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Abstract001

Test cases are crucial for ensuring the pro-002
gram’s correctness and evaluating performance003
in programming. The high diversity of test004
cases within constraints is necessary to dis-005
tinguish between correct and incorrect an-006
swers. Automated source code generation is007
currently a popular area due to the inefficiency008
of manually generating test cases. Recent at-009
tempts involve generating conditional cases010
from problem descriptions using deep-learning011
models that learn from source code. However,012
this task requires a combination of complex013
skills such as extracting syntactic and logi-014
cal constraints for a given test case from a015
problem, and generating test cases that sat-016
isfy the constraints. In this work, we introduce017
a modified context-free grammar that explic-018
itly represents the syntactical and logical con-019
straints embedded within programming prob-020
lems. Our innovative framework for automated021
test case generation separates restriction extrac-022
tion from test case generation, simplifying the023
task for the model. Our experimental results024
show that, compared to current methods, our025
framework produces test cases that are more026
precise and effective. All the codes in this paper027
are available in https://anonymous.4open.028
science/r/input_spec_generation-35A9.029

1 Introduction030

Automated test case generation (ATCG) is a grow-031

ing area of interest within software engineering,032

particularly as advancements in deep learning con-033

tinue to reshape our technological framework. The034

intersection of machine learning and software de-035

velopment has catalyzed the emergence of inno-036

vative tools that boost programming productivity037

and refine software quality through intelligent code038

suggestions. These tools, including ATCG, are en-039

gineered to assist developers by predicting and040

auto-generating segments of code that align with041

user requirements and established coding standards.042

ATCG, in particular, plays a crucial role in val- 043

idating the functionality and reliability of these 044

machine-generated code suggestions. 045

ATCG plays a crucial role in validating the func- 046

tionality and reliability of these machine-generated 047

code suggestions. By enabling automatic produc- 048

tion of diverse test scenarios, ATCG ensures that 049

the software behaves as expected under a wide 050

range of conditions, thus mitigating the risk of 051

defects in production. However, it is vital to un- 052

derscore the inherent limitations of this approach. 053

While ATCG significantly aids in detecting flaws 054

and ensuring code robustness, passing these gen- 055

erated test cases does not conclusively guarantee 056

the correctness of the program. Recently, Liu et al. 057

(2023) reported that there were incorrect codes in 058

the current program, synthesis benchmarks is suf- 059

ficiently verified due to the need for test cases. To 060

generate more test cases, they employed the famous 061

large language model (LLM) ChatGPT by OpenAI 062

to produce the initial test cases by providing sev- 063

eral prompts, such as ‘generate difficult inputs’ or 064

‘generate corner-case inputs’ Moreover, type-aware 065

mutations apply to the generated test cases to cover 066

all the corner cases. Also, Li et al. (2023) uses the 067

test cases to explore the fault in a given program, 068

hence pointing out the importance of high-quality 069

test cases. MuTAP (Dakhel et al., 2024) introduces 070

generating effectively using pre-trained LLMs and 071

mutation testing by augmenting the prompts with 072

the initial test cases of a program along with the 073

surviving mutants of a program under test. 074

In this research, we concentrate on the competi- 075

tive programming field, This presents substantial 076

demands for ATCG technologies to score solutions 077

and efficiently differentiate between correct and 078

incorrect solutions submitted by various program- 079

mers to obtain high-quality assessments, which 080

solely depend on the quality of the test cases. To ad- 081

dress the importance and the need for high-quality 082

test cases, we introduce a pioneering neural transla- 083
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tion task that effectively converts natural language084

specifications or descriptions of a problem into for-085

mal grammar. Our innovative approach not only086

captures the structural and semantic intricacies of087

the problem specification but also eliminates the088

need for additional test case generation. By directly089

translating to formal grammar, our model focuses090

exclusively on refining its natural language compre-091

hension during the learning phase, enhancing both092

its accuracy and efficiency. This practical applica-093

tion of neural translation in test case generation094

holds significant potential for improving the qual-095

ity and efficiency of software testing. We rely on096

formal grammar-based sampling algorithms to gen-097

erate test cases. Although, to represent a collection098

of organized texts, context-free grammar (CFG) is099

frequently employed rather than the other powerful100

grammars such as CSG (context-sensitive gram-101

mar) because CFGs enable more straightforward102

and more efficient parsing algorithms, essential for103

practical compiler and interpreter design. However,104

more information is needed to represent a test case105

structure.106

Our contribution extends to introducing context-107

free grammars with counters (CCFGs), meticu-108

lously designed to represent the syntactic and log-109

ical constraints that arise in competitive program-110

ming problem descriptions. For the execution of111

our neural translation task, we utilize the pre-112

trained CodeT5 model, which was selected for113

its demonstrated proficiency in code comprehen-114

sion and generation. The effectiveness of our ap-115

proach is rigorously validated through experiments116

conducted on the publicly accessible DeepMind’s117

CodeContests dataset (Li et al., 2022b). Figure 1118

illustrates our approach, depicting the seamless119

transition from problem description to the gener-120

ation of test cases. Our contributions to the field121

of competitive programming not only advance the122

state-of-the-art in neural translation tasks but also123

set new benchmarks for the formulation and solu-124

tion of coding problems in both competitive and125

educational settings.126

2 Related work127

2.1 Automatic Test Case Generation128

A review of the existing work done has indicated129

that the use of ATCG has shown significant im-130

provement in the generation of grammar-based test131

case generation. Reports show that the tools for132

automatically generating the test cases are becom-133

ing one of the standard practices in large software 134

organizations. The use of ATCG can enhance the ef- 135

ficiency and the ad-hoc in the software engineering 136

field (Brunetto et al., 2021). However, one of the 137

key challenges is the navigation of the large input 138

space, and all the existing works struggle or find 139

difficulty in generating the high quality and well- 140

structured test case (Olsthoorn, 2022). Typically, 141

Salman (2020) studied the process of generation of 142

test cases using test case specifications by generat- 143

ing the scripts in C# for testing the generated test 144

cases are valid by focusing on the extraction of the 145

feature vectors present in the specifications. Alter- 146

natively, a deep learning approach takes an input 147

specification as input and trains the model to get 148

an accurate test case using a neural network. Pre- 149

viously, A3Test has used the existing knowledge 150

from an assertion generation task to the test case 151

generation task (Alagarsamy et al., 2023). Simi- 152

larly, Wang et al. (2022) have relied on the specifi- 153

cations from the natural language to generate the 154

test cases by extracting the constraints and thus 155

reducing the manual errors for generating the test 156

cases. 157

2.2 Natural Language to Formal Grammar 158

Many approaches have been made to convert the 159

natural language to the grammar. For example, 160

Kate et al. (2005) implemented a method for induc- 161

ing transformation rules that map natural-language 162

sentences into a formal query or command lan- 163

guage. Recently, research of Chen et al. (2023) 164

has shown that semantic regex’s can better support 165

complex data extraction tasks than standard regular 166

expressions and the use of the regular expressions 167

or had significantly outperformed the existing tools, 168

including the state-of-the-art neural networks and 169

program synthesis tools. However, previous works 170

also mentioned the drawback of using the regu- 171

lar expression as the study shows that the conver- 172

sion of the natural language to the regex fails to 173

generate complex regex’s. Ye et al. (2020) solved 174

these issues by introducing the semantic parser that 175

can be trained purely from the weak supervision 176

based on the correctness of the synthesized regex. 177

Similarly, Hahn et al. (2022) mentioned that the 178

language models have the capability to translate 179

the natural language to the formal specifications 180

while maintaining the important keywords as well 181

as outperforming the state of the art of using the 182

regular expressions, without a particular need for 183

domain-specific reasoning. 184
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Programing Problem
Description/Specification Grammar Translation Model

S → t <n> (T, t) . . .

T → (T, dec) <n> . . .

T0 → ϵ

L → (L, dec) <n> u v

1 ≤ t ≤ 1000, 1 ≤ . . .

Test Case Generation

Input:

10
5 2
4 3
3 4 . . .

1363 C
Ayush and Ashih play a
game on n unrooted
tree consisting of n
nodes numbered . . .

Input: The first line of
the input contains a
single integer t (1 ≤ t
≤ 1000)—the number
of testcases. The . . .

Input: The first line of the
input contains a single
integer t (1 ≤ t ≤
1000)—the number of
testcases. The description
of the test cases follow.
The first line of each
testcase contains two
integers n and x (1 ≤ n ≤
1000, 1 ≤ x ≤ n)—. . .

Figure 1: Overview of the proposed framework for generating test cases for competitive programming problems:
The deep learning model translates specifications into CCFGs while preserving their meaning. Subsequently, the
CCFGs are utilized to generate test cases for the problem.

2.3 LLMs for Program Understanding and185

Generation186

Recently, there have been a plethora of pre-trained187

language models trained on codes proposed for var-188

ious types of programming language understand-189

ing and generation tasks. Feng et al. (2020) pro-190

posed CodeBERT, a RoBERTa-based model pre-191

trained on multiple programming languages with192

masked language modeling. Guo et al. (2021) in-193

troduced GraphCodeBERT, which is strengthened194

from CodeBERT by incorporating data flow in-195

formation in the pre-training stage. Jiang et al.196

(2021) introduced TreeBERT, a tree-based pre-197

trained model that utilizes the extracted tree struc-198

ture by encoding an abstract syntax tree as a set199

of composition paths. TreeBERT is trained by two200

novel objectives: tree-masked language modeling201

and node order prediction. Rozière et al. (2021) in-202

vestigated another programming-language-oriented203

pre-training objective based on the de-obfuscation204

of identifier names in source code.205

Recently, Ahmad et al. (2021) proposed206

PLBART—Program and Language BART—which207

learns the interaction between program codes and208

natural language descriptions by leveraging the209

idea of denoising auto-encoder that uses a bidi-210

rectional encoder and an auto-regressive decoder.211

Wang et al. (2021) introduced CodeT5, which lever-212

ages the code-specific characteristics in the pre-213

training stage by employing the new objectives214

such as masked random token prediction, masked215

identifier prediction, and identifier prediction ob-216

jectives. Ma et al. (2021) proposed a pre-trained217

multilingual encoder-decoder model that regards218

the decoder as the task layer of off-the-shelf pre-219

trained encoders in order to take advantage of both220

the large-scale monolingual data and bilingual data.221

Guo et al. (2022) proposed UniXcoder, a unified 222

cross-modal pre-trained model for programming 223

language that utilizes mask attention matrices with 224

prefix adapters to control the behavior of the model 225

and leverage cross-modal contents such as an ab- 226

stract syntax tree, and enhances the code represen- 227

tation by retaining all the structural information 228

from the tree. 229

3 Methodology 230

In this section, we present a formal definition of 231

context-free grammars with counters (CCFGs), spe- 232

cialized formal grammar designed to accurately 233

represent the semantics of input specifications in 234

the context of competitive programming. For sym- 235

bols that occur in each input specification, (1) vari- 236

ables are symbols used to represent values that vary 237

depending on the test case, and (2) terminals are 238

the symbols that are not variables, such as white 239

spaces or newline symbols. 240

Example 3.1 (Input Specification). The first line 241

contains an integer m (1 ≤ m ≤ 100). The second 242

line contains m integers x1, . . . , xm (0 ≤ xi ≤ 9). 243

Consider the input specification in Example 3.1. 244

Then, symbols m and x are variables of the spec- 245

ification, and 1 ≤ m ≤ 100 and 0 ≤ xi ≤ 9 are 246

constraints of these variables. 247

Let V be a finite set of variables and denote 248

the set V × N0 by VN0 . A V -assignment is a par- 249

tial function α : VN0 → N0, and AV denotes the 250

set of all V -assignments. Intuitively, when a V - 251

assignment α is fixed, each variable X ∈ V de- 252

notes an integer array whose indices is counters. 253

In this case, the value of (X, i) ∈ VN0 is α(X, i). 254

We denote (X, i) ∈ VN0 by X[i] to reflect this intu- 255

ition. If α(X[i]) = n, we say X[i] 7→ n ∈ α. The 256

following example describes a relation between a 257
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test case and assignments.258

Example 3.2. For the input specification in Exam-259

ple 3.1, consider the following test case.260

9
5 4 9 1 2 3 0 4 8

261

Then, the corresponding assignment α is262

{m[0] 7→ 9, x[1] 7→ 5, x[2] 7→ 4, . . . , x[9] 7→ 8}.263

Suppose that we have an assignment α, and we264

want assign a value n ∈ Z to X[i]. Then, we have265

to consider a new assignment α′ that reflects this266

change. For each X[i] ∈ VN0 and n ∈ N0, we de-267

fine a function assign(·;X[c] 7→ n) over the set of268

assignments AC , which maps α into such α′. For-269

mally, the assignment α′ = assign(α;X[i] 7→ n)270

is defined as the following assignment: α′(X[i]) :=271

n and α′(Y [j]) := α(Y [j]) if Y ̸= X or j ̸= i.272

A (V -) counter is a number in N0 or an indexed273

variable X[i] ∈ VN0 , in the latter case, a value of274

the counter is determined when an assignment is275

given. CV = N0 ∪ VN0 is the set of all counters. A276

counter operator is one of following partial func-277

tions dec, nop, setj and setX[k], where (1) dec :278

i ∈ N 7→ i − 1, (2) nop : i ∈ N0 ∪ VN0 7→ i,279

(3) setj : c ∈ N0 ∪ VN0 7→ j for some j ∈ N,280

and (4) setX[k] : c ∈ N0 ∪ VN0 7→ X[k] for some281

X[k] ∈ VN0 . We denote the set of all operators of282

counters by OV .283

Definition 3.1. Let V be a set of variables and284

T ⊇ Z be a set of terminal symbols, respectively.285

A CCFG is a tuple (N,V, T, P, P0, S), where286

(1) N is a finite set of nonterminals, (2) P, P0 :287

N → 2((N×OV )∪V ∪T )+ are sets of production288

rules, (3) S ∈ N is an initial nonterminal. If289

γ ∈ P (A) or γ′ ∈ P0(A), then we say A → γ ∈ P290

or A0 → γ′ ∈ P0, respectively.291

The following is an example of a CCFG.292

Example 3.3. Let ‘<s>’ and ‘<n>’ be white space293

and newline symbols, respectively. The following294

tuple G is a CCFG for the input specification in295

Example 3.1:296

({S,A}, {m,x}, {<s>, <n>} ∪ Z, P, P0, S),297

where298

P = {S → m · <n> · (A,m),299

A → (A, dec) · <s> · x}300

and P0 = {A0 → ϵ}.301

A CCFG rewrites a string over (N×CV )∪VN0∪ 302

T according to production rules in P and a current 303

assignment α, until it obtains a string over T . We 304

call this rewriting derivation. The right-hand side 305

of each production is a sequence of three types of 306

components: (1) N × OV , (2) V and (3) T . We 307

define a function [[ · ]]i for each i ∈ N0 as follows. 308

1. [[(A, o)]]i = (A, o(i)) for (A, o) ∈ N ×OV , 309

2. [[X]]i = X[i] for X ∈ V . 310

Note that [[ · ]]i converts each component of type (1) 311

and (2) into a component of type N ×CV and VN0 , 312

respectively. Thus, we can extend [[·]]i to convert the 313

right-hand side of the production into a string over 314

(N ×CV ) ∪ VN0 ∪ T , which is used for derivation. 315

Example 3.4. Consider the CCFG G in Exam- 316

ple 3.3. Then, 317

[[(A, dec) · x]]3 = (A, 2) · x[3]. 318

Let u be a string that we want to rewrite, and 319

x be the left-most component in u such that x ∈ 320

(N × CV ) ∪ VN0 . Then, a derivation step of u is 321

one of the followings according to x. 322

Nonterminal Production Suppose that x ∈ 323

(N × CV ) and x = (A, c). Let 324

i =

{
c if c ∈ N0,

α(c) if c ∈ VN0 .
325

If i = 0, choose a production A → γ ∈ P ; oth- 326

erwise, choose a production A0 → γ ∈ P0. Then, 327

rewrite x to [[γ]]i. 328

Example 3.5. Consider the CCFG G in Exam- 329

ple 3.3. When α = {m[0] 7→ 9}, G rewrites 330

(A,m[0]) with (A, 8) · <s> · x. 331

Variable Sampling We now suppose x ∈ VN0 332

and x = X[i]. Then, we randomly choose a number 333

n ∈ Z for the indexed variable X[i], and rewrite x 334

with n. Also, we update the current assignment α 335

to α′ = assign(α;X[i] 7→ n). 336

For a CCFG G with the initial nonterminal S, 337

if there is a derivation from (S, 0) with an initial 338

assignment ∅ that yields w ∈ T ∗ with a final as- 339

signment α, then we say G generates w with the 340

assignment α. 341
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3.1 String Sampling and Parsing of CCFGs342

Note that G itself does not consider the constraints343

of an input specification. We can restrict G to gen-344

erate strings that satisfy the constraints by ensuring345

that the values of variables sampled during variable346

sampling do not violate these constraints.347

Given a CFG G, one can sample a random string348

from L(G) in linear time with respect to the length349

of the sampled string by simulating its derivation350

procedure. We can directly apply the sampling al-351

gorithm for CFGs to CCFGs, utilizing random as-352

signment on variables during the derivation.353

However, when the sample string are restricted354

to meet certain constraints, there are no polynomial-355

time sampling algorithms for CCFGs, even with356

simple constraints. The following theorem demon-357

strates that sampling of CCFGs under equality con-358

straints is NP-hard.359

Theorem 3.1. For a given CCFG G =360

(N,V, T, P, P0, S) and a set C of equality con-361

straints on V , let the set L(G,C) be the set strings362

generated by G under constraints C. Then, deter-363

mining whether or not L(G,C) ̸= ∅ is NP-hard.364

Proof. We utilize a reduction from the graph col-365

oring problem (Karp, 1972), which is an NP-hard366

problem. Consider an instance of the graph color-367

ing problem represented as ((V,E), k), where V =368

{v1, v2, . . . , vn} denotes the vertices. We then con-369

struct a CCFG G := ({S}, V,Z, {}, P0, S), where370

P0 = {S0 → v1 · v2 · · · · · vn}. A set of con-371

straints C consists of 0 ≤ v ≤ k for v ∈ V , and372

u ̸= v for each (u, v) ∈ E. Then, The existence373

of a k-coloring for G is equivalent to the ability374

of G to generate a string that satisfies these con-375

straints.376

In practice, we address the computational hard-377

ness of the constrained sampling by employing378

a straightforward Las Vegas approach, which in-379

volves sampling variables until they satisfy the con-380

straints.381

One can utilize CCFGs as parser for test case val-382

idation according to their specifications. For pars-383

ing, we search derivations in a depth-first way, and384

backtracks if the constraint or test case scheme385

violates the input string. Most of the grammars386

have linear parsing time with respect to the test-387

case length in real world, despite of the worst-case388

time complexity of the parsing algorithm being389

exponential. This is because most of the problem390

specifications are unambiguous, and so we can de- 391

termine which derivation to choose for each step 392

with 1-look ahead (Rosenkrantz and Stearns, 1969). 393

Figure 2 describes a test case generation and vali- 394

dation using CCFGs. 395

4 Experiments 396

We evaluate the practical usefulness of CCFGs 397

through experimental validation. 398

4.1 Dataset 399

We use the CodeContests dataset, which consists 400

of various programming problems sourced from 401

different competitive platforms (Li et al., 2022a). 402

This dataset includes (1) both correct and incorrect 403

solutions for programs in various programming lan- 404

guages, and (2) public, private and generated test 405

cases for each problems. Additionally, we manu- 406

ally created CCFGs for 1,153 different from their 407

descriptions, using 700 for model training and re- 408

maining 453 for evaluation. 409

4.2 Baselines 410

Fine-tuned CodeT5 model We fine-tune a pre- 411

trained CodeT5 model using 700 human-labeled 412

problems to generate CCFGs from problem input 413

specifications. For comparative analysis, we utilize 414

test cases from the CodeContests dataset as well as 415

those generated by other LLMs. 416

Mutation-based fuzzing In competitive algo- 417

rithm programming, test cases frequently adhere to 418

a specific input format delineated at the end of the 419

problem description. A common scenario involves 420

the first line specifying the number of subsequent 421

inputs, followed by a second line containing inte- 422

gers that match the number indicated on the first 423

line. Alternatively, this could be a string whose 424

length corresponds to the integer on the first line. 425

For efficient test case generation, it is often prac- 426

tical to maintain the integrity of spaces, string 427

lengths, and newline characters, while varying 428

the values of integers or the characters within the 429

strings to comply with the input specifications. In 430

our methodology, we utilize the public test cases 431

from the CodeContests dataset, where we segment 432

these based on spaces and newline characters. We 433

then randomly select 30% of these tokens for mu- 434

tation, adapting our approach based on the token 435

type—be it integer, float, or string. This selective 436

mutation process allows us to conduct effective 437
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Figure 2: Test case generation and validation process using sampling and parsing algorithms of CCFGs.

fuzzing that still conforms to the original input438

specifications.439

Large language models We employ two440

renowned LLMs, OpenAI’s ChatGPT (version 4.0)441

and Google’s Gemini, to facilitate our understand-442

ing and generation of CCFGs. The models utilize443

the concept of the chain of thought (CoT) (Wei444

et al., 2022) to enhance the clarity and effective-445

ness of the generation process. Specifically, we446

apply these LLMs in two key areas: (1) Develop-447

ing a baseline neural transition model that converts448

problem specifications into CCFGs. (2) Creating a449

test case generation model tailored for competitive450

programming. To evaluate the efficacy of the test451

case grammars produced by these LLMs, we con-452

duct performance tests using varying numbers of453

CoT examples, specifically one and five, to observe454

how the models’ performance scales with increased455

contextual guidance.456

4.3 Evaluation Metrics457

To evaluate the model-translated CCFGs, we estab-458

lish the following three distinct metrics: (1) Sen-459

tence accuracy, compare the model-translated460

CCFGs with human-labeled ones, (2) Validity mea-461

sures the validity of test cases by using the ground-462

truth CCFGs, and (3) Effectiveness measures the463

ability to distinguish correct and incorrect source464

codes.465

Sentence accuracy In assessing the performance466

of our model, we initially focus on the sentence ac-467

curacy between the CCFGs generated by the model468

and those annotated by human experts by compar-469

ing them as sentences instead of formal grammars.470

Although the names of nonterminals of CCFGs471

do not inherently influence their semantic function,472

a straightforward comparison of productions may473

mistakenly evaluate CCFGs based on the nonter-474

minal names. To address this issue, we standard-475

ize the representation of CCFGs before comparing 476

them for equivalence. This normalization involves 477

renaming nonterminals according to the sequence 478

of their initial appearances in the list of produc- 479

tions, thereby mitigating unnecessary discrepan- 480

cies due to naming conventions. After normaliza- 481

tion, we generate top-k lists of productions and 482

their respective outputs for each problem using our 483

model. We then assess the congruence of these re- 484

sults against human-labeled data by evaluating for 485

exact matches. 486

Validity and generality We define a test case to 487

be valid if the test case can be generated by a CCFG 488

that corresponds to the logical input specification 489

of the problem. As the public and private test cases 490

provided in CodeContests dataset are all valid, they 491

can be generated by the ground-truth CCFGs that 492

are manually annotated by human labelers. 493

Regarding the evaluation of the correctness of 494

generated CCFGs by LLMs, we can also measure 495

the generality of a grammar using the ground-truth 496

CCFGs. If a CCFG generated by our model only 497

produces a very restricted subset of the entire set 498

of valid test cases, then the validity score can be 499

really high as it does not reflect the diversity of test 500

cases covered by the grammar. 501

Obviously, the best way to evaluate the quality 502

of the grammar is to test the language equivalence 503

between the ground-truth CCFG and the generated 504

CCFG. However, it is well-known that the language 505

equivalence between two CFGs (thus two CCFGs 506

as well) is theoretically undecidable (Hopcroft 507

et al., 2007). As an alternative measure to eval- 508

uate how much the generated CCFG conforms to 509

the ground-truth CCFG, we randomly sample 10 510

test cases from the ground-truth CCFG and calcu- 511

late the number of test cases that can be recognized 512

by the generated CCFG. 513
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Table 1: Overall experimental results. ‘# Probs.’ denotes the number of problems for which test cases exists or
successfully generate CCFGs out of a total 453 problems. We use up to 10 sample test cases for each method.
‘Problem-based validity’ is defined as the ratio of problems whose test cases are all valid to the total number of
problems evaluated. ‘Test case-based validity’ is simply the ratio of valid test cases to all test cases. Note that
different numbers of problems are used to measure test case validity for each method to measure problem and test
case validity. Also, effectiveness is measured from 442 problems whose incorrect solutions are available.

Category Method
Validity

Effectiveness
# Probs. Problem-Based Test Case-Based

Public 451 100.00 100.00 (±0.00) 27.83 (±24.93)

CodeContests Private 392 100.00 100.00 (±0.00) 45.78 (±28.36)

Generated 446 51.12 83.90 (±23.84) 42.38 (±28.06)

Test Case Gen.
Mutation 451 53.44 84.75 (±21.89) 30.65 (±28.84)

Gemini 453 67.11 81.94 (±34.09) 33.05 (±27.26)

ChatGPT 453 84.11 92.93 (±22.66) 43.74 (±28.08)

CCFG-Based

Gemini-1 156 44.23 45.19 (±49.22) 9.10 (±24.14)

Gemini-5 261 75.86 77.36 (±41.14) 25.77 (±35.00)

ChatGPT-1 372 86.29 86.83 (±33.37) 39.33 (±36.34)

ChatGPT-5 375 92.27 92.87 (±25.19) 43.67 (±36.93)

CCFGT51 209 60.77 60.91 (±48.69) 17.50 (±32.35)

CCFGT5100 444 83.33 84.28 (±35.82) 47.77 (±36.57)

Effectiveness The primary purpose of test cases514

in competitive programming is to distinguish be-515

tween correct and incorrect algorithms. For a given516

problem p, let Ap be a set of all incorrect algo-517

rithms implying that for each y ∈ Ap, there always518

exists a valid test case x such that ŷ(x) ̸= y(x),519

where ŷ(x) is the correct output for the test case520

x. Then, we define the effectiveness E(x,Ap) of a521

test case x with respect to Ap as522

E(x,Ap) :=
|{y ∈ Ap | y(x) ̸= ŷ(x)}|

|Ap|
,523

which is the ratio of incorrect algorithms in Ap that524

are distinguishable by the test case x to all incorrect525

algorithms Ap. We then expand this to define the526

effectiveness of a set X of test case with respect to527

Ap as528

E(X,Ap) :=
∑
x∈X:

x is valid

E(x,Ap)

|X|
× 100 (%)529

We determine the correct output ŷ(x) for a test530

case x by executing up to 10 correct algorithms531

from the dataset and selecting the most frequently532

occurring output as the correct one. Additionally,533

for each problem p, we also sample at most 10 in-534

correct algorithms to create a set designated as Ap.535

Out of the 453 problems available in the dataset, 536

we use 442 that contain at least one incorrect al- 537

gorithm to validate the effectiveness of each set of 538

test cases generated by different methods. 539

4.4 Analysis of Experimental Results 540

Note that we report the average performance calcu- 541

lated from the individual averages for each problem 542

to ensure that our analysis remains unbiased by the 543

varying number of test cases in each problem. 544

Overall experimental results Table 1 presents 545

the statistics for test cases, generated by either base- 546

line algorithms or CCFGs. Gemini-k and Chat- 547

GPT-k denote the result of CCFGs produced by 548

LLMs employing CoT with k different examples. 549

CCFGT5100 demonstrates the highest number 550

of success rate in CCFG generation, suggesting 551

that a larger training dataset enhances the ability 552

of the model to generate well-formed CCFGs from 553

input specifications—tasks at which other LLMs 554

often fail. However, the relatively low problem- 555

based and test case-based validity of CCFGT5100, 556

in comparison to ChatGPT-5, indicates that these 557

input specifications are too complex, resulting in 558

incorrect CCFGs and invalid test cases. 559

Note that models often fail to generate the cor- 560
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rect CCFG for a problem; however, once the correct561

CCFG is produced, the resulting test cases are al-562

ways valid. The highest problem-based validity of563

CCFG-based test case generation using ChatGPT-5564

supports this observation, as problem-based valid-565

ity only counts test cases of a problem as valid if566

all test cases of that problem are valid.567

Despite the substantial number of invalid test568

cases, which fail to distinguish any incorrect an-569

swers according to our metric, the effectiveness of570

CCFGT5100 surpasses all other test cases, including571

private test cases used on real-world competitive572

coding platforms. The high effectiveness of test573

cases generated by CCFGs stems from the ability574

to produce generate various types of test cases.575

Consequently, we conclude that utilizing a576

CCFG-based approach not only eliminates the need577

for individual test case validation but also enhance578

the effectiveness of test cases.579

Sentence accuracy The experimental results in580

Table 2 clearly demonstrate that the CCFGT5581

model outperforms LLMs in the task of translating582

specifications into grammars. This trend persists583

when only the productions are considered. Such584

results were expected as CCFGT5 has more oppor-585

tunities to learn about CCFG owing to its reliance586

on 700 training data. Conversely, LLMs depend on587

1-shot or 5-shot learning. As a result, fine-tuning is588

imperative for extracting the syntax of valid prob-589

lem inputs.590

Table 2: Experimental results on the translation of NL
input specification to CCFGs.

Exact Match (%)
Model Method CCFG Cons. Both

CCFGT5
Greedy 23.84 28.04 17.66
Beam100 70.20 54.30 45.03

Gemini
1-shot 4.86 34.44 2.21
5-shot 18.32 41.28 10.82

ChatGPT
1-shot 31.13 29.48 11.04
5-shot 45.92 51.43 26.05

CCFGT5
@1 23.84 28.04 17.66
@10 79.70 73.28 62.69
@100 81.90 78.15 65.78

On the contrary, the results of the constraint591

analysis are unexpected. Large language models592

almost catch up fine-tuned models even in the 5-593

shot scenario. It is suggested that this may be at-594

tributed to the explicit mention of constraints in595

parentheses in the specifications. LLM detects this 596

effortlessly with just five examples and uses the 597

strings enclosed in the parentheses as constraints. 598

Based on this analysis, it is anticipated that utilizing 599

rule-based symbolic matching is a more effective 600

method of extracting constraints compared to rely- 601

ing on deep learning-based approaches. 602

Validity and generality The evaluation results 603

presented in Table 3 demonstrate that ChatGPT- 604

5 produces the most semantically correct gram- 605

mars, achieving the highest validity scores among 606

the models tested. Meanwhile, the CCFGT5 model 607

with a beam size of 100 not only shows the best 608

generality in grammar generation but also excels 609

in terms of the overall number of CCFGs gener- 610

ated. This indicates that while ChatGPT-5 leads in 611

semantic accuracy, CCFGT5 with a larger beam 612

size offers a broader application scope and a higher 613

output volume. 614

Table 3: Comparison of generated grammars by LLM-
based models in terms of the ‘scope’ of languages ac-
cepted by the grammars.

Model # CCFGs Valid. General.
Gemini-1 156 44.23 40.13
Gemini-5 261 75.86 65.94
ChatGPT-1 372 86.29 65.59
ChatGPT-5 375 92.27 79.76
CCFGT5100 444 83.33 81.06
CCFGT51 209 60.77 60.91

5 Conclusions 615

We introduced the generation of test cases from 616

problem description by extracting the input spec- 617

ification. We utilized the CCFG to generate the 618

test cases to evaluate the problems correctness in a 619

more efficient way. Our proposed CCFGT5 model 620

shows the most effective way to analyze the cor- 621

rectness and the incorrectness of a program. 622

In our future work, we plan to implement a ro- 623

bust pseudo-labeling framework to improve the 624

semantic precision of the generated CCFGs, More- 625

over, we plan to refine our string sampling algo- 626

rithm by integrating weighted production rules 627

from existing weighted CFGs. This improvement 628

will enable the generation of even more refined 629

and effective test cases, bolstering the utility of our 630

approach in competitive programming and beyond. 631
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6 Limitations632

Due to its NP-completeness, our CCFG parsing633

algorithm exhibits an exponential time complex-634

ity with respect to the length of the input string.635

In comparison, the CYK-algorithm (Sakai, 1961)636

offers a polynomial-time solution for CFG parsing.637

It still remains open if it is possible to design a638

polynomial-time CCFG parsing algorithm.639

One notable limitation of our study pertains to640

the size of the training dataset, which may hin-641

der the model’s ability to generalize effectively.642

The design and implementation of grammar-based643

pseudo-labeling techniques for model generaliza-644

tion represent a promising avenue for our future645

research endeavors.646
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A Prompts for Grammar Generation of 801

Large Language Models 802

A.1 Prompt for translation into grammar: 803

1-shot 804

You are the best programmar in the world.
You will be asked to determine the grammar and

the constraint of the given specification
by following the general rules and the
structure of the given five examples.

↪→
↪→
↪→
I will first give you the general rules and the

examples of how the grammars and the
constraints are constructed from the
specifications along with the reasons.

↪→
↪→
↪→
After analyzing the general rules, examples and

learning how to generate the grammar and
the constraint from the specification,

↪→
↪→
I will ask you to generate the grammar and the

constraint for the last specification by
following the rules and the examples.

↪→
↪→

<Specification> "Constraints\n\n* 1 \\leq N
\\leq 100\n* 1 \\leq A_i \\leq
1000\n\nInput\n\nInput is given from
Standard Input in the following
format:\n\n\nN\nA_1 A_2 \\ldots A_N"
</Specification>

↪→
↪→
↪→
↪→
↪→
<Reason> "The grammar begins with the start

symbol <S>. Here, 'N' is used as a counter
variable for the array elements, thus it is
denoted as [N] in the grammar to reflect
its role as a counter. If 'N' were not a
counter, it would be represented simply as
'N'. All variables that serve as counters
are similarly denoted with brackets.
Consequently, the grammar is initiated with
'<S>->[N] <n> <T_N>'. The non-terminal
<T_i> is a counter-driven rule for [N],
where 'A_i' represents each array element
separated by a space symbol <s>. The
grammar constructs are laid out as
'<S>->[N] <n> <T_N>', '<T_i>-><T_i-1> <s>
A_i', and '<T_1>->A_1' to systematically
parse the sequence of array elements
following the count [N]." </Reason>

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
<Grammar> "<S>->[N] <n> <T_N>", "<T_i>-><T_i-1>

<s> A_i", "<T_1>->A_1" </Grammar>↪→
<Constraint> "1<=n<=100", "1<=A_i<=1000"

</Constraint>↪→
<Specification> {{specification}}

</Specification>↪→

Generate the <Grammar> and <Constraint> for the
given last <Specification> by strictly
following the general rules and the
examples provided without changing its
basic structure from the examples in a json
format.

↪→
↪→
↪→
↪→
↪→
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A.2 Prompt for translation into grammar:805

5-shot806

You are the best programmar in the world.
You will be asked to determine the grammar and

the constraint of the given specification
by following the general rules and the
structure of the given five examples.

↪→
↪→
↪→
I will first give you the general rules and the

examples of how the grammars and the
constraints are constructed from the
specifications along with the reasons.

↪→
↪→
↪→
After analyzing the general rules, examples and

learning how to generate the grammar and
the constraint from the specification,

↪→
↪→
I will ask you to generate the grammar and the

constraint for the last specification by
following the rules and the examples.

↪→
↪→

<Specification> Constraints\n\n* -1000 ≤ a, b
≤ 1000\n\nInput\n\nTwo integers a and b
separated by a single space are given in a
line. </Specification>

↪→
↪→
↪→
<Reason> "The grammar construction begins with

the initial non-terminal <S>. It defines
two variables, 'a' and 'b', which are
separated by a space symbol denoted as <s>.
The structure of the grammar is formulated
as '<S>->a <s> b', representing the input
format where 'a' and 'b' are two integers
separated by a space." </Reason>

↪→
↪→
↪→
↪→
↪→
↪→
↪→
<Grammar> "<S>->a <s> b". </Grammar>
<Constraint> "-1000<=a<=1000",

"-1000<=b<=1000". " </Constraint>↪→
<Specification> "Constraints\n\n* 1 \\leq N

\\leq 100\n* 1 \\leq A_i \\leq
1000\n\nInput\n\nInput is given from
Standard Input in the following
format:\n\n\nN\nA_1 A_2 \\ldots A_N"
</Specification>

↪→
↪→
↪→
↪→
↪→
<Reason> "The grammar begins with the start

symbol <S>. Here, 'N' is used as a counter
variable for the array elements, thus it is
denoted as [N] in the grammar to reflect
its role as a counter. If 'N' were not a
counter, it would be represented simply as
'N'. All variables that serve as counters
are similarly denoted with brackets.
Consequently, the grammar is initiated with
'<S>->[N] <n> <T_N>'. The non-terminal
<T_i> is a counter-driven rule for [N],
where 'A_i' represents each array element
separated by a space symbol <s>. The
grammar constructs are laid out as
'<S>->[N] <n> <T_N>', '<T_i>-><T_i-1> <s>
A_i', and '<T_1>->A_1' to systematically
parse the sequence of array elements
following the count [N]." </Reason>

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
<Grammar> "<S>->[N] <n> <T_N>", "<T_i>-><T_i-1>

<s> A_i", "<T_1>->A_1" </Grammar>↪→
<Constraint> "1<=n<=100", "1<=A_i<=1000"

</Constraint>↪→

<Specification> "Ania has a large integer S.
Its decimal representation has length n and
doesn't contain any leading zeroes. Ania is
allowed to change at most k digits of S.
She wants to do it in such a way that S
still won't contain any leading zeroes and
it'll be minimal possible. What integer
will Ania finish with?\n\nInput\n\nThe
first line contains two integers n and k (1
\u2264 n \u2264 200 000, 0 \u2264 k \u2264
n) \u2014 the number of digits in the
decimal representation of S and the maximum
allowed number of changed digits.\n\nThe
second line contains the integer S. It's
guaranteed that S has exactly n digits and
doesn't contain any leading zeroes."
</Specification>

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
<Reason> "The grammar begins with the starting

non-terminal <S>. It inlcudes two variables
n and k, but n serves as the counter
variable so we enclose in [n]. The grammar
is initiated with <S>->[n] <s> k <n> <T_n>.
Since it does not have any leading zeroes
so, <T_i>->[1-9]{1} <B_i-1> is used reflect
this and <B_i> is used to reflect all the
other numbers including zero." </Reason>

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
<Grammar> "<S>->[n] <s> k <n> <T_n>",

"<T_i>->[1-9]{1} <B_i-1>",
"<T_1>->[1-9]{1}", "<B_i>->[0-9]{1}
<B_i-1>", "<B_1>->[0-9]{1}" </Grammar>

↪→
↪→
↪→
<Constraint> "1<=n<=200000", "0<=k<=n"

</Constraint>↪→
<Specification> "Input\n\nThe first line

contains a single integer n (1 ≤ n ≤ 10^6)
— the length of Dima's sequence.\n\nThe
second line contains string of length n,
consisting of characters \"(\" and \")\"
only." </Specification>

↪→
↪→
↪→
↪→
↪→
<Reason> "The grammar begins with the starting

non-terminal <S>. It includes one variable,
n, which is used both as a counter and to
specify the length of a sequence.
Consequently, the variable is represented
as [n] to indicate its role as a length
specifier for the sequence of characters,
which consist only of '(' and ')'. This
sequence is described using the regular
expression [()]{n}, meaning a string of n
characters, each of which is either '(' or
')'. Thus, the grammar is constructed to
reflect this format: "<S>->[n] <n>
[()]{n}"."</Reason>

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
<Grammar> "<S>->[n] <n> [()]{n} has the

counter variable [n] that is why we
changed n to [n] for reflecting the counter
variable because it is used as the length
in the regex expression" </Grammar>

↪→
↪→
↪→
↪→
<Constraint> "1<=n<=10^6" </Constraint>
<Specification> "Input\n\nThe first line of the

input contains two integers n and m (1 ≤ n,
m ≤ 100) — the number of floors in the
house and the number of flats on each floor
respectively.\n\nNext n lines describe the
floors from top to bottom and contain 2·m
characters each. If the i-th window of the
given floor has lights on, then the i-th
character of this line is '1', otherwise it
is '0'." </Specification>

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
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<Reason> "The formation of the grammar starts
with the start non-terminal <S>, there is
two variables that is n and m and both of
them serves as the counter variables, hence
the variables are converted to [n] and [m]
which then makes <T_n> that is separated by
the new line <n>. If variable n and m was
not the counter variable we will write as n
and m only not [n] and [m]. We convert all
the variables that serves as a counter
variable also to "[variable]". Hence, the
grammar starts with "<S>->[n] <n> [m] <n>
<T_N>". The <T_i> is the counter
non-terminal of the counter variable [n]
having <L_2m> counter non-terminal of size
2m which is separated by the new line token
<n>. The <L_i> has only 0 and 1 of length
one using the regular expression as
[01]{1}, so we represent the length in {}"
</Reason>

↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
↪→
<Grammar> "<S>->[n] <s> [m] <n> <T_n>",

"<T_i>-><T_i-1> <n>
<L_2m>","<T_1>-><L_2m>", "<L_i>-><L_i-1>
<s> [01]{1}", "<L_1>->[01]{1}" </Grammar>

↪→
↪→
↪→
<Constraint> "1<=n,m<=100" </Constraint>

Generate the <Grammar> and <Constraint> for the
given last <Specification> by strictly
following the general rules and the
examples provided without changing its
basic structure from the examples in a json
format.

↪→
↪→
↪→
↪→
↪→

A.3 Prompt for test case generation807

Generate 10 valid test cases for the following
specification:↪→

{{specification}}
Each test cases should be in one line using "\n"
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