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Abstract

Due to the lack of labeled data in many real-001
istic scenarios, a number of few-shot learning002
methods for text classification have been pro-003
posed, among which the meta learning based004
ones have recently attracted much attention.005
Such methods usually consist of a learner as the006
classifier and a meta learner for specializing the007
learner to tasks. For the learner, learning rate is008
crucial to its performance. However, existing009
methods treat it as a hyper parameter and ad-010
just it manually, which is time-consuming and011
laborious. Intuitively, for different tasks and012
neural network layers, the learning rates should013
be different and self-adaptive. For the meta014
learner, it requires a good generalization ability015
so as to quickly adapt to new tasks. Therefore,016
we propose a novel meta learning framework,017
called MetaCLSLR, for few-shot text classifi-018
cation. Specifically, we present a novel meta019
learning mechanism to obtain different learning020
rates for different tasks and neural network lay-021
ers so as to enable the learner to quickly adapt022
to new training data. Moreover, we propose a023
task-oriented curriculum learning mechanism024
to help the meta learner achieve a better gener-025
alization ability by learning from different tasks026
with increasing difficulties. Extensive experi-027
ments on three benchmark datasets demonstrate028
the effectiveness of MetaCLSLR.029

1 Introduction030

Text classification is one of the most concerned031

tasks in Natural Language Processing (NLP), as032

many realistic tasks can be transformed into it. At033

present, most text classification methods are based034

on supervised learning with a large amount of la-035

beled data, such as TextRNN (Lai et al., 2015).036

But there is not so much labeled data, even source037

data, in many scenarios, such as news classifica-038

tion in specific domains. Some distant supervision039

methods (Mintz et al., 2009) have thus been pro-040

posed to handle this problem. However, this kind041

of approaches may add a large proportion of noisy042

data (Zeng et al., 2014). Because of this, it is a 043

big challenge for traditional supervised learning 044

methods to work well in the scenarios with very 045

limited training data. As a result, the few-shot text 046

classification task has attracted much attention in 047

recent years, where there are only a few (e.g., 1 048

or 5) labeled instances available for each class as 049

the support set and some unlabeled instances as the 050

query set, as shown in Figure 1. 051

The concept of few-shot learning was formally 052

put forward by (Li et al., 2003). They presented a 053

method for learning from classes with few data, by 054

incorporating generic knowledge which may be ob- 055

tained from previously learned models of unrelated 056

classes. The existing few-shot learning methods 057

are divided into three categories (Gao et al., 2019), 058

namely, model fine-tuning based (e.g., (Howard 059

and Ruder, 2018; Nakamura and Harada, 2019)), 060

metric learning based (e.g., (Snell et al., 2017; 061

Vinyals et al., 2016)), and meta learning based 062

methods (e.g., (Finn et al., 2017; Munkhdalai and 063

Yu, 2017)). In recent years, meta learning based 064

methods have attracted lots of interests. However, 065

they still suffer from some challenges. 066

A meta learning method is composed of a learner 067

and a meta learner. It is acknowledged that for a 068

learner, learning rate is crucial to its performance. 069

Nevertheless, in existing methods, it is treated as a 070

hyper parameter and needs to be adjusted manually, 071

which is time-consuming and laborious. Intuitively, 072

for different tasks and different neural network lay- 073

ers, their learning rates should be different. On 074

the other hand, a good generalization ability to 075

a new task is necessary for a meta learner. And 076

curriculum learning can help models obtain better 077

generalization performance by guiding the train- 078

ing process towards better regions in the parameter 079

space, i.e., into local minima of the descent proce- 080

dure associated with better generalization (Bengio 081

et al., 2009). 082

For the above reasons, we propose a novel meta 083
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Figure 1: An example of few-shot text classification.

learning framework, called MetaCLSLR, for few-084

shot text classification. There are two main mecha-085

nisms in MetaCLSLR, i.e., Self-adaptive Learning086

Rates for the learner and a task-oriented Curricu-087

lum Learning mechanism for the meta learner. Our088

general contributions are three-fold.089

• We present a novel meta learning mechanism090

with self-adaptive learning rates, which en-091

ables different tasks and neural network layers092

to obtain different learning rates.093

• We introduce curriculum learning for the094

first time, to the best of our knowledge,095

into few-shot learning. Unlike traditional096

instance-oriented curriculum learning, the pro-097

posed curriculum learning mechanism gradu-098

ally learns from different tasks with increasing099

difficulties.100

• MetaCLSLR is evaluated with three typical101

text classification tasks, i.e., relation classifi-102

cation, news classification and topic classifi-103

cation, on three benchmark datasets, namely,104

FewRel80, 20Newsgroup and DBPedia On-105

tology, respectively. Experimental results106

demonstrate superior performance of Meta-107

CLSLR on all tasks and all datasets.108

2 Related Works109

2.1 Few-shot Learning110

Few-shot learning is to learn how to solve problems111

from a small amount of data. As aforesaid, the112

existing mainstream methods can be divided into113

three types. The model fine-tuning based methods114

learn how to fine-tune general-purpose models to115

specialized tasks (Howard and Ruder, 2018; Naka-116

mura and Harada, 2019). The metric learning based117

methods learn a semantic embedding space upon a118

distance loss function (Snell et al., 2017; Vinyals119

et al., 2016). The meta learning based methods120

learn a learning strategy to make them well adapt121

to new tasks (Finn et al., 2017; Munkhdalai and122

Yu, 2017). Furthermore, according to the different123

kinds of meta knowledge the meta learner learns, 124

the meta learning based methods can be subdivided 125

into three types, i.e., initial parameter (Finn et al., 126

2017; Raghu et al., 2019; Jamal and Qi, 2019), hy- 127

per parameter (Wu et al., 2019) and optimizer based 128

methods (Santoro et al., 2016; Munkhdalai and Yu, 129

2017). The initial parameter based methods learn 130

parameter initialization for fast adaptation; The hy- 131

per parameter based methods learn a good hyper 132

parameter setting of a learner; And, the optimizer 133

based methods learn a meta-policy to update the 134

parameters of a learner. In this paper, we propose a 135

novel meta learning mechanism to self-adaptively 136

obtain the hyper parameter, i.e., the learning rate, 137

of the learner, which allocates different learning 138

rates for different tasks and neural network layers. 139

2.2 Curriculum Learning 140

Compared with the general paradigm of machine 141

learning without distinction, curriculum learning is 142

proposed to imitate the process of human learning 143

(Bengio et al., 2009). It advocates that the model 144

should start learning from easy instances and grad- 145

ually advance to complex instances and knowledge. 146

Curriculum learning has been widely applied in 147

many fields, e.g., computer vision (Guo et al., 2018; 148

Jiang et al., 2014) and NLP (Platanios et al., 2019; 149

Tay et al., 2019). Furthermore, curriculum learn- 150

ing can also be applied in some other technical 151

frameworks, e.g., reinforcement learning (Florensa 152

et al., 2017; Narvekar et al., 2017; Ren et al., 2018), 153

graph learning (Gong et al., 2019; Qu et al., 2018) 154

and continual learning (Wu et al., 2021). In this 155

paper, we extend the traditional instance-oriented 156

curriculum learning to a task-oriented one, which 157

gradually learns from different tasks with increas- 158

ing difficulties. 159

3 Methodology 160

3.1 Notations 161

In meta learning based few-shot text classification, 162

two datasets are given: Dtrain and Dtest, which 163

have disjoint label sets. T tasks are sampled from 164

Dtrain and the t-th task (t ∈ [1, T ]), Taskt, con- 165

sists of a support set St and a query set Qt. Fol- 166

lowing the recent few-shot learning setting (Gao 167

et al., 2019), we adopt C-way K-shot (hereinafter 168

denoted as CwKs) for few-shot text classification, 169

meaning the support set St contains C classes and 170

each class has K labeled instances. Thus, St can 171

be formulated as St = {(xit, yit)}C×K
i=1 , where xit 172
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Figure 2: The diagram of the MetaCLSLR framework.

denotes the i-th piece of text in Taskt and yit is its173

class label. St additionally includes a head entity hit174

and a tail entity oit in relation classification. Further-175

more, xit contains M i
t words (hereinafter simplified176

as M if not causing any confusion) and the m-th177

word (m ∈ [1,M ]) in xit denotes as wm for sim-178

plicity. Thus, xit is formulated as xit = {wm}Mm=1.179

Moreover, the query set Qt contains U unlabeled180

instances for each class in St. Qt can be formulated181

as Qt = {qit}C×U
i=1 .182

3.2 The MetaCLSLR Framework183

MetaCLSLR is a generic framework, where dif-184

ferent few-shot learning models of different cate-185

gories (i.e., model fine-tuning based, metric learn-186

ing based, and meta learning based) can act as the187

learner. As shown in Figure 2, MetaCLSLR con-188

sists of three modules coupled with a task-oriented189

curriculum learning mechanism:190

The Encoder Module. In this module, the in-191

stances are mapped into the semantic space as em-192

beddings by the encoder network.193

The Task-level Learning Rate Module. In this194

module, the task-level learning rate is defined as a195

coefficient of difficult to different tasks, which is196

calculated by the number of training classes and the197

distance between different instances in the support198

set.199

The Layer-level Learning Rate Module. In200

this module, the layer-level learning rate is self-201

adaptively obtained based on the meta learning202

mechanism. This module contains two main parts:203

the learner as the classifier and the meta learner 204

above the learner, which allocates the learning rates 205

for different network layers of the learner. 206

The Task-oriented Curriculum Learning 207

Mechanism. This mechanism gradually learns 208

from different tasks with increasing difficulties by 209

adding more classes to a task, to make the meta 210

learner achieve a better generalization ability. 211

3.3 The Encoder Module 212

The encoder module maps xit into the instance em- 213

bedding xi
t, which consists of two parts, namely, 214

the embedding part and the encoding part. 215

3.3.1 Embedding 216

The word embeddings {wm}Mm=1 are obtained by 217

looking up table for vector representation of words 218

{wm}Mm=1, to express their semantic meanings. In 219

this paper, we employ GloVe (Pennington et al., 220

2014) to obtain the word embeddings. 221

3.3.2 Encoding 222

The CNN encoder is employed to derive the final 223

instance embedding xi
t of B dimension of xit based 224

on the word embeddings {wm}Mm=1. CNN slides a 225

conventional kernel whose window size is k, over 226

the input embeddings to get the output hidden em- 227

beddings, 228
229

hm = Con
(
w

m− k−1
2

, ...,w
m+ k−1

2

)
, (1) 230

where Con (·) is a conventional operation. 231
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A max pooling operation is then applied over232

these hidden embeddings to output the final in-233

stance embedding xi
t as follows:234

235
[xi

t]b = max {[h1]b, ..., [hM ]b} , (2)236

where [·]b is the b-th value of a vector (b ∈ [1, B]).237

3.4 The Task-level Learning Rate Module238

The task-level learning rate module is designed239

to self-adaptively get different learning rates for240

different tasks. In the context of few-shot learning,241

it is necessary for a model to converge in a few242

steps, even one (Finn et al., 2017). Intuitively, for243

easier tasks, a larger learning rate enables the model244

to converge fast. However, for more difficult tasks,245

a relatively smaller learning rate is preferred so246

as to help the model to carefully search for the247

optimal parameters in the complex search space. In248

this module, the number of training classes and the249

distance between different instances in the support250

set are utilized to measure the difficulty of each251

task.252

In more detail, the difficulty of a task is related253

to the number of training classes. If the number254

of training classes, C, of Taskt is equal to that of255

its test classes, C
′
, its difficulty coefficient dift is256

set to 1. If C is larger than C
′
, indicating that it is257

a relatively difficult task, dift is increased. Other-258

wise, it is reduced. dift can be formally calculated259

as follows:260

dift = 1 + γ
(
C − C

′)
, (3)261

where γ is an increment coefficient of difficulty.262

The distance between different instances can be263

measured from two aspects, namely, the average264

intra-class distance dis1t and the average inter-class265

distance dis2t . The closer the intra-class distance266

and the farther the inter-class distance, the easier267

the task. Both of them are measured by the Eu-268

clidean distance function d(·, ·). Specifically, dis1t269

is calculated by270

dis1t =
1

D1
t

C×K∑
i,j=1

d
(
xi

t,x
j
t

)
, (4)271

where xi
t and xj

t (i ̸= j) belong to the same class;272

D1
t = CK(K−1)

2 , denoting the number of pairs273

(xi
t,x

j
t ). dis

2
t is calculated as follows:274

dis2t =
1

D2
t

C×K∑
i,j=1

d
(
xi

t,x
j
t

)
, (5)275

where xi
t and xj

t belong to different classes and 276

D2
t = CK(C−1)K

2 . Therefore, the difficulty α
′
t of 277

Taskt can be calculated as 278

α
′
t =

dis2t
dift · dis1t

. (6) 279

As aforesaid, larger learning rates are preferred for 280

easier tasks. Therefore, Equation (6) means a larger 281

α
′
t is obtained with dis2t increasing, as well as dift 282

and dis1t decreasing, which presents an easier task. 283

Otherwise, a smaller α
′
t presents a more difficult 284

task. 285

As the task-level learning rate is required to mul- 286

tiply the layer-level one in Equation (12), it should 287

be larger than 1 for easier tasks and smaller than 1 288

for more difficult tasks. Therefore, we formulate 289

the weight αt∈[β, 1 + β] by function g (·) as 290

αt = g
(
α

′
t

)
= nor

(
α

′
t

)
+ β, (7) 291

where nor (·) is the min-max normalization func- 292

tion. In this paper, the bias β is set to 0.5. 293

3.5 The Layer-level Learning Rate Module 294

As mentioned earlier, this module contains a learner 295

and a meta learner. 296

3.5.1 The Learner 297

In the text classification task, the learner is actu- 298

ally a classifier. Existing models of different types 299

can be employed as the learner, e.g., BERT (Ken- 300

ton and Toutanova, 2019), PN (Snell et al., 2017) 301

and MLMAN (Ye and Ling, 2019), which are pre- 302

trained. By inputting the embedding xi
t , the learner 303

with the learning rate lrt , which is obtained by 304

Equation (12), outputs the predicted probability 305

distribution, pi
t, to different classes. Formally, pi

t 306

is calculated as follows: 307

pi
t = Learner

(
xi

t, lrt

)
. (8) 308

The loss of the learner is defined as lt, which is 309

calculated by the cross entropy function H(·, ·) as 310

lt =

C×K∑
i=1

H
(
pi
t,y

i
t

)
, (9) 311

where yi
t is the ground truth distribution of xi

t to 312

different classes. 313

3.5.2 The Meta Learner 314

The meta learner allocates different learning rates 315

for different network layers. Let θ be its parameters. 316

Given the layer-level learning rate lr
′
t−1 of N di- 317

mension corresponding to Taskt−1 of the learner, 318
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Algorithm 1 The Meta Learning Training Process.
1 Given a set of labeled training data Dtrain

2 Init parameters of the meta leaner as θ
3 Given the initial learning rate lr

′
0

4 For e→1 to E do:
5 Given a pre-trained learner with lr

′
0

6 For t→1 to T do:
7 Given a task Taskt sampled from Dtrain

8 hst←MetaLearnerθ
(
hst−1, lr

′
t−1

)
9 lr

′
t←σ (Whst + b)

10 lrt←αtlr
′
t

11 Train the learner with lrt on Taskt
12 Compute the loss lt
13 If t = T , calculate the loss Losse by summing up lt
14 Update θ using Losse−1- Losse

the hidden state hst of the meta learner to Taskt319

is calculated upon lr
′
t−1 and its last hidden state320

hst−1 as321

hst = MetaLearnerθ
(
hst−1, lr

′
t−1

)
. (10)322

Then, the layer-level learning rate lr
′
t corre-323

sponding to Taskt is obtained upon the state hst324

as325

lr
′
t = σ (Whst + b) , (11)326

where W and b are parameters of a fully-connected327

layer in the meta learner and σ is the Sigmoid func-328

tion.329

By multiplying the task-level learning rate αt,330

the final learning rate is obtained as331

lrt = αtlr
′
t. (12)332

The loss of the meta-learner, Losse, is calculated333

by summing up all the losses from the learner in334

the e-th iteration, namely,335

Losse =

T∑
t=1

lt. (13)336

Finally, θ is updated by minimizing the differ-337

ence between the loss in the last iteration and the338

current loss, which makes the meta learner con-339

verge faster, through applying gradient-based opti-340

mization. The training process of meta learning is341

shown in Algorithm 1.342

3.6 The Task-oriented Curriculum-Learning343

Mechanism344

To get better generalization performance to a new345

task, MetaCLSLR introduces a task-oriented cur-346

riculum learning mechanism to the meta-training347

period of the meta learner. The original curricu-348

lum learning mechanism learns from instances with349

gradually increasing difficulties in a step-by-step 350

manner. However, in the context of meta learn- 351

ing based few-shot learning, we need to pay more 352

attention to tasks with different difficulties. It is 353

acknowledged that when the number of classes in a 354

task increases, its difficulty accordingly increases. 355

In meta learning based few-shot learning, the diffi- 356

culty of a CwKs task is increased by giving a larger 357

C. For example, a 10w1s task is more difficult 358

than a 5w1s one. Therefore, a three-stage process 359

with increasing difficulties is completed with the 360

number of classes from C to C+X to C+2X (here- 361

inafter denoted as C-(C+X)-(C+2X)), making the 362

meta learner train tasks from easy ones to difficult 363

ones. Besides, a previous study (Munkhdalai and 364

Yu, 2017) found that the models trained on harder 365

tasks may achieve better performance than using 366

the same configurations at both training and test 367

periods. Therefore, in this paper we set that the av- 368

erage difficulty of tasks in the meta-training period 369

is always larger than that in the meta-test period to 370

get better performance in test tasks. 371

4 Experiments 372

4.1 Datasets and Evaluation Metrics 373

Parameters Value
γ 0.1
β 0.5
k 3
word emb. dim. 50
max sentence length 40
hidden layer dim. 230
LSTM hidden size 100
initial learning rate [7e−3, 6e−3, 5e−3, 4e−3]
batch size 1
iteration 30000
dropout 0.2

Table 1: The parameter setting in MetaCLSLR.

We conduct experiments on three text classifica- 374

tion tasks, i.e., relation classification, news classifi- 375

cation, and topic classification, among which the 376

first one is more complicated and challenging than 377

the other two traditional text classification tasks. 378

For relation classification, we choose a typical few- 379

shot learning dataset, FewRel (Han et al., 2018). 380

It should be mentioned that the FewRel dataset 381

used in this paper has only 80 classes, thus marked 382

as FewRel80, because 20 classes of the original 383

FewRel dataset for test are unavailable. We di- 384

vide FewRel80 into three subsets containing 50, 385

10 and 20 classes for training, validation and test, 386
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Dataset: FewRel80
Method 5w1s 5w5s 10w1s 10w5s

model fine-tuning based
BERT 0.5762 0.7109 0.5233 0.5480

MetaCLSLR+BERT 0.6347 0.7601 0.5672 0.5993

metric learning based
PN-HATT 0.7319 0.8703 0.6114 0.7632

MetaCLSLR+PN-HATT 0.7675 0.8929 0.6507 0.8067

meta learning based
MLMAN 0.7957 0.9119 0.6903 0.8516

MetaCLSLR+MLMAN 0.8182 0.9161 0.7084 0.8530
Dataset: 20Newsgroup

Method 3w1s 3w5s 6w1s 6w5s

model fine-tuning based
BERT 0.7417 0.8198 0.5876 0.7107

MetaCLSLR+BERT 0.7689 0.8497 0.6195 0.7446

meta learning based
MAML 0.7612 0.8405 0.6143 0.7451

MetaCLSLR+MAML 0.7824 0.8599 0.6479 0.7762

metric learning based
PN 0.8463 0.9614 0.7052 0.8887

MetaCLSLR+PN 0.8680 0.9843 0.7233 0.9291
Dataset: DBPedia Ontology

Method 3w1s 3w5s 6w1s 6w5s

model fine-tuning based
BERT 0.7609 0.8256 0.6118 0.7589

MetaCLSLR+BERT 0.7944 0.8598 0.6540 0.7990

meta learning based
MAML 0.7778 0.8571 0.6434 0.8093

MetaCLSLR+MAML 0.8163 0.8911 0.6814 0.8372

metric learning based
PN 0.8428 0.9520 0.7070 0.8896

MetaCLSLR+PN 0.8683 0.9799 0.7301 0.9104

Table 2: The overall results on three benchmark datasets: FewRel80, 20Newsgroup and BDPedia Ontology.

respectively. For news classification, we choose387

the representative dataset, 20Newsgroup (Dadgar388

et al., 2016) with 20 news classes. We divide it389

into subsets with 14 and 6 classes for training and390

test, respectively. For topic classification, the DB-391

Pedia Ontology (Zhang et al., 2015) dataset is a392

classic one with 14 topic classes. We partition it393

into 8 classes and 6 classes for training and test,394

respectively.395

We set up four configurations, namely, 5w1s,396

5w5s, 10w1s and 1w5s, for each few-shot task397

on FewRel80. Four settings are considered for398

the 20Newsgroup and DBPedia Ontology datasets,399

i.e., 3w1s, 3w5s, 6w1s and 6w5s. In addition, the400

same as the previous study in (Obamuyide and401

Vlachos, 2019), average accuracy is adopted as the402

evaluation metric.403

4.2 Implementation Details and Parameters404

Setting405

Table 1 presents the parameter setting of Meta-406

CLSLR. For the encoder module, CNN is em-407

ployed as the instance encoder and the word em-408

beddings pre-trained in GloVe (Pennington et al.,409

2014) is adopted as the initial embeddings. In prac-410

tice, we choose the embedding set, Wikipedia 2014411

+ Gigaword 5, which contains 6B tokens and 400K412

words. The word embeddings are of 50 dimensions. 413

For the parameters of the CNN encoder, we follow 414

the settings used in (Zeng et al., 2014). For the 415

layer-level learning rate module, LSTM is selected 416

as the meta learner, because of its simple imple- 417

mentation, fast training speed and satisfying perfor- 418

mance. Furthermore, for the curriculum learning, 419

we choose two settings on each dataset, i.e., 10-15- 420

20 and 15-20-25 on FewRel80, 5-7-9 and 7-9-11 421

on 20Newsgroup and 4-5-6 and 5-6-7 on DBPe- 422

dia Ontology, respectively. The detailed setting of 423

curriculum learning is described in Section 4.5.3. 424

4.3 Baseline Models 425

We choose baseline models of three categories (i.e., 426

model fine-tuning based, metric learning based and 427

meta learning based) as the learner in MetaCLSLR. 428

The selected models and reasons are as follows: 429

1. Model fine-tuning based: 430

• BERT (Kenton and Toutanova, 2019), a 431

widely adopted model of this category on 432

FewRel80, 20Newsgroup and DBPedia 433

Ontology. 434

2. Metric learning based: 435

• PN (Snell et al., 2017), a widely adopted 436
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Method 5w1s 5w5s 10w1s 10w5s

model fine-tuning based
SLR+BERT 0.6174 0.7456 0.5532 0.5851
CL+BERT 0.5904 0.7263 0.5370 0.5615

MetaCLSLR+BERT 0.6347 0.7601 0.5672 0.5993

metric learning based
SLR+PN-HATT 0.7592 0.8831 0.6435 0.7982
CL+PN-HATT 0.7380 0.8719 0.6152 0.7792

MetaCLSLR+PN-HATT 0.7675 0.8929 0.6507 0.8067

meta learning based
SLR+MLMAN 0.8103 0.9145 0.7059 0.8541
CL+MLMAN 0.8167 0.9136 0.7042 0.8507

MetaCLSLR+MLMAN 0.8182 0.9161 0.7084 0.8550

Table 3: The results of the ablation study on SLR and CL on FewRel80.

Method 5w1s 5w5s
Adadelta+BERT 0.5825 0.7232
RMSProp+BERT 0.5887 0.7203

Adam+BERT 0.5943 0.7261
SLR+BERT 0.6174 0.7456

Adadelta+PN-HATT 0.7386 0.8612
RMSProp+PN-HATT 0.7327 0.8446

Adam+PN-HATT 0.7101 0.8300
SLR+PN-HATT 0.7592 0.8831

Adadelta+MLMAN 0.7995 0.9063
RMSProp+MLMAN 0.8007 0.9087

Adam+MLMAN 0.8027 0.9108
SLR+MLMAN 0.8103 0.9145

Table 4: The results of different models with SLR
and other self-adaptive learning rate mechanisms on
FewRel80.

model of this category on 20Newsgroup437

and DBPedia Ontology.438

• PN-HATT (Gao et al., 2019), the state-439

of-the-art model of this category on440

FewRel80.441

3. Meta learning based:442

• MAML (Finn et al., 2017), a widely443

adopted model of this category on444

20Newsgroup and DBPedia Ontology.445

• MLMAN (Ye and Ling, 2019), the state-446

of-the-art model having open source447

code on FewRel80.448

4.4 Experimental Results449

Table 2 presents the overall experimental results,450

where we can see all of the MetaCLSLR models451

with BERT, PN-HATT, MLMAN, PN and MAML452

as their learners consistently outperform those453

baselines on all datasets. The accuracy of the454

model fine-tuning based and metric learning based455

MetaCLSLR models increases by 4-6% and 2-4%456

on FewRel80, respectively. However, for Meta-457

CLSLR+MLMAN, its performance is improved458

less than those of the former two categories; But it 459

still achieves the best results. Moreover, all kinds 460

of MetaCLSLR models are observed an accuracy 461

promotion by 2-4% compared to the baselines on 462

the majority of few-shot tasks on 20Newsgroup 463

and DBPedia Ontology. The overall experimental 464

results clearly prove that MetaCLSLR is effective 465

to different models and on different datasets and 466

tasks. 467
468

4.5 Ablation Studies 469

In this subsection, we conduct ablation studies to 470

investigate the effectiveness and impact of, both 471

Self-adaptive Learning Rate (SLR) and Curricu- 472

lum Learning (CL), as well as their impacts on 473

the performance of MetaCLSLR. The experimen- 474

tal results are shown in Tables 3-6. For the sake 475

of space limitation, only the results on FewRel80 476

are presented. As shown in Table 3, the perfor- 477

mance of all ablated models without SLR and CL 478

consistently falls on all tasks. It is indicated that 479

both SLR and CL contribute to the effectiveness of 480

MetaCLSLR. Besides, it can be observed that SLR 481

is more important to MetaCLSLR than CL, for the 482

larger performance improvement. Actually, except 483

the 5w1s task for MLMAN, all of the other tasks 484

get better results with SLR. The same conclusion is 485

observed on 20Newsgroup and DBPedia Ontology, 486

except the model MAML in the 3w5s task. In what 487

follows, more results and analysis are given so as to 488

provide deeper insights into the effectiveness and 489

importance of SLR and CL. 490

4.5.1 SLRs for Different Tasks and Network 491

Layers 492

SLRs consists of two subsets: the Self-adaptive 493

Learning rates for different Tasks (SLR-T) and dif- 494

ferent neural network Layers (SLR-L). As shown 495

in Table 5, the performance of all models without 496

SLR-T and SLR-L consistently decreases on all 497

7



Method 5w1s 5w5s 10w1s 10w5s

model fine-tuning based
SLR-L+BERT 0.6145 0.7412 0.5509 0.5823
SLR-T+BERT 0.5771 0.7148 0.5261 0.5502
SLR+BERT 0.6174 0.7456 0.5532 0.5851

metric learning based
SLR-L+PN-HATT 0.7578 0.8811 0.6414 0.7956
SLR-T+PN-HATT 0.7354 0.8723 0.6137 0.7648
SLR+PN-HATT 0.7592 0.8831 0.6435 0.7982

meta learning based
SLR-L+MLMAN 0.8095 0.9139 0.7051 0.8537
SLR-T+MLMAN 0.7982 0.9125 0.6931 0.8522
SLR+MLMAN 0.8103 0.9145 0.7059 0.8541

Table 5: The results of the ablation study on SLRs on FewRel80.

Method 5w1s 5w5s
SLR+5-10-15+BERT 0.6285 0.7498

SLR+10-15-20+BERT 0.6347 0.7601
SLR+15-20-25+BERT 0.6315 0.7581
SLR+20-25-30+BERT 0.6239 0.7475

SLR+5-10-15+PN-HATT 0.7562 0.8836
SLR+10-15-20+PN-HATT 0.7565 0.8929
SLR+15-20-25+PN-HATT 0.7675 0.8877
SLR+20-25-30+PN-HATT 0.7645 0.8926
SLR+5-10-15+MLMAN 0.8102 0.9135

SLR+10-15-20+MLMAN 0.8182 0.9150
SLR+15-20-25+MLMAN 0.8133 0.9161
SLR+20-25-30+MLMAN 0.8046 0.9146

Table 6: The results of different CL settings on
FewRel80.

tasks, indicating that both SLR-T and SLR-L con-498

tribute to the effectiveness of SLR. However, the499

models with SLR-L outperform those with SLR-T.500

That means, although both task-level and layer-501

level learning rates work, the layer-level ones are502

more important and effective to the performance of503

models than their counterparts.504

4.5.2 SLR Comparing to Other Self-Adaptive505

Learning Rate Methods506

Furthermore, some experimental results for com-507

paring our SLR with other self-adaptive learning508

rate mechanisms, i.e., Adadelta (Zeiler, 2012), RM-509

SProp (Hinton et al., 2012) and Adam (Kingma510

and Ba, 2014), are shown in Table 4. As we can511

see, the models with our SLR outperform the oth-512

ers, which proves the better effectiveness of our513

SLR. Moreover, the performance even gets a large514

demotion for PN-HATT with RMSProp and Adam,515

indicating that our SLR is more robust to different516

kinds of models than the others.517

4.5.3 Different CL Settings518

The task-oriented CL is another major contribution519

of MetaCLSLR. Based on the CL mechanism, we520

set up four training configurations for each task on521

FewRel80, namely, 5-10-15, 10-15-20, 15-20-25 522

and 20-25-30. For the sake of space limitation, only 523

results on the 5w1s and 5w5s tasks are shown in 524

Table 6, which demonstrate that all the best results 525

are obtained at two settings, 10-15-20 and 15-20-25. 526

This may be due to the following reason: the 5-10- 527

15 configuration is the simplest one, which does 528

not reach the difficulty to get the best performance 529

of a model, whilst the 20-25-30 configuration is 530

too hard and the learner cannot be well trained at 531

the training period and thus cannot work well at 532

the test period. 533

Furthermore, four training configurations, 534

namely, 3-5-7, 5-7-9, 7-9-11 and 9-11-13 are ex- 535

amined on 20Newsgroup. Four training configu- 536

rations, i.e., 3-4-5, 4-5-6, 5-6-7 and 6-7-8 are also 537

studied on DBPedia Ontology. Similar conclusions 538

are observed on these datasets. The results are not 539

presented due to space limitation. 540

5 Conclusion and Future Work 541

In this paper, we proposed a novel meta learn- 542

ing framework, called MetaCLSLR, for few-shot 543

text classification. MetaCLSLR can self-adaptively 544

obtain different learning rates for different tasks 545

and different network layers. Moreover, a task- 546

oriented curriculum learning mechanism is intro- 547

duced into few-shot learning so as to achieve a bet- 548

ter generalization ability for the meta learner. Meta- 549

CLSLR is evaluated with three typical text classi- 550

fication tasks, relation classification, news classi- 551

fication and topic classification, on three bench- 552

mark datasets: FewRel80, 20Newsgroup and DB- 553

Pedia Ontology, respectively. Experimental results 554

demonstrate superior performance of MetaCLSLR 555

on all tasks and all datasets. In the future, we 556

will explore few-shot learning under the unbalance 557

learning scenarios because they are ubiquitous in 558

the real world. 559

8



Acknowledgments560

References561

Yoshua Bengio, Jérôme Louradour, Ronan Collobert,562
and Jason Weston. 2009. Curriculum learning. In563
Proceedings of the 26th annual international confer-564
ence on machine learning, pages 41–48.565

Seyyed Mohammad Hossein Dadgar, Moham-566
mad Shirzad Araghi, and Morteza Mastery Farahani.567
2016. A novel text mining approach based on tf-idf568
and support vector machine for news classification.569
In 2016 IEEE International Conference on Engineer-570
ing and Technology (ICETECH), pages 112–116.571
IEEE.572

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.573
Model-agnostic meta-learning for fast adaptation of574
deep networks. In International Conference on Ma-575
chine Learning, pages 1126–1135. PMLR.576

Carlos Florensa, David Held, Markus Wulfmeier,577
Michael Zhang, and Pieter Abbeel. 2017. Reverse578
curriculum generation for reinforcement learning.579
In Conference on robot learning, pages 482–495.580
PMLR.581

Tianyu Gao, Xu Han, Zhiyuan Liu, and Maosong Sun.582
2019. Hybrid attention-based prototypical networks583
for noisy few-shot relation classification. In Proceed-584
ings of the AAAI Conference on Artificial Intelligence,585
volume 33, pages 6407–6414.586

Chen Gong, Jian Yang, and Dacheng Tao. 2019. Multi-587
modal curriculum learning over graphs. ACM Trans-588
actions on Intelligent Systems and Technology (TIST),589
10(4):1–25.590

Sheng Guo, Weilin Huang, Haozhi Zhang, Chenfan591
Zhuang, Dengke Dong, Matthew R Scott, and Din-592
glong Huang. 2018. Curriculumnet: Weakly super-593
vised learning from large-scale web images. In Pro-594
ceedings of the European Conference on Computer595
Vision (ECCV), pages 135–150.596

Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao,597
Zhiyuan Liu, and Maosong Sun. 2018. Fewrel: A598
large-scale supervised few-shot relation classification599
dataset with state-of-the-art evaluation. In Proceed-600
ings of the 2018 Conference on Empirical Methods601
in Natural Language Processing, pages 4803–4809.602

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky.603
2012. Rmsprop: Divide the gradient by a running604
average of its recent magnitude. Neural networks for605
machine learning, Coursera lecture 6e, page 13.606

Jeremy Howard and Sebastian Ruder. 2018. Universal607
language model fine-tuning for text classification.608
In Proceedings of the 56th Annual Meeting of the609
Association for Computational Linguistics (Volume610
1: Long Papers), pages 328–339.611

Muhammad Abdullah Jamal and Guo-Jun Qi. 2019. 612
Task agnostic meta-learning for few-shot learning. In 613
Proceedings of the IEEE/CVF Conference on Com- 614
puter Vision and Pattern Recognition, pages 11719– 615
11727. 616

Lu Jiang, Deyu Meng, Teruko Mitamura, and Alexan- 617
der G Hauptmann. 2014. Easy samples first: Self- 618
paced reranking for zero-example multimedia search. 619
In Proceedings of the 22nd ACM international con- 620
ference on Multimedia, pages 547–556. 621

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina 622
Toutanova. 2019. Bert: Pre-training of deep bidirec- 623
tional transformers for language understanding. In 624
Proceedings of NAACL-HLT, pages 4171–4186. 625

Diederik P Kingma and Jimmy Ba. 2014. Adam: A 626
method for stochastic optimization. arXiv e-prints, 627
pages arXiv–1412. 628

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015. 629
Recurrent convolutional neural networks for text clas- 630
sification. In Proceedings of the Twenty-Ninth AAAI 631
Conference on Artificial Intelligence, pages 2267– 632
2273. 633

Fei-Fei Li et al. 2003. A bayesian approach to unsu- 634
pervised one-shot learning of object categories. In 635
Proceedings Ninth IEEE International Conference 636
on Computer Vision, pages 1134–1141. IEEE. 637

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf- 638
sky. 2009. Distant supervision for relation extraction 639
without labeled data. In Proceedings of the Joint Con- 640
ference of the 47th Annual Meeting of the ACL and 641
the 4th International Joint Conference on Natural 642
Language Processing of the AFNLP, pages 1003– 643
1011. 644

Tsendsuren Munkhdalai and Hong Yu. 2017. Meta 645
networks. In International Conference on Machine 646
Learning, pages 2554–2563. PMLR. 647

Akihiro Nakamura and Tatsuya Harada. 2019. Revisit- 648
ing fine-tuning for few-shot learning. arXiv preprint 649
arXiv:1910.00216. 650

Sanmit Narvekar, Jivko Sinapov, and Peter Stone. 2017. 651
Autonomous task sequencing for customized cur- 652
riculum design in reinforcement learning. In IJCAI, 653
pages 2536–2542. 654

Abiola Obamuyide and Andreas Vlachos. 2019. Model- 655
agnostic meta-learning for relation classification with 656
limited supervision. In Proceedings of the 57th An- 657
nual Meeting of the Association for Computational 658
Linguistics, pages 5873–5879. 659

Jeffrey Pennington, Richard Socher, and Christopher D 660
Manning. 2014. Glove: Global vectors for word rep- 661
resentation. In Proceedings of the 2014 conference 662
on empirical methods in natural language processing 663
(EMNLP), pages 1532–1543. 664

9



Emmanouil Antonios Platanios, Otilia Stretcu, Graham665
Neubig, Barnabas Poczos, and Tom M Mitchell. 2019.666
Competence-based curriculum learning for neural667
machine translation. In Proceedings of NAACL-HLT,668
pages 1162–1172.669

Meng Qu, Jian Tang, and Jiawei Han. 2018. Curriculum670
learning for heterogeneous star network embedding671
via deep reinforcement learning. In Proceedings of672
the Eleventh ACM International Conference on Web673
Search and Data Mining, pages 468–476.674

Aniruddh Raghu, Maithra Raghu, Samy Bengio, and675
Oriol Vinyals. 2019. Rapid learning or feature reuse?676
towards understanding the effectiveness of maml. In677
International Conference on Learning Representa-678
tions.679

Zhipeng Ren, Daoyi Dong, Huaxiong Li, and Chun-680
lin Chen. 2018. Self-paced prioritized curriculum681
learning with coverage penalty in deep reinforcement682
learning. IEEE transactions on neural networks and683
learning systems, 29(6):2216–2226.684

Adam Santoro, Sergey Bartunov, Matthew Botvinick,685
Daan Wierstra, and Timothy Lillicrap. 2016. One-686
shot learning with memory-augmented neural net-687
works. arXiv preprint arXiv:1605.06065.688

Jake Snell, Kevin Swersky, and Richard Zemel. 2017.689
Prototypical networks for few-shot learning. In Pro-690
ceedings of the 31st International Conference on691
Neural Information Processing Systems, pages 4080–692
4090.693

Yi Tay, Shuohang Wang, Anh Tuan Luu, Jie Fu, Minh C694
Phan, Xingdi Yuan, Jinfeng Rao, Siu Cheung Hui,695
and Aston Zhang. 2019. Simple and effective cur-696
riculum pointer-generator networks for reading com-697
prehension over long narratives. In Proceedings of698
the 57th Annual Meeting of the Association for Com-699
putational Linguistics, pages 4922–4931.700

Oriol Vinyals, Charles Blundell, Timothy Lillicrap,701
Daan Wierstra, et al. 2016. Matching networks for702
one shot learning. Advances in neural information703
processing systems, 29:3630–3638.704

Jiawei Wu, Wenhan Xiong, and William Yang Wang.705
2019. Learning to learn and predict: A meta-learning706
approach for multi-label classification. In Proceed-707
ings of the 2019 Conference on Empirical Methods708
in Natural Language Processing and the 9th Inter-709
national Joint Conference on Natural Language Pro-710
cessing (EMNLP-IJCNLP), pages 4354–4364.711

Tongtong Wu, Xuekai Li, Yuan-Fang Li, Gholamreza712
Haffari, Guilin Qi, Yujin Zhu, and Guoqiang Xu.713
2021. Curriculum-meta learning for order-robust con-714
tinual relation extraction. In Proceedings of the AAAI715
Conference on Artificial Intelligence, volume 35,716
pages 10363–10369.717

Zhi-Xiu Ye and Zhen-Hua Ling. 2019. Multi-level718
matching and aggregation network for few-shot rela-719
tion classification. In Proceedings of the 57th Annual720

Meeting of the Association for Computational Lin- 721
guistics, pages 2872–2881. 722

Matthew D Zeiler. 2012. Adadelta: an adaptive learning 723
rate method. arXiv preprint arXiv:1212.5701. 724

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, 725
and Jun Zhao. 2014. Relation classification via con- 726
volutional deep neural network. In Proceedings of 727
COLING 2014, the 25th International Conference on 728
Computational Linguistics: Technical Papers, pages 729
2335–2344. 730

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. 731
Character-level convolutional networks for text classi- 732
fication. Advances in neural information processing 733
systems, 28:649–657. 734

10


