
Between Lines of Code: Unraveling the Distinct
Patterns of Machine and Human Programmers

Yuling Shi
Shanghai Jiao Tong University

yuling.shi@sjtu.edu.cn

Hongyu Zhang
Chongqing University
hyzhang@cqu.edu.cn

Chengcheng Wan
East China Normal University

ccwan@sei.ecnu.edu.cn

Xiaodong Gu*
Shanghai Jiao Tong University

xiaodong.gu@sjtu.edu.cn

Abstract—Large language models have catalyzed an unprece-
dented wave in code generation. While achieving significant
advances, they blur the distinctions between machine- and human-
authored source code, causing integrity and authenticity issues
of software artifacts. Previous methods such as DetectGPT have
proven effective in discerning machine-generated texts, but they do
not identify and harness the unique patterns of machine-generated
code. Thus, its applicability falters when applied to code. In this
paper, we carefully study the specific patterns that characterize
machine- and human-authored code. Through a rigorous analysis
of code attributes such as lexical diversity, conciseness, and
naturalness, we expose unique patterns inherent to each source.
We particularly notice that the syntactic segmentation of code
is a critical factor in identifying its provenance. Based on
our findings, we propose DetectCodeGPT, a novel method for
detecting machine-generated code, which improves DetectGPT
by capturing the distinct stylized patterns of code. Diverging
from conventional techniques that depend on external LLMs
for perturbations, DetectCodeGPT perturbs the code corpus
by strategically inserting spaces and newlines, ensuring both
efficacy and efficiency. Experiment results show that our approach
significantly outperforms state-of-the-art techniques in detecting
machine-generated code. 1.

Index Terms—machine-generated code detection, large language
models, code generation, empirical analysis

I. INTRODUCTION

The advent of large language models (LLMs) such as
Codex [1] and ChatGPT [2] has revolutionized software
engineering tasks such as code generation. Through extensive
training on ultra-large code corpora [3], [4], [5], [6], LLMs
acquire the ability to generate syntactically and functionally
correct code, bringing a new era of efficiency and innovation
in software creation, maintenance, and evolution.

While capable of generating human-like code, LLMs bring
ambiguity of whether a software artifact is created by human or
machine, causing integrity and authenticity issues in software
development. This indistinction can lead to various challenges,
such as misattribution of code ownership for bug triage
and inflated assessments of developer workloads. Potential
vulnerabilities in machine-generated code may go unnoticed
due to the overreliance on its perceived robustness. The
blending of human and machine efforts not only raises questions
about the trustworthiness of the software but also threatens the

1Code available at https://github.com/YerbaPage/DetectCodeGPT
* Xiaodong Gu is the corresponding author

integrity of development process, wherein the true authorship
and the effort invested in creating software artifacts become
obscured. Addressing these concerns is pivotal in maintaining
a transparent and secure software development lifecycle.

Recently, there has been a growing research trend in detecting
machine-generated texts [7], [8]. Perturbation-based methods
like DetectGPT [9] have achieved state-of-the-art results in
identifying machine-generated text. These methods employ
likelihood score discrepancies between the original text and
its various LLM-perturbed variants for detection, capturing
the distinct patterns of machine-generated text that machines
tend to prefer to a smaller set of phrases and expressions.
However, such detection methods tailored for natural language
texts face challenges when applied to code, as code requires
strict adherence to syntactic rules, while natural language can
maintain coherence with more variation [10]. This situation
highlights a significant gap in existing research: a lack of in-
depth assessment of the intrinsic features of machine- and
human-authored code, crucial for understanding the unique
patterns of machine-generated code and devising effective
detection methods.

In this paper, we conduct a comparative analysis of the
distinct patterns between machine- and human-authored code
from three aspects, including lexical diversity, conciseness, and
naturalness. Through our analysis, we uncover that compared to
human, machine tends to write more concise and natural code
with a narrower spectrum of tokens and adhere to common
programming paradigms, and the disparity is more pronounced
in stylistic tokens such as the whitespace tokens.

Based on the findings, we propose a novel method called
DetectCodeGPT for detecting machine-authored code. We
extend the perturbation-based framework of DetectGPT by
strategically inserting stylistic tokens, such as whitespace and
newline characters, to capture the distinct patterns between
machine- and human-authored code. This approach capitalizes
on our observation that the disparity in coding styles is more
pronounced in these stylistic tokens. By directly manipulating
the code, DetectCodeGPT eliminates the need for an external
pre-trained model, thereby enhancing both efficiency and
effectiveness in the detection process.

To evaluate the effectiveness of DetectCodeGPT, we have
conducted extensive experiments on two datasets across six
code language models. The results demonstrate that Detect-
CodeGPT significantly outperforms the state-of-the-art methods

ar
X

iv
:2

40
1.

06
46

1v
5

 [
cs

.S
E

]
 3

0
Ju

l 2
02

4

https://github.com/YerbaPage/DetectCodeGPT

by 7.6% in terms of AUC. Moreover, it proves to be a model-
free and robust method against model discrepancies, making it
viable for real-world applications with unknown or inaccessible
source models.

Our contributions can be summarized as follows:
• To our knowledge, we are the first to conduct a compre-

hensive and thorough analysis of the distinct patterns of
LLM-generated code. Our study sheds light on essential
insights that can further advance the utility of LLMs in
programming.

• We propose a novel method for detecting machine-generated
code by leveraging its distinct stylistic patterns.

• We extensively evaluate the DetectCodeGPT across a variety
of settings and show the effectiveness of our approach.

II. BACKGROUND

A. Large Language Models for Code

Large language models [11], [12] based on Transformer [13]
decoder has achieved remarkable success in natural language
processing tasks [14]. In the domain of code generation,
Codex [1] and AlphaCode [15] are pioneering works to train
large language models on code. The training data often contain
millions of code in different programming languages collected
from open source repositories like GitHub [16], [17], [18].
Later advances to improve LLMs on code include designing
new pretraining tasks like fill-in-the-middle [19], [20], [4], [5]
and also instruction fine-tuning [21], [6]. Recent large language
models pretrained on a mixture of programming and natural
languages like ChatGPT [22] and LLaMA [23] have also shown
promising results on code generation tasks.

B. Perturbation-Based Detection of Machine-Generated Text

In the realm of machine-generated text detection, perturba-
tion based method like DetectGPT [9] stands as the state-of-
the-art technology [7]. In this section, we take DetectGPT
as an example to illustrate the idea of perturbation-based
detection methods. DetectGPT distinguishes between machine
and human-generated text by analyzing the patterns in their
probability scores [9]. The core idea is that when a text x
generated from a machine is subtly changed to x̃ through a
perturbation process q(·|x) (e.g., MLM with T5 [24]), there is a
sharper decline in its log probability scores log pθ(x) than that
in human-generated text. This is because a machine-generated
text is usually more predictable and tightly bound to the patterns
it was trained on, leading to a distinct negative curvature
in log probability when the text is perturbed. By contrast,
human-written texts are characterized by a rich diversity that
reflects a blend of experiences and cognitive processes. As a
result, it doesn’t follow such predictable patterns, and its log
probability scores log pθ(x) do not plummet as dramatically
when similarly perturbed. Based on such discrepancy, we can
define a likelihood discrepancy score for each input code to
measure the drop of log probability after perturbation.

d (x, pθ, q) ≜ log pθ(x)− Ex̃∼q(·|x) log pθ(x̃) (1)

Table I: Studied categories of Python code tokens

Category Tree-sitter Types
keyword def, return, else, if, for, while, . . .
identifier identifier, type identifier
literal string content, integer, true, false, . . .
operator <, >, =, ==, +, . . .
syntactic symbol :,),], [, (, ,, ", ’, {, }, .
comment comment
whitespace space, \n

By inspecting these scores, we can detect the source of x. A
significant drop indicates machine authorship and a smaller
change suggests a human creator. This method effectively
captures the more nuanced and variable nature of human-
generated text compared to the more formulaic and patterned
output of language models.

III. EMPIRICAL ANALYSIS

In this section, we conduct a comparative analysis of the
distinct features of machine- and human-authored code.

A. Study Design

To gain insights into distinctions between human and
machine programmers, we consider three primary aspects that
are relevant to coding styles, namely diversity, conciseness, and
naturalness [25], [26], [27], [28], [29], which can be measured
by specific metrics.

1) Lexical Diversity: Lexical diversity indicates the richness
and variety of vocabulary present in a corpus. In the context
of programming, this refers to the diversity in variable names,
functions, classes, and reserved words. Analyzing lexical
diversity offers a deeper understanding of the creativity,
expressiveness, and potential complexity of code segments.
There are four important empirical metrics in both natural and
programming languages revealing the lexical diversity: token
frequency, syntax element distribution, Zipf’s law [30] and
Heaps’ law [31].

Token Frequency stands for the occurrence of distinct tokens
in the code corpus. The attribute indicates the core vocabulary
utilized by human and machine programmers, shedding light
on their coding preferences and tendencies.

Syntax Element Distribution refers to the proportion of
syntax elements (e.g., keywords, identifiers) in the code corpus.
Understanding the distribution of syntax elements in code
is akin to dissecting the anatomy of a language. It gives us
a lens to view the nuances of coding style, the emphasis
on structure, and the intricacies that distinguish human- and
machine-authored code.

To delve into the syntax element distribution, we analyze
code with tree-sitter2 and classify tokens into distinct categories,
as detailed in Table I. We then compute the proportion of each
category in the code corpus.

Zipf’s and Heaps’ Laws were initially identified in natural
languages [30], [31], and later verified in the scope of
programming languages [25], [26]. Zipf’s law states that the
frequency value f of a token is inversely proportional to its

2https://github.com/tree-sitter/tree-sitter

2

https://github.com/tree-sitter/tree-sitter

Table II: Top 50 tokens from human- and machine-authored code from CodeLlama

Rank Human-Authored Tokens Machine-Authored Tokens

1–10 . () = ’ , : self ” [. - , () self : ” ’ if
11–20] if return in for not None 0 1 == = return not [def raise isinstance] == path
21–30 else + is name { } path data raise - name 0 class name None os { / } %
31–40 try * os len format get and True value isinstance else TypeError str ‘ init is > // the
41–50 args key % np i x kwargs except False or in 1 ; value kwargs #include + str for ValueError

frequency rank r: f ∝ 1
rα , where α is close to 1 [30]. In

programming languages, it states that a few variable names or
functions are very commonly used across different scripts, while
many others are rarely employed. Heaps’ Law characterizes the
expansion of a vocabulary V as a corpus D increases in size:
V ∝ Dβ , where β ∈ (0, 1) captures the rate of vocabulary
growth relative to the size of the corpus.

We investigate how closely machine-authored code aligns
with Zipf’s and Heaps’ laws compared to human-authored
code, which could reflect the models’ ability to mimic human’s
lexical usage.

2) Conciseness: Conciseness stands as a cornerstone at-
tribute when characterizing code [32], [28], [29]. The intricate
balance of code conciseness directly influences readability,
maintainability, and even computational efficiency. We investi-
gate two metrics that characterize code conciseness, namely,
the number of tokens and the number of lines.

Number of tokens gives us an indication of verbosity and
complexity, showing the detailed composition of the code [32].

Number of lines helps us understand organizational choices,
as spreading code across more lines can reflect a focus on
readability and structure [29].

3) Naturalness: The concept of code naturalness suggests
that programming languages share a similar degree of regularity
and predictability with natural languages [27]. This idea has
been operationalized by employing language models to assess
the probability of a specific token’s occurrence within a given
context. Under this framework, we inspect how “natural”
machine-generated code is compared to human-written code.

Token Likelihood and Rank are two metrics that measure
the naturalness of each token in the studied code corpus. The
token likelihood stands for the probability p of a token x under
the model pθ, denoted as pθ(x). The rank of a token x is the
position of x in the sorted list of all tokens based on their
likelihoods, denoted as rθ(x). Both metrics evaluate how likely
a token is preferred by the model [33], [34], [35]. We calculate
log scores on each token and then take the average to represent
the whole code snippet as advised in [34]. To pinpoint the code
elements that most significantly affect the score discrepancies,
we also present the mean scores on different syntax element
categories in Table I for comparison.

B. Experimental Setup

We choose the state-of-the-art CodeLlama model [6] to
generate code. Limited by our computational resources, we
use the version with 7B parameters. As for the decoding
strategies, we adopt the top-p sampling method [36] with
p=0.95 following [1]. The temperature T is an important

parameter controlling the diversity of the generated code [36].
Since current LLMs on code are usually evaluated across
different decoding temperatures [5], [37], [1], [6], we generate
code with T = 0.2 and T = 1.0 to capture the model’s behavior
under different settings. The maximum length of the generated
code is set to 512 tokens based on the memory constraints and
the length distribution of human-written code. All experiments
are conducted on 2 NVIDIA RTX 4090 GPUs with 24GB
memory.

C. Dataset Preparation

To compare with human-authored code, we extract 10,000
Python functions randomly from the CodeSearchNet cor-
pus [16], which is curated from a wide range of open-source
GitHub projects. We use the function signatures and their
accompanying comments as prompts for the model as in [1].
We also collect the corresponding bodies of these functions to
represent human-written code.

While acknowledging that current models, including CodeL-
lama and even ChatGPT [38], may not yet craft code of
unparalleled quality for intricate tasks such as those in Code-
SearchNet [39], [38], the choice of this dataset is deliberate and
insightful. Challenging the models against various real-world
project code rather than simple programming problems, akin
to those in the HumanEval [1] or MBPP [40] dataset, offers
a more representative assessment. It allows us to analyze the
differences between human- and machine-authored code when
faced with broader, practical applications.

D. Results and Analysis

We present the results and analysis regarding each code
attribute introduced in Section III-A.

1) Token Frequency: Table II lists the top 50 tokens from
human- and machine-authored code when T=0.2. Due to
space limit, we omit the results when T=1.0, which has a
similar result. From the results, we have several noteworthy
observations:

Common Tokens: Human- and machine-authored code shares
a commonality in their usage of certain tokens, including
punctuation marks such as “.”, “(”, “)”, and structural keywords
such as “if”, “return”, and “else”. This is because LLMs acquire
foundational coding syntax after being trained on extensive
human-written code corpora.

Error Handling: Tokens associated with error handling
like “raise” and “TypeError”, are more prevalent in machine-
authored code. This difference implies that machine pro-
grammers emphasize robustness and exception handling more
explicitly.

3

0

0.1

0.2

0.3

0.4

Pr
op

or
tio

n
at

 T
=

0.
2

4.3%

40.1%

10.1%
5.8%

23.2%

6.6%
10.0%

5.2%

36.8%

13.1%

5.4%

23.0%

5.6%

10.9%

Human
Machine

key
word

ide
nti

fie
r

lite
ral

op
era

tor

sym
bo

l

com
men

t

whit
esp

ace
0

0.1

0.2

0.3

0.4

Pr
op

or
tio

n
at

 T
=

1.
0

4.3%

40.1%

10.1%
5.8%

23.2%

6.6%
10.0%

4.6%

36.4%

10.9%

5.4%

22.2%

9.5% 10.9%

Figure 1: Syntax element distribution of the code corpus

Programming Paradigms: Tokens indicating object-oriented
programming like “self” and “ init ” are prominent in
both human- and machine-authored code, which illustrates
the model’s training alignment with this paradigm. However,
machine-authored code appears to favor more boilerplate tokens
like “ class ” and also “ name ”, which could stem from
its training on diverse object-oriented codebase.

Finding 1: Machine-authored code pays more attention
to exception handling and object-oriented principles than
human, suggesting an emphasis on error prevention and
adherence to common programming paradigms.

2) Syntax Element Distribution: The analysis of syntax
element distributions, as visualized in Figure 1, reveals intrigu-
ing insights into the coding conventions and stylistic nuances
between human- and machine-authored code. The “keyword”,
“operator”, “syntactic symbols”, and “whitespace” proportions
remain largely consistent between human and machine-authored
code, across both temperatures. This consistency suggests that
the foundational syntactical elements manifest similarly in both
datasets. Delving deeper into the more nuanced discrepancies,
a few categories emerge that underscore the differential
preferences or tendencies of human and machine writers
(statistical significant from Chi-square test with p < 0.01):

Identifier: The identifiers constitute a significantly lower
proportion among machine-authored code across both tempera-
tures, indicating that machine-authored code may have a more
compact style with fewer identifiers.

Literal: Machine-authored code consistently shows a slightly
higher tendency towards using literals. Across both temper-
atures, the machine code exhibits an increase in the literal
proportion compared to the human-written code. This suggests
that machine-authored code may be more likely to process raw
data directly. This could result from the machine’s training on
diverse data manipulation tasks.

Comment: Machine-authored code has much more comments
when T=1.0. This observation hints machine’s increased
emphasis on code documentation and explanation with higher
temperatures, when it becomes less deterministic and more
exploratory.

Finding 2: Machine-authored code tends to use fewer
identifiers, more literals for direct data processing, and have
more comments when the generation temperature grows.

3) Zipf’s and Heaps’ Laws: Figure 2 offers a comprehensive
understanding of coding tendencies of both human and machine
programmers. Starting with Zipf’s law, Figure 2a and 2b both
delineate similar trends for human and machine programmers,
corroborating the law’s applicability. And we can observe
machine’s heightened proclivity towards tokens ranked between
10 and 100, especially at T=0.2. Turning our attention to Heaps’
law, the near-linear trends in Figure 2c-2d reaffirm the law’s
validity. Also, there’s a noticeable shallowness in the slope
for machine’s code at T=0.2 revealing machine’s decreased
lexical diversity.

The obvious differences at T=0.2 can be ascribed to
human creativity and variability. The varied approaches and
methodologies humans employ can lead to a diversified token
usage within this range. Another plausible interpretation can be
its risk aversion. A machine, especially at lower temperatures,
might be reverting to familiar patterns ensuring correctness
in code generation. Additionally, certain patterns within the
training data might have been overemphasized due to model
overfitting, leading the machine to a skewed preference.

Finding 3: Machines demonstrate a preference for a limited
spectrum of frequently-used tokens, whereas human code
exhibits a richer diversity in token selection.

4) Number of Tokens and Lines: Figure 3 presents the
distribution of code length under different settings. For the
temperature setting of 0.2, machine-authored code exhibits
more conciseness, both in token and line numbers. As the
temperature increases to T = 1.0, we witness a convergence
of distributions. The gap narrows, yet the machine’s preference
for relatively concise code persists. This reveals that higher
temperatures induce more exploratory generative behavior in
the model, leading to diverse coding styles.

One could hypothesize several reasons for these observed
patterns. The propensity for conciseness at lower temperatures
may reflect LLM’s training data, where probably concise solu-
tions were more prevalent or deemed more “correct”. On the flip
side, human developers, often juggling multiple considerations
like future code extensions, comments for peer developers,
or even personal coding style, might craft lengthier solutions.
Furthermore, the narrowing of disparities at higher temperatures
can be attributed to the model’s increased willingness to explore
varied coding styles. At higher temperatures, the LLM possibly
mimics a broader spectrum of human coding patterns, capturing
the essence of diverse coding habits and styles found in its

4

0 1 2 3 4
Log10(Rank)

0

1

2

3

4

Lo
g1

0(
Fr

eq
ue

nc
y)

Human
Machine
Ideal Zipf's Line

(a) Zipf’s Law (T = 0.2)

0 1 2 3 4
Log10(Rank)

0

1

2

3

4

Lo
g1

0(
Fr

eq
ue

nc
y)

Human
Machine
Ideal Zipf's Line

(b) Zipf’s Law (T = 1.0)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Log10(Text Length)

0.0

0.5

1.0

1.5

2.0

Lo
g1

0(
Vo

ca
bu

la
ry

 S
ize

) Human
Machine

(c) Heaps’ Law (T = 0.2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Log10(Text Length)

0.0

0.5

1.0

1.5

2.0

Lo
g1

0(
Vo

ca
bu

la
ry

 S
ize

) Human
Machine

(d) Heaps’ Law (T = 1.0)

Figure 2: Comparison of Zipf’s and Heaps’ laws on machine- and human-authored code

0 100 200 300 400 500
Count

0.0%

0.2%

0.5%

0.8%

1.0%

De
ns

ity

Human
Machine

(a) Number of tokens (T = 0.2)

0 100 200 300 400 500
Count

0.0%

0.2%

0.4%

0.6%

0.8%

De
ns

ity

Human
Machine

(b) Number of tokens (T = 1.0)

0 20 40 60
Count

0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

De
ns

ity

Human
Machine

(c) Number of lines (T = 0.2)

0 20 40 60
Count

0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

De
ns

ity

Human
Machine

(d) Number of lines (T = 1.0)

Figure 3: Distribution of code length for machine- and human-authored code

4 3 2 1 0
Log Likelihood

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

De
ns

ity

Human
Machine

0.0 0.5 1.0 1.5 2.0
Log Rank

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

Human
Machine

Figure 4: Distribution of naturalness scores

training corpus.

Finding 4: Machines tend to write more concise code
as instructed by their training objective, while human
programmers tend to write longer code, reflective of their
stylistic preferences.

5) Token Likelihood and Rank: Figure 4 shows that there
is a great discrepancy of naturalness between machine- and
human-authored code. Compared to human-authored code, the
log likelihood scores of machine-authored code are mostly
higher and the log rank scores are mostly lower, indicating that
machine’s code is more “natural” than human-written code.
Such observation in source code is consistent with the findings
in natural language [34], [33], [9], [35].

Table VIII summarises the comparison results in terms of
each token category at T = 0.2. An intriguing finding is
that whitespace tokens stand out with the highest deviation of
naturalness, surpassing even the combined use of all tokens.
This highlights a distinctive aspect of coding styles: machines,
trained on extensive datasets, typically generate code with
regular, predictable whitespace patterns. Humans, however,

Table III: The naturalness of different categories of syntax
elements. Statistical significance p < 0.001.

Category Log Likelihood Log Rank
Machine Human ∆ Machine Human ∆

keyword -1.701 -2.128 0.428 0.837 1.053 0.217
identifier -0.459 -0.874 0.415 0.163 0.378 0.215
literal -0.506 -1.364 0.858 0.152 0.630 0.479
operator -0.938 -1.835 0.897 0.367 0.872 0.504
symbol -0.868 -1.639 0.771 0.321 0.781 0.460
comment -1.503 -3.028 1.525 0.608 1.610 1.002
whitespace -1.131 -2.740 1.609 0.429 1.441 1.012
ALL -0.827 -1.658 0.831 0.319 0.811 0.492

influenced by individual styles and practices, exhibit a wider
variety in their use of whitespaces. The distinct patterns in
machine-generated whitespaces, therefore, point to an inherent
variation in coding style between machine and human.

Finding 5: Machine-authored code exhibits higher “natural-
ness” than human-authored code, and the disparity is more
pronounced in tokens such as comments, and whitespaces,
which are more reflective of individual coding styles.

IV. DETECTING MACHINE GENERATED CODE

The empirical results suggest that machines tend to write
more concise and natural code with a narrower spectrum of
tokens, adhering to common programming paradigms, and
the disparity is more pronounced in stylistic tokens such as
whitespaces. This sparks a new idea for detecting machine-
authored code: instead of perturbing arbitrary tokens, we
focus on perturbing those stylistic tokens that best characterize
the machine’s preference. Based on this idea, we introduce
DetectCodeGPT, a novel zero-shot method for detecting
machine-authored code.

5

A. Problem Formulation

We formulate the detection of machine-authored code as
a classification task, which predict whether or not a given
code snippet x is produced by a source model pθ. For this
purpose, we transform x to an equivalent form x̃ through a
perturbation process q(·|x). We anticipate a sharper decline
in its naturalness score if x is written by an LLM. The key
problems here are how to define the naturalness score and how
to design the perturbation process. We introduce the naturalness
score and the perturbation strategy q(·|x) in our approach in
the following sections.

B. Measuring Naturalness

Previous methods usually use the log likelihood of tokens to
measure the naturalness of machine-authored content [27], [35].
However, the log rank of tokens shows better performance com-
paring the naturalness of machine- and human-authored text [9],
[34], because it offers a smoother and robust representation of
token preference.

Unlike DetectGPT which directly calculates the log likeli-
hood of tokens, we adopt the Normalized Perturbed Log Rank
(NPR) score [41] to capture the naturalness. The NPR score is
formally defined as:

NPR (x, pθ, q) ≜
Ex̃∼q(·|x) log rθ (x̃)

log rθ(x)
, (2)

where log rθ(x) is the logarithm of the rank order of
text x sorted by likelihood under model pθ. In practice,
NPR (x, pθ, q) has been demonstrated to be more accurate for
differentiating text origins, outperforming the log likelihood
discrepancy d (x, pθ, q) [41].

C. Perturbation Strategy

Our empirical study indicates that the whitespace tokens
serve as an important indicator of machine’s regularization
and human’s diversity, which points to an inherent variation
in coding style. Therefore, we propose an efficient and
effective perturbation strategy with the following two types of
perturbations below. Detailed explanations on the effectiveness
of these perturbations are given in Section VI-A.

1) Space Insertion: Let C represent the set of all possible
locations to insert spaces in a code segment. We randomly
select a subset Cs ⊆ C such that |Cs| = α × |C|, where
α ∈ [0, 1] is a fraction representing the code locations. For
each location c ∈ Cs, we introduce a variable number of
spaces, nspaces(c), which is drawn from a Poisson distribution
P(λspaces). The Poisson distribution is chosen to simulate the
randomness in human coding styles, similar to the random text
infilling strategy in BART [42]. Mathematically, this can be
represented as:

nspaces(c) ∼ P(λspaces). (3)

2) Newline Insertion: We split the code into lines and obtain
a set L of lines. A subset Ln ⊆ L is then chosen randomly,
where |Ln| = β × |L|, with β ∈ [0, 1] denoting the proportion
of the line locations. For each line l ∈ Ln, we introduce a
variable number of newlines, nnewlines(l), also sampled from a
Poisson distribution P(λnewlines):

nnewlines(l) ∼ P(λnewlines). (4)

Algorithm 1: DetectCodeGPT: Machine-Generated
Code Detection with Stylized Code Perturbation

Data: code x, source model M, number of perturbations k,
decision threshold ϵ, parameters α, β, λspaces, and
λnewlines

1 for i← 1 to k do
// Random decision for type of

perturbation
2 p ∼ U(0, 1);
3 if p ≤ 0.5 then

// Spaces Insertion
4 Let C represent all possible locations to insert spaces

in x;
5 Select Cs ⊆ C such that |Cs| = α× |C|;
6 for each location c ∈ Cs do
7 nspaces(c) ∼ P(λspaces);
8 Insert nspaces(c) spaces at location c in x;
9 end

10 else
// Newlines Insertion

11 Split the perturbed code x into a set L of lines;
12 Select Ln ⊆ L such that |Ln| = β × |L|;
13 for each line l ∈ Ln do
14 nnewlines(l) ∼ P(λnewlines);
15 Insert nnewlines(l) newlines after line l in x;
16 end
17 end
18 Store the perturbed code as x̃i;
19 end
20 Estimate NPR:

NPRx ← NPR (x, pθ, q)− 1
k

∑
i NPR (x̃i, pθ, q);

21 if NPRx > ϵ then
22 return true ; // Probably machine-authored
23 else
24 return false ; // Probably human-authored
25 end

We randomly choose one type of perturbation to the code
snippet x to generate a set of perturbed samples x̃i for i ∈ [1, k],
where k is the number of perturbations. Through this step,
we instill randomness at a granular stylistic level, thereby
amplifying the perturbation’s efficacy. Our perturbation strategy
introduces several distinct advantages over the conventional
methods [9], [41] using MLM to perturb the code, which will
be discussed in Section VI-B.

Algorithm 1 summarizes the entire workflow of Detect-
CodeGPT. Our algorithm harnesses stylized code perturbation
to differentiate between human- and machine-authored code.
At the core of our approach is the strategic insertion of spaces
(Lines 4-9) and newlines (Lines 11-16) in code, a process that
simulates the inherent randomness in human coding styles.

6

The algorithm operates by generating perturbed versions of the
code and then evaluating their NPR scores (Lines 20-21) with
respect to the source model M.

The threshold parameter ϵ in Line 22, pivotal for making
the detection decision, offers flexibility in catering to different
application scenarios. By adjusting ϵ, users can balance between
false positives and false negatives, tailoring the detection
sensitivity according to the specific needs of the deployment
context.

V. EVALUATION

We conduct experiments to evaluate the effectiveness of
DetectCodeGPT, aiming to answer the following research
questions.
• RQ1: How effectively does our method distinguish between

machine-generated and human-written code?
• RQ2: To what extent do individual components influence

the overall performance of our method?
• RQ3: What is the impact of varying the number of pertur-

bations on the detection performance?
• RQ4: How effective is our method in cross-model code

detection?

A. Datasets

We carefully use a different split of the CodeSearchNet
dataset [16] from the one used in the empirical study for
evaluation. We select Python code from The Stack [17] as
another evaluation dataset. Similar to CodeSearchNet, The
Stack provides code from a variety of open-source projects
representative of real-world scenarios. We use a parsed and
filtered version [43] of this dataset and also concatenate the
function definitions with their corresponding comments as
prompts as in [1]. For each combination of dataset and model,
we sample 500 human and machine code pairs for evaluation.
The maximum length of code is trimmed to 128 tokens.

B. Studied Models

We investigate machine-generated code by a diverse ar-
ray of advanced LLMs, including Incoder [20], Phi-1 [44],
StarCoder [45], WizardCoder [21], CodeGen2 [4] and CodeL-
lama [6]. We obtain their checkpoints from Huggingface 3 with
different parameter sizes (1B-7B).

C. Evaluation Metric

Following prior works [9], [41], our primary metric for
performance evaluation is the Area Under the Receiver Oper-
ating Characteristic curve (AUROC). Formally, given a set of
true positive rates (TPR) and false positive rates (FPR) across
different thresholds, the AUROC can be represented as:

AUROC =

∫ 1

0

TPR(t) dt, (5)

where t denotes varying threshold values. It provides a com-
prehensive view of performance across all possible thresholds,
making it threshold-independent. This makes the metric both

3https://huggingface.co/models

interpretable and insightful, offering a clearer picture of the
model’s discriminating capabilities.

D. Baselines

Our evaluation is benchmarked against a diverse range of
zero-shot machine-generated text detection techniques. And
a supervised baseline is also included to demonstrate the
advantages of our zero-shot method:
• Log p(x) [35]: Utilizes the source model’s average token-

wise log probability to gauge code naturalness. Machine-
generated code tends to have a higher score.

• Entropy [34]: Interprets high average entropy in the model’s
predictive distribution as indicative of machine generation.

• (Log-) Rank [34], [33]: The average observed rank or log
rank of each token in the LLM prediction, with machine-
generated passages typically showing smaller average values.

• DetectGPT [9]: Leverages the log probability of the original
code and its perturbed variants to compute the perturbation
discrepancy gap.

• DetectLLM [41]: Introduces two methods, one blends log
likelihood with log rank to compute LRR, and the other
improves DetectGPT by incorporating the NPR score.

• GPTSniffer [46]: A supervised baseline that trains Code-
BERT [47] to predict the authorship of a given code snippet.
Following OpenAI’s RoBERTa-based [48] GPT detector4, we
train the model on a combination of 1000 samples generated
by each model at each setting.

E. Experimental Setup

For code generation with different models, we adopted
the top-p sampling strategy [36] with p=0.95 following [1].
We explored two temperature settings, T=0.2 and T=1.0, as
discussed in Section III-B. The maximum length constraint
for generated code was set at 128 tokens. With respect to the
perturbation-specific hyperparameters, a grid search on a held-
out set from the CodeSearchNet dataset, using the SantaCoder
model [3], revealed optimal values. Consequently, we set α and
β to 0.5, while λspaces=3 and λnewlines=2. For all experiments,
we maintained a consistent configuration of generating 50
perturbations.

For the DetectGPT and DetectLLM, which involve an LLM
in restoring perturbed code, we utilized the CodeT5+ (770M)
model [49]. And as for the supervised baseline GPTSniffer,
we trained the CodeBERT model for 5 epochs with a batch
size of 16 and a learning rate of 2e-5 with AdamW optimizer.
All experiments are conducted on 2 NVIDIA RTX 4090 GPUs
with 24GB memory.

F. Detection Performance (RQ1)

Table IV delineates the results of various methods. Accord-
ing to the results, DetectCodeGPT consistently outperforms
baseline methods. Compared to the strongest baseline Log
Rank, our method achieves an average relative improvement
of 7.6% in AUROC. In an impressive 20 of 24 combinations

4https://github.com/openai/gpt-2-output-dataset/tree/master/detector

7

https://huggingface.co/models
https://github.com/openai/gpt-2-output-dataset/tree/master/detector

Table IV: Performance (AUROC) of various detection methods. Statistical significance p < 0.001.

Dataset Code LLM Detection Methods
log p(x) Entropy Rank Log Rank DetectGPT LRR NPR GPTSniffer DetectCodeGPT

CodeSearchNet
(T = 0.2)

Incoder (1.3B) 0.9810 0.1102 0.8701 0.9892 0.4735 0.9693 0.8143 0.9426 0.9896
Phi-1 (1.3B) 0.7881 0.4114 0.6409 0.7513 0.7210 0.4020 0.7566 0.3855 0.8287

StarCoder (3B) 0.9105 0.2942 0.7585 0.9340 0.6949 0.9245 0.9015 0.7712 0.9438
WizardCoder (3B) 0.9079 0.2930 0.7556 0.9120 0.6450 0.7975 0.8677 0.7433 0.9345
CodeGen2 (3.7B) 0.7028 0.4411 0.7328 0.7199 0.6051 0.7997 0.6177 0.5327 0.8802
CodeLlama (7B) 0.8850 0.3174 0.7265 0.9016 0.8212 0.8332 0.5890 0.7496 0.9095

CodeSearchNet
(T = 1.0)

Incoder (1.3B) 0.7724 0.4167 0.7797 0.7876 0.6258 0.7427 0.6801 0.6761 0.7882
Phi-1 (1.3B) 0.6118 0.4588 0.5709 0.6299 0.7492 0.4528 0.7912 0.4158 0.8365

StarCoder (3B) 0.6574 0.4844 0.6987 0.6822 0.6505 0.7050 0.6751 0.6299 0.6918
WizardCoder (3B) 0.8319 0.3363 0.7273 0.8338 0.5972 0.6965 0.7516 0.7068 0.8392
CodeGen2 (3.7B) 0.4484 0.6263 0.6584 0.4632 0.4797 0.5530 0.5208 0.4024 0.6798
CodeLlama (7B) 0.6463 0.4855 0.6759 0.6656 0.6423 0.6768 0.6515 0.6442 0.7239

The Stack
(T = 0.2)

Incoder (1.3B) 0.9693 0.1516 0.8747 0.9712 0.6061 0.9638 0.8571 0.9291 0.9727
Phi-1 (1.3B) 0.8050 0.4318 0.6766 0.7622 0.7295 0.4022 0.8106 0.4640 0.8578

StarCoder (3B) 0.9098 0.3077 0.7843 0.9329 0.6824 0.9135 0.9233 0.7715 0.9274
WizardCoder (3B) 0.9026 0.3196 0.7963 0.9010 0.6385 0.7742 0.8574 0.7794 0.9243
CodeGen2 (3.7B) 0.7171 0.4051 0.7930 0.7301 0.5288 0.7604 0.5670 0.4520 0.8513
CodeLlama (7B) 0.8576 0.3565 0.7366 0.8793 0.8087 0.8358 0.5436 0.7619 0.8852

The Stack
(T = 1.0)

Incoder (1.3B) 0.7310 0.4591 0.7673 0.7555 0.6124 0.7446 0.6787 0.6846 0.7833
Phi-1 (1.3B) 0.7841 0.4205 0.6666 0.7475 0.6718 0.4106 0.7755 0.4984 0.8376

StarCoder (3B) 0.6333 0.5025 0.7010 0.6609 0.5896 0.7080 0.6638 0.7243 0.6890
WizardCoder (3B) 0.8293 0.3459 0.7484 0.8223 0.6377 0.6436 0.7929 0.7766 0.8384
CodeGen2 (3.7B) 0.4816 0.6046 0.5631 0.4956 0.4337 0.5740 0.5178 0.4265 0.6595
CodeLlama (7B) 0.5929 0.5260 0.6451 0.6091 0.6116 0.6365 0.6226 0.7494 0.6660

Average - 0.7649 0.3961 0.7228 0.7724 0.6357 0.7050 0.7178 0.6507 0.8308

of dataset and model, our method provides the most accurate
performance, which underscores its robustness across a variety
of generative models, ranging from the 1.3 billion parameter
InCoder to the 7 billion parameter CodeLlama.

We also repeated the experiments 10 times and employed
a Wilcoxon rank sum test to assess the statistical significance
of the performance differences between the methods. Results
show that the performance superiority of our method was
statistically significant, with p-values less than 0.001. The high
AUROC scores achieved across these diverse settings confirm
the method’s superior capability to generalize and reliably
differentiate between machine-generated and human-written
code.

We can observe that the challenge of detection notably
increases at a temperature setting of T=1.0 than T=0.2. This is
possibly due to the higher randomness at this temperature,
where models are likely to generate outputs with greater
diversity in styles. Despite these increased difficulties, the
proposed method maintains its leading position in detection
accuracy.

It is worth mentioning that our zero-shot framework often
outperforms the supervised GPTSniffer, highlighting the chal-
lenges of detecting machine-generated code with training data-
dependent supervised models. The stable performance across
various generation settings showcases our method’s advanced
detection capabilities. This makes it an effective solution in
practical applications.

To further illustrate the effectiveness of our approach, we

present some representative examples by DetectCodeGPT and
two most competitive baselines in Figure 5, using decision
thresholds ϵ set at the mean scores of all code snippets.

Examples 1 is a machine-generated code snippet. Detect-
CodeGPT can correctly detect it, while the baselines fail. In this
example, the first and last “if” statements are separated from
the rest of the code with newlines, and the two “if” statements
in the middle are modularized together since they have similar
functionalities. Such modularization and separation of code
blocks are captured by DetectCodeGPT thanks to the stylized
perturbation. Example 2 and 3 are human-written code that are
misclassified by other baselines, but DetectCodeGPT correctly
identifies them. In Example 2, we can observe that the code
blocks are sometimes separated with newlines (e.g., lines 5-
7), but sometimes not (as seen with the rest of the code).
In Example 3, although the code blocks are well separated
with newlines, the human author omitted the spaces between
operators “//” and “/”, but add spaces between “*” and “+”.
Such freely and randomly stylized code reveals the inherent
randomness in human coding habits. Baselines, relying solely
on token-wise conditional distributions, struggle to capture the
coding style’s randomness, whereas DetectCodeGPT effectively
utilizes style information to discern between machine-generated
and human-written code, demonstrating its prowess in detection
through stylized code perturbation.

However, there are also cases where DetectCodeGPT fails.
Example 4 is a human-written code misclassified as machine-
generated by all the approaches. We can observe that this

8

Truth: 🤖

log 𝑝(𝑥): 🧑💻

Log Rank: 🧑💻

DetectCodeGPT: 🤖

import os
import re

if not os.path.isdir(path):
raise ValueError('%s is not a directory' % path)

if not isinstance(include, (list, tuple)):
include = [include]

if not isinstance(exclude, (list, tuple)):
exclude = [exclude]

if not show_all:
exclude.append(r'\.pyc$’)

...

(a) Example 1

Truth: 🧑💻

log 𝑝(𝑥): 🤖

Log Rank: 🤖

DetectCodeGPT: 🧑💻

?

?

args_names = []
args_names.extend(function_spec.args)
if function_spec.varargs is not None:

args_names.append(function_spec.args)

args_check = {}

for arg_name in arg_specs.keys():
if arg_name not in args_names:

args_check[arg_name] = self.check(
arg_specs[arg_name], arg_name

)
return args_check

(b) Example 2

Truth: 🧑💻

log 𝑝(𝑥): 🤖

Log Rank: 🤖

DetectCodeGPT: 🧑💻

save_test = random() > 0.8
audio = load_audio(fn)
num_chunks = len(audio)//chunk_size

listener.clear()

for i, chunk in enumerate(chunk_audio(audio, chunk_size)):
print('\r' + str(i * 100./num_chunks) + '%')
buffer = update((buffer[len(chunk):], chunk))
conf = listener.update(chunk)

SPACE ?

SPACE

SPACESPACE

SPACE ?

(c) Example 3

Truth: 🧑💻

log 𝑝(𝑥): 🤖

Log Rank: 🤖

DetectCodeGPT: 🤖

If num is 0.
if (n == "0"):

return 0

Count sum of digits under mod 9
answer = 0
for i in range(0, len(n)):

answer = (answer + int(n[i])) % 9

If digit sum is multiple of 9, answer
9, else remainder with 9.
if(answer == 0):

return 9
else:

return answer % 9

(d) Example 4

Figure 5: Examples of machine- and human-authored code snippets with corresponding predictions.

Table V: Performance of different perturbation strategies

Perturb. Type MLM Newline Space Newline&Space

T = 0.2 0.5436 0.8703 0.8639 0.8852
T = 1.0 0.6226 0.6453 0.6504 0.6660

code snippet is well-structured with newlines and spaces. Its
resemblance to machine-generated code is striking, posing a
significant challenge for distinction. This example highlights
the difficulty of detecting machine-generated code among well-
structured human-written code with standard coding styles.

G. Ablation Study (RQ2)

In our ablation study, we compare the effectiveness of
different perturbation strategies for detecting machine-generated
code using the CodeLlama (7B) model on The Stack dataset.
The results summarized in Table V illuminates the comparative
advantage of our stylistic perturbation approach. We observe
that both newline and space perturbations independently offer
substantial improvements over the traditional MLM-based
(CodeT5+) perturbation technique as in DetectGPT and De-
tectLLM [9], [41] for natural language. Also, the combination
of newline and space perturbations further enhances the
detection performance, with the highest AUROC score of
0.8852 at T = 0.2 and 0.6660 at T = 1.0. The consistent
outperformance of our combined perturbation strategy across
both temperature settings affirms its potential as a robust
solution for detecting machine-authored code.

H. Impact of Perturbation Count (RQ3)

To gauge the impact of perturbation count on the efficacy
of our method, we conduct experiments with varying numbers
of perturbations.

Results in Table VI reveal a rapid ascent in the AUROC
score as the number of perturbations increases from 10 to

Table VI: Impact of varying the number of perturbations

#Perturbations 10 20 50 100 200

T = 0.2 0.6537 0.8825 0.8852 0.8855 0.8846
T = 1.0 0.5558 0.6584 0.6660 0.6660 0.6662

20, underscoring the efficiency of our perturbation approach.
Notably, an increase to 20 perturbations already yields robust
detection performance, with further increments leading to
diminishing improvements. This suggests that our method
requires a relatively small number of perturbations to effectively
discern between human- and machine-authored code. This
implies that our method is not only effective but also efficient.

I. Performance of Cross-Model Code Detection (RQ4)

Inc
od

er

Ph
i-1

Sta
rCod

er

Wiza
rdC

od
er

Cod
eG

en
2

Cod
eLl

am
a

Detection Model

Incoder

Phi-1

StarCoder

WizardCoder

CodeGen2

CodeLlama

So
ur

ce
 M

od
el

0.97 0.83 0.90 0.88 0.90 0.86

0.72 0.86 0.77 0.79 0.76 0.68

0.84 0.82 0.93 0.92 0.89 0.87

0.82 0.86 0.91 0.92 0.87 0.85

0.59 0.83 0.65 0.69 0.85 0.68

0.81 0.80 0.87 0.87 0.86 0.89

Figure 6: Cross-model detection performance

In previous sections, we primarily assess the efficacy of
DetectCodeGPT within a white-box framework, where we
can get access to the logits of the original code generation
model, as defined in Section IV-A. In real-world scenarios,

9

accessing the original model for code generation detection
is often impractical, so we conduct cross-model detection
experiments, where we use other LLMs as surrogate models
to compute the naturalness scores.

The evaluation results on The Stack dataset at T = 0.2
presented in Figure 6 highlight DetectCodeGPT’s adaptability
in cross-model detection. While the algorithm excels in
the white-box setting, its performance endures with only
a slight reduction in cross-model application. For instance,
StarCoder, when detecting code generated by WizardCoder
and CodeLlama, yields AUROC scores of 0.92 and 0.87,
respectively, compared to an AUROC of 0.93 when detecting its
own output. We can also notice a performance decrease when
detecting CodeGen2’s output. This is possibly due to the fact
that CodeGen2 is trained on a more diverse dataset containing
more natural language text [4]. However, Phi-1 demonstrates a
relative proficiency with a score of 0.83 to detect CodeGen2’s
output, which implies an ensemble of diverse detection models
may enhance the system’s robustness, as suggested in [50].

These results indicate that DetectCodeGPT is a model-free
method that is robust against model discrepancies, making it
a viable solution for real-world applications where the source
model could be unknown or inaccessible.

VI. DISCUSSION

A. Why is DetectCodeGPT Effective?

We attribute the effectiveness of our DetectCodeGPT to the
following two factors:

1) Preservation of Code Correctness: The mask-and-recover
perturbation in DetectGPT brings minor mistakes easily (e.g.,
misuse of an identifier), rendering the code non-functional
and has negative impact on the naturalness score. Such code-
cracking perturbations will violate the assumption of minimal
impact on the code’s naturalness score if it is human-written in
Section II-B. In contrast, inserting newlines and spaces does
not affect the correctness of the code in most cases, thereby
ensuring the effectiveness of our method.

2) Emulation of Human Randomness: As discussed in
Section III-D5, human inherently exhibit less naturalness and
more randomness in their use of stylistic tokens such as spaces
and newlines than machines. For example, a human programmer
may freely insert whitespace, especially newlines, in the code as
they deem fit, whereas a machine programmer usually tries to
stylize the code in a more standardized and modularized manner.
Our proposed perturbation strategy mimics human’s free usage
of spaces and newlines, thereby making the perturbation more
“random” as is desired according to Section III.

B. Strength of DetectCodeGPT

Compared with existing methods, DetectCodeGPT eliminates
the need to perturb code multiple times for each LLM and thus
brings more efficiency. Compared with supervised counterparts,
DetectCodeGPT distinguishes itself with a zero-shot learning
capability, enabling it to detect machine-generated code without

the necessity for training on extensive datasets. This model-
agnostic advantage means that it can be generalized across
various code LLMs.

C. Limitations and Future Directions

The main limitations of our work lie in the following two
aspects: Firstly, due to the computational constraints, we only
focus on a set of LLMs within 7B parameters. As the landscape
of LLMs rapidly evolves, incorporating a wider array of more
and larger LLMs could significantly bolster the generalizability
and robustness of our findings.

Secondly, our current analysis centers exclusively on Python
code, while the features of other programming languages may
not be fully explored. However, based on the analysis of our
method in Section VI-B, we believe that our method can be
effectively generalized to other languages, especially where the
functionality of code won’t be much affected after inserting
newlines and spaces like C/C++, Java, and JavaScript.

Looking ahead to future work, we plan to further improve
the effectiveness of DetectCodeGPT when detecting machine-
generated code at higher levels of generation randomness. We
note from Table IV that although DetectCodeGPT outperforms
other baselines at T=1.0, there is still large room for improve-
ment. Although ensembling multiple detection models may
help improve the detection performance [50], we look forward
to exploring more effective perturbation strategies based on
code styles to further enhance the detection efficacy.

VII. RELATED WORK

A. Machine-Generated Text Detection

Recently, there has been much effort in detecting machine-
generated text [7], [51]. The two main categories of detection
methods are zero-shot and training-based methods, and our
DetectCodeGPT falls into the former category, which eliminates
the need for training data and brings more generalization ability.

As for zero-shot methods, they are usually based on the
discrepancy between likelihood and rank information of human
and machine’s texts [34], [33], [35]. Leveraging the hypothesis
in DetectGPT [9] that machine-generated text often has
a negative curvature in the log probability when the text
is perturbed, many perturbation based methods have been
proposed [9], [41], [52]. These methods usually perturb the
text by masking a continuous span of tokens and then recover
the perturbed text using another LLM like T5 [24]. The benefit
of these methods is that they are zero-shot and can be applied
to any LLM without access to training data. However, the
perturbation process is time-consuming and computationally
expensive. When it comes to the training-based methods, fine-
tuning the RoBERTa [48] or T5 [24] model with data collected
from different model families at different decoding settings is a
common practice [53], [54], [55]. Additional information like
graph structure [56], perplexity from proxy models [57] have
been shown to be helpful for detection. Moreover, techniques
like adversarial training [58] and contrastive learning [56] have
also been proposed to improve the detection performance. The
main challenge of training-based methods is that they often

10

lack generalization ability and require access to training data
from the target model [9].

B. Machine-Generated Code Detection

Research on identifying machine-generated code remains
relatively scarce and is purported to be more challenging than
discerning machine-generated text, according to the empirical
study in [59]. GPTSniffer was first proposed to detect machine-
generated code with supervised CodeBERT training [46].
Concurrent works [60] and [61] also explore perturbation-
based methods for detecting machine-generated code, under
similar framework to DetectGPT for text [9]. Our approach
differs from these methods in that we perform a comprehensive
empirical analysis of the differences between machine- and
human-authored code. Based on the insights from the analysis,
we proposed a innovative stylized perturbation strategy to
achieve a more efficient and effective detection method.

Another related topic revolve around code watermarking
techniques, which embed unique markers into the code either
during the training or generation [10], [62], [63]. The detection
of these watermarks subsequently enables the recognition of
code generated by machines. It should be noted, however, that
these watermarking methods are primarily designed to address
issues related to code licensing and plagiarism [64], [65]. Their
reliance on modifications to the generation model renders them
unsuitable for general code detection tasks.

VIII. CONCLUSION

In this paper, we perform an in-depth analysis of the
nuanced differences between machine- and human-authored
code across three aspects of code including lexical diversity,
conciseness, and naturalness. The results provide new insights
that machines tend to write more concise and natural code,
adhering to common programming paradigms, and the disparity
is more pronounced in stylized tokens such as whitespaces
that represent the syntactic segmentation of code. Based on
these insights, we have proposed a new detection method,
DetectCodeGPT, which introduces a novel stylized perturbation
strategy that is simple yet effective. The experimental results
of DetectCodeGPT confirm its effectiveness, demonstrating its
potential to help maintain the authorship and integrity of code.

ACKNOWLEDGEMENT

This research is supported by the National Key Research and
Development Program of China (Grant No. 2023YFB4503802)
and the National Natural Science Foundation of China (Grant
No. 62102244). We would like to thank the anonymous
reviewers for their valuable feedback and suggestions.

REFERENCES

[1] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri,
G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan,
S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian,
C. Winter, P. Tillet, F. P. Such, D. Cummings, M. Plappert, F. Chantzis,
E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol, A. Paino, N. Tezak,
J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse,
A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford,

M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B. McGrew,
D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba, “Evaluating
Large Language Models Trained on Code,” Jul. 2021.

[2] OpenAI, “ChatGPT: Optimizing language models for dialogue,” Tech.
Rep., 2022.

[3] L. B. Allal, R. Li, D. Kocetkov, C. Mou, C. Akiki, C. M. Ferrandis,
N. Muennighoff, M. Mishra, A. Gu, and M. Dey, “SantaCoder: Don’t
reach for the stars!” 2023.

[4] E. Nijkamp, H. Hayashi, C. Xiong, S. Savarese, and Y. Zhou, “CodeGen2:
Lessons for Training LLMs on Programming and Natural Languages,”
May 2023.

[5] Q. Zheng, X. Xia, X. Zou, Y. Dong, S. Wang, Y. Xue, Z. Wang, L. Shen,
A. Wang, Y. Li, T. Su, Z. Yang, and J. Tang, “CodeGeeX: A Pre-
Trained Model for Code Generation with Multilingual Evaluations on
HumanEval-X,” Mar. 2023.

[6] B. Rozière, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi,
J. Liu, T. Remez, J. Rapin, A. Kozhevnikov, I. Evtimov, J. Bitton,
M. Bhatt, C. C. Ferrer, A. Grattafiori, W. Xiong, A. Défossez, J. Copet,
F. Azhar, H. Touvron, L. Martin, N. Usunier, T. Scialom, and G. Synnaeve,
“Code Llama: Open Foundation Models for Code,” Aug. 2023.

[7] X. Yang, L. Pan, X. Zhao, H. Chen, L. Petzold, W. Y. Wang, and
W. Cheng, “A Survey on Detection of LLMs-Generated Content,” Oct.
2023.

[8] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang,
J. Zhang, Z. Dong, Y. Du, C. Yang, Y. Chen, Z. Chen, J. Jiang, R. Ren,
Y. Li, X. Tang, Z. Liu, P. Liu, J.-Y. Nie, and J.-R. Wen, “A Survey of
Large Language Models,” May 2023.

[9] E. Mitchell, Y. Lee, A. Khazatsky, C. D. Manning, and C. Finn, “De-
tectGPT: Zero-Shot Machine-Generated Text Detection using Probability
Curvature,” in International Conference on Machine Learning, ICML
2023, 23-29 July 2023, Honolulu, Hawaii, USA, vol. 202, 2023, pp.
24 950–24 962.

[10] T. Lee, S. Hong, J. Ahn, I. Hong, H. Lee, S. Yun, J. Shin, and G. Kim,
“Who Wrote this Code? Watermarking for Code Generation,” May 2023.

[11] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving
language understanding by generative pre-training,” 2018.

[12] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in
Neural Information Processing Systems, 2017, pp. 5998–6008.

[14] P. P. Ray, “ChatGPT: A comprehensive review on background, applica-
tions, key challenges, bias, ethics, limitations and future scope,” Internet
of Things and Cyber-Physical Systems, vol. 3, pp. 121–154, Jan. 2023.

[15] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
J. Keeling, F. Gimeno, A. D. Lago, T. Hubert, P. Choy, and C. de,
“Competition-Level Code Generation with AlphaCode,” p. 74, 2022.

[16] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“CodeSearchNet Challenge: Evaluating the State of Semantic Code
Search,” Jun. 2020.

[17] D. Kocetkov, R. Li, L. B. Allal, J. Li, C. Mou, C. M. Ferrandis, Y. Jernite,
M. Mitchell, S. Hughes, T. Wolf, D. Bahdanau, L. von Werra, and H. de
Vries, “The Stack: 3 TB of permissively licensed source code,” Nov.
2022.

[18] L. Gao, S. Biderman, S. Black, L. Golding, T. Hoppe, C. Foster, J. Phang,
H. He, A. Thite, N. Nabeshima, S. Presser, and C. Leahy, “The Pile: An
800GB Dataset of Diverse Text for Language Modeling,” Dec. 2020.

[19] Y. Wang, W. Wang, S. Joty, and S. C. Hoi, “CodeT5: Identifier-aware
Unified Pre-trained Encoder-Decoder Models for Code Understanding
and Generation,” in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing. Online and Punta Cana,
Dominican Republic: Association for Computational Linguistics, 2021,
pp. 8696–8708.

[20] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong,
S. Yih, L. Zettlemoyer, and M. Lewis, “InCoder: A Generative Model for
Code Infilling and Synthesis,” in The Eleventh International Conference
on Learning Representations, Sep. 2022.

[21] Z. Luo, C. Xu, P. Zhao, Q. Sun, X. Geng, W. Hu, C. Tao, J. Ma, Q. Lin,
and D. Jiang, “WizardCoder: Empowering Code Large Language Models
with Evol-Instruct,” Jun. 2023.

[22] J. Schulman, B. Zoph, C. Kim, J. Hilton, J. Menick, J. Weng, J. F. C.
Uribe, L. Fedus, L. Metz, and M. Pokorny, “ChatGPT: Optimizing
language models for dialogue,” OpenAI blog, 2022.

11

[23] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin,
E. Grave, and G. Lample, “LLaMA: Open and Efficient Foundation
Language Models,” Feb. 2023.

[24] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “Unified Pre-
training for Program Understanding and Generation,” in Proceedings of
the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, K. Toutanova,
A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tur, I. Beltagy, S. Bethard,
R. Cotterell, T. Chakraborty, and Y. Zhou, Eds. Online: Association
for Computational Linguistics, Jun. 2021, pp. 2655–2668.

[25] H. Zhang, “Exploring regularity in source code: Software science and
Zipf’s law,” in 2008 15th Working Conference on Reverse Engineering.
IEEE, 2008, pp. 101–110.

[26] H. Zhang, “Discovering power laws in computer programs,” Information
processing & management, vol. 45, no. 4, pp. 477–483, 2009.

[27] A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. Devanbu, “On the
naturalness of software,” Communications of the ACM, vol. 59, no. 5,
pp. 122–131, Apr. 2016.

[28] A. J. Albrecht and J. E. Gaffney, “Software function, source lines of
code, and development effort prediction: A software science validation,”
IEEE transactions on software engineering, no. 6, pp. 639–648, 1983.

[29] J. Rosenberg, “Some misconceptions about lines of code,” in Proceedings
Fourth International Software Metrics Symposium. IEEE, 1997, pp.
137–142.

[30] G. K. Zipf, Human Behavior and the Principle of Least Effort: An
Introduction to Human Ecology. Ravenio Books, 2016.

[31] H. S. Heaps, Information Retrieval: Computational and Theoretical
Aspects. Academic Press, Inc., 1978.

[32] A. Barron, J. Rissanen, and B. Yu, “The minimum description length
principle in coding and modeling,” IEEE transactions on information
theory, vol. 44, no. 6, pp. 2743–2760, 1998.

[33] D. Ippolito, D. Duckworth, C. Callison-Burch, and D. Eck, “Automatic
Detection of Generated Text is Easiest when Humans are Fooled,”
in Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Online: Association for Computational
Linguistics, Jul. 2020, pp. 1808–1822.

[34] S. Gehrmann, H. Strobelt, and A. M. Rush, “GLTR: Statistical Detection
and Visualization of Generated Text,” in Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, 2019, pp. 111–116.

[35] I. Solaiman, M. Brundage, J. Clark, A. Askell, A. Herbert-Voss, J. Wu,
A. Radford, G. Krueger, J. W. Kim, and S. Kreps, “Release strategies
and the social impacts of language models,” 2019.

[36] A. Holtzman, J. Buys, L. Du, M. Forbes, and Y. Choi, “The Curious Case
of Neural Text Degeneration,” in International Conference on Learning
Representations, Sep. 2019.

[37] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “CodeGen: An Open Large Language Model for Code
with Multi-Turn Program Synthesis,” Sep. 2022.

[38] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is Your Code Generated
by ChatGPT Really Correct? Rigorous Evaluation of Large Language
Models for Code Generation,” Oct. 2023.

[39] B. Yetiştiren, I. Özsoy, M. Ayerdem, and E. Tüzün, “Evaluating the Code
Quality of AI-Assisted Code Generation Tools: An Empirical Study on
GitHub Copilot, Amazon CodeWhisperer, and ChatGPT,” Oct. 2023.

[40] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,
E. Jiang, C. Cai, M. Terry, Q. Le, and C. Sutton, “Program Synthesis
with Large Language Models,” Aug. 2021.

[41] J. Su, T. Y. Zhuo, D. Wang, and P. Nakov, “DetectLLM: Leveraging
Log Rank Information for Zero-Shot Detection of Machine-Generated
Text,” May 2023.

[42] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “BART: Denoising Sequence-to-
Sequence Pre-training for Natural Language Generation, Translation,
and Comprehension,” in Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. Online: Association for
Computational Linguistics, Jul. 2020, pp. 7871–7880.

[43] D. N. Manh, N. L. Hai, A. T. V. Dau, A. M. Nguyen, K. Nghiem, J. Guo,
and N. D. Q. Bui, “The Vault: A Comprehensive Multilingual Dataset
for Advancing Code Understanding and Generation,” May 2023.

[44] S. Gunasekar, Y. Zhang, J. Aneja, C. C. T. Mendes, A. Del Giorno,
S. Gopi, M. Javaheripi, P. Kauffmann, G. de Rosa, O. Saarikivi, A. Salim,
S. Shah, H. S. Behl, X. Wang, S. Bubeck, R. Eldan, A. T. Kalai, Y. T.
Lee, and Y. Li, “Textbooks Are All You Need,” Jun. 2023.

[45] R. Li, L. B. Allal, Y. Zi, N. Muennighoff, D. Kocetkov, C. Mou,
M. Marone, C. Akiki, J. Li, J. Chim, Q. Liu, E. Zheltonozhskii, T. Y.
Zhuo, T. Wang, O. Dehaene, M. Davaadorj, J. Lamy-Poirier, J. Monteiro,
O. Shliazhko, N. Gontier, N. Meade, A. Zebaze, M.-H. Yee, L. K.
Umapathi, J. Zhu, B. Lipkin, M. Oblokulov, Z. Wang, R. Murthy,
J. Stillerman, S. S. Patel, D. Abulkhanov, M. Zocca, M. Dey, Z. Zhang,
N. Fahmy, U. Bhattacharyya, W. Yu, S. Singh, S. Luccioni, P. Villegas,
M. Kunakov, F. Zhdanov, M. Romero, T. Lee, N. Timor, J. Ding,
C. Schlesinger, H. Schoelkopf, J. Ebert, T. Dao, M. Mishra, A. Gu,
J. Robinson, C. J. Anderson, B. Dolan-Gavitt, D. Contractor, S. Reddy,
D. Fried, D. Bahdanau, Y. Jernite, C. M. Ferrandis, S. Hughes, T. Wolf,
A. Guha, L. von Werra, and H. de Vries, “StarCoder: May the source
be with you!” May 2023.

[46] P. T. Nguyen, J. Di Rocco, C. Di Sipio, R. Rubei, D. Di Ruscio, and
M. Di Penta, “Is this Snippet Written by ChatGPT? An Empirical Study
with a CodeBERT-Based Classifier,” Aug. 2023.

[47] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, and M. Zhou, “CodeBERT: A Pre-Trained Model for
Programming and Natural Languages,” Sep. 2020.

[48] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” 2019.

[49] Y. Wang, H. Le, A. D. Gotmare, N. D. Q. Bui, J. Li, and S. C. H. Hoi,
“CodeT5+: Open Code Large Language Models for Code Understanding
and Generation,” May 2023.

[50] F. Mireshghallah, J. Mattern, S. Gao, R. Shokri, and T. Berg-Kirkpatrick,
“Smaller Language Models are Better Black-box Machine-Generated Text
Detectors,” May 2023.

[51] J. Wu, S. Yang, R. Zhan, Y. Yuan, D. F. Wong, and L. S. Chao, “A
Survey on LLM-generated Text Detection: Necessity, Methods, and
Future Directions,” Oct. 2023.

[52] G. Bao, Y. Zhao, Z. Teng, L. Yang, and Y. Zhang, “Fast-DetectGPT:
Efficient Zero-Shot Detection of Machine-Generated Text via Conditional
Probability Curvature,” Oct. 2023.

[53] Y. Tian, H. Chen, X. Wang, Z. Bai, Q. Zhang, R. Li, C. Xu, and Y. Wang,
“Multiscale Positive-Unlabeled Detection of AI-Generated Texts,” May
2023.

[54] H. Zhan, X. He, Q. Xu, Y. Wu, and P. Stenetorp, “G3Detector: General
GPT-Generated Text Detector,” 2023.

[55] Y. Chen, H. Kang, V. Zhai, L. Li, R. Singh, and B. Ramakrishnan,
“GPT-Sentinel: Distinguishing Human and ChatGPT Generated Content,”
2023.

[56] X. Liu, Z. Zhang, Y. Wang, Y. Lan, and C. Shen, “CoCo: Coherence-
Enhanced Machine-Generated Text Detection Under Data Limitation
With Contrastive Learning,” 2022.

[57] K. Wu, L. Pang, H. Shen, X. Cheng, and T.-S. Chua, “LLMDet: A
Third Party Large Language Models Generated Text Detection Tool,”
Oct. 2023.

[58] X. Hu, P.-Y. Chen, and T.-Y. Ho, “Radar: Robust ai-text detection via
adversarial learning,” 2023.

[59] W. H. Pan, M. J. Chok, J. L. S. Wong, Y. X. Shin, Y. S. Poon, Z. Yang,
C. Y. Chong, D. Lo, and M. K. Lim, “Assessing AI Detectors in
Identifying AI-Generated Code: Implications for Education,” in 2024
IEEE/ACM 46th International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-SEET), Apr. 2024,
pp. 1–11.

[60] X. Yang, K. Zhang, H. Chen, L. Petzold, W. Y. Wang, and W. Cheng,
“Zero-Shot Detection of Machine-Generated Codes,” Oct. 2023.

[61] Z. Xu and V. S. Sheng, “Detecting AI-Generated Code Assignments
Using Perplexity of Large Language Models,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 38, Mar. 2024, pp. 23 155–
23 162.

[62] Z. Sun, X. Du, F. Song, and L. Li, “CodeMark: Imperceptible Water-
marking for Code Datasets against Neural Code Completion Models,”
in FSE2023, Aug. 2023.

[63] B. Li, M. Zhang, P. Zhang, J. Sun, and X. Wang, “Resilient Watermarking
for LLM-Generated Codes,” Feb. 2024.

[64] I. Cox, M. Miller, J. Bloom, and C. Honsinger, “Digital watermarking,”
Journal of Electronic Imaging, vol. 11, no. 3, pp. 414–414, 2002.

[65] C. Collberg and C. Thomborson, “Software watermarking: Models and
dynamic embeddings,” in Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 1999,
pp. 311–324.

12

APPENDIX

Some results are omitted in the main text due to space
constraints. We provide these additional results and analyses
in this appendix.

I. CORRESPONDING RESULTS FOR EMPIRICAL ANALYSIS

The top tokens from machine-authored code at T = 1.0 are
shown in Table VII, corresponding to the results in Table II
in the main text. Similar attention on exception handling and
object-oriented programming tokens can also be observed at
T = 1.0.

Table VII: Top tokens from machine-authored code at T = 1.0

Rank Machine-Authored Tokens

1-10 . ’ () self : , = ” if
11-20 return def [] None in == not is import
21-30 for { raise name from } - data else get
31-40 elif value path isinstance True + os ValueError key text
41-50 x type 0 1 len append replace str @ f

Figure 7 and Table VIII provide the distribution of natu-
ralness scores and the naturalness of different categories of
syntax elements, respectively. They correspond to the empirical
analysis in Figure 4 and Table VIII in the main text.

We can observe from Figure 7 that the trend of naturalness
scores is similar to that at T = 0.2. although the overlap
between machine- and human-authored code is greater. The
naturalness of different categories of syntax elements in
Table VIII shows that whitespace tokens is still the most
effective feature as in T = 0.2.

4 3 2 1 0
Log Likelihood

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

Human
Machine

0.0 0.5 1.0 1.5 2.0
Log Rank

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

Human
Machine

Figure 7: Distribution of naturalness scores with T = 1.0

Table VIII: The naturalness of different categories of syntax
elements with T = 1.0

Category Log Likelihood Log Rank
Machine Human ∆ Machine Human ∆

keyword -2.025 -2.128 0.103 0.968 1.053 0.085
identifier -0.787 -0.874 0.087 0.328 0.378 0.050
literal -1.059 -1.364 0.305 0.454 0.630 0.176
operator -1.614 -1.835 0.221 0.733 0.872 0.139
symbol -0.968 -1.639 0.671 0.321 0.781 0.460
comment -2.395 -3.028 0.633 1.180 1.610 0.430
whitespace -2.058 -2.740 0.682 0.946 1.441 0.495
ALL -1.367 -1.658 0.291 0.618 0.811 0.193

II. CROSS-MODEL DETECTION PERFORMANCE AT T = 1.0

Figure 8 illustrates the cross-model detection performance
at T = 1.0, corresponding to the results in Figure 6 in the

main text. The results show that the cross-model detection
performance of DetectCodeGPT has a similar trend across
different temperatures.

Inc
od

er

Ph
i-1

Sta
rCod

er

Wiza
rdC

od
er

Cod
eG

en
2

Cod
eLl

am
a

Detection Model

Incoder

Phi-1

StarCoder

WizardCoder

CodeGen2

CodeLlama

So
ur

ce
 M

od
el

0.78 0.72 0.70 0.76 0.75 0.74

0.72 0.84 0.76 0.79 0.75 0.64

0.70 0.69 0.69 0.69 0.68 0.68

0.77 0.80 0.84 0.84 0.77 0.77

0.58 0.68 0.61 0.64 0.67 0.61

0.62 0.66 0.66 0.66 0.65 0.66

Figure 8: Cross-model detection performance at T = 1.0

III. IMPACT OF VARYING LENGTH FOR DETECTION

The maximum length of code is trimmed to 128 tokens in
our experiments. Figure 9 illustrates the trend in detection
performance as the length of code snippets varies across
different temperatures, compared against two of the most
competitive baselines. This experiment uses the Stack dataset
with CodeLlama. The results show that trimming the first 128
tokens of the snippets is sufficient to maintain high detection
performance.

32 64 128 256 512
Sequence Length

0.5

0.6

0.7

0.8

0.9

1.0

AU
RO

C
at

 T
=0

.2

DetectCodeGPT
Log Rank
Log p(x)

(a) AUROC at T = 0.2

32 64 128 256 512
Sequence Length

0.3

0.4

0.5

0.6

0.7

0.8

AU
RO

C
at

 T
=1

.0

DetectCodeGPT
Log Rank
Log p(x)

(b) AUROC at T = 1.0

Figure 9: AUROC with different code trimming length

13

	Introduction
	Background
	Large Language Models for Code
	Perturbation-Based Detection of Machine-Generated Text

	Empirical Analysis
	Study Design
	Lexical Diversity
	Conciseness
	Naturalness

	Experimental Setup
	Dataset Preparation
	Results and Analysis
	Token Frequency
	Syntax Element Distribution
	Zipf's and Heaps' Laws
	Number of Tokens and Lines
	Token Likelihood and Rank

	Detecting Machine Generated Code
	Problem Formulation
	Measuring Naturalness
	Perturbation Strategy
	Space Insertion
	Newline Insertion

	Evaluation
	Datasets
	Studied Models
	Evaluation Metric
	Baselines
	Experimental Setup
	Detection Performance (RQ1)
	Ablation Study (RQ2)
	Impact of Perturbation Count (RQ3)
	Performance of Cross-Model Code Detection (RQ4)

	Discussion
	Why is DetectCodeGPT Effective?
	Preservation of Code Correctness
	Emulation of Human Randomness

	Strength of DetectCodeGPT
	Limitations and Future Directions

	Related Work
	Machine-Generated Text Detection
	Machine-Generated Code Detection

	Conclusion
	References
	Corresponding Results for Empirical Analysis
	Cross-model Detection Performance at T=1.0
	Impact of Varying Length for Detection

