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Abstract

Test cases are crucial for ensuring the pro-
gram’s correctness and evaluating performance
in programming. The high diversity of test
cases within constraints is necessary to dis-
tinguish between correct and incorrect an-
swers. Automated source code generation is
currently a popular area due to the inefficiency
of manually generating test cases. Recent at-
tempts involve generating conditional cases
from problem descriptions using deep-learning
models that learn from source code. However,
this task requires a combination of complex
skills such as extracting syntactic and logi-
cal constraints for a given test case from a
problem, and generating test cases that sat-
isfy the constraints. In this work, we introduce
a modified context-free grammar that explic-
itly represents the syntactical and logical con-
straints embedded within programming prob-
lems. Our innovative framework for automated
test case generation separates restriction extrac-
tion from test case generation, simplifying the
task for the model. Our experimental results
show that, compared to current methods, our
framework produces test cases that are more
precise and effective. All the codes in this paper
are available in https://anonymous.4open.
science/r/input_spec_generation-35A9.

1 Introduction

Automated test case generation (ATCG) is a grow-
ing area of interest within software engineering,
particularly as advancements in deep learning con-
tinue to reshape our technological framework. The
intersection of machine learning and software de-
velopment has catalyzed the emergence of inno-
vative tools that boost programming productivity
and refine software quality through intelligent code
suggestions. These tools, including ATCG, are en-
gineered to assist developers by predicting and
auto-generating segments of code that align with
user requirements and established coding standards.

ATCG, in particular, plays a crucial role in val-
idating the functionality and reliability of these
machine-generated code suggestions.

ATCG plays a crucial role in validating the func-
tionality and reliability of these machine-generated
code suggestions. By enabling automatic produc-
tion of diverse test scenarios, ATCG ensures that
the software behaves as expected under a wide
range of conditions, thus mitigating the risk of
defects in production. Howeyver, it is vital to un-
derscore the inherent limitations of this approach.
While ATCG significantly aids in detecting flaws
and ensuring code robustness, passing these gen-
erated test cases does not conclusively guarantee
the correctness of the program. Recently, Liu et al.
(2023) reported that there were incorrect codes in
the current program, synthesis benchmarks is suf-
ficiently verified due to the need for test cases. To
generate more test cases, they employed the famous
large language model (LLM) ChatGPT by OpenAl
to produce the initial test cases by providing sev-
eral prompts, such as ‘generate difficult inputs’ or
‘generate corner-case inputs’ Moreover, type-aware
mutations apply to the generated test cases to cover
all the corner cases. Also, Li et al. (2023) uses the
test cases to explore the fault in a given program,
hence pointing out the importance of high-quality
test cases. MuTAP (Dakhel et al., 2024) introduces
generating effectively using pre-trained LLMs and
mutation testing by augmenting the prompts with
the initial test cases of a program along with the
surviving mutants of a program under test.

In this research, we concentrate on the competi-
tive programming field, This presents substantial
demands for ATCG technologies to score solutions
and efficiently differentiate between correct and
incorrect solutions submitted by various program-
mers to obtain high-quality assessments, which
solely depend on the quality of the test cases. To ad-
dress the importance and the need for high-quality
test cases, we introduce a pioneering neural transla-
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tion task that effectively converts natural language
specifications or descriptions of a problem into for-
mal grammar. Our innovative approach not only
captures the structural and semantic intricacies of
the problem specification but also eliminates the
need for additional test case generation. By directly
translating to formal grammar, our model focuses
exclusively on refining its natural language compre-
hension during the learning phase, enhancing both
its accuracy and efficiency. This practical applica-
tion of neural translation in test case generation
holds significant potential for improving the qual-
ity and efficiency of software testing. We rely on
formal grammar-based sampling algorithms to gen-
erate test cases. Although, to represent a collection
of organized texts, context-free grammar (CFG) is
frequently employed rather than the other powerful
grammars such as CSG (context-sensitive gram-
mar) because CFGs enable more straightforward
and more efficient parsing algorithms, essential for
practical compiler and interpreter design. However,
more information is needed to represent a test case
structure.

Our contribution extends to introducing context-
free grammars with counters (CCFGs), meticu-
lously designed to represent the syntactic and log-
ical constraints that arise in competitive program-
ming problem descriptions. For the execution of
our neural translation task, we utilize the pre-
trained CodeT5 model, which was selected for
its demonstrated proficiency in code comprehen-
sion and generation. The effectiveness of our ap-
proach is rigorously validated through experiments
conducted on the publicly accessible DeepMind’s
CodeContests dataset (Li et al., 2022b). Figure 1
illustrates our approach, depicting the seamless
transition from problem description to the gener-
ation of test cases. Our contributions to the field
of competitive programming not only advance the
state-of-the-art in neural translation tasks but also
set new benchmarks for the formulation and solu-
tion of coding problems in both competitive and
educational settings.

2 Related work

2.1 Automatic Test Case Generation

A review of the existing work done has indicated
that the use of ATCG has shown significant im-
provement in the generation of grammar-based test
case generation. Reports show that the tools for
automatically generating the test cases are becom-

ing one of the standard practices in large software
organizations. The use of ATCG can enhance the ef-
ficiency and the ad-hoc in the software engineering
field (Brunetto et al., 2021). However, one of the
key challenges is the navigation of the large input
space, and all the existing works struggle or find
difficulty in generating the high quality and well-
structured test case (Olsthoorn, 2022). Typically,
Salman (2020) studied the process of generation of
test cases using test case specifications by generat-
ing the scripts in C# for testing the generated test
cases are valid by focusing on the extraction of the
feature vectors present in the specifications. Alter-
natively, a deep learning approach takes an input
specification as input and trains the model to get
an accurate test case using a neural network. Pre-
viously, A3Test has used the existing knowledge
from an assertion generation task to the test case
generation task (Alagarsamy et al., 2023). Simi-
larly, Wang et al. (2022) have relied on the specifi-
cations from the natural language to generate the
test cases by extracting the constraints and thus
reducing the manual errors for generating the test
cases.

2.2 Natural Language to Formal Grammar

Many approaches have been made to convert the
natural language to the grammar. For example,
Kate et al. (2005) implemented a method for induc-
ing transformation rules that map natural-language
sentences into a formal query or command lan-
guage. Recently, research of Chen et al. (2023)
has shown that semantic regex’s can better support
complex data extraction tasks than standard regular
expressions and the use of the regular expressions
or had significantly outperformed the existing tools,
including the state-of-the-art neural networks and
program synthesis tools. However, previous works
also mentioned the drawback of using the regu-
lar expression as the study shows that the conver-
sion of the natural language to the regex fails to
generate complex regex’s. Ye et al. (2020) solved
these issues by introducing the semantic parser that
can be trained purely from the weak supervision
based on the correctness of the synthesized regex.
Similarly, Hahn et al. (2022) mentioned that the
language models have the capability to translate
the natural language to the formal specifications
while maintaining the important keywords as well
as outperforming the state of the art of using the
regular expressions, without a particular need for
domain-specific reasoning.
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Figure 1: Overview of the proposed framework for generating test cases for competitive programming problems:
The deep learning model translates specifications into CCFGs while preserving their meaning. Subsequently, the

CCFGs are utilized to generate test cases for the problem.

2.3 LLMs for Program Understanding and
Generation

Recently, there have been a plethora of pre-trained
language models trained on codes proposed for var-
ious types of programming language understand-
ing and generation tasks. Feng et al. (2020) pro-
posed CodeBERT, a RoBERTa-based model pre-
trained on multiple programming languages with
masked language modeling. Guo et al. (2021) in-
troduced GraphCodeBERT, which is strengthened
from CodeBERT by incorporating data flow in-
formation in the pre-training stage. Jiang et al.
(2021) introduced TreeBERT, a tree-based pre-
trained model that utilizes the extracted tree struc-
ture by encoding an abstract syntax tree as a set
of composition paths. TreeBERT is trained by two
novel objectives: tree-masked language modeling
and node order prediction. Roziere et al. (2021) in-
vestigated another programming-language-oriented
pre-training objective based on the de-obfuscation
of identifier names in source code.

Recently, Ahmad et al. (2021) proposed
PLBART—Program and Language BART—which
learns the interaction between program codes and
natural language descriptions by leveraging the
idea of denoising auto-encoder that uses a bidi-
rectional encoder and an auto-regressive decoder.
Wang et al. (2021) introduced CodeT5, which lever-
ages the code-specific characteristics in the pre-
training stage by employing the new objectives
such as masked random token prediction, masked
identifier prediction, and identifier prediction ob-
jectives. Ma et al. (2021) proposed a pre-trained
multilingual encoder-decoder model that regards
the decoder as the task layer of off-the-shelf pre-
trained encoders in order to take advantage of both
the large-scale monolingual data and bilingual data.

Guo et al. (2022) proposed UniXcoder, a unified
cross-modal pre-trained model for programming
language that utilizes mask attention matrices with
prefix adapters to control the behavior of the model
and leverage cross-modal contents such as an ab-
stract syntax tree, and enhances the code represen-
tation by retaining all the structural information
from the tree.

3 Methodology

In this section, we present a formal definition of
context-free grammars with counters (CCFGs), spe-
cialized formal grammar designed to accurately
represent the semantics of input specifications in
the context of competitive programming. For sym-
bols that occur in each input specification, (1) vari-
ables are symbols used to represent values that vary
depending on the test case, and (2) ferminals are
the symbols that are not variables, such as white
spaces or newline symbols.

Example 3.1 (Input Specification). The first line
contains an integer m (1 < m < 100). The second
line contains m integers x1, . .., Ty (0 < x; <9).

Consider the input specification in Example 3.1.
Then, symbols m and x are variables of the spec-
ification,and 1 < m < 100 and 0 < z; < 9 are
constraints of these variables.

Let V' be a finite set of variables and denote
the set V' x Ng by Vi,. A V-assignment is a par-
tial function « : Viy, — Ny, and Ay denotes the
set of all V-assignments. Intuitively, when a V-
assignment « is fixed, each variable X € V de-
notes an integer array whose indices is counters.
In this case, the value of (X, 7) € Vi, is a(X, 7).
We denote (X, i) € Vi, by X[d] to reflect this intu-
ition. If (X [i]) = n, we say X[i] — n € a. The
following example describes a relation between a



test case and assignments.

Example 3.2. For the input specification in Exam-
ple 3.1, consider the following test case.

9
549123048

Then, the corresponding assignment o is
{m[0] = 9,z[1] — 5,z[2] — 4,...,x[9] — 8}.

Suppose that we have an assignment «, and we
want assign a value n € Z to X [i]. Then, we have
to consider a new assignment o that reflects this
change. For each X[i] € Vi, and n € Ny, we de-
fine a function assign(-; X [c] — n) over the set of
assignments .4¢, which maps « into such «’. For-
mally, the assignment o/ = assign(a; X[i] — n)
is defined as the following assignment: o/ (X [i]) :=
nand o (Y[j]) := a(Y[j]) if Y # X or j # i.

A (V-) counter is a number in N or an indexed
variable X [i] € Vi,, in the latter case, a value of
the counter is determined when an assignment is
given. Cy = Ny U Vy, is the set of all counters. A
counter operator is one of following partial func-
tions dec, nop, set; and setx(;, where (1) dec :
iEN'—)i—l,(Z)nOp:iENoUVNO — 1,
(3)set; : ¢ € NgU Vi, + j for some j € N,
and (4) setx(y : ¢ € No U Vi, = X[k] for some
X k] € Vy,. We denote the set of all operators of
counters by Oy .

Definition 3.1. Let V be a set of variables and
T DO 7Z be a set of terminal symbols, respectively.
A CCFG is a tuple (N,V,T,P,Py,S), where
(1) N is a finite set of nonterminals, (2) P, Py :
N — 2ANXOVWUDT gre sets of production
rules, (3) S € N is an initial nonterminal. If
v € P(A)ory' € Py(A), thenwesay A — ~v € P
or Ay — ' € Py, respectively.

The following is an example of a CCFG.
Example 3.3. Letr ‘<s>’ and ‘<n>’ be white space
and newline symbols, respectively. The following
tuple G is a CCFG for the input specification in
Example 3.1:

({S, A}, {m, z}, {<s><n>} UZ, P, Py, S),
where

P={S—m-<n>-(A,m),
A — (A, dec) - <s>-x}

and Py = {Aog — €}.

A CCFG rewrites a string over (N x Cy ) UV, U
T according to production rules in P and a current
assignment «, until it obtains a string over 7'. We
call this rewriting derivation. The right-hand side
of each production is a sequence of three types of
components: (1) N x Oy, (2) V and (3) T. We
define a function [ - |, for each i € Ny as follows.

1. [(A,0)]; = (A, 0(7)) for (A,0) € N x Oy,

2. [X],

;= X[i]for X e V.

Note that [ - |, converts each component of type (1)
and (2) into a component of type N x Cy and Vy,,,
respectively. Thus, we can extend [-], to convert the
right-hand side of the production into a string over
(N x Cy) U Vy, UT, which is used for derivation.

Example 3.4. Consider the CCFG G in Exam-
ple 3.3. Then,

[(A,dec) - z]5 = (A,2) - z[3].

Let u be a string that we want to rewrite, and
x be the left-most component in u such that x €
(N x Cy) U Viy,. Then, a derivation step of u is
one of the followings according to x.

Nonterminal Production Suppose that z €
(N x Cy)and x = (A, c). Let

if ¢ € Ny,
if c e VNO .

If i = 0, choose a production A — v € P; oth-
erwise, choose a production Ay — v € Py. Then,
rewrite x to [],.

Example 3.5. Consider the CCFG G in Exam-
ple 3.3. When a = {m[0] — 9}, G rewrites
(A, m[0]) with (A,8) - <s>- z.

Variable Sampling We now suppose z € Vy,
and z = X[i]. Then, we randomly choose a number
n € 7Z for the indexed variable X [¢], and rewrite x
with n. Also, we update the current assignment «
to o = assign(a; X[i] — n).

For a CCFG @G with the initial nonterminal S,
if there is a derivation from (5, 0) with an initial
assignment () that yields w € T™* with a final as-
signment «, then we say G generates w with the
assignment o.



3.1 String Sampling and Parsing of CCFGs

Note that G itself does not consider the constraints
of an input specification. We can restrict G to gen-
erate strings that satisfy the constraints by ensuring
that the values of variables sampled during variable
sampling do not violate these constraints.

Given a CFG G, one can sample a random string
from L(G) in linear time with respect to the length
of the sampled string by simulating its derivation
procedure. We can directly apply the sampling al-
gorithm for CFGs to CCFGes, utilizing random as-
signment on variables during the derivation.

However, when the sample string are restricted
to meet certain constraints, there are no polynomial-
time sampling algorithms for CCFGs, even with
simple constraints. The following theorem demon-
strates that sampling of CCFGs under equality con-
straints is NP-hard.

Theorem 3.1. For a given CCFG G =
(N,V,T,P, Py, S) and a set C of equality con-
straints on 'V, let the set L(G, C) be the set strings
generated by G under constraints C. Then, deter-
mining whether or not L(G, C) # () is NP-hard.

Proof. We utilize a reduction from the graph col-
oring problem (Karp, 1972), which is an NP-hard
problem. Consider an instance of the graph color-
ing problem represented as ((V, E), k), where V' =
{v1,v2,...,v,} denotes the vertices. We then con-
structa CCFG G := ({S}, V. Z,{}, Py, S), where
Py = {Sy — vi-vg-----v,}. A setof con-
straints C consists of 0 < v < k forv € V, and
u # v for each (u,v) € E. Then, The existence
of a k-coloring for GG is equivalent to the ability
of G to generate a string that satisfies these con-
straints. 0

In practice, we address the computational hard-
ness of the constrained sampling by employing
a straightforward Las Vegas approach, which in-
volves sampling variables until they satisfy the con-
straints.

One can utilize CCFGs as parser for test case val-
idation according to their specifications. For pars-
ing, we search derivations in a depth-first way, and
backtracks if the constraint or test case scheme
violates the input string. Most of the grammars
have linear parsing time with respect to the test-
case length in real world, despite of the worst-case
time complexity of the parsing algorithm being
exponential. This is because most of the problem

specifications are unambiguous, and so we can de-
termine which derivation to choose for each step
with 1-look ahead (Rosenkrantz and Stearns, 1969).
Figure 2 describes a test case generation and vali-
dation using CCFGs.

4 Experiments

We evaluate the practical usefulness of CCFGs
through experimental validation.

4.1 Dataset

We use the CodeContests dataset, which consists
of various programming problems sourced from
different competitive platforms (Li et al., 2022a).
This dataset includes (1) both correct and incorrect
solutions for programs in various programming lan-
guages, and (2) public, private and generated test
cases for each problems. Additionally, we manu-
ally created CCFGs for 1,153 different from their
descriptions, using 700 for model training and re-
maining 453 for evaluation.

4.2 Baselines

Fine-tuned CodeT5 model We fine-tune a pre-
trained CodeT5 model using 700 human-labeled
problems to generate CCFGs from problem input
specifications. For comparative analysis, we utilize
test cases from the CodeContests dataset as well as
those generated by other LLMs.

Mutation-based fuzzing In competitive algo-
rithm programming, test cases frequently adhere to
a specific input format delineated at the end of the
problem description. A common scenario involves
the first line specifying the number of subsequent
inputs, followed by a second line containing inte-
gers that match the number indicated on the first
line. Alternatively, this could be a string whose
length corresponds to the integer on the first line.
For efficient test case generation, it is often prac-
tical to maintain the integrity of spaces, string
lengths, and newline characters, while varying
the values of integers or the characters within the
strings to comply with the input specifications. In
our methodology, we utilize the public test cases
from the CodeContests dataset, where we segment
these based on spaces and newline characters. We
then randomly select 30% of these tokens for mu-
tation, adapting our approach based on the token
type—be it integer, float, or string. This selective
mutation process allows us to conduct effective
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Figure 2: Test case generation and validation process using sampling and parsing algorithms of CCFGs.

fuzzing that still conforms to the original input
specifications.

Large language models We employ two
renowned LLMs, OpenAl’s ChatGPT (version 4.0)
and Google’s Gemini, to facilitate our understand-
ing and generation of CCFGs. The models utilize
the concept of the chain of thought (CoT) (Wei
et al., 2022) to enhance the clarity and effective-
ness of the generation process. Specifically, we
apply these LLMs in two key areas: (1) Develop-
ing a baseline neural transition model that converts
problem specifications into CCFGs. (2) Creating a
test case generation model tailored for competitive
programming. To evaluate the efficacy of the test
case grammars produced by these LLMs, we con-
duct performance tests using varying numbers of
CoT examples, specifically one and five, to observe
how the models’ performance scales with increased
contextual guidance.

4.3 Evaluation Metrics

To evaluate the model-translated CCFGs, we estab-
lish the following three distinct metrics: (1) Sen-
tence accuracy, compare the model-translated
CCFGs with human-labeled ones, (2) Validity mea-
sures the validity of test cases by using the ground-
truth CCFGs, and (3) Effectiveness measures the
ability to distinguish correct and incorrect source
codes.

Sentence accuracy In assessing the performance
of our model, we initially focus on the sentence ac-
curacy between the CCFGs generated by the model
and those annotated by human experts by compar-
ing them as sentences instead of formal grammars.

Although the names of nonterminals of CCFGs
do not inherently influence their semantic function,
a straightforward comparison of productions may
mistakenly evaluate CCFGs based on the nonter-
minal names. To address this issue, we standard-

ize the representation of CCFGs before comparing
them for equivalence. This normalization involves
renaming nonterminals according to the sequence
of their initial appearances in the list of produc-
tions, thereby mitigating unnecessary discrepan-
cies due to naming conventions. After normaliza-
tion, we generate top-k lists of productions and
their respective outputs for each problem using our
model. We then assess the congruence of these re-
sults against human-labeled data by evaluating for
exact matches.

Validity and generality We define a test case to
be valid if the test case can be generated by a CCFG
that corresponds to the logical input specification
of the problem. As the public and private test cases
provided in CodeContests dataset are all valid, they
can be generated by the ground-truth CCFGs that
are manually annotated by human labelers.

Regarding the evaluation of the correctness of
generated CCFGs by LLMs, we can also measure
the generality of a grammar using the ground-truth
CCFGs. If a CCFG generated by our model only
produces a very restricted subset of the entire set
of valid test cases, then the validity score can be
really high as it does not reflect the diversity of test
cases covered by the grammar.

Obviously, the best way to evaluate the quality
of the grammar is to test the language equivalence
between the ground-truth CCFG and the generated
CCFG. However, it is well-known that the language
equivalence between two CFGs (thus two CCFGs
as well) is theoretically undecidable (Hopcroft
et al., 2007). As an alternative measure to eval-
uate how much the generated CCFG conforms to
the ground-truth CCFG, we randomly sample 10
test cases from the ground-truth CCFG and calcu-
late the number of test cases that can be recognized
by the generated CCFG.



Table 1: Overall experimental results. ‘# Probs.” denotes the number of problems for which test cases exists or
successfully generate CCFGs out of a total 453 problems. We use up to 10 sample test cases for each method.
‘Problem-based validity’ is defined as the ratio of problems whose test cases are all valid to the total number of
problems evaluated. ‘Test case-based validity’ is simply the ratio of valid test cases to all test cases. Note that
different numbers of problems are used to measure test case validity for each method to measure problem and test
case validity. Also, effectiveness is measured from 442 problems whose incorrect solutions are available.

Validity
Category Method Effectiveness
# Probs. Problem-Based Test Case-Based

Public 451 100.00 100.00 (£0.00) 27.83 (£24.93)

CodeContests  Private 392 100.00 100.00 (£0.00) 45.78 (+28.36)
Generated 446 51.12 83.90 (£23.84) 42.38 (+28.06)

Mutation 451 53.44 84.75 (£21.89) 30.65 (£28.84)

Test Case Gen. Gemini 453 67.11 81.94 (£34.09) 33.05 (£27.26)
ChatGPT 453 84.11 92.93 (+22.66) 43.74 (+£28.08)

Gemini-1 156 4423 45.19 (+49.22) 9.10 (+24.14)

Gemini-5 261 75.86 77.36 (£41.14) 25.77 (£35.00)

CCEG-Based ChatGPT-1 372 86.29 86.83 (£33.37) 39.33 (£36.34)
-base ChatGPT-5 375 92.27 92.87 (+£25.19) 43.67 (+£36.93)
CCFGT5;, 209 60.77 60.91 (£48.69) 17.50 (£32.35)

CCFGT51q9 444 83.33 84.28 (£35.82) 47.77 (+36.57)

Effectiveness The primary purpose of test cases ~ Out of the 453 problems available in the dataset,

in competitive programming is to distinguish be-
tween correct and incorrect algorithms. For a given
problem p, let A, be a set of all incorrect algo-
rithms implying that for each y € A, there always
exists a valid test case = such that y(x) # y(x),
where ¢(x) is the correct output for the test case
x. Then, we define the effectiveness E(x, Ap) of a
test case x with respect to A,, as

B(x, Ay) = W E4 ‘fifj) # 9@}

which is the ratio of incorrect algorithms in A, that
are distinguishable by the test case x to all incorrect
algorithms A,. We then expand this to define the
effectiveness of a set X of test case with respect to
Ap as

E(z, A
B(X, Ay = 3 leoo (%)
$€Xl:'d

We determine the correct output () for a test
case x by executing up to 10 correct algorithms
from the dataset and selecting the most frequently
occurring output as the correct one. Additionally,
for each problem p, we also sample at most 10 in-
correct algorithms to create a set designated as A,,.

we use 442 that contain at least one incorrect al-
gorithm to validate the effectiveness of each set of
test cases generated by different methods.

4.4 Analysis of Experimental Results

Note that we report the average performance calcu-
lated from the individual averages for each problem
to ensure that our analysis remains unbiased by the
varying number of test cases in each problem.

Overall experimental results Table 1 presents
the statistics for test cases, generated by either base-
line algorithms or CCFGs. Gemini-k£ and Chat-
GPT-k denote the result of CCFGs produced by
LLMs employing CoT with k different examples.

CCFGT5100 demonstrates the highest number
of success rate in CCFG generation, suggesting
that a larger training dataset enhances the ability
of the model to generate well-formed CCFGs from
input specifications—tasks at which other LLMs
often fail. However, the relatively low problem-
based and test case-based validity of CCFGT 510,
in comparison to ChatGPT-5, indicates that these
input specifications are too complex, resulting in
incorrect CCFGs and invalid test cases.

Note that models often fail to generate the cor-



rect CCFG for a problem; however, once the correct
CCFQG is produced, the resulting test cases are al-
ways valid. The highest problem-based validity of
CCFG-based test case generation using ChatGPT-5
supports this observation, as problem-based valid-
ity only counts test cases of a problem as valid if
all test cases of that problem are valid.

Despite the substantial number of invalid test
cases, which fail to distinguish any incorrect an-
swers according to our metric, the effectiveness of
CCFGT5100 surpasses all other test cases, including
private test cases used on real-world competitive
coding platforms. The high effectiveness of test
cases generated by CCFGs stems from the ability
to produce generate various types of test cases.

Consequently, we conclude that utilizing a
CCFG-based approach not only eliminates the need
for individual test case validation but also enhance
the effectiveness of test cases.

Sentence accuracy The experimental results in
Table 2 clearly demonstrate that the CCFGTS
model outperforms LLMs in the task of translating
specifications into grammars. This trend persists
when only the productions are considered. Such
results were expected as CCFGTS has more oppor-
tunities to learn about CCFG owing to its reliance
on 700 training data. Conversely, LLMs depend on
1-shot or 5-shot learning. As a result, fine-tuning is
imperative for extracting the syntax of valid prob-
lem inputs.

Table 2: Experimental results on the translation of NL
input specification to CCFGs.

Exact Match (%)

Model Method | CCFG Cons. Both
Greedy 23.84 28.04 17.66

CCFGTS  peamyee | 7020 5430 45.03
Gemini 1-shot 486 3444 221
emt 5-shot 18.32 41.28 10.82
1-shot 31.13 2948 11.04

ChatGPT 5-shot 4592 51.43 26.05
@1 23.84 28.04 17.66

CCrFGT5 @10 79.70 73.28 62.69
@100 81.90 78.15 65.78

On the contrary, the results of the constraint
analysis are unexpected. Large language models
almost catch up fine-tuned models even in the 5-
shot scenario. It is suggested that this may be at-
tributed to the explicit mention of constraints in

parentheses in the specifications. LLM detects this
effortlessly with just five examples and uses the
strings enclosed in the parentheses as constraints.
Based on this analysis, it is anticipated that utilizing
rule-based symbolic matching is a more effective
method of extracting constraints compared to rely-
ing on deep learning-based approaches.

Validity and generality The evaluation results
presented in Table 3 demonstrate that ChatGPT-
5 produces the most semantically correct gram-
mars, achieving the highest validity scores among
the models tested. Meanwhile, the CCFGT5 model
with a beam size of 100 not only shows the best
generality in grammar generation but also excels
in terms of the overall number of CCFGs gener-
ated. This indicates that while ChatGPT-5 leads in
semantic accuracy, CCFGTS with a larger beam
size offers a broader application scope and a higher
output volume.

Table 3: Comparison of generated grammars by LLM-
based models in terms of the ‘scope’ of languages ac-
cepted by the grammars.

Model # CCFGs Valid. General.
Gemini-1 156 44.23 40.13
Gemini-5 261 75.86 65.94
ChatGPT-1 372 86.29 65.59
ChatGPT-5 375 92.27 79.76
CCFGT5109 444 83.33 81.06
CCFGT5, 209 60.77 60.91

5 Conclusions

We introduced the generation of test cases from
problem description by extracting the input spec-
ification. We utilized the CCFG to generate the
test cases to evaluate the problems correctness in a
more efficient way. Our proposed CCFGTS model
shows the most effective way to analyze the cor-
rectness and the incorrectness of a program.

In our future work, we plan to implement a ro-
bust pseudo-labeling framework to improve the
semantic precision of the generated CCFGs, More-
over, we plan to refine our string sampling algo-
rithm by integrating weighted production rules
from existing weighted CFGs. This improvement
will enable the generation of even more refined
and effective test cases, bolstering the utility of our
approach in competitive programming and beyond.



6 Limitations

Due to its NP-completeness, our CCFG parsing
algorithm exhibits an exponential time complex-
ity with respect to the length of the input string.
In comparison, the CYK-algorithm (Sakai, 1961)
offers a polynomial-time solution for CFG parsing.
It still remains open if it is possible to design a
polynomial-time CCFG parsing algorithm.

One notable limitation of our study pertains to
the size of the training dataset, which may hin-
der the model’s ability to generalize effectively.
The design and implementation of grammar-based
pseudo-labeling techniques for model generaliza-
tion represent a promising avenue for our future
research endeavors.
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A Prompts for Grammar Generation of
Large Language Models

A.1 Prompt for translation into grammar:
1-shot

are the best programmar in the world.

will be asked to determine the grammar and
the constraint of the given specification
by following the general rules and the
structure of the given five examples.

I will first give you the general rules and the

You
You
AN
.
AN

— examples of how the grammars and the
< constraints are constructed from the
— specifications along with the reasons.

After analyzing the general rules, examples and
— learning how to generate the grammar and

— the constraint from the specification,

I will ask you to generate the grammar and the
— constraint for the last specification by

— following the rules and the examples.

<Specification> "Constraints\n\n* 1 \\leq N
\\leq 100\n* 1 \\leq A_i \\leq
1000\n\nInput\n\nInput is given from
Standard Input in the following
format:\n\n\nN\nA_1 A_2 \\ldots A_N"
</Specification>

eason> "The grammar begins with the start
symbol <S>. Here, 'N' is used as a counter
variable for the array elements, thus it is
denoted as [N] in the grammar to reflect
its role as a counter. If 'N' were not a
counter, it would be represented simply as
'N'. All variables that serve as counters
are similarly denoted with brackets.
Consequently, the grammar is initiated with
'<S>->[N] <n> <T_N>'. The non-terminal
<T_i> is a counter-driven rule for [N],
where 'A_i' represents each array element
separated by a space symbol <s>. The
grammar constructs are laid out as
'<S>=>[N] <n> <T_N>', '<T_i>-><T_i-1> <s>
A_i', and '<T_1>->A_1' to systematically
parse the sequence of array elements
following the count [N]." </Reason>

<Grammar> "<S>->[N] <n> <T_N>", "<T_i>-><T_i-1>

s <s> A_i", "<T_1>->A_1" </Grammar>

<Constraint> "1<=n<=100", "1<=A_i<=1000"

— </Constraint>

<Specification> {{specification}}

— </Specification>

L e A A A

Generate the <Grammar> and <Constraint> for the
given last <Specification> by strictly
following the general rules and the
examples provided without changing its
basic structure from the examples in a json
format.

Pl
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A.2 Prompt for translation into grammar:
S-shot

You are the best programmar in the world.

You will be asked to determine the grammar and
< the constraint of the given specification
< by following the general rules and the

— structure of the given five examples.

I will first give you the general rules and the
< examples of how the grammars and the

— constraints are constructed from the

< specifications along with the reasons.
After analyzing the general rules, examples and
< learning how to generate the grammar and

< the constraint from the specification,

I will ask you to generate the grammar and the
< constraint for the last specification by

— following the rules and the examples.

<Specification> Constraints\n\nx -1000 < a, b
— < 1000\n\nInput\n\nTwo integers a and b
< separated by a single space are given in a
— line. </Specification>
<Reason> "The grammar construction begins with
the initial non-terminal <S>. It defines
two variables, 'a' and 'b', which are
separated by a space symbol denoted as <s>.
The structure of the grammar is formulated
as '<S>->a <s> b', representing the input
format where 'a' and 'b' are two integers
separated by a space.” </Reason>
<Grammar> "<S>->a <s> b". </Grammar>
<Constraint> "-1000<=a<=1000",
— "-1000<=b<=1000". " </Constraint>
<Specification> "Constraints\n\n* 1 \\leq N
\\leq 100\n* 1 \\leq A_i \\leq
1000\n\nInput\n\nInput is given from
Standard Input in the following
format:\n\n\nN\nA_1 A_2 \\ldots A_N"
</Specification>
eason> "The grammar begins with the start
symbol <S>. Here, 'N' is used as a counter
variable for the array elements, thus it is
denoted as [N] in the grammar to reflect
its role as a counter. If 'N' were not a
counter, it would be represented simply as
'N'. All variables that serve as counters
are similarly denoted with brackets.
Consequently, the grammar is initiated with
'<S>->[N] <n> <T_N>'. The non-terminal
<T_i> is a counter-driven rule for [N],
where 'A_i' represents each array element
separated by a space symbol <s>. The
grammar constructs are laid out as
'<S>->[N] <n> <T_N>', '<T_i>-><T_i-1> <s>
A_i', and '<T_1>->A_1' to systematically
parse the sequence of array elements
following the count [N]." </Reason>
<Grammar> "<S>->[N] <n> <T_N>", "<T_i>-><T_i-1>
— <s> A_i", "<T_1>->A_1" </Grammar>
<Constraint> "1<=n<=100", "1<=A_i<=1000"
— </Constraint>

reered
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<Specification> "Ania has a large integer S.
Its decimal representation has length n and
doesn't contain any leading zeroes. Ania is
allowed to change at most k digits of S.
She wants to do it in such a way that S
still won't contain any leading zeroes and
it'll be minimal possible. What integer
will Ania finish with?\n\nInput\n\nThe
first line contains two integers n and k (1
\u2264 n \u2264 200 000, @ \u2264 k \u2264
n) \u2014 the number of digits in the
decimal representation of S and the maximum
allowed number of changed digits.\n\nThe
second line contains the integer S. It's
guaranteed that S has exactly n digits and
doesn't contain any leading zeroes."
</Specification>

eason> "The grammar begins with the starting
non-terminal <S>. It inlcudes two variables
n and k, but n serves as the counter
variable so we enclose in [n]. The grammar
is initiated with <S>->[n] <s> k <n> <T_n>.
Since it does not have any leading zeroes
so, <T_i>->[1-9]{1} <B_i-1> is used reflect
this and <B_i> is used to reflect all the
other numbers including zero."” </Reason>

rammar> "<S>->[n] <s> k <n> <T_n>",
"<T_i>->[1-91{1} <B_i-1>",
"<T_1>->[1-9]{1}", "<B_i>->[0-91{1}

— <B_i-1>", "<B_1>->[0-91{1}" </Grammar>

<Constraint> "1<=n<=200000", "@<=k<=n"

— </Constraint>

<Specification> "Input\n\nThe first line
contains a single integer n (1 < n < 10%6)
— the length of Dima's sequence.\n\nThe
second line contains string of length n,
consisting of characters \"(\" and \")\"
only." </Specification>

eason> "The grammar begins with the starting
non-terminal <S>. It includes one variable,
n, which is used both as a counter and to
specify the length of a sequence.
Consequently, the variable is represented
as [n] to indicate its role as a length
specifier for the sequence of characters,
which consist only of '(' and ')'. This
sequence is described using the regular
expression [()1{n}, meaning a string of n
characters, each of which is either '(' or
'Y'. Thus, the grammar is constructed to
reflect this format: "<S>->[n] <n>
[OI{n}"."</Reason>

rammar> "<S>->[n] <n> [()1{n} has the
counter variable [n] that is why we
changed n to [n] for reflecting the counter
variable because it is used as the length
in the regex expression” </Grammar>

<Constraint> "1<=n<=10"6" </Constraint>

<Specification> "Input\n\nThe first line of the

input contains two integers n and m (1 < n,

m < 100) — the number of floors in the

house and the number of flats on each floor

respectively.\n\nNext n lines describe the

floors from top to bottom and contain 2-m

characters each. If the i-th window of the

given floor has lights on, then the i-th
character of this line is '1', otherwise it
is '@'." </Specification>

!
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<Reason> "The formation of the grammar starts
with the start non-terminal <S>, there is
two variables that is n and m and both of
them serves as the counter variables, hence
the variables are converted to [n] and [m]
which then makes <T_n> that is separated by
the new line <n>. If variable n and m was
not the counter variable we will write as n
and m only not [n] and [m]. We convert all
the variables that serves as a counter
variable also to "[variable]”. Hence, the
grammar starts with "<S>->[n] <n> [m] <n>
<T_N>". The <T_i> is the counter
non-terminal of the counter variable [n]
having <L_2m> counter non-terminal of size
2m which is separated by the new line token
<n>. The <L_i> has only @ and 1 of length
one using the regular expression as
[011{13}, so we represent the length in {}"
</Reason>

rammar> "<S>->[n] <s> [m] <n> <T_n>",
"<T_i>-><T_i-1> <n>

—  <L_2m>" ) "<T_1>=-><L_2m>", "<L_i>-><L_i-1>

— <s> [011{1}", "<L_1>->[01]1{1}" </Grammar>

<Constraint> "1<=n,m<=100" </Constraint>

R A

Generate the <Grammar> and <Constraint> for the
given last <Specification> by strictly
following the general rules and the
examples provided without changing its
basic structure from the examples in a json
format.

Feertd

A.3 Prompt for test case generation

Generate 10 valid test cases for the following
< specification:
{{specification}}
Each test cases should be in one line using "\n"
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