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Abstract. Unsupervised textual style transfer presupposes that style
is a coherent and consistent concept and that style transfer approaches
will generalise consistently across different domains of style. This paper
explores whether this presupposition is appropriate for different types of
style. We explore this question by comparing the performance and la-
tent representations of a variety of neural encoder-decoder style-transfer
architecture when applied to sentiment transfer and formality transfer.
Our findings indicate that the relationship between style and content
shifts between these different domains of style: for sentiment, style and
content are closely entangled; however, for formality, they are less en-
tangled. Our findings suggest that for different types of styles different
approaches to modeling style for style-transfer are necessary.

Keywords: content · style · sentiment · formality · disentanglement.

1 Introduction

The task of textual style-transfer emerges from the observation that the same
content can be expressed in different ways (or styles), such as: brief as opposed
to verbose, formal or informal, expert or beginner style, polite or impolite, and
different personal styles. The task of textual style transfer is a multi-objective
natural language generation (NLG) problem which focuses on generating a new
version of an input text that expresses the content of the input in an alternative
style. Consequently, a key challenge in textual style transfer revolves around the-
ses two components (style and content) and how to disentangle them. Although
there is a growing literature on the task of textual style-transfer the develop-
ment of a widely acceptable definition for style is an open issue. For example, one
question that has emerged in the field is whether sentiment should be considered
a style in the same way as formality or politeness. This paper analyses this ques-
tion by comparing, across a number of style transfer tasks (sentiment-transfer
and formality-transfer) and neural encode-decoder style-transfer architectures,
the correlation between the amount information in the latent representation of
a model relating to the style of an input sequence and the content preservation
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power of that model. The idea informing this analysis is that when a strong
correlation exists this provides evidence that style and content are highly inter-
related for that style transfer task. Consequently, this analysis will enable us to
assess whether the relationship between style and content is consistent across
sentiment and formality. If the relationship between style and content is dif-
ferent for sentiment and formality this would indicate the sentiment transfer is
fundamentally different from formality transfer, and so style transfer approaches
developed for one of these tasks may not generalise to the other. Our findings
indicate that style and content cannot be disentangled for sentiment transfer,
however for formality transfer they can. Based on this finding we propose that
sentiment transfer and formality transfer are related but distinct tasks.

The remainder of the paper is structured as follows: section 2 reviews the
previous work and categorizes them based on how they define style, section 3
and 4 describe the models and datasets we use in our experiments followed by
introducing the evaluation aspects and metrics we use to evaluate the architec-
tures (section 5), section 6 describes and presents our experiments and results,
and in section 7 we set out our conclusions.

2 Literature review

A clear definition of the concept of style is essential to designing an approach to
style transfer. Indeed, based on how style is viewed previous research on style-
transfer can be categorized into two groups [24]. The first group assumes that
style can be explicitly disentangled from content, and that style-transfer is best
done by identifying and replacing style markers. Informed by this understand-
ing of style, the style transfer models in this category focus on separating the
style markers from the content as an initial step and proceed by generating the
style-shifted sequences. These two steps can employ statistical frequency-based
methods, neural network techniques, or a combination of the both [11,12,16].

The second group implicitly define style as a holistic concept and an integral
component of a text—fundamentally connected to the concept of content—where
each style can be considered as a different language [24]. From a modelling
perspective, the strategies in this group frame style transfer as a translation
task and aim at translating from one style as the source language to the other
one as the target language by implementing end-to-end approaches [13]. The
generation block of these style transfer models are mostly based on a standard
encoder-decoder (seq2seq) architecture [1,23] or extensions of it, such as encoder
multi-decoder [4] or variational encoder models [6, 8]. The goal of generation
block is to generate a style-shifted sequence that is semantically similar to the
input and grammatically correct [4, 13,18,20,22].

In unsupervised style transfer an increasingly popular approach is to use
Generative Adversarial Networks [5] where classifiers are employed as the adver-
sarial block to guide the training process [4,6,8,13,18,20,22]. These strategies are
based on the assumption that the latent representation of the input sequences
are style-free. In this vein of research, recent work has investigated the disen-
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tanglement of the style and content by analysing the input latent space taking
“sentiment” as the style [7].

3 Models

The baseline model we use for our experiments is an adversarial encoder gen-
erator (encoder-decoder) style transfer model [20] which contains: (i) a single
encoder model E which reads an input sequence x in style s ∈ {1, 2} (denoted
x(s) }) and creates an embedded representation z of the input, (ii) a single gen-
erator (decoder) model G that is initialised with z and the target output style
s ∈ {1, 2} and generates a sequence of words that ideally are a surface repre-
sentation of the content in x in the target output style, and (iii) a set of two
style-specific Discriminators Ds (s ∈ {1, 2}). Ds takes a generated sequence and
predicts whether or not it has the style s. The reason for employing discrimi-
nators in this architecture is that this architecture is trained in an adversarial
manner where for a given target output style s the goal of the generator G is to
generate an output such that Ds labels it in the style s, and at the same time
the goal of the Ds is to predict whether the style of the output is the same as
the original input sequence or has been transferred. The encoder and generator
cells of the model (and the variants described below) are single-layer RNNs with
GRU [2] (cell-size is set to 700). The encoder GRU cells of the attention-based
and multi-encoder models are bi-directional and uni-directional, respectively. To-
ken vectors are initialized by pre-trained GloVe [14] and their size is set to 100.
Discriminators are TextCNN classifiers from [9].

We propose two extensions of the baseline model: a multi-encoder and an
attention-based architecture. Both of these extensions are designed to be more
powerful in terms of encoding the input sequence (e.g., the multi-encoder archi-
tecture has a separate encoder for each input style which we expect will enable
each encoder to fine-tune to its relevant style; and the attention-based architec-
ture generates a new context sensitive representation of the entire input at each
step in the generation process). By increasing the representational capacity of
the baseline in different ways we will be able to examine if the encoding of style
and content across the different neural architectures and domains is consistent.

3.1 Multi-encoder model

Our multi-encoder model has two style-specific encoders E1 and E2 and a single
generator G (Figure 1). Each of the encoders reads a sequence x of its style
corresponding style s ∈ {1, 2}, denoted as x(s) and outputs an embedded rep-
resentation zs. The encoders share the generator which is initialized with z, as
the output of either E1 or E2, and a parameter indicating the desired output
style s. The output is either a reconstructed or style-shifted sequence. It is a
reconstructed sequence when the desired style (s) and the source sequence style
are the same and it is a style-shifted sequence when these two styles are different.
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Fig. 1. Multi-encoder model (following the schema from [7]); E1 and E2 create z1 &
z2 given the inputs of their corresponding style. Then given each z, G generates an
output in the target output style s.

This architecture has two style-specific Discriminators, Ds (s ∈ {1, 2}). Each Ds

takes a generated sequence and predicts whether or not it has the style s.

Training involves processing two differently styled inputs in parallel x
(s1)
1

and x
(s2)
2 (where s1 6= s2) in response to which four outputs are generated, one

output sequence per style for each input sequence. Two of these outputs will be

reconstructed sequences x̃
(s1)
1 , x̃

(s2)
2 , and two style-transferred sequences x̃

(s1)
2 ,

and x̃
(s2)
1 . The discriminators are trained using the loss shown in Equation 1.

For a given style s this loss computes the binary cross-entropy over “transferred”
and “preserved” instances where the true labels of style-shifted and reconstructed
outputs are considered as “transferred” and “preserved” respectively. For each
style s, we train Ds to maximize the probability of assigning these true labels
to the output sequences by minimizing this loss.

LDs
= − log(Ds(x̃

(s)
1 ))− log(1−Ds(x̃

(s)
2 )) (1)

The encoders and generator are trained using a combination of reconstruction
and adversarial losses. The reconstruction losses of the E1 and E2 are com-
puted following equation 2. Lrecs (s ∈ {1, 2}) is the cross-entropy between the
reconstructed sequence x̃(s) and its corresponding input x(s).

Lrecs = − log PrEs
(x̃(s)|x(s)) (2)

The adversarial loss Ladv,s is computed solely on the transferred sequences and
measures the precision of a discriminator Ds in detecting inputs that have been
transferred to style s. Equation 3 shows this loss for s1 (Ladv,s2 is computed
symmetrically). Minimizing this loss minimizes the log of the inverse probability
predicted by the discriminator which motivates the generation block to generate
style-shifted sequences with a lower possibility of being detected as transferred.

Ladv,s1 = log(1−Ds1(x̃
(s1)
2 )) (3)

During training, the back-propagation for the encoder-generator triple (E1, E2,
G) is carried out using the following equation where Lrec is the summation of
the Lrec1 and Lrec2 (equations 2) and Ladv,s is the adversarial loss (equation 3).

Ltotal = Lrec + Ladv,s1 + Ladv,s2 (4)
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3.2 Attention-based model

We propose an attention-based model by employing attention layers [1] in our
base model. This model contains the following components: a single encoder E,
a single generator G and style-specific discriminators Ds (s ∈ {1, 2}). E is a bi-
directional RNN which consists of forward and backward RNNs. It reads an input
sequence x with the length T in the both forward and reversed order and creates
the encoder states as the concatenation of the forward and backward hidden
states. The embedded vector of x is therefore obtained as the concatenation of
the last state of E from forward and backward cells, denoted as z.

G is a uni-directional RNN which is initialized with the output style. At the
ith step of generation the RNN cell takes the following inputs: the previous state
si−1, the previous output yi−1, a context vector ci and outputs si and yi. A differ-
ent context vector ci is created for each generation time step i, and is computed
as a a weighted summation of the encoder states. We use Bahadanau’s additive
method [1] to compute at each generation step an set of attentions weights across
the encoder states, and then use these attention weights to calculate the weighted
summation ci for that generation step. To generate these attention weights we
first concatenate each of the states of the encoder h1, . . . , hT with a label indi-
cating the desired output style. The result of this concatenation processes is the
sequence h′1, h

′
2, . . . , h

′
T (i.e., h′j is the concatenation of the desired output style

and hj). We then provide two inputs to Bahadanau’s attention at each genera-
tion step: (i) the previous state of the generator si−1; and (ii) the sequence of
augmented encoder states h′1, h

′
2, . . . , h

′
T . Given these inputs each encoder state

h′j is scored relative to the context of the generator si−1 by passing h′j and si−1
through a hyperbolic tangent layer and then passing the output of this layer
through a fully connected layer Wf (see Equation 5). Then the scores for the
encoder states are passed through a softmax layer (see Equation 6).

scoret,i = Wf (tanh((Wsst−1 + bs) + (Whh
′
i + bh))) (5)

at,i =
exp(scoret,i)∑T

k=1
exp(scoret,k)

(6)

The first step of generation computes c1 by taking z and the start token <Go>

as s0 and y0. The fully connected feedforward layers employed in the attention
mechanism are jointly trained with all the other components of the model.

Ds act the same as in the multi-encoder model: given a generated sequence,
it predicts whether or not it has the style s. Training process is also the same as
multi-encoder model. In our experiments we use all three of the models discussed
in this section: the baseline, the multi-encoder and attention-based model.

4 Datasets

We use the GYAFC, and the Yelp Restaurant Reviews datasets. Our motivation
for selecting these datasets is that they are appropriate for different style-transfer
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Fig. 2. Generating the output token at time step t while creating ct considering st−1

tasks: the Yelp dataset is suitable for sentiment-transfer whereas GYAFC is
suitable for formality-transfer. The vocabulary size given below for these datasets
is after replacing words occurring less than 5 times with the <unk>. token.

Grammarly’s Yahoo Answers Formality Corpus (GYAFC) [17] contains human-
labelled paired informal and formal sentences which was crawled from two do-
mains of Entertainment & Music (E&M) and Family & Relationships (F&R)
in Yahoo Answers3. For the experiments, we combine E&M and F&R and we
use this aligned corpus as non-parallel by considering the style of each file as
the only label available.The training dataset has 104k informal sentences and
104k formal sentences, the resulting test set has 11k informal sentences and 13k
formal sentences, and the development set has 24k informal sentences and 27k
formal sentences. We applied upsampling to balance positive and negative la-
bels. To be more consistent with the splits of the Yelp dataset, we swapped the
development and test sets resulting in the final splits of 72%, 9% and 19% for
the train, development and test sets, respectively. The vocabulary size is 20K.

Yelp Restaurant Reviews (Yelp) is a large-scale review dataset (4.7 million re-
views) where reviews are labelled as positive and negative if their corresponding
stars are above and below three respectively. Three-starred reviews are discarded.
Moreover, because the unit of analysis in our experiments is the sentence, we
used the review level label for each sentence of the review. Doing this, however,
can lead to neutral sentences being labelled as positive and negative. To address
this problem, previous work, such as [20], have assumed that longer reviews are
more likely to contain neutral sentences and longer sentences are more likely to
be neutral. We adopted a similar approach and filtered out reviews that had more
than 10 sentences, and sentences longer than 15 tokens. The resulting training
dataset has 252K negative sentences and 381k positive examples, the develop-
ment set has 25K negative sentences and 38K positive sentences, and the test set
has 50K negative sentences and 76K positive sentences. For training, we applied
upsampling by randomly selecting negative sentences without replacement for
repetition to balance positive and negative labels. The vocabulary size is 10K
and the final train, development and test splits are: 70%, 10% and 20%.

3 https://answers.yahoo.com
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5 Evaluation aspects

We consider the evaluation dimensions of style shift and content preservation
power to investigate the performance of the base model and its proposed exten-
sions: multi-encoder and attention-based model.

Style shift power (SSP ) focuses on how well the style transfer models shift
the style of the input sequences to the target style. Following some previous
research [4,6,8,11,12,15,20,22], we train style classifiers in order to measure the
percentage of the style-shifted sequences which are labeled with the target style.
We employed a TextCNN model [9] as the style classifier, and train it separately
for the Yelp and GYAFC datasets.

Content preservation power (CPP ) investigates the similarity of the input se-
quences and their corresponding style-shifted outputs in terms of content. There
is no widely accepted CPP metric and the existing metrics are criticised for
different reasons; for instance, the cosine similarity embedding-based metric [4]
is criticised due to its sensitivity [8]. We consider the following three metrics
which employ different strategies to compute CPP of each architecture.

1. Cosine Similarity (CS) is an embedding-based metric which computes
the cosine similarity between the embedding of the input sequence and its
corresponding style-shifted output. We use a method introduced in [4] to
generate the embedding of the sequences. First, we use a pre-trained 100-
dimensional GloVe model [14] to generate an embedding for each token in a
sequence. We then calculate the min, mean and max pooling of these token
embeddings. The embedding vector for the full sequence is then created by
concatenating these min, mean and max pooling vectors.

2. Word Overlap (WO) is an n-gram based metric proposed in [8] which
computes the word overlap of the input x and style-shifted output x̃. We
first exclude stop words from each sequence and then calculate the ratio of
the unigram overlap and the total number of unigrams of the two sequences.

3. Word Movers Distance (WMD) is a special case of the Earth Mover’s
Distance [19] which computes the dissimilarity between the sequences. WMD
has been used to compute CPP in some previous style transfer work, e.g. [25]
where the minimum distance of the word embeddings of the source and style-
shifted sequences is measured as the score, i.e. the minimum distance that
the words of one sequence need to travel in semantic space to reach the words
of the other sequence [10]. To compute WMD, after replacing the <unk> to-
kens with <the>, we map the tokens of the sequences to the pre-trained
Word2Vec embeddings [21] with the embedding size 300.

6 Experiments

Section 6.1 reports an experiment on the variation in performance of the base-
line, multi-encoder and attention-based style shift architectures across the senti-
ment and formality domains. Sections 6.2 and 6.3 report experiments that focus
analysing the latent representations of the input sequences created by each of
the style-transfer across the two domains.
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6.1 Assessing style-shift power and content preservation across
domains and architectures

We evaluate the performance of the base model, and the two proposed extensions
of it, multi-encoder and attention-based models, across the domains of sentiment
and formality. Table 1 lists the results obtained for each model for each metric
across the Yelp and GYAFC datasets. As a sense-check of our evaluation metrics
we first assessed the agreement between the content preservation metrics: CS,
WO and WMD. There is consensus across the metrics in terms of the ranking
of the models for both datasets. We take the agreement between these metrics
as a validation our methodology for computing content preservation.

Focusing on the performance of the multi-encoder and attention architectures
compared with the base model, the results in Table 1 indicate that on both
datasets the extension of the base model with an attention-based mechanism
has a bigger impact relative to extension with multi-encoders. We attribute this
to the fact that in the attention-based model the encoder has a direct input
into every step of the generation, whereas, in the multi-encoder the encoder only
directly inputs into the initial step of the generation process. To test whether the
observed differences in model performance are statistically significant, for each
model and domain combination we calculated the confidence interval around
the average model performance on the domain test set for the three content
preservation metrics. For the Yelp dataset the differences in content preservation
(across all three metrics) between the base model, multi-encoder and attention-
based architectures were statistically significant at the 0.99 confidence level (i.e.,
the confidence intervals do not overlap). For GYAFC the confidence intervals
did not overlap at the 0.7 confidence level. WO Finally, the results in Table 1
also shows an increase in CPP and a drop in SSP compared to the base model
when these models are applied to the Yelp dataset. However, on the GYAFC, we
observe the opposite pattern: an increase in the SSP and a decrease in CPP . In
both cases CPP and SSP appear to be inversely related (increasing one metric
results in a decrease in the other); however, the fact that the direction of the
change is flipped across the two datasets suggests a difference between these
styles of formality and sentiment.

Table 1: The results of evaluating the models, higher value shows better perfor-
mance except for the metric WMD

Dataset Yelp GYAFC
Model CS WO WMD SSP CS WO WMD SSP

Base model 0.9239 0.199 0.695 78.76% 0.9085 0.0893 0.693 55.99 %
Multi-encoder 0.9311 0.254 0.647 76.26% 0.9072 0.0813 0.706 57.53%

Attention-based 0.9542 0.475 0.3827 53.99% 0.8848 0.0397 0.8549 66.41%
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6.2 Probing the latent space of the networks

There is a growing body of work on using probing classification experiments on
the latent representations of neural networks, e.g. [3, 7]. The idea of a probing
experiment is that if it is possible to train a binary classifier to accurately predict
the presence of a linguistic feature in a sentence based on an embedding of the
sentence this is evidence that the sentence encoder that generated the embed-
ding is capturing that linguistic feature. Inspired by this work we ran probing
experiments on the latent representations of the architectures in order to under-
stand how strongly the input style is encoded in these representations. To do so,
firstly, we generate the latent representation of the train, development and test
sets of the Yelp and GYAFC datasets where we consider the last state of the
encoder(s) in the base and multi-encoder models, and the average of the context
vectors generated at each step of generation of the attention-based model as the
latent vectors. Then, for each neural architecture we train one probing classifier
for each dataset. These classifiers are trained to predict the style of the sen-
tence input to the encoder. These classifiers were implemented as feed-forward
networks with a single hidden layer and a sigmoid output layer.

Table 2 reports for each neural architecture the accuracy of the trained clas-
sifier in detecting the style of the sentences in the test set of each dataset (note
that this table also lists the results for a variational encoder architecture that
we will introduced in Section 6.3). The accuracy of a classifier is an indication
of the amount of source style information that the corresponding style transfer
architecture encodes in its latent representations. The results in Table 2 show
that the probes trained on the multi-encoder and attention based embeddings
are more accurate than those trained on the baseline architecture in both the
sentiment and formality domains. This indicates that both the multi-encoder
and attention based extensions strengthen the encoding of the input style in the
latent representation of their respective transfer architectures. The average score
of the accuracy of the classifiers trained on the Yelp data is higher than the av-
erage score of the classifiers trained on the GYAFC data (table 2) which shows
that they encode more source style information. To more concretely quantify
the observed differences between our results on Yelp versus GYAFC, for each
dataset we computed the Pearson correlation coefficients (PCC) between the CS
scores of the models (table 1) and their accuracy of the probing classification
task. Given that CS is a measure of content preservation, a strong correlation
between the CS performance of a style-transfer architecture and the accuracy of
the corresponding classifier on predicting the input style of a sentence based on
a architecture’s latent representations would indicate that the different neural
architecture treat content and style as closely related concepts. The results of
this PCC correlation were 0.824 for Yelp and 0.336 GYAFC. This strong PCC
correlation for Yelp indicates that the style-transfer neural architectures tended
to treat style and content as closely related concepts in Yelp (i.e., strengthening
the encoding of the input style signal in the latent representation also resulted in
an increase content preservation). By contrast, the relatively weak PCC correla-
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tion for GYAFC suggests that the neural architectures were able to disentangle
style and content, to some extent, during style transfer in this domain.

Table 2: The accuracy of the classifiers corresponding to each architecture for
both datasets.

Dataset Base Variational Multi encoder Attention-based Average
model model model model score

Yelp 99.97% 67.25% 100% 100% 91.8%
GYAFC 99.42% 59.69% 99.93% 100% 89.76%

6.3 Employing a variational model to modify the latent space

The results of the probing experiment in Section 6.2 indicated that the multi-
encoder and attention based models more strongly encoded input style in their
latent representations compared with the baseline. Furthermore, this increase
in the strength of the input style encoding was, in the case of sentiment (Yelp)
strongly correlated with an increase in content preservation (CS) but the cor-
relation between input style encoding and content preservation was weak for
formality. Given that these results were based on increasing the representational
power of the encoder in terms of encoding input style, in this section we report
on an experiment that examined what happens if the representational capacity
of a style transfer encoder to distinguish between input styles is reduced.

For this experiment we us a variational extension of the base model with
the motivation that this variational encoder will strip out the source style from
the latent representation of the input sequences. To make the encodings of style
1 and style 2 more similar to each other we align both posterior distributions
pE(z1|x1, s1) and pE(z2|x2, s2) to a prior density p(z) (here, N (0, I). To do so,
we add a KL-divergence regularizer to the reconstruction loss which is similar
to the reconstruction loss of the base model. The discriminator block and the
training process of this model is the same as the base model.

Lrec = − log PrE(x̃(s)|x(s)) +DKL(PrE(z|x, s)||Pr(z)) (7)

Table 2 shows that the accuracy of the probing classifiers trained on the latent
vectors of the variational model drops significantly compared to the results for
the base model. For Yelp the drop is from 99.9% (using the base model rep-
resentations) to 67.25% (using the variational model representations), and the
GYAFC the drop is from 99.42% to 59.69%. This indicates that the variational
architecture is working as we expecting in both domains in terms of reducing
the input style signal in the latent embeddings of the transfer architecture. Also,
the CS scores of the variational model for Yelp and GYAFC are 0.8989 and
0.8922, respectively. Comparing they CS for the variational model to the CS
for the baseline (from Table 1) we observe a small drop in both cases: Yelp
0.9239−0.8984=0.0250 (or 2.5%); GYAFC 0.9085−0.8922=0.0163 (or 1.6%).
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Overall, the results indicate that stripping more of the source style from the
latent representations of the input (as a result of employing a KL-divergence
regularizer) results in the content preservation power of the variational model
decreasing. These results aligns with our observations above regarding the entan-
glement between content and style. However, for sentiment this decrease 2.5%
whereas for formality it is 1.6%, and this difference in decrease—although small,
in absolute terms—indicates that style and content are relatively more entangled
in the case of sentiment as compared with formality.

7 Conclusion

In this paper, we examined whether the concept of style was consistent across
the domains of sentiment and formality. We used the relationship between style
and content as the basis for our analysis. Our fundamental intuition is that
if style and content have a consistent relationship across domains this would
suggest that each of them are themselves consistent concepts across domains. We
used a variety of neural style-transfer architectures as a basis for our analysis.
Using these neural architectures and datasets from the sentiment and formality
domains we report three experiments that examined the relationship between
content and style across domains.

Our first experiment found that content preservation and style shift power
were inversely related in both sentiment and formality domains but that the
extensions to the baseline model flipped the direction of improvement across
domains (for sentiment content preservation improved, but for formality style
shift power improved). The results of our second and third experiment indicate
that style and content are more tightly entangled in the sentiment domain as
compared with the formality domain. Overall our results suggest that the con-
cept of style (at least in terms of how it relates to content) varies between the
sentiment and formality domains. This indicates that style-transfer architectures
that work in one domain may not be directly applicable in other domains.
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