 2(1):
17–40, 1976.

Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control: Theory and prac-
tice—a survey. Automatica, 25(3):335–348, 1989.

Roland Glowinski and Americo Marroco. Sur l’approximation, par éléments finis d’ordre un, et la
résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non linéaires. Revue
française d’automatique, informatique, recherche opérationnelle. Analyse numérique, 9(R2):41–
76, 1975.

Samar Hadou, Navid NaderiAlizadeh, and Alejandro Ribeiro. Stochastic unrolled federated learn-
ing. arXiv preprint arXiv:2305.15371, 2023.

Yutong He, Qiulin Shang, Xinmeng Huang, Jialin Liu, and Kun Yuan. A mathematics-
inspired learning-to-optimize framework for decentralized optimization. arXiv preprint
arXiv:2410.01700, 2024.

Boris Houska, Janick Frasch, and Moritz Diehl. An augmented lagrangian based algorithm for
distributed nonconvex optimization. SIAM Journal on Optimization, 26(2):1101–1127, 2016.

Shaojun Huang, Qiuwei Wu, Shmuel S Oren, Ruoyang Li, and Zhaoxi Liu. Distribution locational
marginal pricing through quadratic programming for congestion management in distribution net-
works. IEEE Transactions on Power Systems, 30(4):2170–2178, 2014.

Zonghao Huang, Rui Hu, Yuanxiong Guo, Eric Chan-Tin, and Yanmin Gong. Dp-admm: Admm-
based distributed learning with differential privacy. IEEE Transactions on Information Forensics
and Security, 15:1002–1012, 2019.

Jeffrey Ichnowski, Paras Jain, Bartolomeo Stellato, Goran Banjac, Michael Luo, Francesco Borrelli,
Joseph E Gonzalez, Ion Stoica, and Ken Goldberg. Accelerating quadratic optimization with
reinforcement learning. Advances in Neural Information Processing Systems, 34:21043–21055,
2021.

Masako Kishida, Masaki Ogura, Yuichi Yoshida, and Tadashi Wadayama. Deep learning-based
average consensus. IEEE Access, 8:142404–142412, 2020.

Steven George Krantz and Harold R Parks. The implicit function theorem: history, theory, and
applications. Springer Science & Business Media, 2002.

John Langford and Rich Caruana. (not) bounding the true error. Advances in Neural Information
Processing Systems, 14, 2001.

Shieh-Shing Lin, Shih-Cheng Horng, et al. Distributed quadratic programming problems of power
systems with continuous and discrete variables. IEEE Transactions on Power Systems, 28(1):
472–481, 2012.

Anirudha Majumdar, Alec Farid, and Anoopkumar Sonar. PAC-Bayes control: learning policies that
provably generalize to novel environments. The International Journal of Robotics Research, 40
(2-3):574–593, 2021.

Gonzalo Mateos, Juan Andrés Bazerque, and Georgios B Giannakis. Distributed sparse linear re-
gression. IEEE Transactions on Signal Processing, 58(10):5262–5276, 2010.

John Mattingley and Stephen Boyd. Real-time convex optimization in signal processing. IEEE
Signal processing magazine, 27(3):50–61, 2010.

12

Published as a conference paper at ICLR 2025

Vishal Monga, Yuelong Li, and Yonina C Eldar. Algorithm unrolling: Interpretable, efficient deep
learning for signal and image processing. IEEE Signal Processing Magazine, 38(2):18–44, 2021.

Joao FC Mota. Communication-efficient algorithms for distributed optimization. PhD thesis,
Carnegie Mellon University, 2013.

Joao FC Mota, Joao MF Xavier, Pedro MQ Aguiar, and Markus Püschel. D-admm: A
communication-efficient distributed algorithm for separable optimization. IEEE Transactions on
Signal processing, 61(10):2718–2723, 2013.

João FC Mota, João MF Xavier, Pedro MQ Aguiar, and Markus Püschel. Distributed optimization
with local domains: Applications in mpc and network flows. IEEE Transactions on Automatic
Control, 60(7):2004–2009, 2014.

Angel Navia-Vazquez, D Gutierrez-Gonzalez, Emilio Parrado-Hernández, and JJ Navarro-Abellan.
Distributed support vector machines. IEEE Transactions on Neural Networks, 17(4):1091–1097,
2006.

Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in convex program-
ming. SIAM, 1994.

Yoav Noah and Nir Shlezinger. Distributed learn-to-optimize: Limited communications optimiza-
tion over networks via deep unfolded distributed admm. IEEE Transactions on Mobile Comput-
ing, 2024.

Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

Shoya Ogawa and Koji Ishii. Deep-learning aided consensus problem considering network cen-
trality. In 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), pp. 1–5. IEEE,
2021.

Marcus A Pereira, Augustinos D Saravanos, Oswin So, and Evangelos A. Theodorou. Decentralized
Safe Multi-agent Stochastic Optimal Control using Deep FBSDEs and ADMM. In Proceedings
of Robotics: Science and Systems, New York City, NY, USA, June 2022. doi: 10.15607/RSS.
2022.XVIII.055.

James Blake Rawlings, David Q Mayne, Moritz Diehl, et al. Model predictive control: theory,
computation, and design, volume 2. Nob Hill Publishing Madison, WI, 2017.

Rajiv Sambharya and Bartolomeo Stellato. Data-driven performance guarantees for classical and
learned optimizers. arXiv preprint arXiv:2404.13831, 2024a.

Rajiv Sambharya and Bartolomeo Stellato. Learning algorithm hyperparameters for fast parametric
convex optimization. arXiv preprint arXiv:2411.15717, 2024b.

Rajiv Sambharya, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. End-to-end learning to
warm-start for real-time quadratic optimization. In Learning for Dynamics and Control Confer-
ence, pp. 220–234. PMLR, 2023.

Rajiv Sambharya, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. Learning to warm-start
fixed-point optimization algorithms. Journal of Machine Learning Research, 25(166):1–46, 2024.

Augustinos D Saravanos, Alexandros Tsolovikos, Efstathios Bakolas, and Evangelos Theodorou.
Distributed Covariance Steering with Consensus ADMM for Stochastic Multi-Agent Systems. In
Proceedings of Robotics: Science and Systems, Virtual, July 2021. doi: 10.15607/RSS.2021.
XVII.075.

Augustinos D. Saravanos, Yuichiro Aoyama, Hongchang Zhu, and Evangelos A. Theodorou. Dis-
tributed differential dynamic programming architectures for large-scale multiagent control. IEEE
Transactions on Robotics, 39(6):4387–4407, 2023a. doi: 10.1109/TRO.2023.3319894.

Augustinos D Saravanos, Yihui Li, and Evangelos Theodorou. Distributed Hierarchical Distribu-
tion Control for Very-Large-Scale Clustered Multi-Agent Systems. In Proceedings of Robotics:
Science and Systems, Daegu, Republic of Korea, July 2023b. doi: 10.15607/RSS.2023.XIX.110.

13

Published as a conference paper at ICLR 2025

Nir Shlezinger, Yonina C Eldar, and Stephen P Boyd. Model-based deep learning: On the intersec-
tion of deep learning and optimization. IEEE Access, 10:115384–115398, 2022.

Ola Shorinwa, Trevor Halsted, Javier Yu, and Mac Schwager. Distributed optimization methods for
multi-robot systems: Part 1—a tutorial [tutorial]. IEEE Robotics & Automation Magazine, 31(3):
121–138, 2024.

Majid Soheili and Amir Masoud Eftekhari-Moghadam. Dqpfs: Distributed quadratic programming
based feature selection for big data. Journal of Parallel and Distributed Computing, 138:1–14,
2020.

Valeriu Soltan. Moreau-type characterizations of polar cones. Linear Algebra and its
Applications, 567:45–62, 2019. ISSN 0024-3795. doi: https://doi.org/10.1016/j.laa.
2019.01.006. URL https://www.sciencedirect.com/science/article/pii/
S0024379519300199.

Changkyu Song, Sejong Yoon, and Vladimir Pavlovic. Fast ADMM algorithm for distributed op-
timization with adaptive penalty. Proceedings of the AAAI Conference on Artificial Intelligence,
30(1), Feb. 2016. doi: 10.1609/aaai.v30i1.10069.

Bartolomeo Stellato, Goran Banjac, Paul Goulart, Alberto Bemporad, and Stephen Boyd. OSQP:
An operator splitting solver for quadratic programs. Mathematical Programming Computation,
12(4):637–672, 2020.

Michael Sucker and Peter Ochs. Pac-bayesian learning of optimization algorithms. In International
Conference on Artificial Intelligence and Statistics, pp. 8145–8164. PMLR, 2023.

Michael Sucker, Jalal Fadili, and Peter Ochs. Learning-to-optimize with pac-bayesian guarantees:
Theoretical considerations and practical implementation. arXiv preprint arXiv:2404.03290, 2024.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267–288, 1996.

Ruben Van Parys and Goele Pipeleers. Distributed mpc for multi-vehicle systems moving in forma-
tion. Robotics and Autonomous Systems, 97:144–152, 2017.

He Wang, Yifei Shen, Ziyuan Wang, Dongsheng Li, Jun Zhang, Khaled B Letaief, and Jie Lu.
Decentralized statistical inference with unrolled graph neural networks. In 2021 60th IEEE Con-
ference on Decision and Control (CDC), pp. 2634–2640. IEEE, 2021.

Philip Wolfe. The simplex method for quadratic programming. Econometrica: Journal of the
Econometric Society, pp. 382–398, 1959.

Zheng Xu, Mario Figueiredo, and Tom Goldstein. Adaptive admm with spectral penalty parameter
selection. In Artificial Intelligence and Statistics, pp. 718–727. PMLR, 2017a.

Zheng Xu, Gavin Taylor, Hao Li, Mário A. T. Figueiredo, Xiaoming Yuan, and Tom Goldstein.
Adaptive consensus ADMM for distributed optimization. In Doina Precup and Yee Whye Teh
(eds.), Proceedings of the 34th International Conference on Machine Learning, volume 70 of
Proceedings of Machine Learning Research, pp. 3841–3850. PMLR, 06–11 Aug 2017b.

Sihan Zeng, Alyssa Kody, Youngdae Kim, Kibaek Kim, and Daniel K Molzahn. A reinforcement
learning approach to parameter selection for distributed optimal power flow. Electric Power Sys-
tems Research, 212:108546, 2022.

Kai Zhang, Luc Van Gool, and Radu Timofte. Deep unfolding network for image super-resolution.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
3217–3226, 2020.

Ruiliang Zhang and James Kwok. Asynchronous distributed admm for consensus optimization. In
International conference on machine learning, pp. 1701–1709. PMLR, 2014.

Shenglong Zhou and Geoffrey Ye Li. Federated learning via inexact admm. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(8):9699–9708, 2023.

Daokuan Zhu, Tianqi Xu, and Jie Lu. A deep reinforcement learning approach to efficient distributed
optimization. arXiv preprint arXiv:2311.08827, 2023.

14

https://www.sciencedirect.com/science/article/pii/S0024379519300199
https://www.sciencedirect.com/science/article/pii/S0024379519300199

Published as a conference paper at ICLR 2025

APPENDIX

CONTENTS

A Extended Related Work 16

B Complete Derivation of DistributedQP Algorithm 17

C Standard Convergence Guarantees for Simplified Version of DistributedQP 19

D Proof of DistributedQP Asymptotic Convergence 19

D.1 Sketch of Proof . 20

D.2 Necessary Lemmas . 20

D.3 Proof of Theorem 1 . 27

E Details on DeepDistributedQP Feedback Policies 29

F The Centralized Version: DeepQP 29

G Proof of Indirect Method Implicit Differentiation 30

H Background on PAC-Bayes Theory 31

I Optimizing and Evaluating Generalization Bound 31

J Details on Experiments 32

J.1 Problem Types in Centralized Experiments . 32

J.2 Problem Types in Distributed Experiments . 33

J.3 Details on Training and Testing . 36

J.4 Details on Standard Optimizers . 36

J.5 Details on Wall-Clock Times . 37

K Additional Experiments 37

K.1 Varying Training Dataset Size . 37

K.2 Can Policies Trained for Specific Problems Be Applied to Other Problems? 38

K.3 Varying the Number of Layers in Testing DeepDistributedQP 39

15

Published as a conference paper at ICLR 2025

A EXTENDED RELATED WORK

Distributed optimization with ADMM. The ADMM method was first introduced in Glowinski
& Marroco (1975) and Gabay & Mercier (1976), yet it only became widely popular after the highly
influential review by Boyd et al. (2011), which highlighted its suitability for deriving distributed
algorithms whose computations can be parallelized. Since then, ADMM-based architectures have
been introduced in a variety of setups including distributed learning (Huang et al., 2019; Zhou &
Li, 2023), multi-agent robotics (Saravanos et al., 2023a; Shorinwa et al., 2024), signal processing
(Mateos et al., 2010; Zhang & Kwok, 2014), stochastic systems (Saravanos et al., 2021; 2023b),
sensor networks (Mota et al., 2013), power grids (Erseghe, 2014) and many other areas, often ex-
hibiting an impressive scalability for high-dimensional problems. Nevertheless, it is well-known
that the convergence speed of distributed ADMM algorithms is heavily dependent on the choice
of their underlying tuning parameters. To address this difficulty, several adaptation schemes have
been presented, typically relying on the residuals of the current iterates (Song et al., 2016; Xu et al.,
2017a;b). Nevertheless, such approaches tend to be myopic and cannot leverage data or provide
guarantees on the performance of the algorithms on unseen problems under finite iterations.

Learning-to-optimize for distributed optimization. The concept of integrating learning-to-
optimize approaches into distributed optimization is particularly compelling, as algorithms of the
latter class typically rely on a significant amount of designing and tuning by experts. Nevertheless,
the area of distributed learning-to-optimize methods remains largely unexplored. For instance, al-
though distributed ADMM has achieved widespread success in decentralized constrained optimiza-
tion, its unfolded extension as a deep learning network has only been recently explored by Noah &
Shlezinger (2024). This framework shows promising results, but it is limited to an unconstrained
problem formulation, assumes gradient-based local updates, focuses solely on parameter tuning and
lacks performance guarantees. Biagioni et al. (2020) presented an ADMM framework which uti-
lizes recurrent neural networks for predicting the converged values of the variables demonstrating
substantial improvements in convergence speed. In Zeng et al. (2022), a reinforcement learning
(RL) approach for learning the optimal parameters of distributed ADMM was proposed, showing
promising speed improvements, but requiring a substantial amount of training effort.

Beyond distributed ADMM, Wang et al. (2021) proposed unrolling two decentralized first-order op-
timization algorithms (ProxDGD and PG-Extra) as graph neural networks (GNNs) for addressing
the decentralized statistical inference problem. Hadou et al. (2023) presented a distributed gradient
descent algorithm unrolled as a GNN focusing on the federated learning problem setup. From a
different point of view, He et al. (2024) recently introduced a distributed gradient-based learning-to-
optimize framework for unconstrained optimization which partially imposes structure on the learn-
able updates instead of unrolling predefined iterations. A deep RL approach for adapting the local
updates of the approximate method of multipliers was recently proposed in Zhu et al. (2023). Fi-
nally, Kishida et al. (2020) and Ogawa & Ishii (2021) have presented distributed learned optimization
methods for tackling the average consensus problem.

Learning-to-optimize for (centralized) QP. Recent works have focused on accelerating QP
through learning; however these efforts have solely concentrated on a centralized setup. In particu-
lar, Ichnowski et al. (2021) introduced an RL-based algorithm for accelerating OSQP demonstrating
promising reductions in iterations, yet training this algorithm incurs significant computational costs.
From a different perspective, Sambharya et al. (2023; 2024) focused on learning-to-initialize fixed-
point methods including OSQP, while maintaining constant parameters in the unrolled algorithm
iterations. Concurrently with the development of the present work, Sambharya & Stellato (2024b)
presented a methodology for selecting the optimal algorithm parameters for various first-order opti-
mization methods. Considering OSQP as the unrolled method coincides with the open-loop version
of the proposed DeepQP framework without any notion of feedback policies.

Generalization guarantees for learning-to-optimize. The works in Sucker & Ochs (2023) and
Sucker et al. (2024) presented generalization bounds for learned optimizers, considering the update
function as a gradient step or a multi-layer perceptron, respectively. Sambharya & Stellato (2024a)
recently also explored incorporating PAC-Bayes bounds in learning-to-optimize methods without
assuming a specific underlying algorithm structure. However, our approach differs fundamentally,

16

Published as a conference paper at ICLR 2025

as their method employs a binary error function, whereas in this work we directly establish bounds
based on the optimality gap of the final solution.

B COMPLETE DERIVATION OF DISTRIBUTEDQP ALGORITHM

Problem transformation and augmented Lagrangian. Here, we present the detailed derivation
of the DistributedQP algorithm presented in Section 3.2. We consider the over-relaxed version of
ADMM (Boyd et al., 2011) with α ∈ [1, 2). First, let us rewrite problem (2) as

min
x

∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi s.t. Aixi = zi, zi ≤ bi, xi = w̃i, i ∈ V, (19)

where we have introduced the auxiliary variables zi for each i = 1, . . . , N . In addition, let us define
the variables si, i = 1, . . . , N , and rewrite problem (19) as

min
∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi s.t. Aixi = zi, si ≤ bi, zi = si, xi = w̃i, i ∈ V. (3)

The above splitting constitutes the problem suitable for being addressed with a two-block ADMM
scheme, where the first block of variables consists of {xi, zi}i=1,...,N , and the second one contains
{si}i=1,...,N and w. The (scaled) augmented Lagrangian (AL) for problem (3) is given by

L =
∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi + IAixi=zi
(xi, zi) + Isi≤bi

(si)

+
ρi
2

∥∥∥∥zi − si +
λi

ρi

∥∥∥∥2
2

+
µi

2

∥∥∥∥xi − w̃i +
yi

µi

∥∥∥∥2
2

.

(20)

First block of primal updates. The first block of variables is updated through

{xi, zi}i∈V = argminL(x, z, sk,wk,λk,yk).

This minimization can be decoupled to the following N subproblems for each i ∈ V ,

{xi, zi} = argmin
1

2
x⊤
i Qixi + q⊤

i xi +
ρi
2

∥∥∥∥zi − si +
λi

ρi

∥∥∥∥2
2

+
µi

2

∥∥∥∥xi − w̃i +
yi

µi

∥∥∥∥2
2

s.t. Aixi = zi,

where we have temporarily dropped the superscript iteration indices for convenience. Since these
problems are equality-constrained QPs, we can obtain a closed-form solution. In particular, the KKT
conditions for each subproblem are given by

Qixi + qi + µi(xi − w̃i) + yi +A⊤
i νi = 0, (21a)

ρi(zi − si) + λi − νi = 0, (21b)
Aixi − zi = 0, (21c)

where νi is the Lagrange multiplier corresponding to the constraint Aixi = zi. Eliminating zi
leads to the following system of equations[

Qi + µiI A⊤
i

Ai −1/ρiI

] [
xk+1
i

νk+1
i

]
=

[
−qi + µiw̃

k
i − yk

i

zi − 1/ρiλ
k
i

]
, (22)

with zk+1
i given by

zk+1
i = ski + ρ−1

i (νk+1
i − λk

i). (23)

Second block of primal updates. The second block of updates is given by

{si}i∈V ,w = argminL(xk+1, zk+1, s,w,λk,yk),

17

Published as a conference paper at ICLR 2025

or more analytically by

{si}i∈V ,w = argmin
∑
i∈V

ρi
2

∥∥∥∥αzk+1
i + (1− α)ski − si +

λk
i

ρi

∥∥∥∥2
2

+
µi

2

∥∥∥∥αxk+1
i + (1− α)w̃k

i − w̃i +
yk
i

µi

∥∥∥∥2
2

s.t. si ≤ bi.

Note that this minimization can be decoupled w.r.t. all si, i ∈ V , and w. In particular, each si is
updated in parallel through

sk+1
i = Πsi≤bi

(
αzk+1

i + (1− αk)ski + λk
i /ρi

)
. (24)

The global variable w minimization can also be decoupled among its components l = 1, . . . , n,
which gives

wl = argmin
∑

G(i,j)=l

µi

2

∥∥∥∥α[xk+1
i]j + (1− α)[w̃k

i]j − [w̃i]j +
[yk

i]j
µi

∥∥∥∥2
2

.

Setting the gradient to be equal to zero yields

∑
G(i,j)=l

µi

[
α[xk+1

i]j + (1− α)wk
l −wk+1

l +
[yk

i]j
µi

]
= 0,

leading to

∑
G(i,j)=l

µiw
k+1
l =

∑
G(i,j)=l

µi

[
α[xk+1

i]j + (1− α)wk
l +

[yk
i]j
µi

]
,

which eventually gives the update rule

wk+1
l =

∑
G(i,j)=l αµi[x

k+1
i]j + [yk

i]j∑
G(i,j)=l µi

+ (1− α)wk
l . (25)

Dual updates. Finally, the dual variables are updated through dual ascent steps as follows

λk+1
i = λk

i + ρi(αz
k+1
i + (1− α)ski − sk+1

i), (26)

yk+1
i = yk

i + µi(αx
k+1
i + (1− α)w̃k

i − w̃k+1
i). (27)

Simplifying the global update. It is important to observe that after the first iteration (for k ≥ 1),
the global update can be simplified to

wk+1
l = α

∑
G(i,j)=l µi[x

k+1
i]j∑

G(i,j)=l µi
+ (1− α)wk

l , (28)

18

Published as a conference paper at ICLR 2025

since the summation∑
G(i,j)=l

[yk+1
i]j =

∑
G(i,j)=l

[yk
i]j + µi(α[x

k+1
i]j + (1− α)[w̃k

i]j − [w̃k+1
i]j)

=
∑

G(i,j)=l

[yk
i]j + µi(α[x

k+1
i]j + (1− α)wk

l −wk+1
l)

=
∑

G(i,j)=l

[yk
i]j + µi

[
α[xk+1

i]j +�����(1− α)wk
l

−
∑

G(u,v)=l αµu[x
k+1
u]v + [yk

u]v∑
G(u,v)=l µu

−�����(1− α)wk
l

]

=
∑

G(i,j)=l

[yk
i]j + µi

[
α[xk+1

i]j −
∑

G(u,v)=l αµu[x
k+1
u]v + [yk

u]v∑
G(u,v)=l µu

]

=
∑

G(i,j)=l

[yk
i]j + αµi[x

k+1
i]j −������∑

G(i,j)=l µi

[∑
G(u,v)=l αµu[x

k+1
u]v + [yk

u]v

]
������∑

G(u,v)=l µu

=
∑

G(i,j)=l

[yk
i]j + αµi[x

k+1
i]j −

∑
G(u,v)=l

αµu[x
k+1
u]v + [yk

u]v = 0. (29)

C STANDARD CONVERGENCE GUARANTEES FOR SIMPLIFIED VERSION OF
DISTRIBUTEDQP

In the simplified case where ρki = ρ, µk
i = µ for all i ∈ V and for all k, as well as αk = 1 for all k,

it would be straightforward to apply the classical convergence guarantees of two-block ADMM for
convex optimization problems (Deng & Yin, 2016) to ensure the convergence of DistributedQP. In
the following, we show how DistributedQP would fit under this setup.

Let us define the concatenated variables x̄ = [{xi}i∈V ; {zi}i∈V] and z̄ = [{si}i∈V ;w]. Then, we
can rewrite problem (3) as

min f(x̄) + g(z̄) s.t. Āx̄+ B̄z̄ = c̄, (30)
where

f(x̄) =
∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi + IAixi=zi
(xi, zi), g(z̄) =

∑
i∈V

Isi≤bi
(si), (31)

and Ā = bdiag(I, I), B̄ = bdiag(I,G) and c = 0, with G ∈ R(
∑

i ni)×n defined such that
x = Gw. In other words, G is the matrix that represents the local-to-global variable components
mapping, formally defined as G = [G1; . . . ;GN] with each submatrix Gi ∈ Rni×n given by

[Gi]u,v =

{
1, if v = G(i, u)
0, else

. (32)

Given this representation, it becomes clear that our algorithm can be framed as a two-block ADMM.
Now, note that G is a full column rank matrix since all global variable components gl are mapped to
at least one local variable component [xi]j . Then, since the functions f, g are convex and the matri-
ces Ā, B̄ are full column rank, it follows from Deng & Yin (2016) that the algorithm is guaranteed
to converge to the optimal solution of problem (3).

Nevertheless, this analysis is solely applicable to this simplified version of the DistributedQP algo-
rithm. In Appendix D, we tackle the more complex case of iteration-varying relaxation and local
penalty parameters.

D PROOF OF DISTRIBUTEDQP ASYMPTOTIC CONVERGENCE

In this section, we prove that DistributedQP is guaranteed to converge to optimality, even in the
more challenging case of iteration-varying relaxation and local penalty parameters (Theorem 1).

19

Published as a conference paper at ICLR 2025

The following analysis extends the theoretical results presented in Xu et al. (2017a), where the
convergence of an adaptive relaxed variant of two-block ADMM is provided. Nevertheless, this
analysis is not directly applicable to our case which involves distinct local penalty parameters per
computational node.

D.1 SKETCH OF PROOF

To begin, we outline the following conventions. The points x∗, z∗, s∗,w∗,y∗,λ∗ are the KKT
points of problem (3). We refer to the notion of a distance function at any (k+1)th iteration to be rep-
resenting a weighted squared norm of the difference between the variables sk+1,wk+1,yk+1,λk+1

and their corresponding optimal values s∗,w∗,y∗,λ∗, indicating the distance from the optimal
point.

We prove the convergence of DistributedQP in the following steps:

• Necessary Lemmas (Section D.2). First, we derive the descent relation (65), which estab-
lishes a relationship between the values of the distance function for consecutive iterations.
To derive this descent relation in Lemma 4, we first introduce the relations (R1)-(R8) in
Lemmas 1-3.

• Convergence (Section D.3). Next, we use the derived descent relation from Lemma 4 to
prove convergence to optimality (Theorem 1) based on Assumption 1.

D.2 NECESSARY LEMMAS

In this section, we present some necessary lemmas before proving the convergence of DistributedQP
in Section D.3. For notational convenience, let us define

fi(xi) =
1

2
x⊤
i Qixi + q⊤

i xi, Ci = {si|si ≤ bi}, i ∈ V.

Lemma 1. For all i ∈ V , the following four relationships hold at every iteration k:∑
i∈V

G⊤
i y

k+1
i = 0, (R1)

αkxk+1
i =

1

µk
i

(yk+1
i − yk

i)− (1− αk)Giw
k +Giw

k+1, (R2)

αkzk+1
i =

1

ρki
(λk+1

i − λk
i)− (1− αk)ski + sk+1

i , (R3)

λk
i
⊤(t1 − t2) = 0, ∀ t1, t2 ∈ Ci. (R4)

Proof. Relationship (R1) is equivalent with the argument proved in (29). Indeed, if we observe that
each matrix G⊤

i ∈ Rn×ni indicates the mapping from local indices (i, j) to global indices l for a
particular i, then we can write

∑
i∈V

G⊤
i y

k+1
i =


∑

G(i,j)=1[y
k+1
i]j

...∑
G(i,j)=n[y

k+1
i]j

 = 0, (33)

which yields (R1). Relationship (R2) follows by rearranging the dual update (9) and replacing w̃i =
Giw. Similarly, relationship (R3) follows by rearranging the dual update (8). In the remaining, we
focus on proving (R4). Let us repeat the si-update (6) as

sk+1
i = ΠCi

(
αkzk+1

i + (1− αk)ski + λk
i /ρ

k
i

)
. (34)

We define the closed convex cone C̄i = {p| p ≤ 0}, such that (34) is rewritten as

sk+1
i = ΠC̄i

(
ŝk+1
i

)
+ bi, (35)

with
ŝk+1
i = αkzk+1

i + (1− αk)ski + λk
i /ρ

k
i − bi. (36)

20

Published as a conference paper at ICLR 2025

Next, let us rearrange the dual update (8) as

λk+1
i = ρki (λ

k
i /ρ

k
i + αkzk+1

i + (1− αk)ski − sk+1
i), (37)

which can be rewritten through (36) as

λk+1
i = ρki (ŝ

k+1
i + bi − sk+1

i) (38)

Substituting (35) in the above, we get

λk+1
i = ρki

(
ŝk+1
i −ΠC̄i

(ŝk+1
i)

)
. (39)

For convenience, let us also repeat the definition of polar cones.

Definition 1 (Polar cones). Two cone sets D and Do are called polar cones if for any d ∈ D and
d̄ ∈ Do, if follows that d⊤d̄ = 0.

By Moreau’s decomposition - refer to Theorems 1.1 and 1.2 from Soltan (2019) - ŝk+1
i can then be

expressed as
ŝk+1
i = ΠC̄i

(
ŝk+1
i

)
+ΠC̄o

i

(
ŝk+1
i

)
, (40)

where C̄o
i is a polar cone to C̄i. Thus, using (39) and (40), we get λk+1

i = ρkiΠC̄o
i

(
ŝk+1
i

)
, which

implies that λk+1
i /ρki ∈ C̄o

i . Further, since C̄o
i is a cone, and ρki > 0, we get

λk+1
i ∈ C̄o

i . (41)

Now, any vector t ∈ Ci satisfies t − bi ∈ C̄i. Since C̄i and C̄o
i are polar cones, and using (41), the

following relation holds true by the definition of polar cones,

λk+1
i

⊤(t− bi) = 0 for all t ∈ Ci.
Thus, for any vectors t1, t2 ∈ Ci and for all k, we have

λk+1
i

⊤(t1 − t2) = λk+1
i

⊤(t1 − bi − (t2 − bi)) = 0, (42)

which proves (R4).

Lemma 2. For all i ∈ V , the following two relationships hold at every iteration k:(
∇fi(x

∗
i) + y∗

i

)⊤
(x∗

i − xk+1
i) + λ∗

i
⊤(z∗

i − zk+1
i) = 0, (R5)[

∇fi(x
k+1
i) + yk+1

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1

)]⊤
(xk+1

i − x∗
i)

+

[
λk+1
i + ρki

(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

)]⊤
(zk+1

i − z∗
i) = 0. (R6)

Proof. We start with proving (R5) using the KKT conditions of problem (3). The point
(x∗, z∗, s∗,w∗) is the optimum of (3) if and only if the following conditions are true:

Optimality for xi: ∇fi(x
∗
i) +A⊤

i ν
∗
i + y∗

i = 0, (43a)
Optimality for zi: − ν∗

i + λ∗
i = 0, (43b)

Optimality for si: λ∗
i ∈ NCi

(s∗i) ⇔ λ∗
i
⊤(si − s∗i) ≤ 0 ∀ si ∈ Ci, (43c)

Optimality for w:
∑
i∈V

G⊤
i y

∗
i = 0, (43d)

Constraints feasibility: z̃∗
i = s∗i , (43e)

x∗
i = Giw

∗, (43f)
Aix

∗
i = zi, (43g)

s∗i ∈ Ci. (43h)

From (43a), we have (
∇fi(x

∗
i) +A⊤

i ν
∗
i + y∗

i

)⊤
(x∗

i − xk+1
i) = 0, (44)

21

Published as a conference paper at ICLR 2025

and similarly from (43b), we get(
− ν∗

i + λ∗
i

)⊤
(z∗

i − zk+1
i) = 0. (45)

Adding (44) and (45), we get(
∇fi(x

∗
i) +A⊤

i ν
∗
i + y∗

i

)⊤
(x∗

i − xk+1
i) +

(
− ν∗

i + λ∗
i

)⊤
(z∗

i − zk+1
i) = 0,

which yields(
∇fi(x

∗
i)+y∗

i

)⊤
(x∗

i −xk+1
i)+λ∗

i
⊤(z∗

i −zk+1
i)+ν∗

i
⊤(Ai(x

∗
i −xk+1

i)−(z∗
i −zk+1

i)
)
= 0. (46)

Using (43g) and the fact that Aix
k+1
i − zk+1

i = 0, we can then simplify (46) to (R5).

Subsequently, we proceed with proving (R6). The KKT conditions for the (k+1)-th update of xi, zi
are given by

Optimality for xi: ∇fi(x
k+1
i) +A⊤

i ν
k+1
i + µk

i (x
k+1
i −Giw

k + yk
i /µ

k
i) = 0, (47a)

Optimality for zi: − νk+1
i + ρki (z

k+1
i − ski + λk

i /ρ
k
i) = 0, (47b)

Constraints feasibility: Aix
k+1
i = zk+1

i . (47c)

From (47a), we have[
∇fi(x

k+1
i) +A⊤

i ν
k+1
i + µk

i (x
k+1
i −Giw

k + yk
i /µ

k
i)
]⊤

(xk+1
i − x∗

i) = 0. (48)

We rewrite the term µk
i (x

k+1
i −Giw

k + yk
i /µ

k
i) using (9) as follows

µk
i (x

k+1
i −Giw

k + yk
i /µ

k
i) =

= µk
i

(
xk+1
i −Giw

k + yk+1
i /µk

i −
(
αkxk+1

i + (1− αk)Giw
k −Giw

k+1
))

= yk+1
i + µk

i

(
xk+1
i −Giw

k − αkxk+1
i − (1− αk)Giw

k +Giw
k+1
)

= yk+1
i + µk

i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1
)

such that (48) is given as[
∇fi(x

k+1
i) +A⊤

i ν
k+1
i + yk+1

i

+ µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1

)]⊤
(xk+1

i − x∗
i) = 0. (49)

Similarly, from (47b), we get[
− νk+1

i + ρki (z
k+1
i − ski + λk

i /ρ
k
i)
]⊤

(zk+1
i − z∗

i) = 0. (50)

We rewrite the term ρki (z
k+1
i − ski + λk

i /ρ
k
i) using (8) as follows

ρki (z
k+1
i − ski + λk

i /ρ
k
i) = ρki

(
zk+1
i − ski + λk+1

i /ρki −
(
αkzk+1

i + (1− αk)ski − sk+1
i

))
= λk+1

i + ρki
(
zk+1
i − ski − αkzk+1

i − (1− αk)ski + sk+1
i

)
= λk+1

i + ρki

(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

)
,

such that (50) is given as[
− νk+1

i + λk+1
i + ρki

(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

)]⊤
(zk+1

i − z∗
i) = 0. (51)

Combining (43g), (49), (51) and the fact that Aix
k+1
i − zk+1

i = 0, we obtain (R6).

22

Published as a conference paper at ICLR 2025

Lemma 3. For all i ∈ V , the following two relationships hold at every iteration k:(
yk+1
i − y∗

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1
))⊤

(xk+1
i − x∗

i)

=
1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+

(2− αk)

2(αk)2µk
i

∥yk+1
i − yk

i ∥2

+
(2− αk)µk

i

2(αk)2
∥Gi(w

k+1 −wk)∥2 + µk
i

2αk
(∥Gi(w

k+1 −w∗)∥2

− ∥Gi(w
k −w∗)∥2) + 1

αk
(yk+1

i − y∗
i)

⊤Gi

(
wk+1 − (1− αk)wk − αkw∗)

+
1

(αk)2
(yk+1

i − yk
i)

⊤Gi

(
(2− αk)wk+1 − (1 + (1− αk)2)wk − αk(1− αk)w∗), (R7)(

λk+1
i − λ∗

i + ρki
(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

))⊤

(zk+1
i − z∗

i)

=
1

2αkρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+

(2− αk)

2(αk)2ρki
∥λk+1

i − λk
i ∥2

+
ρki
2αk

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
)
+

(2− αk)ρki
2(αk)2

∥sk+1
i − ski ∥2

+
1

αk
(λk+1

i − λ∗
i)

⊤(−(1− αk)ski + sk+1
i − αks∗i). (R8)

Proof. Let us first simplify the individual terms of the LHS of (R7). For that, we start by rewriting
the term xk+1

i − x∗
i as follows using (R2),

xk+1
i − x∗

i =
1

αk

(
1

µk
i

(yk+1
i − yk

i)− (1− αk)Giw
k +Giw

k+1 − αkx∗
i

)
.

Using (43d), we can rewrite the above as

xk+1
i − x∗

i =
1

αk

(
1

µk
i

(yk+1
i − yk

i)− (1− αk)Giw
k +Giw

k+1 − αkGiw
∗
)

(52)

which can be simplified to

xk+1
i − x∗

i =
1

αkµk
i

(yk+1
i − yk

i) +
1

αk
Gi

(
wk+1 − (1− αk)wk − αkw∗). (53)

Let us now simplify the following term in the LHS of the relationship (R7)

(1−αk)xk+1
i − (2−αk)Giw

k +Giw
k+1 = (1−αk)(xk+1

i −Giw
k)+Gi(w

k+1−wk). (54)

Using (R2), we have

xk+1
i −Giw

k =
1

αk

(
1

µk
i

(yk+1
i − yk

i)− (1− αk)Giw
k +Giw

k+1

)
−Giw

k,

which can be written as

xk+1
i −Giw

k =
1

µk
i α

k
(yk+1

i − yk
i) +

1

αk
Gi(w

k+1 −wk). (55)

Substituting (55) in (54), we get

(1− αk)xk+1
i − (2− αk)Giw

k +Giw
k+1 =

(1− αk)

µk
i α

k
(yk+1

i − yk
i) +

1

αk
Gi(w

k+1 −wk).

Using the above result, we then rewrite the following term on the LHS of (R7) as

yk+1
i − y∗

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1
)

= yk+1
i − y∗

i +
(1− αk)

αk
(yk+1

i − yk
i) +

µk
i

αk
Gi(w

k+1 −wk).
(56)

23

Published as a conference paper at ICLR 2025

For notational simplicity, let us consider the LHS of (R7) as LHS(R7). Using (56) and (53), we get

LHS(R7) =
(
yk+1
i − y∗

i +
(1− αk)

αk
(yk+1

i − yk
i) +

µk
i

αk
Gi(w

k+1 −wk)

)⊤

(
1

αkµk
i

(yk+1
i − yk

i) +
1

αk
Gi

(
wk+1 − (1− αk)wk − αkw∗))

which can be further rewritten as

LHS(R7) =
1

αkµk
i

(yk+1
i − y∗

i)
⊤(yk+1

i − yk
i) +

1

αk
(yk+1

i − y∗
i)

⊤Gi

(
wk+1 − (1− αk)wk

− αkw∗)+ (1− αk)

(αk)2µk
i

∥yk+1
i − yk

i ∥2 +
(1− αk)

(αk)2
(yk+1

i − yk
i)

⊤Gi

(
wk+1

− (1− αk)wk − αkw∗)+ 1

(αk)2
(wk+1 −wk)⊤G⊤

i (y
k+1
i − yk

i)

+
µk
i

(αk)2
(
Gi(w

k+1 −wk)
)⊤

Gi

(
wk+1 − (1− αk)wk − αkw∗). (57)

Let us now simplify each term on the RHS of the above equation. We start with the terms including
only the variables yk+1

i , yk
i and y∗

i . Using the fact that a⊤b = 1
2 (∥a∥

2 + ∥b∥2 − ∥a− b∥2), we get

1

αkµk
i

(yk+1
i − y∗

i)
⊤(yk+1

i − yk
i) =

1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 + ∥yk+1

i − yk
i ∥2 − ∥yk

i − y∗
i ∥2
)
.

Using the above result, we can write

1

αkµk
i

(yk+1
i − y∗

i)
⊤(yk+1

i − yk
i) +

(1− αk)

(αk)2µk
i

∥yk+1
i − yk

i ∥2

=
1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 + ∥yk+1

i − yk
i ∥2 − ∥yk

i − y∗
i ∥2
)
+

(1− αk)

(αk)2µk
i

∥yk+1
i − yk

i ∥2

=
1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+

(2− αk)

2(αk)2µk
i

∥yk+1
i − yk

i ∥2. (58)

Next, we consider the following terms in the RHS of (57) involving only the variables wk+1,wk

and w∗,

µk
i

(αk)2
(
Gi(w

k+1 −wk)
)⊤

Gi

(
wk+1 − (1− αk)wk − αkw∗)

=
(1− αk)µk

i

(αk)2
∥Gi(w

k+1 −wk)∥2 + µk
i

αk

(
Gi(w

k+1 −wk)
)⊤(

Gi(w
k+1 −w∗)

)
.

(59)

Using a similar approach as used to derive (58), we obtain

(1− αk)µk
i

(αk)2
∥Gi(w

k+1 −wk)∥2 + µk
i

αk

(
Gi(w

k+1 −wk)
)⊤(

Gi(w
k+1 −w∗)

)
=

(2− αk)µk
i

2(αk)2
∥Gi(w

k+1 −wk)∥2 + µk
i

2αk
(∥Gi(w

k+1 −w∗)∥2 − ∥Gi(w
k −w∗)∥2).

(60)

Now, let us consider the following terms from the RHS of (57),

(1− αk)

(αk)2
(yk+1

i − yk
i)

⊤Gi

(
wk+1 − (1− αk)wk − αkw∗)
+

1

(αk)2
(wk+1 −wk)⊤G⊤

i (y
k+1
i − yk

i)

=
1

(αk)2
(yk+1

i − yk
i)

⊤Gi

(
(1− αk)wk+1 − (1− αk)2wk − αk(1− αk)w∗ +wk+1 −wk

)
=

1

(αk)2
(yk+1

i − yk
i)

⊤Gi

(
(2− αk)wk+1 − (1 + (1− αk)2)wk − αk(1− αk)w∗). (61)

24

Published as a conference paper at ICLR 2025

Substituting (58), (59), (60) and (61) into (57), we get

LHS(R7) =
1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+

(2− αk)

2(αk)2µk
i

∥yk+1
i − yk

i ∥2

+
(2− αk)µk

i

2(αk)2
∥Gi(w

k+1 −wk)∥2 + µk
i

2αk
(∥Gi(w

k+1 −w∗)∥2

− ∥Gi(w
k −w∗)∥2) + 1

αk
(yk+1

i − y∗
i)

⊤Gi

(
wk+1 − (1− αk)wk − αkw∗)

+
1

(αk)2
(yk+1

i − yk
i)

⊤Gi

(
(2− αk)wk+1 − (1 + (1− αk)2)wk − αk(1− αk)w∗)

(62)
which proves (R7).

Subsequently, we prove the relationship (R8). Using similar steps as for (R7), we get(
λk+1
i − λ∗

i + ρki
(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

))⊤

(zk+1
i − z∗

i)

=
1

2αkρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+

(2− αk)

2(αk)2ρki
∥λk+1

i − λk
i ∥2

+
ρki
2αk

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
)
+

(2− αk)ρki
2(αk)2

∥sk+1
i − ski ∥2

+
1

αk
(λk+1

i − λ∗
i)

⊤(sk+1
i − (1− αk)ski − αks∗i)

+
1

(αk)2
(λk+1

i − λk
i)

⊤((2− αk)sk+1
i − (1 + (1− αk)2)ski − αk(1− αk)s∗i

)
.

(63)

Let us now simplify the last term of the RHS of the above equation as follows

(λk+1
i − λk

i)
⊤((2− αk)sk+1

i − (1 + (1− αk)2)ski − αk(1− αk)s∗i
)

= (1 + (1− αk)2)(λk+1
i − λk

i)
⊤(sk+1

i − ski) + αk(1− αk)(λk+1
i − λk

i)
⊤(sk+1

i − s∗i).
(64)

From (6) and (43h), we have that the vectors ski , s
k+1
i , s∗i ∈ Ci. Using (R4), the above equation

gives us

(λk+1
i − λk

i)
⊤((2− αk)sk+1

i − (1 + (1− αk)2)ski − αk(1− αk)s∗i
)

= (λk+1
i − λk

i)
⊤((2− αk)sk+1

i − (2 + (αk)2 − 2αk)ski + (−αk + (αk)2)s∗i
)
= 0.

It follows that (63) then simplifies to (R8).

Lemma 4. The following inequality holds true at every iteration k:∑
i∈V

(
1

µk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+ µk

i (∥Gi(w
k+1 −w∗)∥2 − ∥Gi(w

k −w∗)∥2)

+
1

ρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+ ρki

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
))

≤ − (2− αk)

αk

∑
i∈V

(
1

µk
i

∥yk+1
i − yk

i ∥2 + µk
i ∥Gi(w

k+1 −wk)∥2 + 1

ρki
∥λk+1

i − λk
i ∥2

+ ρki ∥sk+1
i − ski ∥2

)
.

(65)

Proof. We start by combining the relationships (R5) and (R6) to get(
yk+1
i − y∗

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1
))⊤

(xk+1
i − x∗

i)

+

(
λk+1
i − λ∗

i + ρki
(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

))⊤

(zk+1
i − z∗

i)

= −(∇fi(x
k+1
i)−∇fi(x

∗
i))

⊤(xk+1
i − x∗

i).

(66)

25

Published as a conference paper at ICLR 2025

Since fi is convex, then we have (∇fi(x
k+1
i)−∇fi(x

∗
i))

⊤(xk+1
i − x∗

i) ≥ 0, which gives(
yk+1
i − y∗

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1
))⊤

(xk+1
i − x∗

i)

+

(
λk+1
i − λ∗

i + ρki
(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

))⊤

(zk+1
i − z∗

i) ≤ 0.

(67)

Summing (67) over all i ∈ V , we get

∑
i∈V

(
yk+1
i − y∗

i + µk
i

(
(1− αk)xk+1

i − (2− αk)Giw
k +Giw

k+1
))⊤

(xk+1
i − x∗

i)

+
∑
i∈V

(
λk+1
i − λ∗

i + ρki
(
(1− αk)zk+1

i − (2− αk)ski + sk+1
i

))⊤

(zk+1
i − z∗

i) ≤ 0.

(68)

Now, we use the relationships (R7) and (R8) to rewrite the above inequality as

0 ≥
∑
i∈V

(
1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+

(2− αk)

2(αk)2µk
i

∥yk+1
i − yk

i ∥2

+
(2− αk)µk

i

2(αk)2
∥Gi(w

k+1 −wk)∥2 + µk
i

2αk
(∥Gi(w

k+1 −w∗)∥2

− ∥Gi(w
k −w∗)∥2) + 1

αk
(yk+1

i − y∗
i)

⊤Gi

(
wk+1 − (1− αk)wk − αkw∗)

+
1

(αk)2
(yk+1

i − yk
i)

⊤Gi

(
(2− αk)wk+1 − (1 + (1− αk)2)wk − αk(1− αk)w∗)

+
1

2αkρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+

(2− αk)

2(αk)2ρki
∥λk+1

i − λk
i ∥2

+
ρki
2αk

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
)
+

(2− αk)ρki
2(αk)2

∥sk+1
i − ski ∥2

+
1

αk
(λk+1

i − λ∗
i)

⊤(−(1− αk)ski + sk+1
i − αks∗i)

)
.

(69)
Let us now further simplify the terms on the RHS of the above equation. For that, let us start with
the last term on the RHS. We have

(λk+1
i − λ∗

i)
⊤(−(1− αk)ski + sk+1

i − αks∗i) = (λk+1
i − λ∗

i)
⊤(sk+1

i − s∗i)

− (1− αk)(λk+1
i − λ∗

i)
⊤(ski − s∗i).

(70)

Using (R4), (43c), and the fact that ski , s
k+1
i , s∗i ∈ Ci, we get

(λk+1
i − λ∗

i)
⊤(sk+1

i − s∗i) ≥ 0, (71)

(λk+1
i − λ∗

i)
⊤(ski − s∗i) ≥ 0. (72)

Thus, for αk ≥ 1, combining (70), (71), and (72), we get

(λk+1
i − λ∗

i)
⊤(−(1− αk)ski + sk+1

i − αks∗i) ≥ 0. (73)

Now, the following results hold based on the relationship (R1) and (43d),∑
i∈V

(yk+1
i − y∗

i)
⊤Gi = 0,

∑
i∈V

(yk+1
i − yk

i)
⊤Gi = 0. (74)

26

Published as a conference paper at ICLR 2025

By substituting (73) and (74) in (69), and by rearranging the terms, we get∑
i∈V

(
1

2αkµk
i

(
∥yk+1

i − y∗
i ∥2 − ∥yk

i − y∗
i ∥2
)
+

µk
i

2αk
(∥Gi(w

k+1 −w∗)∥2 − ∥Gi(w
k −w∗)∥2)

+
1

2αkρki

(
∥λk+1

i − λ∗
i ∥2 − ∥λk

i − λ∗
i ∥2
)
+

ρki
2αk

(
∥sk+1

i − s∗i ∥2 − ∥ski − s∗i ∥2
))

≤ −
∑
i∈V

(
(2− αk)

2(αk)2µk
i

∥yk+1
i − yk

i ∥2 +
(2− αk)µk

i

2(αk)2
∥Gi(w

k+1 −wk)∥2

+
(2− αk)

2(αk)2ρki
∥λk+1

i − λk
i ∥2 +

(2− αk)ρki
2(αk)2

∥sk+1
i − ski ∥2

)
.

Since, αk ≥ 1, we can multiply the above equation with 2αk to obtain (65).

D.3 PROOF OF THEOREM 1

Let us first rearrange the inequality (65) derived in Lemma 4, as

(2− αk)

αk

∑
i∈V

(
1

µk
i

∥yk+1
i − yk

i ∥2 + µk
i ∥Gi(w

k+1 −wk)∥2 + 1

ρki
∥λk+1

i − λk
i ∥2 + ρki ∥sk+1

i − ski ∥2
)

≤
∑
i∈V

(
1

µk
i

(
∥yk

i − y∗
i ∥2 − ∥yk+1

i − y∗
i ∥2
)
+ µk

i (∥Gi(w
k −w∗)∥2 − ∥Gi(w

k+1 −w∗)∥2)

+
1

ρki

(
∥λk

i − λ∗
i ∥2 − ∥λk+1

i − λ∗
i ∥2
)
+ ρki

(
∥ski − s∗i ∥2 − ∥sk+1

i − s∗i ∥2
))

.

(75)
For convenience, let us define for each iteration k, the terms ηki , i ∈ V , and ηk such that

ηki + 1 = max

(
ρki

ρk−1
i

,
ρk−1
i

ρki
,

µk
i

µk−1
i

,
µk−1
i

µk
i

)
, ηkmax = max

i∈V
ηki ,

and the term V k as

V k =
∑
i∈V

(
1

µk−1
i

∥yk
i − y∗

i ∥2 + µk−1
i ∥Gi(w

k −w∗)∥2 + 1

ρk−1
i

∥λk
i − λ∗

i ∥2 + ρk−1
i ∥ski − s∗i ∥2

)
.

Based on the definition of ηki , we can write
1

µk
i

∥yk
i − y∗

i ∥2 + µk
i ∥Gi(w

k −w∗)∥2 + 1

ρki
∥λk

i − λ∗
i ∥2 + ρki ∥ski − s∗i ∥2

≤ (ηki + 1)

(
1

µk−1
i

∥yk
i − y∗

i ∥2 + µk−1
i ∥Gi(w

k −w∗)∥2 + 1

ρk−1
i

∥λk
i − λ∗

i ∥2 + ρk−1
i ∥ski − s∗i ∥2

)
.

By adding the above result over all i ∈ V , and using the fact that ηkmax ≥ ηki for all i, we get∑
i∈V

(
1

µk
i

∥yk
i − y∗

i ∥2 + µk
i ∥Gi(w

k −w∗)∥2 + 1

ρki
∥λk

i − λ∗
i ∥2 + ρki ∥ski − s∗i ∥2

)
≤
∑
i∈V

(ηki + 1)

(
1

µk−1
i

∥yk
i − y∗

i ∥2 + µk−1
i ∥Gi(w

k −w∗)∥2 + 1

ρk−1
i

∥λk
i − λ∗

i ∥2

+ ρk−1
i ∥ski − s∗i ∥2

)
≤ (ηkmax + 1)

∑
i∈V

(
1

µk−1
i

∥yk
i − y∗

i ∥2 + µk−1
i ∥Gi(w

k −w∗)∥2 + 1

ρk−1
i

∥λk
i − λ∗

i ∥2

+ ρk−1
i ∥ski − s∗i ∥2

)
= (ηkmax + 1)V k.

(76)

27

Published as a conference paper at ICLR 2025

Substituting the above result in (75), we get

(2− αk)

αk

∑
i∈V

(
1

µk
i

∥yk+1
i − yk

i ∥2 + µk
i ∥Gi(w

k+1 −wk)∥2 + 1

ρki
∥λk+1

i − λk
i ∥2

+ ρki ∥sk+1
i − ski ∥2

)
≤ (ηkmax + 1)V k − V k+1.

(77)

Now that we have derived the above relationship, we need to prove that V k is bounded. By the
definition of V k, we have that V k is lower bounded by zero. Thus, we now prove that V k is upper
bounded. From (77), we have

V k+1 ≤ (ηkmax + 1)V k, (78)
which leads to the following relationship

V k+1 ≤
k∏

l=1

(ηlmax + 1)V 1. (79)

It should be noted that based on Assumption 1, we have (ηkmax + 1) → 1, as k → ∞. Therefore,
(79) implies that V k+1 is upper bounded for all k, and there exists Vmax such that

V k ≤ Vmax < ∞, for all k. (80)

Let us now consider summing (77) over k as follows
∞∑
k=1

(2− αk)

αk

∑
i∈V

(
1

µk
i

∥yk+1
i − yk

i ∥2 + µk
i ∥Gi(w

k+1 −wk)∥2 + 1

ρki
∥λk+1

i − λk
i ∥2

+ ρki ∥sk+1
i − ski ∥2

)
≤

∞∑
k=1

(ηkmax + 1)V k − V k+1.

(81)
The term on the RHS of the above equation can be further simplified as follows

∞∑
k=1

(ηkmax + 1)V k − V k+1 =

∞∑
k=1

ηkmaxV
k +

∞∑
k=1

(V k − V k+1) = V 1 − V ∞ +

∞∑
k=1

ηkmaxV
k.

Based on Assumption 1, we have ηkmax → 0 as k → ∞, which implies that
∞∑
k=1

ηkmax < ∞. (82)

Using the above fact and (80), we can upper bound
∑∞

k=1 η
k
maxV

k as follows
∞∑
k=1

ηkmaxV
k ≤

(∞∑
k=1

ηkmax

)
Vmax < ∞. (83)

Using the facts that V 1 is upper bounded, and V ∞ is lower bounded by zero, and using the above
equation, we get

V 1 − V ∞ +

∞∑
k=1

ηkmaxV
k ≤ V 1 +

∞∑
k=1

ηkmaxV
k < ∞.

Thus, we can rewrite (81) as
∞∑
k=1

(2− αk)

αk

∑
i∈V

(
1

µk
i

∥yk+1
i − yk

i ∥2 + µk
i ∥Gi(w

k+1 −wk)∥2 + 1

ρki
∥λk+1

i − λk
i ∥2

+ ρki ∥sk+1
i − ski ∥2

)
< ∞.

(84)

Since αk ∈ [1, 2), we have (2−αk)
αk > 0 for all k. Further, we have 0 < µk

i , ρ
k
i < ∞ for all k. Thus,

(84) implies that as k → ∞,

(yk+1
i − yk

i) → 0, Gi(w
k+1 −wk) → 0, (λk+1

i − λk
i) → 0, sk+1

i − ski → 0, (85)

28

Published as a conference paper at ICLR 2025

for all i ∈ V . This proves the convergence of the variables yi,λi and si. Further, it follows that
G(wk+1 −wk) → 0. Since G is full column rank, this implies that as k → ∞,

(wk+1 −wk) → 0, (86)

which proves the convergence of the global variable w. Subsequently, combining (R2), (R3), and
the convergence result (85), we also obtain that as k → ∞,

(xk+1
i − xk

i) → 0, (zk+1
i − zk

i) → 0, (87)

for all i ∈ V . Hence, we have proved the convergence of the DistributedQP algorithm.

Now that we have proved the convergence of all variables, we proceed with verifying that the limit
point of convergence is the optimal solution to problem (3). For that, we need to check if the limit
point satisfies the KKT conditions (43) for the problem (3). The convergence of the dual variables
yi and λi, and the update steps verify that the limit points have constraint feasibility (43e - 43h).
The constraint feasibility of the limit points and the optimality conditions of (k + 1)-th update of
xi, zi (47) imply that the limit points satisfy the optimality conditions (43a - 43b). Further, using
relations (R1) and (R4), we can prove that the limit points also satisfy (43c - 43d). Consequently,
the DistributedQP algorithm converges to the optimal point of problem (3) which is equivalent to
problem (2).

E DETAILS ON DEEPDISTRIBUTEDQP FEEDBACK POLICIES

In DeepDistributedQP, the penalty parameters are given by

ρki = SoftPlus
(
ρ̄ki + πk

i,ρ(r
k
i,ρ, s

k
i,ρ; θ

k
i,ρ)
)
, µk

i = SoftPlus
(
µ̄k
i + πk

i,µ(r
k
i,µ, s

k
i,µ; θ

k
i,µ)
)

(88)

where ρ̄ki , µ̄k
i are learnable feed-forward parameters and πk

i,·(r
k
i,·, s

k
i,·; θ

k
i,·) are learnable feedback

policies parameterized by fully-connected neural network layers with inputs rki,·, s
k
i,· and weights

θki,·. The analytical expressions for rki,·, s
k
i,· are provided as follows:

rki,ρ =

[
∥zk

i − ski ∥2
∥Aix

k
i − ski ∥2

]
, ski,ρ =

[
∥ski − sk−1

i ∥2
∥Qix

k
i + qi +A⊤

i λ
k
i ∥2

]
, (89a)

rki,µ = ∥xk
i − w̃k

i ∥2, ski,µ = ∥w̃k
i − w̃k−1

i ∥2, (89b)

being motivated by the primal and dual residuals of ADMM (Boyd et al., 2011, Section 3) and the
ones used in the OSQP algorithm (Stellato et al., 2020).

F THE CENTRALIZED VERSION: DEEPQP

The centralized version of DeepDistributedQP boils down to simply unfolding the iterates of the
standard OSQP algorithm for solving centralized QPs (1), while applying the same principles as in
Section 4.1 for DeepDistributedQP.

For convenience, we repeat the OSQP updates from Stellato et al. (2020) here:

1. Update for (x, z): Solve linear system[
Q+ σI A⊤

A −1/ρkI

] [
xk+1

νk+1

]
=

[
σtk − q

sk − 1/ρkλk

]
(90)

and update
zk+1 = sk + 1/ρk(νk+1 − λk). (91)

As explained in Stellato et al. (2020), as the scale of the system (90) increases, it is often
preferable to solve the following system instead,

(Q+ σI + ρkA⊤A)xk+1 = σxk − q +A⊤(ρkzk − yk), (92)

using a method such as conjugate gradient.

29

Published as a conference paper at ICLR 2025

2. Update for (t, s):

tk+1 = αkxk+1 + (1− αk)tk (93a)

sk+1 = ΠC
(
αkzk+1 + (1− αk)sk + λk/ρk

)
(93b)

3. Dual update for λ:

λk+1 = λk + ρk(αkzk+1 + (1− αk)sk − sk+1) (94)

The DeepQP framework then emerges through unfolding the OSQP updates following the same
methodology as in DeepDistributedQP. In particular, its iterations are unrolled for a prescribed
amount of K iterations as shown in Fig. 4.

Similar to DeepDistributedQP, the penalty and relaxation parameters are given by

ρk = SoftPlus
(
ρ̄k + πk(rk, sk; θk)

)
, αk = Sigmoid1,2(ᾱ

k) (95)

where ρ̄k and ᾱk are learnable feed-forward parameters. The feedback components of the parame-
ters ρk are obtained through the learnable policies πk(rk, sk; θk) parameterized by fully-connected
neural network layers with inputs rk, sk and weights θk. The expressions for rk, sk are also moti-
vated by the ADMM and OSQP residuals, given by

rk =

[
∥zk − sk∥2
∥Axk − sk∥2

]
, sk =

[
∥sk − sk−1∥2

∥Qxk + q +A⊤λk∥2

]
(96)

G PROOF OF INDIRECT METHOD IMPLICIT DIFFERENTIATION

We start by restating the implicit function theorem, whose proof is given in Krantz & Parks (2002).
Lemma 5 (Implicit Function Theorem). Let r : Rn × Rm → Rn be a continuously differentiable
function. Let (x0,θ0) be a point such that r(x0,θ0) = 0. If the Jacobian matrix ∂r

∂x (x0,θ0) is
invertible, then there exists a function x∗(·) defined in a neighborhood of θ0 such that x∗(θ0) = x0,
and

∂x∗

∂θ
(θ) = −

(
∂r

∂x
(x∗(θ),θ)

)−1
∂r

∂θ
(x∗(θ),θ). (97)

Proof of Theorem 2. Let θ = (Q̄k
i , b̄

k
i) be the concatenation of all the parameters in Eq. (12).

Q̄k
i is always positive definite since Qi is positive definite and the penalty parameters are al-

ways non-negative. Therefore, Eq. (12) has a unique solution xk+1
i satisfying r(xk+1

i ,θ) :=

Q̄k
i x

k+1
i − b̄ki = 0. Applying Lemma 5 to this residual function yields the relationship ∂xk+1

i

∂θ (θ) =

−(Q̄k
i)

−1 ∂r
∂θ (x

k+1
i (θ),θ).

Now, for any downstream loss function L(xk+1
i (θ)), we have that

∇θL(x
k+1
i (θ)) =

∂xk+1
i

∂θ
(θ)∇xL(x

k+1
i (θ))

= − ∂r

∂θ
(xk+1

i (θ),θ)⊤(Q̄k
i)

−1∇xL(x
k+1
i (θ))

=
∂r

∂θ
(xk+1

i (θ),θ)⊤dxk+1
i , (98)

where dxk+1
i is the unique solution to the linear system

Q̄k
i dx

k+1
i = −∇xL(x

k+1
i (θ)).

Expanding the matrix multiplication in (98) yields

∇Q̄k
i
L =

1

2
(xk+1

i ⊗ dxk+1
i + dxk+1

i ⊗ xk+1
i),

∇b̄k
i
L = −dxk+1

i .

30

Published as a conference paper at ICLR 2025

H BACKGROUND ON PAC-BAYES THEORY

Here, we provide a brief overview of PAC-Bayes theory (Alquier, 2024). Consider a bounded loss
function ℓ(ζ; θ). Without loss of generality, we assume that this loss is uniformly bounded between
0 and 1. PAC-Bayes theory aims to providing a probabilistic bound for the true expected loss

ℓD(P) = Eζ∼D Eθ∼P [ℓ(ζ; θ)] , (99)

where D is the data distribution — in our case, this is the distribution optimization problems are
drawn from. The empirical expected loss is given by,

ℓS(P) = Eθ∼P

 1

H

H∑
j=1

ℓ(ζj ; θ)

 , (100)

where S = {ζj}Hj=1 is the training dataset consisting of H problem instances.

The PAC-Bayes framework operates by forming a bound that holds in high probability on the true
loss ℓD(P) in terms of the empirical loss and the deviation between the learned policy P and a prior
policy P0 used to as an initial guess for P . This deviation is measured using the KL divergence.
Importantly, P0 need not be a Bayesian prior but can be any distribution independent of the data
used to train P and evaluate the sample loss. Moreover, ℓ(ζ; θ) need not be the loss used to train
P , but can be any bounded function. This observation is useful because, both in the literature and
in the sequel, it is common to use a loss function modified for practicality during training before
evaluating the bound using the loss function of interest.

Specifically, the following PAC-Bayes bounds hold with probability 1− δ,

ℓD(P) ≤ D−1
KL

(
ℓS(P)∥

DKL(P∥P0) + log 2
√
H

δ

H

)
≤ ℓS(P) +

√
DKL(P∥P0) + log 2

√
H

δ

2H
, (101)

where the D−1
KL (p∥c) is the inverse of the KL divergence for Bernoulli random variables B(p),B(q):

D−1
KL (p∥c) = sup{q ∈ [0, 1] | DKL(B(p)∥B(q)) ≤ c}. (102)

The probability δ captures the failure case that the data set S is not sufficiently representative of the
data distribution D. In the sequel, both of the above inequalities will be used. As the first bound is
tighter, it is used to evaluate the generalization capabilities of the learned optimizer. The benefit of
the second, looser, bound is that its form is convenient to use during training as a regularizer. Using
both bounds in this manner is a common technique in the PAC-Bayes literature (Majumdar et al.,
2021; Dziugaite & Roy, 2017).

I OPTIMIZING AND EVALUATING GENERALIZATION BOUND

Two important requirements for establishing a tight PAC-Bayes bound are selecting an informative
prior and optimizing the PAC-Bayes bounds in (101) instead of simply minimizing the loss function.
The choice of prior P0 is particularly important because the KL divergence is unbounded and can
produce a vacuous result (Dziugaite et al., 2021). While the distribution P0 need not be a Bayesian
prior, it must be selected independently from the data used to optimize P and evaluate the bound. To
select P0, we follow a common approach in the literature and split our training set S into two disjoint
subsets S0,S1. The prior P0 is first trained using the data set S0 and the loss ℓ(D; Θ) discussed in
Section 4.

Subsequently, the posterior P is trained by minimizing the looser (i.e., rightmost) PAC-Bayes bound
in (101). This bound is used for training because it is straightforward to evaluate in comparison to
computing the inverse of the KL divergence, and this objective is easily interpreted as minimizing
an expected loss function with a regularizer. To evaluate the loss function in the PAC-Bayes bound,
parameters are sampled from P using the current network weights and an empirical average is used.
Once training is complete, the PAC-Bayes bound is evaluated as described in Theorem 3, i.e., by
using the tighter PAC-Bayes bound in (101) and the sample convergence bound in (16).

31

Published as a conference paper at ICLR 2025

J DETAILS ON EXPERIMENTS

This section provides further details on the problems considered in the experiments, the training of
the learned optimizers, as well as the evaluation of both learned and traditional methods.

J.1 PROBLEM TYPES IN CENTRALIZED EXPERIMENTS

Random QPs. We consider randomly generated problems of the following form

min
x

1

2
x⊤Qx+ q⊤x s.t. Ax ≤ b, Cx = d. (103)

For each generated problem, the cost Hessian is given by Q = F⊤F + γI , where each element
of F ∈ Rn×n is sampled through Fij ∼ N (0, 1) and γ = 1.0. The coefficients of q are also
sampled as qi ∼ N (0, 1). The elements of the inequality constraints matrix A ∈ Rm×n are given
by Aij ∼ N (0, 1), while b = Aθ, where each element of θ ∈ Rn is sampled through θi ∼ N (0, 1).
Similarly, the elements of the equality constraints matrix C ∈ Rp×n are given by Cij ∼ N (0, 1),
while d = Cξ, where each element of ξ ∈ Rn is ξi ∼ N (0, 1).

For random QPs without equality constraints, we set n = 50, m = 40 and p = 0. For random QPs
with equality constraints, we set n = 50, m = 25 and p = 20.

Optimal control. We consider linear optimal control problems of the following form

min
x,u

T−1∑
t=0

x⊤
t Qxt + u⊤

t Rut + x⊤
TQTxT (104a)

s.t. xt+1 = Adxt +Bdut, t = 0, . . . , T − 1, (104b)
Auut ≤ bu, Axxt ≤ bx, t = 0, . . . , T, (104c)
x0 = x̄0. (104d)

where x = {x0, . . . ,xT } is the state trajectory, u = {u0, . . . ,uT−1} is the control trajectory, x̄0

is the given initial state condition, Q and R are the running state and control cost matrices, QT is
the terminal state cost matrix, Ad and Bd are the dynamics matrices, and finally Au, bu and Ax, bx
are the control and state constraints coefficients, respectively.

Both the double integrator and the mass-spring problem setups are drawn from Chen et al. (2022a).
For the double integrator system, we have xt ∈ R2 and ut ∈ R, with time horizon T = 20. The
dynamics matrices are given by

Ad =

[
1 1
0 1

]
, Bd =

[
0.5
0.1

]
(105)

The cost matrices are Q = QT = I2 and R = 1.0. The state and control constraint coefficients are
given by

Ax =

[
I2
−I2

]
, bx = [5 1 5 1]

⊤
, Au =

[
1
−1

]
, bu = [0.1 0.1]

⊤
. (106)

Finally, the initial state conditions are sampled from the uniform distribution U [[−1;−0.3], [1; 0.3]].

For the oscillating masses, we have xt ∈ R12 and ut ∈ R3, with time horizon T = 10. The discrete-
time dynamics matrices are obtained from the continuous-time ones through Euler discretization,

Ad = I +Ac∆t, Bd = Ac∆t. (107)

The continuous-time dynamics matrices are given by

Ac =

[
06×6 I6

aI6 + cL6 + cL⊤
6 bI6 + dL6 + dL⊤

6

]
, Bc =

[
06×3

F

]
(108)

with c = 1.0, d = 0.1, a = −2c, b = −2.0. L6 is the 6× 6 lower shift matrix and

F = [e1 −e1 e2 e3 −e2 e3]
⊤ (109)

32

Published as a conference paper at ICLR 2025

where e1, e2, e3 are the standard basis vectors in R3.

The timestep is set as ∆t = 0.5. The cost matrices are Q = QT = I12 and R = I3. The state and
control constraints are defined through

Ax =

[
I12
−I12

]
, bx = 4 · 124, Au =

[
I3
−I3

]
, bu = 0.5 · 16. (110)

The initial conditions x̄0 are sampled from U
[
[−1, 1]12

]
.

Portfolio optimization. We consider the same portfolio optimization problem setup as in Stellato
et al. (2020). For completeness, we briefly repeat it here,

max
x

µ⊤x− γ(x⊤Σx) s.t. x1 + · · ·+ xn = 1, x ≥ 0, (111)

where x ∈ Rn is the assets allocation vector, µ ∈ Rn is the expected returns vector, Σ ∈ RN
+ is

the risk covariance matrix and γ > 0 is the risk aversion parameter. The matrix Σ is of the form
Σ = FF⊤+D with F ∈ Rd×n is the factors matrix and D ∈ Rn×n is a diagonal matrix involving
individual asset risks. Using an auxiliary variable t = F⊤x, then problem equation 111 is rewritten
as

min
x,t

x⊤Dx+ t⊤t− 1

γ
µ⊤x s.t. t = F⊤x, 1⊤x = 1, x ≥ 0. (112)

For the problems we are generating, we use n = 250, k = 25 and γ = 1.0. Each element of the
expected return vector µ is sampled through µi ∼ N (0, 1). The matrix F consists of 50% non-zero
elements sampled through Fij ∼ N (0, 1). Finally, the diagonal elements of D are sampled with
Dii ∼ U [0,

√
k].

LASSO. The least absolute shrinkage and selection operator (LASSO) is a linear regression tech-
nique with an added ℓ1-norm regularization term to promote sparsity in the parameters (Tibshirani,
1996). We again consider the same problem setup as in Stellato et al. (2020), where the initial
optimization problem

min
x

∥Ax− b∥22 + λ∥x∥1 (113)

is rewritten as
min
x,t

(Ax− b)⊤(Ax− b) + λ1⊤t s.t. − t ≤ x ≤ t, (114)

where x ∈ Rn is the vector of parameters, A ∈ Rm×n is the data matrix, λ is the weighting
parameter, and t ∈ Rn are newly introduced variables. The matrix A consists of 15% non-zero
elements sampled through Aij ∼ N (0, 1). The true sparse vector v ∈ Rn to be learned consists of
50% non-zero elements sampled through vi ∼ N (0, 1/n). We then construct b = Av + ξ where
ξi ∼ N (0, 1) represents noise in the data. Finally, we set λ = (1/5)∥A⊤b∥∞. For the problems we
are generating, we set n = 100 and m = 104.

J.2 PROBLEM TYPES IN DISTRIBUTED EXPERIMENTS

Random Networked QPs. In this family of problems, we generate random QPs with an under-
lying network structure. Consider an undirected graph G(V, E), where V and E are the nodes and
edges sets, respectively. Each node i is associated with a decision variable xi ∈ Rni . Then, we
generate problems of the following form

min
{xi}i∈V

∑
i∈V

1

2
x⊤
i Qixi + q⊤

i xi (115a)

s.t. Aij

[
xi

xj

]
≤ bij , Cij

[
xi

xj

]
= dij , (i, j) ∈ E . (115b)

For each generated problem, a cost Hessian is constructed as Qi = F⊤
i Fi+γI , where each element

of Fi ∈ Rni×ni is sampled through F kl
i ∼ N (0, 1) and γ = 1.0. The elements of the cost

coefficients vectors qi are also sampled through qk
i ∼ N (0, 1). The elements of the inequality

33

Published as a conference paper at ICLR 2025

constraints matrix Aij ∈ Rmij×(ni+nj) are given by Akl
ij ∼ N (0, 1). The vectors bij ∈ Rmij are

obtained through bij = Aijθij , where each element of θij ∈ Rni+nj is sampled through θk
ij ∼

N (0, 1). In a similar manner, the elements of the equality constraints matrices Cij ∈ Rpij×(ni+nj)

are generated through Ckl
ij ∼ N (0, 1), while the vectors dij ∈ Rpij are acquired through dij =

Cijξij , where each element of ξij ∈ Rni+nj is generated with ξkij ∼ N (0, 1).

It is straightforward to observe that problems of the form (115) can be cast in the form (2) by
introducing the augmented node variables xaug

i = [xi, {xj}j∈Ni
]⊤. The problem data can then

be augmented based on this new xaug
i to yield the desired problem structure. Most notably, the

constraints can be rewritten as Aaug
i xaug

i ≤ baugi and Caug
i xaug

i = daugi , respectively.

In our experiments, the underlying graph structure is a square grid. For random QPs without equality
constraints, we set ni = 10, mij = 5, and pij = 0. For random QPs with equality constraints, we
set ni = 10, mij = 3, and pij = 2 for the N = 16 training experiment and pij = 1 for the rest of
the testing experiments until N = 1, 024.

Multi-agent optimal control. We adapt the distributed MPC problem from (Conte et al., 2012a;b),
which generalizes to different systems based on the choice of dynamics matrices, as described below.
The optimization problem is given as

min
x,u

∑
i∈V

T−1∑
t=0

(xt
i)

⊤Qix
t
i + (ut

i)
⊤Riu

t
i + (xT

i)
⊤Pix

T
i , (116a)

s.t. xt+1
i = Aiix

t
i +Biu

t
i +

∑
j∈Ni

Aijx
t
j , t = 0, . . . , T − 1, i ∈ V (116b)

Gi
xx

t
i ≤ f i

x, G
i
uu

t
i ≤ f i

u, t = 0, . . . , T, i ∈ V (116c)

x0
i = x̄0

i , i ∈ V, (116d)

where xt
i and ut

i are the state and control for agent i at time t. Eq. (116b) describes the dynamics
and the coupling between the agents, Eq. (116c) describe local inequality constraints, and Eq. (116d)
describes the initial condition for each of the agents.

For the coupled pendulums, the individual state xt
i ∈ R2 for each agent consists of the angle and

angular velocity of the pendulum and the control ut
i ∈ R1 is the torque. The dynamics matrices are

given as

Aii =

[
1 dt

−(gℓ + nn(i)k
m)dt 1− nn(i)c

m dt

]
, Aij =

[
0 0

k
mdt c

mdt

]
, Bi =

[
0

1
mℓ2 dt

]
,

where dt = 0.1 is the discretization step size, g = 9.81 is the gravitational constant, m = 1.0 is the
mass of each pendulum, ℓ = 0.5 is the length of each pendulum, nn(i) is the number of neighbors of
agent i, k = 0.1 is the spring constant between each pendulum, and c = 0.1 is the damping constant
between each pendulum. We have used the small angle assumption sin θ ≈ θ so the dynamics are
linear and therefore the optimization is convex. There are no inequality constraints for the coupled
pendulums. The initial states are sampled uniformly from U [−π, π]. Finally, we considered N = 10
and T = 30.

For the coupled oscillating masses, we adapt the same benchmark system from Chen et al. (2022a)
used in the non-distributed experiments. The individual state xt

i ∈ R2 for each agent consists of the
displacement and velocity of the mass and the control ut

i ∈ R1 is the force acting on the mass. The
dynamics matrices are

Aii =

[
1 dt

− 2k
m dt 1− 2c

mdt

]
, Aij =

[
0 0

k
mdt c

mdt

]
, Bi =

[
0

1
mdt

]
,

where dt = 0.5 is the discretization step size, m = 1.0 is the mass, k = 0.4 is the spring constant
between each mass, and c = 0.1 is the damping constant between each mass. The initial states are
sampled uniformly from U [−2.0, 2.0]. Inequality constraints −4 ≤ xt

i ≤ 4 and −0.5 ≤ ut
i ≤ 0.5

are represented as

Gi
x =

[
I2
−I2

]
, f i

x = 4 · 14, Gi
u =

[
1
−1

]
, f i

u = 0.5 · 12,

34

Published as a conference paper at ICLR 2025

For both the distributed MPC problems described above, the cost matrices are taken to be identity
matrices: Qi = I2, Ri = I1, and Pi = I2, for all i ∈ V .

The optimization (116) can be expressed in the form of (2) by defining an augmented vector consist-
ing of the individual agent’s states and controls, as well as the states and controls of its neighbors.
Letting zi = [x0

i ,u
0
i , . . . ,x

T
i]

⊤, the augmented optimization vector for each agent i is given as
xaug
i = [zi, {zj}j∈Ni

]⊤. The cost, dynamics, and constraint matrices can be augmented straightfor-
wardly based on this new xaug

i . For all problems, we considered T = 15.

Network flow. The network flow problem is adapted from Mota (2013); Mota et al. (2014). We
consider a directed regular graph with 200 nodes and 1000 directed edges xij ∈ E . Each edge
has an associated quadratic cost function ϕij(xij) = 1

2 (xij − aij)
2, where aij is sampled from

[1.0, 2.0, 3.0, 4.0, 5.0, 10.0] with probabilities [0.2, 0.2, 0.2, 0.2, 0.1, 0.1]. The objective is to opti-
mize the flow through the graph subject to equality constraints on the flow into and out of each
node. Namely, the flow into each node should be equal to the flow out of the node. For node i, the
flow conservation constraint is

∑
j∈E−

i
xji =

∑
k∈E+

i
xik, where E−

i is the set of all incoming edges
to node i, and similarly E+

i is the set of all outgoing edges from node i. 100 nodes are randomly
selected and injected with an external flow fk sampled identically to aij . For each of these nodes,
a reachable descendant is randomly selected and an equivalent amount of flow fk is removed from
those nodes.

This problem is straightforward to express in the form (2) by considering each node as an individual
agent and defining the local state vector for each agent as

xi =

[{xji}j∈E−
i

{xik}k∈E+
i

]
, (117)

consisting of all the incoming and outgoing edges for node i. Each agent is responsible for its own
flow constraint defined by

Ai =

[{1}j∈E−
i

{−1}k∈E+
i

{−1}j∈E−
i

{1}k∈E+
i

]
, bi = 0, (118)

where bi might instead contain the external injected or removed flow fi for that node i. The aug-
mented cost matrix Qi is zero for all incoming edges and has entries 1/2 on the diagonal of the
outgoing edges. The augmented cost vector qi contains each of the quadratic cost offsets aik:

Qi =

[
{0}j∈E−

i

{ 1
2}k∈E+

i

]
, qi =

[{0}j∈E−
i

{−aik}k∈E+
i

]
. (119)

Finally, we impose the constraint −fmax · 1 ≤ xi ≤ fmax · 1 on the maximum allowed flow of all
edges, with fmax = 5.

Distributed LASSO. Distributed LASSO (Mateos et al., 2010) extends LASSO to situations
where the training data are distributed across different agents and agents cannot share training data
with each other. It can be formulated as

min
{xi}N

i=1,w

N∑
i=1

∥Aixi − bi∥22 +
λ

N
∥xi∥1 s.t. xi = w, i = 1, ..., N (120)

where w ∈ Rni is a global vector of regression coefficients, xi ∈ Rni is a local copy of w,
Ai ∈ Rmi×ni and b ∈ Rmi are the training data available to agent i, and λ is the weighting
parameter. Similarly to non-distributed LASSO, this formulation is rewritten as

min

N∑
i=1

(Aixi − bi)
⊤(Aixi − bi) +

λ

N
1⊤ti (121a)

s.t. ti ≤ xi ≤ ti, xi = w, ti = g, i = 1, ..., N (121b)
where ti ∈ Rni are newly-introduced variables and g is the global copy of ti.

The matrix Ai consists of 15% non-zero elements sampled through Akl
i ∼ N (0, 1). The true sparse

vector v ∈ Rn to be learned consists of 50% non-zero elements sampled through vi ∼ N (0, 1/n).
We then construct b = Av + ξ where ξi ∼ N (0, 1) represents noise in the data.

Finally, we set λ = (1/5)maxi(∥A⊤
i bi∥∞). For the problems, we have ni = 50 and mi = 5 · 103.

35

Published as a conference paper at ICLR 2025

Table 2: Training and testing details for DeepQP.

Problem Class No of layers K Training dataset size Epochs Training time Test dataset size
Random QPs 30 2,000 500 21min 1,000

Random QPs with Eq. Constraints 30 2,000 500 23min 1,000
Double Integrator 30 500 600 28min 1,000

Osc. Masses 15 500 600 48min 1,000
Portfolio Optimization 30 500 600 1h 14min 1,000

LASSO 10 500 600 20min 1,000

Table 3: Training and testing details for DeepDistributedQP.

Problem Class No of layers K Training dataset size Epochs Training time Test dataset size
Random QPs 50 1,000 300 3h 21min 500

Random QPs with Eq. Constraints 50 500 600 3h 29min 500
Coupled Pendulums 20 500 400 1h 49min 500

Coupled Osc. Masses 20 500 600 2h 29min 500
Network Flow 30 500 600 2h 8min 500

Distributed LASSO 20 500 600 56min 500

J.3 DETAILS ON TRAINING AND TESTING

Here, we discuss details regarding the training and testing of DeepQP and DeepDistributedQP in the
presented experiments.

Centralized experiments. Table 2 shows the number of layers K, training dataset size, number
of epochs, total training time and testing dataset size for DeepQP in every centralized problem.
The increased dataset size and number of epochs for RandomQPs is motivated by the fact that the
structure in these problems is less clear; learning policies that exploit this structure therefore requires
more examples and takes longer. In all experiments, DeepQP was trained with a batch size of 50
using the Adam optimizer with learning rate 10−3. The feedback layers are set as 2 × 16 MLPs.
DeepQP and OSQP always start with zero initializations in all comparisons. The weights of the
training loss were set to γk = exp ((k −K) /5) in all experiments. Both the training and testing
datasets are contructed after letting OSQP running until optimality.

Distributed experiments. Table 3 shows the number of layers K, training dataset size, number
of epochs, total training time and testing dataset size for DeepDistributedQP in every distributed
problem. In all experiments, DeepDistributedQP was trained with a batch size of 50 using the Adam
optimizer with learning rate 10−3. The feedback layers are set as 2× 16 MLPs. DeepDistributedQP
and DistributedQP always start with zero initializations in all comparisons. In all experiments, the
weights of the training loss were set to γk = exp ((k −K) /5). For the low-dimensional testing
datasets, these datasets are constructed using OSQP. For larger scales, the testing dataset is con-
structed with DistributedQP instead as it is much faster (see Table 6), after ensuring convergence to
optimality.

Generalization bounds experiments. These experiments were performed on a networked random
QPs problem with N = 10, ni = 10,mij = 5, pij = 0 and on a coupled pendulums problem with
N = 5 and the same parameters as described in the previous section. The prior was obtained through
training on a small separate dataset of 500 problems for 50 epochs. The posterior was then acquired
through optimizing for the generalization bound with a dataset of 15, 000 problems for 50 epochs.

J.4 DETAILS ON STANDARD OPTIMIZERS

Details on OSQP. When comparing with OSQP using fixed penalty parameters, we selected the
best-performing subsequence of {..., 0.1, 0.3, 0.5, 1.0, 3.0, 5.0, ...} as the penalty parameters to plot
against. Table 4 shows these parameters for every centralized problem in our experiments. For
equality constraints, we scaled ρ by 103, as in Stellato et al. (2020). For the adaptive version,
we preferred the standard heuristic adaptation rule shown in Boyd et al. (2011) with τ = 2.0 and
µ = 10.0, instead of the OSQP adaptation scheme (Stellato et al., 2020), as it performed better in
our problem instances. We hypothesize that this might be due to the fact that as scale increases the
infinity norm is ignoring more information that the 2-norm. The initial ρ0 was initialized as the
median of the range of fixed penalty parameters.

36

Published as a conference paper at ICLR 2025

Table 4: List of OSQP penalty parameters used in centralized experiments.

Problem Class List of penalty parameters ρ
Random QPs 0.1, 0.3, . . . , 3, 10

Random QPs with Eq. Constraints 0.1, 0.3, . . . , 3, 10
Double Integrator 3, 5, . . . , 100, 300

Osc. Masses 0.1, 0.3, . . . , 3, 10
Portfolio Optimization 3, 5, . . . , 100, 300

LASSO 30, 50, . . . , 1000, 3000

Table 5: List of DistributedQP penalty parameters used in distributed experiments.

Problem Class List of penalty parameters ρ and µ
Random QPs 0.1, 0.3, . . . , 3, 10

Random QPs with Eq. Constraints 0.1, 0.3, . . . , 3, 10
Coupled Pendulums 0.1, 0.3, . . . , 3, 10

Coupled Osc. Masses 0.1, 0.3, . . . , 3, 10
Network Flow 0.1, 0.3, . . . , 3, 10

Distributed LASSO 30, 50, . . . , 1000, 3000

Details on DistributedQP. The range of fixed penalty parameters to compare with was chosen
using the same methodology as with OSQP. Table 5 shows these parameters for every distributed
problem in our experiments. For the adaptive version, we used the standard heuristic adaptation rule
shown in Boyd et al. (2011) with τ = 2.0 and µ = 10.0. The initial value was again always chosen
as the median value of the above lists.

J.5 DETAILS ON WALL-CLOCK TIMES

In Table 6, we list the observed wall-clock times for DeepDistributedQP (ours), DistributedQP (ours)
and OSQP using either the indirect or the direct method. The table presents all six studied problems
with an increasing dimension. As clearly observed, DeepDistributedQP and DistributedQP demon-
strate a substantially more favorable scalability than OSQP. In fact, the two algorithms can efficiently
solve problems that OSQP cannot handle due to memory overflow on our system. Finally, Deep-
DistributedQP also maintains a clear advantage over its standard optimization counterpart Distribut-
edQP across all experiments which signifies the importance of learning policies for the algorithm
parameters.

K ADDITIONAL EXPERIMENTS

The following experiments are dedicated into providing additional insight on exploring the perfor-
mance of DeepDistributedQP and DeepQP in various testing scenarios.

K.1 VARYING TRAINING DATASET SIZE

This section provides additional insight on the amount of training data required for the proposed
learned optimizers to perform well.

Centralized experiments. In Fig. 8, we compare the performance of DeepQP on the centralized
problems using a varying training dataset size 500, 1000 or 2000. To ensure an “equivalent total
training effort”, we train these three cases for 4e, 2e and e epochs, respectively, where e = 500 for
random QPs and e = 150 for all other problems. This comparison highlights the robust performance
of DeepQP even with a limited amount of training data. Interestingly, we also observe that training
with less data but over more epochs had a beneficial effect on two out of six problems. We hypoth-
esize that this could be attributed to the non-convex nature of training in deep learning, as well as
the possibility that additional epochs might have allowed for further improvements in cases where
the training of the model had not yet fully converged. Overall, we conclude that DeepQP maintains
reliable performance even when training data is limited.

Distributed experiments. For the training of DeepDistributedQP, a limited training dataset of 500
sample problems was used for all problems except for the random QPs without equality constraints
where we used 1000 problems (see Table 3). For completeness, Fig. 9 presents a performance
comparison of the learned optimizer when trained with 500 sample problems (600 epochs) and 1000

37

Published as a conference paper at ICLR 2025

Table 6: Wall-clock times and iterations for DeepDistributedQP, DistributedQP, OSQP (in-
direct) and OSQP (direct). This comparison shows the total wall-clock times for DistributedQP
and OSQP (indirect or direct method) required to reach the same accuracy as DeepDistributedQP.
For OSQP with direct method, we only report the time for the first iteration, assuming the best-
case scenario in which the factorized KKT matrix can be reused for all subsequent iterations. Both
DeepDistributedQP and DistributedQP demonstrate orders-of-magnitude improvements compared
to OSQP as scale increases. In addition, DeepDistributedQP maintains a significant advantage over
its standard optimization counterpart in all cases.

DeepDistrQP (ours) DistrQP (ours) OSQP (Indirect) OSQP (Direct)
Networked Random QPs

N n m nnz(Q,A) Time Iters Time Iters Time Iters Time (1st iter.) Iters
16 160 120 4,000 33.05 ms 50 141.9 ms 208 46.16 ms 29 0.86 ms 29
64 640 560 17,600 39.11 ms 50 129.2 ms 192 185.1 ms 28 23.8 ms 28

256 2,560 2,400 73,600 50.21 ms 50 128.8 ms 168 514 ms 23 703.5 ms 23
1,024 10,240 9,920 300,800 62.68 ms 50 158.9 ms 165 3.03s 23 8.20 s 23

Networked Random QPs with Equality Constraints
N n m nnz(Q,A) Time Iters Time Iters Time Iters Time (1st iter.) Iters
16 160 168 4,960 37.21 ms 50 138.9 ms 170 36.52 ms 19 0.76 ms 19
64 640 560 17,600 57.76 ms 50 238.1 ms 172 109.0 ms 17 26.9 ms 17

256 2,560 2,400 73,600 74.54 ms 50 239.5 ms 164 692.5 ms 17 956.0 ms 17
1,024 10,240 9,920 300,800 82.55 ms 50 371.0 ms 172 5.83 s 16 11.60 s 16

Coupled Pendulums Optimal Control
N n m nnz(Q,A) Time Iters Time Iters Time Iters Time (1st iter.) Iters
10 470 640 3,690 50.99 ms 20 89.81 ms 35 49.46 ms 8 4.95 ms 8
20 940 1,200 7,500 66.44 ms 20 116.7 ms 35 372.0 ms 8 199.7 ms 8
50 2,350 3,200 18,930 75.9 ms 20 142.1 ms 34 948.8 ms 8 4.38 s 8

100 4,700 6,400 37,980 101.9 ms 20 201.9 ms 35 3.97 s 9 19.91 s 9
200 9,400 12,800 76,080 146.0 ms 20 284.8 ms 34 22.41 s 8 90.07 s 8
500 23,500 32,000 190,380 204.3 ms 20 379.8 ms 36 112.9 s 9 Out of memory

1,000 47,000 64,000 380,880 317.2 ms 20 628.2 ms 34 Out of memory Out of memory
Coupled Oscillating Masses Optimal Control

N n m nnz(Q,A) Time Iters Time Iters Time Iters Time (1st iter.) Iters
10 470 1,580 4,590 48.22 ms 20 73.58 ms 33 79.1 ms 9 178.4 ms 9
20 940 3,160 9,300 67.93 ms 20 91.53 ms 33 641.9 ms 9 2.37 s 9
50 2,350 7,900 23,430 73.92 ms 20 97.34 ms 32 1.07 s 8 28.1 s 8

100 4,700 15,800 46,980 91.93 ms 20 148.8 ms 33 5.45 s 8 132 s 8
200 9,400 31,600 94,080 109.4 ms 20 194.4 ms 34 31.8 s 8 614 s 8
300 28,200 47,400 141,180 132.8 ms 20 304.8 ms 33 243 s 8 Out of memory

Network Flow
N n m nnz(Q,A) Time Iters Time Iters Time Iters Time (1st iter.) Iters
20 100 140 600 6.80 ms 30 10.68 ms 50 9.51 ms 15 0.59 ms 15
50 250 350 1,500 7.81 ms 30 13.17 ms 48 14.81 ms 16 1.30 ms 16

200 1,000 1,400 6,000 12.08 ms 30 17.61 ms 42 208.19 ms 17 61.93 ms 17
500 2,500 3,500 15,000 13.63 ms 30 19.73 ms 40 425.7 ms 17 745.2 ms 17

1,000 5,000 7,000 30,000 20.51 ms 30 31.62 ms 40 8.73 s 18 11.59 s 18
2,000 10,000 14,000 60,000 29.86 ms 30 47.22 ms 40 51.6 s 18 73.9 s 18
5,000 25,000 35,000 150,000 61.23 ms 30 85.99 ms 39 558 s 18 Out of memory

Distributed LASSO
N n m nnz(Q,A) Time Iters Time Iters Time Iters Time (1st iter.) Iters
10 1,100 3,000 29,000 15.06 ms 20 28.57 ms 37 2.04 s 33 148.2 ms 33
50 5,500 15,000 145,000 24.92 ms 20 44.27 ms 38 13.74 s 31 49.21 s 31

100 10,100 30,000 290,000 30.51 ms 20 51.44 ms 35 85.92 s 32 342.9 s 32
200 20,100 60,000 580,000 40.88 ms 20 76.21 ms 36 418.9 s 32 Out of memory
500 50,100 150,000 1,450,000 69.19 ms 20 130.24 ms 35 Out of memory Out of memory

sample problems (300 epochs). While additional training data provides some improvement, the
model trained with less sample problems still significantly outperforms the standard optimization
counterparts.

K.2 CAN POLICIES TRAINED FOR SPECIFIC PROBLEMS BE APPLIED TO OTHER PROBLEMS?

The field of learning-to-optimize primarily focuses on improving the performance of an underlying
optimizer for problems drawn from the same distribution as the training data (Shlezinger et al.,
2022). However, this prompts an interesting question: How would a policy perform if trained on a
specific problem class and then evaluated on a different one?

38

Published as a conference paper at ICLR 2025

Figure 8: Varying training dataset size for DeepQP. The performance of DeepQP remains robust
(for both open-loop and closed-loop policies) even as the training dataset size is reduced.

Figure 9: Performance of DeepDistributedQP on random QPs using training dataset size 500
and 1000. While using more training data results in a slight improvement in the performance of
DeepDistributedQP, in both scenarios, the proposed learned optimizer consistently outperforms the
traditional one. The right figure illustrates only the first 50 iterations.

At this point, we wish to emphasize the following fact:

The proposed DeepDistributedQP framework already surpasses the expected capabilities of typical
learning-to-optimize algorithms in the literature, as it is trained on small-scale problems and then
successfully deployed on much higher-dimensional ones.

For completeness, we also conduct curiosity-driven experiments, where we apply the learned poli-
cies to different classes of problems than the ones used for training. In Fig. 10, we test a policy
trained on small-scale random equality-constrained QPs on large-scale random QPs without equal-
ity constraints and large-scale coupled pendulums problems. In the first case, DeepDistributedQP
maintains remarkable performance compared to DistributedQP due to the existing similarity be-
tween the two classes. In the second setup, where the training and testing problems are entirely
different, the performance is suboptimal. Overall, these results highlight that when there is a degree
of similarity between the training and testing setups, DeepDistributedQP is expected to still perform
very well. In future work, we plan to explore extensions trained on a broader variety of problem
classes to improve generalization on entirely different setups.

K.3 VARYING THE NUMBER OF LAYERS IN TESTING DEEPDISTRIBUTEDQP

Another natural question that arises is how DeepDistributedQP can be adapted to run for more
iterations than the number of layers it was originally trained for. A straightforward modification is
to repeat the last layer of the framework for the additional iterations. In Fig. 11, we add 30 extra
iterations for the random QPs and 20 for the other problems. For all cases, the closed-loop policies

39

Published as a conference paper at ICLR 2025

Figure 10: Testing policies on different classes of problems. We evaluate the policy trained on
small-scale random equality-constrained QP problems (N = 16) on two large-scale scenarios of
different problem types: random QPs without equality constraints (N = 1, 024) and coupled pen-
dulums (N = 1, 000). Notably, in the first case (left), the policy demonstrates strong performance
which is attributed on the fact that there is still some similarity between the training and testing
setups. In the second case (right), where the testing problems differ entirely from the training setup,
the performance of the learned optimizer becomes suboptimal.

Figure 11: Varying the number of layers while testing DeepDistributedQP. If additional itera-
tions are needed, DeepDistributedQP maintains strong performance by repeating its last layer for
these extra iterations. Specifically, we explore adding 30 iterations for the random QPs and 20 for
the rest of the problems. In all cases, the closed-loop policies continue to demonstrate superior per-
formance, while in 4 out of 6 problems, the open-loop policies also remain advantageous.

continue to outperform the standard optimizers. Additionally, the open-loop policies maintain strong
performance in 4 out of 6 problems. In future work, we plan to incorporate the repetition of the last
layer during training to further ensure robust performance when additional iterations are required.

40

	Introduction
	Related Work
	Distributed Quadratic Programming
	Problem Formulation
	DistributedQP: The Underlying Optimization Algorithm
	Convergence Guarantees

	The DeepDistributedQP Architecture
	Main Architecture
	Implicit Differentiation

	Generalization Bounds
	Experiments
	Small-Scale Centralized Experiments: DeepQP vs OSQP
	Large-Scale Distributed Experiments: Scaling DeepDistributedQP
	Discussion

	Conclusion and Future Work
	Extended Related Work
	Complete Derivation of DistributedQP Algorithm
	Standard Convergence Guarantees for Simplified Version of DistributedQP
	Proof of DistributedQP Asymptotic Convergence
	Sketch of Proof
	Necessary Lemmas
	Proof of Theorem 1

	Details on DeepDistributedQP Feedback Policies
	The Centralized Version: DeepQP
	Proof of Indirect Method Implicit Differentiation
	Background on PAC-Bayes Theory
	Optimizing and Evaluating Generalization Bound
	Details on Experiments
	Problem Types in Centralized Experiments
	Problem Types in Distributed Experiments
	Details on Training and Testing
	Details on Standard Optimizers
	Details on Wall-Clock Times

	Additional Experiments
	Varying Training Dataset Size
	Can Policies Trained for Specific Problems Be Applied to Other Problems?
	Varying the Number of Layers in Testing DeepDistributedQP

