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Abstract

We present a new document-generation model001
called LADIDA, which stands for LAtent002
DIffusion for Document GenerAtion with Se-003
quential Decoding. Large language models004
(LLMs) can create impressive texts, but the005
qualities of the documents degrade as the out-006
put lengthens. Over time, models struggle to007
maintain discourse coherence and desirable text008
dynamics, leading to rambling and repetitive009
results. This difficulty with long-range genera-010
tion can often be attributed to the autoregressive011
training objective, which causes compounding012
errors over multiple steps. LADIDA is a hier-013
archical model for improved long-text genera-014
tion by decomposing the task on the document015
and sentence level. Our method is comprised016
of document-level diffusion and sentence-level017
decoding, where diffusion is used to globally018
and non-autoregressively plan sentences within019
a document and decoding is used to locally and020
sequentially generate those sentences. Com-021
pared to autoregressive models, LADIDA is022
able to achieve high textual diversity and struc-023
tural cohesion in long-text generation.024

1 Introduction025

The success of large language models (LLMs) was026

enabled in part by the development of autoregres-027

sive Transformer models (Vaswani et al., 2017a;028

Devlin et al., 2019; Radford et al., 2019) that allow029

contextual information to be captured from a given030

text. While powerful, autoregressive approaches031

produce compounding errors that over time cause032

the generated text to drift away from desired se-033

mantics (Xu et al., 2022; Kiddon et al., 2016; Lin034

et al., 2021). This leads to poor performance in035

long-form text or document generation, which can036

be observed through the degeneration of quality037

and lack of coherent discourse structure (Xu et al.,038

2020; Hua and Wang, 2020).039

To alleviate the incoherence issue over long040

text, the plan-then-generate framework (Duboue041
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Figure 1: An overview of LADIDA model architecture
components. During generation, a NAR document-level
diffusion plans a trajectory of sentence latents, which
are then decoded by an AR sentence-level decoder.

and McKeown, 2001; Hu et al., 2022; Guan et al., 042

2022; Li et al., 2022a; Fan et al., 2019; Wang et al., 043

2023) was proposed in a two-step process: content 044

planning, then surface realization. However, such 045

planning-based approaches rely on domain and 046

task-specific heuristics for capturing text dynam- 047

ics and often incorporate auxiliary objectives. To 048

address these issues, we propose a novel document- 049

generation model LADIDA: LAtent DIffusion 050

for Document GenerAtion with Sequential Decod- 051

ing. LADIDA is a hierarchical model for long- 052

text generation that leverages diffusion for non- 053

autoregressvie (NAR) sentence planning on the 054

document level and autoregressive (AR) decoders 055

for surface realization at the sentence level. 056

Our main contributions include: (1) Explor- 057

ing diffusion for structural extraction from text 058

and NAR sentence planning. While diffusion has 059

been successfully applied in text (Li et al., 2022b; 060

Lovelace et al., 2022; Gong et al., 2023; Strudel 061

et al., 2022), no work has utilized diffusion for 062

high-level structural planning of long documents. 063
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Moreover, in contrast to autoregressive models064

whose computational requirement scales quadrat-065

ically with the sequence length, our novel NAR066

planning allows for cheaper and faster scaling. (2)067

Leveraging diffusion for unsupervised content plan-068

ning. LADIDA does not require extra supervision069

such as contextual information (Guan et al., 2022;070

Li et al., 2022a) or auxiliary losses (Hu et al., 2022;071

Goldfarb-Tarrant et al., 2020) for content planning,072

and therefore it is adaptable to various tasks and073

domains. (3) Hierarchical model for document074

generation that mixes NAR diffusion and AR Trans-075

formers. LADIDA decouples the task of long-text076

generation by allowing NAR diffusion to focus on077

high-level structural information and AR sentence078

decoders to retain lexical detail. Experiments show079

that LADIDA outperforms baselines in achieving080

high textual diversity and structural cohesion on081

datasets of various domains and lengths.082

In this paper, we first summarize the background083

for latent diffusion in §2. Then we describe the LA-084

DIDA architecture in §3 and our experimental setup085

in §4. We validate the effectiveness of LADIDA086

in capturing text dynamics by evaluating output087

coherence via the following research questions:088

• RQ1 (§5): Does NAR document-level diffu-089

sion preserve global discourse structures?090

• RQ2 (§6): Does AR sequential decoding re-091

cover local lexical details?092

• RQ3 (§7): Does LADIDA generate coherent093

text through qualitative analysis?094

2 Background095

2.1 Diffusion Models096

Diffusion models (Sohl-Dickstein et al., 2015; Ho097

et al., 2020) are latent variable models that learn098

to gradually transform random noise drawn from099

a Gaussian distribution, where sampling is easy,100

to a sample from an unknown data distribution101

p(z). It consists of a forward diffusion process,102

where the original data z gets iteratively corrupted103

into Gaussian noise, and a reverse process, where104

Gaussian noise is iteratively denoised to recover z.105

Forward Process Diffusion models first define106

a forward process that corrupts data into noise.107

Given a data point z0 ∈ Rd ∼ p(z), the for-108

ward process is a Markov chain q(z) over T time109

steps that produces a sequence of latent variables110

{z0, z1, . . . , zT } that interpolate between the data111

distribution and a Gaussian distribution by gradu- 112

ally adding noise to z0 with a noise schedule βt: 113

q(z1:T |z0) =
T∏
t=1

q(zt|zt−1) (1) 114

where q(zt|zt−1) ∼ N (
√
1− βtzt−1, βtI). 115

Reverse Process Diffusion models define a re- 116

verse process as a learnable generative process that 117

approximates data distribution samples from noise. 118

The reverse process is an inverted Markov chain 119

that iteratively denoises a Gaussian noise sample 120

zT ∼ N (0, I) to produce increasingly structured 121

latents zT , zT−1, . . . , z0 to obtain the clean input 122

z0. The process is parameterized by ψ such that 123

pψ(z0:T ) = p(zT )
∏T
t=t pψ(zt−1|zt). 124

We can analytically invert the forward process 125

through a denoising transition distribution parame- 126

terized by ψ to define pψ(zt−1|zt). This transition 127

distribution can be written using µt(zt, z0) with a 128

closed-form solution and a hyperparameter σt as 129

q(zt−1|zt, z0) = N (µt(zt, z0), σ
2
t I) (2) 130

Since z0 is unavailable during generation, we 131

approximate the original data z0 ≈ fψ(zt, t) using 132

a denoising function fψ(·) given some noisy latent 133

and time step t. To parameterize fψ(·), we train 134

a neural network using a weighted reconstruction 135

loss (Ho et al., 2020): 136

L = Ez0,t,zt [∥fψ(zt, t)− z0∥22], (3) 137

where z0 ∼ p(z), t ∼ U({1, ..., T}), zt ∼ 138

q(zt|z0). This allows us to generate an approxi- 139

mate sample z0 from the true data distribution p(z) 140

by sampling from pψ(zt−1|zt) in closed form. 141

We initially draw Gaussian noise zT ∼ N (0, I) 142

and denoise the latent using the transition distri- 143

bution by iteratively sampling zt−1 ∼ pψ(zt−1|zt) 144

until we obtain z0. Sampling from the learned 145

model can be performed using ancestral sampling 146

(DDPM) (Ho et al., 2020) or deterministic sam- 147

pling (DDIM) (Song et al., 2022). 148

3 LADIDA Architecture 149

In this section we describe how we use latent dif- 150

fusion to improve the diversity and structural cohe- 151

sion of document generation. Our model LADIDA, 152

depicted in Figure 1, uses NAR diffusion to em- 153

bed document-level semantics and AR VEQ2SEQ 154

decoders to guide sentence-level reconstruction. 155
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3.1 Task Definition156

To generate documents, we maximize the log prob-157

ability of a document D with M sentences. Each158

D is a sequence of sentences, which can be repre-159

sented in the token space or latent space. In the160

token space, we denote D as s := [s1, s2, . . . , sM ].161

Each sentence si in the token space can be mapped162

via fENC (see §3.2) to a continuous latent space by163

constructing a sentence embedding zi. Then in the164

latent space, we denote D as z := [z1, z2, . . . , zM ].165

Shown in Appendix B, we can reformulate our166

optimization objective as a loss function L where167

L(D;ψ, θ) = Ldiffusion + Lreconstruction (4)168

Ldiffusion = Eq [LDDPM(z0;ψ)] (5)169

Lreconstruction = Eq [log p(s|z0; θ)] (6)170

We optimize Eq. 5 and Eq. 6 separately by training171

in two stages. In §3.3, we optimize the diffusion172

objective by training a latent diffusion model over173

the latent space of documents z. In §3.4, we op-174

timize the reconstruction objective by fine-tuning175

sequential VEQ2SEQ decoders.176

3.2 Encoding Documents177

We encode a document D with M sentences in178

discrete token space s to a continuous latent space179

z := [z1, z2, . . . , zM ]. We deterministically en-180

code each si using a sentence embedding model181

fENC such that zi = fENC(s
i) ∈ Rd. To represent182

D in the latent space, we concatenate all sentence183

embeddings zi to obtain z = [z1 ◦ z2 ◦ . . . ◦ zM ] ∈184

RM×d. By independently encoding each sentence185

and concatenating them, we allow for flexible input186

length. To encode long documents that span thou-187

sands of tokens, we simply increase the dimension188

M of the document embedding. This encoding189

method affords us the flexibility to use any sen-190

tence embedding model for document encoding.191

3.3 Diffusion-Based Document Generation192

Once mapped to a continuous latent space z, we193

optimize Eq. 5 by training a diffusion fψ(·) to learn194

the latent document embeddings p(z0) = p(z) over195

a set of N documents D = {D1, . . . , DN}. We196

introduce special <BOD>, and <EOD> tokens to de-197

marcate the beginning and the end of a document198

respectively. This enables the diffusion model to199

jointly learn the length distribution of the dataset200

without the need to learn it with another model.201

While preprocessing documents, we set a maxi-202

mum number of sentences M . If a document has203

fewer sentences than M , we append <EOD> after 204

the last sentence and pad the rest with zeros vec- 205

tors. During generation, we truncate sentences that 206

appear after <EOD>. 207

Note that while our sentence embedding model 208

encodes sentences individually, the sentence inter- 209

relations are captured in the latent document em- 210

bedding z post-concatenation. The diffusion fψ(·) 211

is specifically tasked with modelling the distribu- 212

tion of z, which captures inter-sentence dynamics. 213

Therefore, in our architecture design we do not 214

need to include extra contextual computation (e.g. 215

Liu (2019); Xu et al. (2020)) on top of the concate- 216

nated sentence embeddings. 217

3.4 VEC2SEQ Sentence Reconstruction 218

Here, we detail the steps to optimize Eq. 6. Once 219

we train a diffusion models that learns the distri- 220

bution of z, we train an AR decoder to decode 221

sentences {z1, z2, . . . , zM} from continuous latent 222

space to the discrete token space {s1, s2, . . . , sM}. 223

Formally, we are given a sentence position j and its 224

corresponding encoded vector zj = fENC(s
j) for 225

the target sentence sj , with optional history lexical 226

context {si<j} := {si, si+1, . . . , sj} for i < j. We 227

train a VEC2SEQ model fDEC,θ(·) to output ŝj as 228

the reconstruction of the original target sj : 229

ŝj = fDEC,θ(z
j , {si<j}) ≈ sj (7) 230

We configure Eq. 6 by conditioning fDEC,θ on 231

three different contextual settings that involve zj 232

and {si<j}. These configurations define our three 233

LADIDA variants: (1) context and vector, (2) 234

context only1, and (3) vector only. For all variants, 235

we optimize Eq. 6 by fine-tuning an autoregressive 236

LM to minimize sentence-level cross-entropy. 237

Context and Vector (LADIDA-CV) We assume 238

AR dependencies on sj in a document. Each sen- 239

tence depends on the previous sentences {si<j} 240

and its latent zj0. Let s0 = <BOD>. Eq. 6 becomes: 241

E

log M∏
j=1

pθ(s
j |sj−1, . . . , s0, zj0)

 (8) 242

Context Only (LADIDA-C) This is a baseline 243

that generates the next sentence sj solely based on 244

the encoded lexical history {si<j} and ablates the 245

information from the latent sentence plan zj0: 246

1Equivalent to the baseline encoder-decoder architecture.
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Dataset # Train/Test Vocab S per D W per S W per D Domain
ROCStories 98k/1.5k 28809 5.0 11.9 58.4 Short Stories
Scientific Papers 16k/1k 28734 146.5 37.04 5275.6 Scholarly Articles
WikiSection 2.16k/0.3k 29517 38.17 26.63 973.1 Wikipedia

Table 1: Dataset statistics overview. S, D, W represent the number of sentences, documents and words respectively.
For example, “S per D" indicates the number of sentences per document. All values reflect averages.

Eq

log M∏
j=1

pθ(s
j |sj−1, . . . , s0)

 . (9)247

Vector Only (LADIDA-V) In this variant, each248

sentence sj can be reconstructed solely on its latent249

vector zj , independently of its previous contexts.250

Eq

log M∏
j=1

pθ(s
j |zj0)

 . (10)251

This formulation allows parallel decoding of sen-252

tences during inference in a fully NAR way.253

3.5 Inference254

During inference, generation is done in a two-255

stage process as visualized in Figure 1. We fol-256

low four simple steps. (1) Sample Gaussian noise,257

zT ∼ N (0, I). (2) Use the learned denoising net-258

work fψ(·) to gradually denoise zT into a meaning-259

ful document embedding z0. (3) Use the learned260

sequential VEC2SEQ decoder to generate si =261

fDEC,θ(z
i
0) for all i. (4) Concatenate all si up until262

the <EOD> token to form a document D.263

4 Experimental Setup264

We detail the model setup, datasets and baselines265

used in our experiments to answer our RQs.266

4.1 Model Instantiation267

For the encoder fENC (§3.2), we used a pre-trained268

sentence embedding model DEFSENT with [CLS]269

pooling (Tsukagoshi et al., 2021).2 For docu-270

ment diffusion, fψ(·) (§3.3), the backbone of our271

model is a denoising network from Lovelace et al.272

(2022), which is a bidirectional Pre-LN transformer273

(Vaswani et al., 2017b; Xiong et al., 2020) with 12274

layers and a hidden dimension of d = 768 with self-275

conditioning. For the VEC2SEQ decoder fDEC,θ(·)276

(§3.4), we fine-tune a pre-trained BART (Lewis277

2Compared to other popular sentence embedding mod-
els, we observed DEFSENT has higher VEC2SEQ sentence-
recovery capabilities. We use embedding dimension d = 768.

et al., 2020) for sentence reconstruction. We il- 278

lustrate the implementation for LADIDA-CV with 279

BART in Figure 4 in Appendix C. 280

4.2 Datasets 281

We test the flexibility of our model in different do- 282

mains and with varying lengths by experimenting 283

with multiple datasets that vary in semantic con- 284

tent and exhibited structures. An overview of the 285

datasets we used is shown in Table 1. WikiSection 286

(Arnold et al., 2019) contains Wikipedia articles 287

with section annotations. Each article introduces 288

a city and has four ordered sections that appear 289

in the form of “[ABSTRACT] text [HISTORY] 290

text [GEOGRAPHY] text [DEMOGRAPHICS] 291

text”. ROCStories (Mostafazadeh et al., 2016) 292

contains 98k five-sentence stories that illustrate a 293

variety of causal and temporal commonsense re- 294

lations between daily events. Scientific Papers 295

(Cohan et al., 2018) includes scientific papers col- 296

lected from the ArXiv OpenAccess repositories. 297

We use this dataset to test long-form generation as 298

its average token length is 5275. We use a subset 299

of 17k documents from the Arxiv split. 300

4.3 Baselines 301

To examine the performance of LADIDA on docu- 302

ment generation, we include baselines that (1) in- 303

corporate the use of latent document planning and 304

(2) those without. (1) For the former, we compare 305

with Time Control (TC) (Wang et al., 2023). TC is a 306

plan-then-generate model that generates documents 307

by first planning a sentence trajectory via a Brown- 308

ian bridge, then conditionally generates sentences 309

using this latent sequence. In TC, the interrelations 310

among sentences are captured by the latent Brown- 311

ian bridge, which is learned with a contrastive ob- 312

jective. The decoder in TC is a GPT-2 that follows 313

the standard, multi-sentence prediction scheme that 314

differs from our per-sentence VEC2SEQ decoder. 315

(2) For the latter, we compare with autoregressive 316

LMs without a latent plan: GPT-2 (Radford et al., 317

2019), and OPT-1.3b (Zhang et al., 2022). OPT 318

is a large Transformer-based LM pre-trained on 319
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180B tokens of web data. We fine-tuned OPT using320

Low-Rank Adaptation (LoRA) (Hu et al., 2021).321

On the shorter ROCStories and WikiSection322

datasets, we use GPT-2 with a maximum position323

length of 1024, while on the longer Scientific Pa-324

pers dataset, we use OPT with a maximum po-325

sition length of 2048. Note that LADIDA-C is326

a BART baseline, as it uses a BART decoder to327

generate the next sentence solely based on the en-328

coded context history and ablates the information329

from the diffusion-generated latent sentence plan.330

We fine-tuned all the considered models on the331

target datasets. As a reference to compare the gen-332

erated texts of different models, we also compute333

reference values (“Ref.”) using samples from the334

evaluation set of each dataset.335

4.4 Experiments336

We evaluate the ability of LADIDA on document337

generation. After training, we generate 1000 doc-338

uments on ROCStories and WikiSection and 300339

documents for Scientific Papers. We report the340

text-generation performance in Table 2 and 3. We341

assess the model ability to preserve textual struc-342

ture both globally through document diffusion and343

locally through sequential generation. In §5 we fo-344

cus on extraction of global structure from text with345

metrics such as LMM, SMM, and MAUVE (RQ1).346

In §6 we focus on local lexical details with met-347

rics such as sentence-level PPL and token diversity348

(RQ2). In §7, we qualitatively analyze coherence349

with human evaluation (RQ3).350

5 RQ1: Does diffusion preserve global351

document structure?352

We quantify global structural cohesion with the fol-353

lowing metrics. For length consistency: Length354

Mismatch (LMM), Section Mismatch (SMM), and355

Section Ordering (Ord). For global textual similar-356

ity: MAUVE (Pillutla et al., 2021).357

5.1 Evaluation Metrics358

LMM. LMM is the proportion of the absolute359

difference of the mean length between that of360

the generated set and the evaluation set that mea-361

sures whether the generated text length matches the362

length distribution of the reference text.363

SMM. SMM is the LMM between the generated364

text for each section (e.g. [ABSTRACT]) and the365

gold evaluation set. The result is averaged across366

all sections.367

Ord. Ord. is a section-ordering metric to evaluate 368

whether all section names appear in the correct 369

order in the generated text. It is 1 if all four section 370

names appear in the right order at least once. 371

MAUVE. Pillutla et al. (2021) uses divergence 372

frontiers to compare the distribution of generated 373

text with that of reference text in a quantized em- 374

bedding space. We chunk the text in sections of a 375

context window c and report the average MAUVE 376

averaged over sections.3 377

5.2 Results 378

LADIDA-V and LADIDA-CV consistently 379

achieve strong performance across all datasets 380

in preserving global length consistency, with 381

the lowest LMM and SMM. The fine-tuned 382

GPT-2 frequently undershoots long sections on 383

WikiSection and produces shorter stories, leading 384

to worse LMM and SMM. 385

On section ordering, TC achieves the highest 386

Ord (0.93), followed by LADIDA-CV (0.83). We 387

hypothesize that this stems from TC’s contrastive 388

learning objective that encourages accurate sen- 389

tence ordering comparisons between two sentence 390

latents, while LADIDA’s reconstruction objective 391

does not explicitly compare ordering within latents. 392

The AR baselines without planning (GPT-2 and 393

OPT) perform poorly in matching reference text 394

length and ordering section names (Ord=0.1). 395

We also observe that LADIDA-CV resembles 396

the reference text in terms of textual similarity, with 397

highest MAUVE on ROCStories (0.929) and Scien- 398

tific Papers (0.985). In Fig.2, we plot the average 399

MAUVE between the generated text against refer- 400

ence text of Scientific Papers. LADIDA-CV main- 401

tains global structure with high MAUVE through- 402

out the document due to its diffusion planning 403

fψ(·), whereas OPT fails to maintain text similar- 404

ity on longer time position and deviates as length 405

increases. Recall that LADIDA-C is a baseline 406

BART that removes the latent document plan dur- 407

ing prediction. On WikiSection in Table 2, ablating 408

the diffusion-generated latents z leads to a drop in 409

MAUVE (e.g. 0.65 to 0.39 when changed from 410

LADIDA-CV to LADIDA-C), suggesting that the 411

observed improvement indeed stems from diffusion. 412

The results illustrate the benefits of using diffusion 413

to globally plan the trajectory of sentences follow- 414

3c is set to be 512 and 1024 on WikiSection and Scientific
Papers respectively. We use GPT-2-large as the embedding
model and set MAUVE scaling factor to be 2.
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WikiSection

Models S-PPL (decoder) ↓ MAUVE ↑ LMM ↓ SMM ↓ Ord ↑ Uniq ↑ Div ↑ Mem ↓
Ref. - 1.0 0.0 0.0 1.0 21276 0.039 0.22
TC 6.99 0.67 0.213 0.483 0.93 9016 0.0074 0.28
GPT-2 11.23 0.76 0.396 0.411 0.10 11737 0.017 0.29
BART (LADIDA-C) 11.95 0.39 0.319 0.619 0.32 1372 0.0010 0.53
LADIDA-V 10.05 0.58 0.249 0.303 0.36 12210 0.024 0.27
LADIDA-CV 5.72 0.65 0.078 0.338 0.83 8232 0.0097 0.23

ROCStories

Models S-PPL (decoder) ↓ MAUVE ↑ LMM ↓ Uniq ↑ Div ↑ Mem ↓
Ref. - 1.0 0.0 4720 0.350 0.345
TC 16.10 0.662 0.410 3222 0.302 0.327
GPT2 61.37 0.880 0.078 3534 0.338 0.489
BART (LADIDA-C) 13.21 0.365 0.031 1712 0.025 0.565
LADIDA-V 1.68 0.855 0.015 4100 0.403 0.359
LADIDA-CV 1.52 0.929 0.032 4096 0.408 0.344

Table 2: Language generation performance on WikiSection and ROCStories.

Scientific Papers

Models MAUVE ↑ LMM ↓ Uniq ↑ Div ↑ Mem ↓
Ref. 1.0 0.0 15993 0.0580 0.449
OPT-1.3B 0.971 0.297 8858 0.0021 0.339
LADIDA-CV 0.985 0.098 9248 0.0095 0.338

Table 3: Results on Scientific Papers.

ing a desired document structure in the reference415

text, answering RQ1 positively.416

6 RQ2: Can VEC2SEQ decoders recover417

lexical details?418

We evaluate the ability of the sequential decoder419

fDEC,θ(·) to recover local lexical dynamics with420

Sentence Level Perplexity (S-PPL). To measure421

lexical details such as diversity and novelty of the422

generated text, we use Unique Tokens (Uniq), Di-423

versity (Div), and Memorization (Mem).424

6.1 Evaluation Metrics425

S-PPL. To evaluate the VEC2SEQ decoder426

fDEC,θ(·), we derive a sentence-level perplexity427

metric S-PPL based on Eq. 6. Given each sen-428

tence s has n words, we derive the metric from the429

entropy rate of a sentence (1/n)H(s):430

S-PPL = 2−
1
n
H(s) = 2−

1
n

1
M

∑
s∈D log p(s). (11)431

We compute S-PPL on the evaluation set by sub-432

stituting log p(s) in Eq. 11 with the probability of433

s predicted by the different decoders specified in434

§3.4. Note that S-PPL measures the performance435

of fDECθ(·) only and assumes access to the target436

sentence vector zj when predictng sj . It does not437

evaluate the diffusion performance.438

Div. To measure the diversity of the generated 439

text (Su et al., 2022; Lovelace et al., 2022), we 440

use diversity =
∏4
n=2

|unique n-grams({wi})|
|total n-grams({wi})| , where 441

{wi} are generated samples. 442

Uniq. Uniq denotes the number of unique tokens. 443

Mem. To quantify memorization, Mem is the 444

proportion of generated 4-grams in the training set. 445

6.2 Results 446

We observe that LADIDA-CV and LADIDA-V 447

achieve low S-PPL (Table 2), suggesting that our 448

VEC2SEQ sequential decoder fDEC,θ(·) is able to 449

locally preserve sentence-level dynamics. The sen- 450

tence latents in LADIDA are helpful in guiding 451

generation. We also measure BLEU scores for the 452

reconstructed evaluation set in Appendix D. 453

In Fig. 3, we plot Avg. S-PPL vs. sentence 454

position on WikiSection. On average, the entropy 455

for sentence position 9 is the highest, meaning the 456

models find it most difficult to predict sentences at 457

this position. Position 9 corresponds to the [HIS- 458

TORY] section of the dataset, which consists of 459

diverse texts that introduce the history of a city. S- 460

PPL is lower at the beginning and later sections of 461

the dataset, which is comprised of sentences of sim- 462

ilar textual structures that are easier to predict. In 463

both cases LADIDA-CV maintains the best S-PPL. 464

As mentioned previously, we observe a high 465

LMM for TC (0.41) on ROC. After manual in- 466

spection, we found that although TC generates rea- 467

sonable and fluent stories, each sentence is longer 468

than those in the reference text. We hypothesize 469

that this is due to their standard LM finetuning ob- 470

jective during decoding, which does not encourage 471
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Figure 2: MAUVE between generated and reference
texts in chunks of 1024 on Scientific Papers. LADIDA-
CV maintains global structure with high MAUVE, beat-
ing OPT that fails to maintain long-range text similarity.
The shading shows one STD over 30 random seeds.

0 10 20 30 40 50
Sentence Position

0

5

10

15

20

25

30

S-
PP

L

[A] [H] [G] [D]

LaDiDa-CV
TC
GPT2

Figure 3: Avg. S-PPL v.s. sentence position on WikiSec-
tion. LADIDA-CV maintains the lowest S-PPL through-
out the article. [A], [H], [G], [D] signify avg. starting
positions for the four sections.

recovering each sentence on a sentence-level.472

For novelty and diversity, LADIDA-CV and473

LADIDA-V outperform the BART baseline on all474

datasets with higher Div and lower Mem, suggest-475

ing that conditioning on latent vectors z produces476

more diverse and novel text. To analyze whether477

there is any performance difference brought by478

conditioning on the lexical context, we show ex-479

amples of texts generated with LADIDA-CV and480

LADIDA-V from the same latent z0 sampled from481

diffusion in Fig. 8 in Appendix F. As LADIDA-V482

decodes each sentence independently, the names483

that appear in the stories sometimes deviate. How-484

ever, the z0 sampled from diffusion still preserves485

story discourse. Conditioning on lexical context486

(LADIDA-CV) leads to more consistent entity487

mentions. In Tables 2 and 3, LADIDA-CV con-488

sistently achieves the best overall performance,489

suggesting the benefits of using both lexical con-490

text and vectors in our VEC2SEQ setting. Our491

VEC2SEQ method of sequential generation is able492

Models Story-like ↑ Style Sim. ↑
TC 2.3670.949 3.4670.745
GPT-2 3.3000.651 3.1140.613
LADIDA-CV 3.6670.549 4.1330.537

Table 4: Human evaluation results on ROCStories. All
Krippendorff’s α ≥ 0.38.

to locally preserve sentence-level dynamics and 493

fine-grained details with low S-PPL and high lexi- 494

cal diversity, confirming RQ2. 495

7 RQ3: How does LADIDA perform 496

qualitatively? 497

To answer RQ3, we include human evaluations in 498

§7.1. We also add speed analysis in §7.2 to examine 499

the speed variation among the LADIDA variants. 500

7.1 Human Evaluation 501

We hire seven proficient English speakers as hu- 502

man judges to evaluate model outputs on the ROC 503

dataset on a scale of 1 (worst) to 5 (best) for: (1) 504

Story-like, which measures how coherent a story 505

is, and (2) Style Similarity to Reference, which 506

measures the similarity in sentence arrangement 507

and tone between the output and reference text. Re- 508

sults in Table 4 show LADIDA-CV outperforms 509

GPT-2 and TC in producing coherent stories re- 510

sembling the reference. For both, Krippendorff’s 511

α ≥ 0.38. We include the evaluation guidelines 512

in Table 14 in Appendix. On the longer datasets, 513

we observe that LADIDA is good at topic mainte- 514

nance throughout the document regardless of text 515

length, while AR models meander as the length 516

increases. We also observe that our model is better 517

at modeling coarse-grained structure than precise 518

semantic details. Examples of generated text on all 519

datasets are shown in Appendix F. We find that the 520

sampled texts sometimes show grammatical errors 521

or repetitive words with relatively lower fluency. 522

We hypothesize that this is due to the noise in the 523

diffused samples z0. However, they preserve text 524

structure in terms of length and style. For exam- 525

ple, the generated ArXiv paper has a “plot” in the 526

middle of the paper and “acknowledgement” at the 527

end, resembling the structure of a paper. 528

7.2 Speed Analysis 529

Inference for LADIDA involves two steps. First, 530

document latents are generated via diffusion sam- 531

pling. On the Scientific Papers dataset, DDIM sam- 532

pling with 250 time steps takes around 6.4 sec- 533

7



onds to generate one latent for a document on one534

GTX 1080 for all variants of LADIDA. The aver-535

age speed of generating one document on Scien-536

tific Papers in seconds is shown in Table 5. For537

LADIDA, the results shown include both the dif-538

fusion sampling step and the decoding step. For539

the fully parallel LADIDA-V, we generate 32 sen-540

tences in parallel. The quick inference time for541

LADIDA-V illustrates the benefit of fully NAR542

decoding. In the future we plan to examine the543

speed-performance tradeoff of using context vs. us-544

ing the latents. We also compare the speed between545

generating sentence-by-sentence with generation546

at once in Table 7 in Appendix E.

OPT-1.3b LADIDA-CV LADIDA-V
483.8 223 17.7

Table 5: Average speed (in seconds) of generating one
document on Scientific Papers with one GTX 1080.

547

8 Related Work548

Planning-based Text Generation. Traditional549

planning-based text generation (Duboue and McK-550

eown, 2001; Hu et al., 2022; Guan et al., 2022; Li551

et al., 2022a; Fan et al., 2019; Yao et al., 2019;552

Wang et al., 2023) typically first decides the high-553

level structures via a content planning component,554

then decodes the text via surface realization. Works555

such as Fan et al. (2019); Guan et al. (2022) usually556

tailor their content-planning module to the type of557

text to be generated or leverage external context558

information, e.g. key phrases or event paths as ex-559

tra supervision, and often incorporate an auxiliary560

objective (Goldfarb-Tarrant et al., 2020; Hu et al.,561

2022) for learning inter-sentence relations. In com-562

parison, the diffusion planning stage for our model563

is fully unsupervised without auxiliary losses and564

is adaptable to various tasks and narrative types.565

Diffusion Models for Text. Diffusion on text566

has been explored in both discrete and continuous567

spaces. In the discrete space, Hoogeboom et al.568

(2021) and Austin et al. (2023) explored discrete569

corruption processes with categorical noise on tran-570

sition matrices. In the continuous space, Li et al.571

(2022b) and Gong et al. (2023) jointly train token572

embeddings with diffusion models while Strudel573

et al. (2022) initialize token embeddings with pre-574

trained weights. Lovelace et al. (2022) trained575

diffusion in the continuous latent space of a pre-576

trained BART model. Existing works perform text577

diffusion at a sequence level, but no prior research 578

explores diffusion for leveraging high-level struc- 579

tural information in a document hierarchically. 580

Hierarchical Text Generation. Classical lan- 581

guage models struggle to capture high-level depen- 582

dencies in long texts, so hierarchical approaches 583

have been proposed that decompose long genera- 584

tion to sentence and word levels (Li et al., 2015; Liu 585

and Lapata, 2019). Li et al. (2015) used LSTMs to 586

hierarchically build a paragraph embedding from 587

sentence embeddings. Wang et al. (2023) used 588

a Brownian bridge trained with a contrastive ob- 589

jective to obtain sentence latents which are then 590

decoded using GPT-2. Spangher et al. (2023) ex- 591

plored news generation with a sequence of local 592

control codes. However, most hierarchical meth- 593

ods assume autoregressive dependencies for latent 594

sentence plans. To the best of our knowledge, no 595

other work has explored non-autoregressive sen- 596

tence planning for long-text generation, which al- 597

lows for cheaper and faster scaling. 598

Generation from Sentence Embeddings 599

LLM-based sentence embeddings (Reimers and 600

Gurevych, 2019; Cer et al., 2018; Tsukagoshi et al., 601

2021; Conneau et al., 2017) preserve semantic 602

information and capture linguistic properties and 603

have been used in various downstream tasks, 604

e.g. semantic retrieval. A few works (Cideron 605

et al., 2022; Montero et al., 2021; Wu and Zhao, 606

2022) have explored the generative ability of 607

sentence embeddings for semantic-structure 608

preservation. They rely on learning sentence 609

bottleneck representations from pretrained LMs 610

for generation. 611

9 Conclusion & Future Work 612

We present an unsupervised hierarchical model 613

for improved long-text generation by decomposing 614

the document-generation task into document-level 615

NAR diffusion and sentence-level AR decoding. 616

Our method achieves strong structural modeling 617

for documents both globally and locally. We plan 618

to improve the fully NAR variant of our model in 619

the future for fast, parallel inference and extend 620

our work to conditional settings to exploit the ad- 621

vantages of diffusion in future planning, which are 622

challenging for AR models. 623
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Limitations624

In § 6, we observe that the sampled texts from625

our model generates less fluent texts compared626

with AR baselines and show grammatical errors627

or repetitive words. We hypothesize that one rea-628

son is the noise that exists in the denoised docu-629

ment latent sample. Another reason could be that630

the decoder hidden states in our AR decoder is631

perturbed by signals from the additional sentence632

embeddings. The problem could be alleviated by633

further model tuning and advancement on diffusion634

modeling. Efficiency wise, as our best perform-635

ing model LADIDA-CV relies on AR decoding,636

it does not fully exploit the advantage of a NAR637

diffusion planning. However, improvement on the638

NAR LADIDA-V model would lead to generation639

of higher-quality texts in a parallel setting. Con-640

cerning potential risks, our approach depends on641

pre-trained language models, such as BART, which642

could potentially carry problematic biases.643
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A Diffusion Models850

Training a DDPM is performed by optimizing the851

variational bound on negative log-likelihood of z0:852

LVLB(ψ) = Eq
[
log

pψ(z1:T )

q(z1:T |z0)

]
≤ log pψ(z0).

(12)853

This objective is simplified in Ho et al. (2020) to854

be a weighted reconstruction loss:855

Lsimple(ψ) = Ez0,t,zt [∥fψ(zt, t)− z0∥22], (13)856

where z0 ∼ p(z), t ∼ U({1, ..., T}), zt ∼857

q(zt|z0). fψ(·) is the denoising function param-858

eterised using a neural network.859

B Task Derivation860

log p(D) := log p(s1, s2, · · · , sM )

= log

∫
p(s1, · · · , sM , z1, · · · , sM )dz

= log

∫
p(s, z)dz

= log

∫
p(s, z)q(z|s)

q(z|s)
dz

= logEq(z|s)
[
p(s, z)

q(z|s)

]
≥ Eq(z|s)

[
log

p(s, z)

q(z|s)

]

(14)861

The last row of Eq. 14 is the ELBO that we862

would like to maximise. We rewrite the ELBO as:863

Eq(z|s)
[
log

pθ(s|z)p(z)
q(z|s)

]
= Eq(z|s) log pψ(z)︸ ︷︷ ︸

(1)

+Eq(z|s) log pθ(s|z)︸ ︷︷ ︸
(2)

− Eq(z|s)q(z|s)︸ ︷︷ ︸
(3)

(15)864

We empirically maximise Eq. 15 by breaking 865

the equation into three terms. Term (1) is the prior 866

distribution for the continuous sentence latents, 867

which we model using a DDPM parameterised by 868

ψ. Term (2) is the reconstruction term that pre- 869

dicts sentences from their latent vectors, which we 870

model using a Vec2Seq decoder parameterised by 871

θ. Term (3) represents a document encoder that 872

maps a document to a continuous latent space. We 873

use an off-the-shelf sentence embedding model that 874

deterministically maps a sentence to a latent vector. 875

This way, term (3) is not parameterised and there- 876

fore omitted. We maximise term (1) and term (2) 877

separately in a two-stage process. With the prior 878

as a diffusion model, we formulate the document 879

generative process as: 880

zT ∼ N (0, I) (16) 881

zt−1|t ∼ pψ(zt−1|zt) ∀t ∈ [T, . . . , 1] (17) 882

s ∼ pθ(s|z0) (18) 883

where Eq. 16 and Eq. 17 define a prior distribution 884

over the latent variable of sentence vectors, which 885

is modelled with a reverse diffusion process, and 886

Eq. 18 is a decoder that maps the denoised vectors 887

z0 at t = 0 to the token space. Omitting term 888

(3) and taking the latent z to be the final denoised 889

sentence vector z0, we rewrite E.q 15 to be 890

Eq(z0|s) log pψ(z0)︸ ︷︷ ︸
(1)

+Eq(z0|s) log pθ(s|z0)︸ ︷︷ ︸
(2)

(19) 891

in which a lower bound on term (1) can be ex- 892

pressed in Eq. 12. Therefore, maximising Eq. 19 893

becomes maximising 894

Eq(z0|s) log pψ(z0) + Eq(z0|s) log pθ(s|z0)

≥ Eq(z0|s)
[
log

pψ(z1:T )

q(z1:T |z0)

]
+ Eq(z0|s) log pθ(s|z0),

(20)

895

leading to the final loss function: 896

L(D;ϕ, ψ) = Eq [LDDPM(z0;ψ)]︸ ︷︷ ︸
diffusion

+Eq [log pθ(s|z0)]︸ ︷︷ ︸
reconstruction

(21) 897

In practice, we train in two stages for the two terms 898

above. We first fit a latent diffusion model over 899

the latent space of documents z that comprises of 900

deterministic sentence embeddings encoded by an 901

encoder once. Then, we experiment with different 902

Veq2Seq decoding methods for the reconstruction 903

term. 904
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C Implementation Details905

For our proposed methods, we train f(ψ) and906

fDEC(θ) independently in a two-stage process.907

Therefore the two stages can be trained in parallel908

while freezing the other. For ROCStories, WikiSec-909

tion and Scientific Papers, we choose the maximum910

number of sentences per document M to be 5, 64,911

and 256 respectively. The sentence embedding di-912

mension d is 768 for all datasets. Therefore, the913

latent space for diffusion is 5 × 768, 64 × 768,914

256 × 768 respectively. For diffusion sampling,915

we use DDIM with sampling step=250. For more916

details of the denoising Transformer model archi-917

tecture please see Lovelace et al. (2022).918

For all fDEC,θ(z
i
0) models below we build on919

BART-base. For fDEC,θ(z
i
0) that takes context as920

Bart encoder input, we truncate them from the left921

and condition on the most recent 1024 tokens. Fig.922

4 illustrates the architecture for LADIDA-CV. For923

LADIDA-C, we do not add any embeddings to the924

decoder input. For LADIDA-V, we change the text925

input to BART encoder to be embeddings of the926

target sentence.927

When sampling from the various VEC2SEQ de-928

coders, we use top-p sampling with p=0.96. For929

TC, we use d = 16 following the experiments in930

the original paper. On WikiSection, we enable931

force generation for TC and disable it on ROC-932

Stories. For OPT-1.3b with LoRA, we finetune933

LoRA for 2 epochs. Following §3.2, we add an934

<EOD> token to the LMs to help control the output935

length during inference. We trained all our mod-936

els on 1 RTX 2080 for 3 days. We experimented937

with different architectures for the reconstruction938

task fDEC,θ(z
i
0) including GPT2, T5, and BART.939

We found that empirically BART showed the best940

result.941

D Decoder Reconstruction942

We observe that for our VEC2SEQ decoders trained943

with BART, the simpler sentences get reconstructed944

better. e.g. (City A has population B), while longer945

sentences get reconstructed to semantically similar946

ones. Here we report the BLEU and Rouge scores947

for the reconstructed documents in the evaluation948

set of ROCstories and WikiSection.949

E Speed Analysis950

We compare the speed of our sentence-by-sentence951

generation in LADIDA with the conventional multi-952

sentence generation scheme (GPT-2), with results953

WikiSection ROCStories

BLEU Rouge 1 BLEU Rouge 1
LADIDA-V 0.439 0.687 0.5626 0.721
LADIDA-CV 0.423 0.671 0.531 0.724

Table 6: Performance of document reconstruction with
VEC2SEQ decoder on WikiSection and ROCstories.

in Table 7. The task of sequential generation, where 954

outputs are generated sentence-by-sentence itera- 955

tively, was first proposed in Spangher et al. (2023), 956

with the aim of imposing structure on long-range 957

text. Despite its lower speed, this approach pro- 958

duces text that deviates less from the reference text, 959

as each sentence is guided by its own latent code. 960

This benefit is significant when it comes to long- 961

form generation, where generating at once using 962

models with long context window (e.g. OPT) is 963

expensive and slow.

GPT-2 LADIDA-CV
47.6 102.7

Table 7: Average speed (in seconds) of generating 100
documents on the ROC dataset with one GTX 1080,
with sentence-by-sentence generation (LADIDA-CV)
and generation at once (GPT-2).

964

F Generated Examples 965

We show examples of generated text on ROCSto- 966

ries, WikiSection and Scientific Papers in Table 9, 967

10, and 11. 968

G Human Evaluation 969

We recruit seven graduate students who are profi- 970

cient English speakers. For evaluation guidelines, 971

see Table 14. 972
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Vector Only (LADIDA-V) Context and Vector (LADIDA-CV)

Samantha has a physics test tomorrow. She has not studied
at all. She decided to stay up all night studying. When she
got to class, she fell asleep when she fell. Luckily, Clara’s
teacher postponed her test.

Samantha has a physics test tomorrow. She has not studied
at all. She decided to stay up all night studying instead.
When she got to class, she fell asleep immediately. But,
Samantha’s teacher postponed her test.

Table 8: Samples generated by two VEC2SEQ decoders on the same diffusion sample z0 in ROCStories. Condition-
ing on context leads to more consistent entity mentions.

LADIDA-CV on WikiSection

[ ABSTRACT ] Kirtland is a city in Carver County, Minnesota, United States. The population was
15,323 at the 2010 census. Situated in the central part of the Minneapolis-St Paul metroplex, Kirtland
is a bedroom community for Minneapolis-Saint Paul, the six-largest urban area in the U.S., and is
one of the fastest growing suburbs in the Minneapolis metropolitan area. [ HISTORY ] Kirtland was
founded in 1899. The city is located in the north central portion of the state and is the regional center
for north-central Minnesota. Kirtland Center is located in the central portion of downtown Minneapolis,
the Mall of the Minneapolis–St Paul area. On August 23, 2006, an F3 tornado hit Kirtland, causing
severe damage to the entire city and killed three people. Many of the buildings were destroyed or
razed for the downtown. Money Magazine ranked Kirtland the #17 best place to live in the United
States according to Money magazine in 2012. [ GEOGRAPHY ] U.S. Highway 59 and Minnesota
State Highway 15 (Ch Minnesota Highway 15) are three of the main routes in the community. The
Zumbrove Forest Preserve is a part of the city park in the far west corner of the City, and the Forest of
the river just outside the city limits. According to the United States Census Bureau, the city has a total
area of, of which, is land and is water. [ DEMOGRAPHICS ] Kirtland is located in Minnesota’s 2nd
congressional district, and is represented in the Minnesota House of Representatives by Senator Paul
Paul Paul (R-6), a Republican. The city is located in the Kirtland Basin, which is bordered by Ojibwe
National Forest and is the easternmost point of growth in the U.S.

[ ABSTRACT ] Ōshū (Ō Shū-shi) is a city located in Iwate Prefecture, Japan. s of 1 2017, the city
had an estimated population of 59,345, and a population density of 151 persons per km² in 26,304
households. The total area of the city is. [ HISTORY ] The area of present-day Ōshū was part of ancient
Mutsu Province, and has been settled since at least the Jōmon period by the Emishi people. [ HISTORY
] The area around Ōshū has been settled since at least the Jōmon period, and numerous shell middens
found in the area from at least 900 years ago. Many Jōmon period archaeological remains have been
found in the Ōshū area, along with numerous shell middens. During the later portion of the Heian
period, the area was ruled by the Abe clan. During the Edo period, the area was part of the holdings of
Sendai Domain under the Tokugawa shogunate. In the post-Meiji restoration cadastral reforms, the
area of present-day Ōshū was organised into Kiso District, Gifu prefecture. The modern town of Ōshū
was established on April 1, 1889, by the merger of the modern municipalities system with the villages
of Kitakami and Kiso. The village of Ōshū was merged with the village of Kiso on April 1, 1954, and
from Kiso District on April 30, 1954. On April 1, 2005, the town of Ōshū was merged with the villages
of Kiso and Kiso, and the village of Shūchi (both from Kiso District). [ GEOGRAPHY ] Ōshū is in the
Nōbi Plain of Iwate Prefecture, bordered to the north and south. The highest mountain in the prefecture
is the Ōshū Mountains, and the highest point in Iwate Prefecture, with the Kiso Mountains in the Nōbi
Mountains to the east and the Kitakami Mountains on the south. The Kiso River flows through the city.
[ DEMOGRAPHICS ] Per Japanese census data, the population of Ōshū has increased gradually over
the past 40 years.. The city is in the heart of Kiso Province, and has been ruled by the Ōshū clan (1st
generation) and the Kiso clan. The city is in the heart of Kiso Province, and has been ruled by the Ōshū
clan (1st generation) and the Kiso clan.

Table 9: Samples generated on WikiSection
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He saw a dog ...on

LaDiDa-CV

Sentence Encoder

BART Encoder

Encoder Hidden States

<BOD>

s0
Tom<BOS> left home <EOS>.

s1

BART Decoder

Input Representation

z2
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LEGEND 
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s2 TRAINABLE ITEM 
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INFORMATION FLOW 

He<BOS> saw a dog <EOS>...
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Addition

Figure 4: An overview of LADIDA-CV decoder during training. Lexical context s0, s1 passes through BART
encoder while target sentence s2 and vector z2 pass through the decoder to reconstruct s2.

LADIDA-CV on ROCStories

I made a list of the grocery list. I drove to the store. I paid for the items on the list. The cashier handed
my items in for me. I paid for groceries and returned home.

John and his mom took a boat ride on the Lake Michigan. They paddled on the boat and watched the
boat ride long in the water. Soon after they got close a large shark came up in the water. John and his
mom rushed to their seats, seeing the danger. John and his mom ran to shore to save them when they
caught the shark.

Jane needed to get her windowsill to update her window. She put up all the windowsill on her windows
and windows. She went to check the weather forecast. There was a storm brewing!. Jane raced back to
the house from her windows.
I love to have the trampoline fly. It fly back and forth in the world. It was very fun. It plays around all
day. We have to go clean it up and trash

Table 10: Samples generated on ROCStories. Sometimes the decoded samples have repetitive words and produce
less sensible stories.
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LADIDA-CV on Scientific Papers

the most distant galaxies in the local universe ( galaxies ) are of the largest and most closely related to
the star cluster velocities. galaxy clusters are believed to be the building blocks of massive galaxies (
zinn & yee 1979; zinn et al. 2000 ), and their virialized gas can evolve by gravitational infall of gas
to relativistic regions ( van der hulst 2000; yee 2000 ). over a relatively long time span, gas infall to
these virialized regions will tend to speed up the cluster relative to the initial mass, so that gravitational
infall can produce stars at a fixed redshift. the infall of gas from these virialized regions into the central
massive black hole ( bh ) galaxy @xcite results in a violent event, which is likely to precede a second
generation of massive black holes ( imbhs ) by ram pressure stripping and subsequent star formation
within the virial radius. the galaxy formation process in these virialized regions may take place in a
short time span ( @xmath6 years ), and it will be interesting to see whether or not the bh galaxy will
evolve from a star cluster to a cluster at a given redshift, after which the infall of gas is not taking place,
and subsequent star formation within the same galaxies. we stress here that the inner edge of the bh
galaxy is deeply connected to the process of star formation, and to constraints on their gas infall rates.
galaxy clusters formed by ram pressure stripping and subsequent star formation are characterized by
large scale ram pressure fluctuations ( @xmath7 ), and their innermost regions tend to undergo violent
mergers between them, with rapid expansion of the virialized regions and subsequent superwinds. the
innermost regions of the bh galaxy are known to be “ tully - like ” @xcite, and they often undergo
“ @xmath8-body ” mergers, which result in a complex interaction between the gas infall rates and
the ram pressure fluctuations associated with “ superwinds ”, or “ cluster mergers ” ( e.g., @xcxcite
). in other words, the two most distant galaxies of the bh galaxy are called “ tully - like ” galaxies,
and they lead to more complex interactions between two massive imbhs, and subsequent superwinds.
several numerical simulations have shown that the gas infall process in these virialized regions can
take place in a cosmologically plausible way ( e.g., zinn & yee 1979; van der hulst 2000; zinn et al.
2000 ), in which ram pressure stripping and subsequent star formation were taken into account during
the evolution of the bh galaxy, and in the case of low redshift gas infall rates such as cluster mergers (
zinn - yee, zinn, & zinn 2000 ) through post - merger simulations of the innermost regions of a massive
galaxy ( yee 2000 ). although these simulations show that the gas infall process in a tully - like bh
galaxy can be triggered by ram pressure stripping and subsequent starbursts, it does not have enough
time to test a realistic cosmological model that captures the small fraction of the infall of gas. it is
possible that ram pressure stripping and subsequent star formation in the central massive bh galaxy
would lead to a relatively slow infall of gas from these virialized regions, and it would not have to do
so if the velocity is measured to be much smaller than the speed of light. we have not used numerical
simulations to explore the infall process, and zinn & yee ( 2000 ) have shown them with @xmath6-body
and kinematic constraints. we run our simulations in terms of physical nuclei. accurate models strongly
affect the gas infall dynamics, which makes it difficult to constrain realistic cosmological models. it is
also difficult to prevent gas infall from a hot gas that circulates into the infalling gas, so that the gas
infall rate follows a limited line of sight. to constrain the orientation of a star cluster in a given galaxy,
one should choose a preferred ellipsoid. sdss j1047 + 013 ( zinn & yee 1979 ). cole et al. ( 2000 ) have
developed a three - component model to determine the orientation of a bh galaxy and correct for the
tendency of star clusters to evolve gravitationally. in summary, zinn & yee ( 2000 ) examined the infall
dynamics of galaxy clusters using a simple three - component model ( zinn, yee, & zinn 2000 ), and
show that this approach provides stringent constraints on the physical nuclei from which the infall can
be treated, although some models may require detailed kinematical and kinematic constraints. they
attempted to account for this effect using an adiabatic formulation first developed by cole et al. ( 2000
), which leads to too high @xmath6-body and kinematic constraints and to neglect the effective mass (
goldreich 1981 ). we note here that the bh galaxy pairs ( i.e., tully - like ) may interact with the galactic
nuclei from which the infall is triggered by ram pressure stripping and subsequent starbursts ( see
zinn & yee 2000 for a short review ). we do not consider this simple assumption, and we suggest that
our choice of the initial mass of these pairs should greatly reduce the number of imbhs to zero in any
numerical run to avoid excessive mass loss. tully & yee ( 2000 ) use an adiabatic formulation ( zinn,
yee, & zinn 2000; @xcite ) to predict the orientation of a bh galaxy pair, and show that @xmath6-body
and kinematic constraints would be obtained if ram pressure stripping and subsequent starbursts interact
gravitationally ( van der hulst 2000 ). tully & yee ( 2000 ) use an adiabatic three - component model to
predict the orientation of the zinn - yee ellipsoid, and correct for the tendency of superwinds to precess
at high infall velocities. we start our simulation with a point mass of about @xmath1, which accretes
instantaneously along the @xcite minor axis ( but remains free of particles ) with about 1@xmath3. the
@xmath0-axis along the minor axis is a strong bend in the vertical axis of the collapsing bh galaxy,
which should allow a correction for gravitational instability at high velocities @xcite. we set @xmath9
at a distance of 1@xmath3 from the central bh galaxy ( s: s: @xcite, @xcmath10 ) and the line of
sight ( @xcit: s; s: ks: sb: sj11 ) @xxmath6-body at 10@xcite. ]. @xmath11 where @xmath12 is
the initial velocity of the bh galaxy ( @xcite, @xcit: s; s: sb: sj11 ) and the line of sight angle @xite,
and we choose the rotation axis @xin such that the particle should lie in the midplane between the
@xcmath0-axis and the rotation velocity, and hence the particle must lie in position @lmath13.

Table 11: Samples generated on Arxiv
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LADIDA-CV on Scientific Papers

we use the gas infall velocity distribution of the gas to measure the gas properties associated with a
real contour. comparisons of simulations were taken from koyama & sakurai ( 1998 ) simulations.
for simplicity, we only consider the infall of bhs in the midplane between the @xmath0-axis and the
rotation axis, under the assumption that all pairs of particles are coplanar until they meet at about
@xcite. we set @xmath14 along the minor axis of the bh galaxy ( s: s: @xcite ) and follow the orbit of
the cartesian ellipsoid in which the particle will travel from the sun to the galactic center. the figure
shows @xmath17 for model ia. [ ssec_velp ]. ]. the initial velocity is measured along the equatorial
plane of the bh system. the right hand side of the @xmath0-axis starts to fall at a point just above
the tangent line @xcite, where a strong falloff occurs between @lmath18 and zero for all kinematic
quantities. this result means that the infall process involves a very violent bend in the gas density,
which then explains spiral arms to turbulence. in figure 1 we present the main points of our simulations
for the three component model, and we first set up the contours from table 1. the infall takes a few
hundred milliseconds above the central bh velocity of 8.5 km. a third time the infall of bhs is seen,
which increases the stellar velocity range by nearly a factor of two. from this figure we can clearly see
a significant increase in the infall velocity, which is seen in model ia. [ ssec_velp ] the first time is the
infall time. to understand the hydrodynamic and kinematic behavior of a wave we use the resulting
three -body equation. the time scale of the adiabatic events is @xmath13 except for a strong interaction
with bhs. the second time is the infall time scale @xmath19, where the significance of the ‘ finger’is
measured to be * f*@xmath20, and the outer edge of the postshock spiral arm * @xcite. ( 10@xmath3
) and bhs at an infall time of [ ssec_velp]a. the second important factor is the steepening at this time
scale. in this figure, we only consider the infall velocity @xmath21, so that the column density of the bh
gas in units of the dimensionless mass is @xcite, where the dashed line measures the @xxmath0-axis
and @xite @x compared to the ‘ light’momentum, which increases when @xradiated by bhs. this disk
structure is similar to that seen in model ia, and to the schwinger & binney ( 1998 ) superwinds. the
solid ( dashed ) part reflects the inhomogeneity of the bh gas, with the particles in the accretion disk
that are coplanar and the dark matter in a mixed state, while the solid ( dotted ) part is also accreting.
the main questions we present here are to discuss the initial conditions of our sample. in our earlier
work @xcite, we have focused on the problem of a strong bend in the momentum of the bh gas relative
to the rotation axis ( i.e., to the total infall velocity ), but we found that the change in momentum
that occurred before the infall could have had a purely kinematic origin. ,title="fig:",width=302 ] (
10@xmath3 ) and bhs at an infall time of [ ssec_velp]b.,width=188 ] in this work, the dashed line is
dominated by the outermost free energy region, from which no physical effects can be added. the
second dashed line represents the fractional error on the stellar wind trailing the central mass. in all
simulations we started from the initial runs of the three component model, but runs of several tens of
milliseconds ( @xmath22 ) were carried out with much higher accuracy than to produce individual runs
that varied smoothly from central to dark matter. we repeat the initial runs for more than @xmath23 of
the simulation time, and we varied only a few runs from central to dark matter until all are detected. we
note that the fragmentation of the bh system at @xmath24 ( 10@xmath3 ) is clearly dominated by the
outermost free energy region, but significant differences were found in simulations that did require
comparable amounts of accretion rates, for @xcite. [ ssec_disk_sec ] ] ). in the inner @xmath23 region,
the system is shocked by bhs and the electrons are unable to transmit. figure [ fig_disk_sec ] shows
the fragmenting of the @xmath23-th bh disk in @xcite ( 10@xmath3 ) in a relatively strong way; we
therefore consider the free streaming region seen after annihilation to see figure 1. in this figure we
use the @xmath23-th bh disk, so that our simulations do not consider the free streaming region, but
consider particles in a coplanar ( solid ) and dark matter ( dashed ) medium that has a physical origin
comparable to the densities of these particles. the blast wave that triggers the fragmentation of the
@xmath23-th bh disk into a large piece of the solid ( dashed ) line, which then proceeds in a similar
fashion as @xcite to get the adiabatic event unless the bh gas is pushed off. ( 10@xmath3 ) scatter
the bh gas into a large piece of the solid ( dashed ) line, so that we preferentially pick up @xmath25
particles. to see this energy source in detail, we then imagine an adiabatic energy redistribution. the
velocity dispersion @xmath21 in the three component model is given by * s*@xmath35, where @xcite
is the radial velocity of the dark matter disk, and the proper motions are about 3 km s@xxmath36, and
@xcmath37 the mass - loss velocity. -axis @xmath23 in figure [ ssec_momentum ]. [ ssec_velp3 ]
). the second dashed line has a long tail in the infall velocity, while the third one has a thick tail that
flows outwards of the bh gas. we can see that the rise in the infall velocity ranges from @xmath3 to
@xite, and should approach it with nearly an order of magnitude. for consistency, we therefore plot
@xmath21 as the ratio of the ‘ light’momentum to the infall velocity, which should be @xcite @xite.
in contrast, in all runs we have plotted @xmath21 as a function of the amplitude, but the final straight
line is clearly rising, with a constant amplitude that falls off exponentially when going beyond @xcite.
we also plot the relative values of @xmath21 and @xcite for the three bh models at equal values of
the power - law ratio @x[scaledwidth=50 ] ( 10@xmath3 ). we see that these values of @xmath21
are much higher than in the three component runs, but we show results for weak thermal winds with
@xcite. the three component calculation also gives a much higher value of @xmath21 than the one
discussed in this work, although we see that it is roughly faster for weaker thermal winds.

Table 12: Continued
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Generated samples with Context and Vector on Arxiv

we have also obtained a higher value of @xmath21 from our calculation, and found that the highest
value of the bh infall rate is roughly given by * s*@xmath35, where we use the power - law derived
from @xcite to derive the bhs density @xxmath50. this assumption implies @xmath39, for which we
get the bh derivative at @xcite. one can not rule out that @xmath21 in the three component calculation
is small for luminous bhs, unless the mass - loss radius is taken to be comparable to a few tens of
percent ( see figure [ ssec_momentum ] ). in the three component calculation, the value of @xmath21
from equation [ eqn: anisotropy ] is given by * s*@xmath35, so the adiabatic term in equation [
epsilon ] simply vanishes as @xcite: it is almost impossible to get an anti - bh dipole to @xxmath51
which would affect @x. the magnitude for the above luminous bhs is within a factor of 10. the three
component model shows that the adiabatic term in equation [ epsilon ] increases linearly from @xmath3
to a value of less than a few tens of percent for luminous bhs, but with a slope that increases with
redshift ( this is consistent with @xcite ) suggesting that one might expect a perturbation to the non -
perturbative case with a much steeper dipole moment. jaffe, bahcall, & gammie ( 2000 ) also shows
how this effect is expected in numerical calculations of the infall velocity ( see mcclintock & davies
1989 ), and a broad - line analysis based on the eddington - smith equation @xcite. a recent numerical
calculation has shown that adiabatic @xmath21 is universal in star - forming systems at velocities of
about 5.5 ( bahcall et al. 2000 ). +. +. + + the third equation ( [ eqn: anisotropy ] ) tells us that it is
impossible to determine the infall velocity for luminous bhs, but we argue that the virial theorem is a
simple axisymmetric, geometrically symmetric equation which measures the infall velocities per unit
virial mass. this does not necessarily solve the virial theorem, but it does nt result in the flattening of
the infall velocity when the bh collides. for luminous bhs, the 3-component model has a very stable
( @xmath52 km s@xmath36 ) axisymmetric system, but it is certainly more difficult to work with ‘
classical’trajectories than in our case, so that the infall velocity should scale as a function of the proper
motions of the disk. thus, due to an adiabatic continuum analysis, nucl. +. + + in the case of luminous
bhs, the velocity field is seen to fall off from the line of sight towards the observer as it falls upward
from the cloud center and then collides with the material just above a certain velocity threshold. this is
not surprising, since the momentum - momentum relation implies that the collision must be unstable
for strong forces, but they are in principle weaker than in these cases. we first plot the density density
@xmath21 of the luminous bhs as a function of the infall velocity, which is given by * s*@xmath35,
where the three component density is @xcite: there exist density contrasts between @xxmath3 and
@xcdm density profiles with density of the background ( typically, we assume that @xcmath53 ) and
@math36. we show @xmath21 from our two component simulations of the davies et al. panel and the
@xcite case, with actual backgrounds set to @xxmath94 and 2000. we assume @xmath70. we have
repeated the three component simulations of davies et al. ( 2000 ) for @xmath71 years, and found that
non - thermal winds do not reach the same level with a mean infall speed of 100 km s@xmath36. we
see that in the 3-component scenario the infall velocity is almost independent of the actual spatial field,
so that flattening is still possible when using both simulations @xcite. we have neglected the effects
of strong thermal winds, but this is not important because we use the range of escape frequencies to
precess the radiation from the bh before it collides, so that there is no possibility to deal with radiation -
induced shock propagation. in fact, using a full 3-component model does not change the infall velocity
once the system returns, which promises continued importance in most numerical studies. however,
@xmath71 was not able to assess the initial condition, especially in the final version. we should point
out that the realistic 3-component simulations are in good agreement with the data in detail, but they
are subject to uncertainties in the softest version of the 3-body model. in the final version of the 3-body
simulation, we will have a chance to choose a ‘ typical’scenario in which each of the progenitors of the
bhs will be at a given epoch, and then produce stars and other events during which the infall process is
episodic. in fact, our analysis is in agreement with what appears to be independent of our theoretical
observations about luminous bhs. the 3-component model is shown in the left panel in detail, so that
the flattening of the infall velocity is seen when spatially confined structures are heated. this issue has
not been included in the further study and should be considered elsewhere. the 3-component model is
in very good agreement with the present numerical calculations of @xmath21, and the smoothness
of the infall velocity clearly shows that it is perfectly reproducible. these are large numbers, since
the bhs do not have to be filled with particles of the same mass, and the final infall velocity must be
large in order to avoid misaligning the particles. we thank the staff of the bhs for providing excellent
support throughout the jaffe and bahcall / gammie investigations and for their help throughout the work.
this work was partially supported by conacyt grants dmr98 - 064001, and by the mexican government
through grant in2/98 - 1. we also thank the anonymous referee for careful reading of the manuscript
and for useful suggestions that greatly improved the manuscript. <EOD>.

Table 13: Continued
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Story-like

1 The text does not resemble a story at all. There is no plot and the sentences
meander. It is difficult to understand the text.

2 The text revolves around a topic but does not form a plot skeleton. It is vague
what is going on.

3 With guessing, the text seems to convey a story with a plot skeleton. However,
there are mistakes such as wrong entity mentions, repetitive phrases and wrong
choice of words.

4 The text looks like a story with a plot, but occasionally with mistakes such as
wrong entity mentions, repetitive phrases and wrong choice of words.

5 The text is a complete and coherent story with a reasonable plot, all correct entity
mentions and suitable choice of words.

Style similarity to reference

1 The text is completely unlike the reference in terms of sentence length, structure,
and tone.

2 The text is mostly dissimilar to the reference in terms of sentence length, structure,
and tone.

3 The text is somehow similar to the reference in terms of sentence length, structure,
and tone.

4 The text is mostly similar to the reference in terms of sentence length, structure,
and tone.

5 The text is highly similar to the reference in terms of sentence length, structure,
and tone.

Table 14: Human Evaluation guideline.
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