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Abstract

Unsupervised meta-learning aims to learn generalizable knowledge across a dis-
tribution of tasks constructed from unlabeled data. Here, the main challenge is
how to construct diverse tasks for meta-learning without label information; recent
works have proposed to create, e.g., pseudo-labeling via pretrained representations
or creating synthetic samples via generative models. However, such a task con-
struction strategy is fundamentally limited due to heavy reliance on the immutable
pseudo-labels during meta-learning and the quality of the representations or the
generated samples. To overcome the limitations, we propose a simple yet effec-
tive unsupervised meta-learning framework, coined Pseudo-supervised Contrast
(PsCo), for few-shot classification. We are inspired by the recent self-supervised
learning literature; PsCo utilizes a momentum network and a queue of previous
batches to improve pseudo-labeling and construct diverse tasks in a progressive
manner. Our extensive experiments demonstrate that PsCo outperforms existing
unsupervised meta-learning methods under various in-domain and cross-domain
few-shot classification benchmarks. We also validate that PsCo is easily scalable to
a large-scale benchmark, while recent prior-art meta-schemes are not.

1 Introduction

Meta-learning [1] aims to learn general knowledge about how to solve unseen, yet relevant tasks from
prior experiences solving diverse tasks. Few-shot classification [2, 3] is the most popular application
of meta-learning, whose goal is to classify test samples of unseen classes after (meta-)training with
few labeled samples. The common approach is to construct a distribution of tasks (i.e., N-way
K -shot) and optimize a model to generalize across tasks. This approach has shown good performance
but suffers from limited scalability as constructing tasks requires a lot of human-annotated labels. To
mitigate the issue, unsupervised meta-learning (UML) [4, 5, 6, 7, 8] attempts to apply meta-learning to
unlabeled data. In particular, they have suggested various ways to construct synthetic tasks: assigning
pseudo-labels [4, 5]; utilizing generative models [6, 7, 8]. They have achieved moderate performance
in few-shot learning benchmarks, but are fundamentally limited as: (a) the pseudo-labels are fixed
during meta-learning and impossible to correct mislabeled samples; (b) the generative models heavily
rely on the quality of generated samples and are cumbersome to scale into large-scale setups.

To overcome the limitations of the existing UML approaches, in this paper, we ask whether one
can (a) progressively improve a pseudo-labeling strategy during meta-learning, and (b) construct
more diverse tasks without generative models. We draw inspiration from recent advances in self-
supervised learning literature [9, 10], which has shown remarkable success in representation learning
without labeled data. In particular, we utilize (a) a momentum network to improve pseudo-labeling
progressively via temporal ensemble; and (b) a momentum queue to construct diverse tasks using
previous mini-batches in an online manner.
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Figure 1: An overview of the proposed Pseudo-supervised Contrast (PsCo). PsCo constructs an
N-way K-shot few-shot classification task using the current mini-batch {x;} and the queue of
previous mini-batches; and then, it learns the task via contrastive learning.

Formally, we propose Pseudo-supervised Contrast (PsCo), a novel and effective unsupervised meta-
learning framework, for few-shot classification. Our key idea is to construct few-shot classification
tasks using the current and previous mini-batches based on the momentum network and the momentum
queue. Specifically, given a random mini-batch of IV unlabeled samples, we treat them as N queries
(i.e., test samples) of different /V labels, and then select K shots (i.e., training samples) from the
queue of previous mini-batches with the momentum network. To further improve the selection
procedure, we utilize top-K sampling after applying a matching algorithm, Sinkhorn-Knopp [11].
Finally, we optimize our model via supervised contrastive learning [10] for solving the N-way K -shot
task. Remark that our task construction strategy (a) is progressively improved during meta-learning
with the momentum network, and (b) constructs diverse tasks since the shots can be selected from the
approximately entire dataset with the queue. Our framework is illustrated in Figure 1.

Throughout extensive experiments, we demonstrate the effectiveness of PsCo, under various few-shot
classification benchmarks. First, PsCo achieves state-of-the-art performance under both Omniglot
[12] and minilmageNet [13] few-shot benchmarks (e.g., 58.03% — 63.26% for 5-way 5-shot tasks
of minilmageNet); its performance is even competitive with supervised meta-learning methods (see
Table 1a). Next, PsCo also shows superiority under cross-domain few-shot learning scenarios (see
Table 1b). We also demonstrate the scalability of PsCo to a large-scale benchmark in Table 1c.

2 Method

In this section, we introduce Pseudo-supervised Contrast (PsCo), a novel and effective framework for
unsupervised few-shot learning. The problem statement and contrastive learning are in Section 2.1.
The details of our frameworks are in Section 2.2. We provide pseudocode of PsCo in Appendix A.

2.1 Preliminaries

Problem statement. Our goal is to learn generalizable knowledge from unlabeled data Dmeta_train =
{x;} for quickly adapting to unseen but relevant N-way K -shot few-shot tasks i{ ~ Dreta_test-
Each 7; consists of query samples {x,}, and support samples S = {(x5,ys) where there are
K support samples for each label ys € {1,..., N}.

Contrastive learning [14, 15, 9, 10] aims to learn meaningful representations by maximizing the
similarity between similar (i.e., positive) samples, and minimizing the similarity between dissimilar
(i.e., negative) samples on the representation space; the general form of the objectives is as follows:
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where q; and k; are query and key representations, respectively, and A € {0,1}# such that
A; ; = lifand only if q,; and k; are positive. Following the literature [15, 16, 17, 18], in this paper, we
use the following form: q; = Normalize(hgoggo fo(t; 1(x;))) and k; = Normalize(gso fy(ti2(x:)))
where ¢ is a random data augmentation, f is a backbone feature extractor, g and h are projection and
prediction MLPs, respectively, ¢ is an exponential moving average (EMA) of the model parameter 6.

2.2 PsCo: pseudo-supervised contrastive meta-learning

Online pseudo-task construction. Let B := {x;}}¥.; C Dueta_train b€ a (random) current mini-
batch and Q := {xj} 1 be a queue of previous mini-batch samples. Our idea is to treat 3 as queries
of N different pseudo labels and a subset of Q@ as K support samples for each pseudo-label. To utilize
all the samples efficiently and consistently, we follow MoCo [9]: we compute the momentum query
representations z; := Normalize(gy o fy(t:,2(x;))) and store them into the queue Q, := {z;};,

To construct semantically meaningful few-shot tasks, we need two requirements: (i) shots and queries
of the same label should be semantically similar, and (ii) all shots should be different. Based on these
requirements, we formulate our assignment problem as follows:

A€{0, 1}NXMZZA” = &; such that ZA” =K, ZAu <L 2

i=1 j=1

Due to the expensive cost of solving the above assignment problem [19], we first find a (soft) equal-
sized clustering assignment matrix Ac [0, 1]V *M by Sinkhorn-Knopp [11] following [20, 21]. We
then select top-K elements for each row of A and finally construct an N-way K -shot pseudo-task
consisting of (a) query samples B = {x;}¥,, (b) the support representations S, := {z,}'{, and
(c) the pseudo-label assignment matrix A € {0, 1}V XN We empirically observe that our task
construction strategy satisfies the above requirements (i) and (ii) (see Appendix C).

Meta-training. Our objective Lpsc, for learning our pseudo-tasks is defined as follows:
EPsCo = EContrast({qi}é\Lla Sza A; 7—PsCo)a (3)

where q; := Normalize(hgo ggo fa(ti1(x;))) is query representations obtained by 0. S, := {z,} V5§
and A € {0,1}V*NE are constructed by our task construction strategy. Since PsCo and MoCo [9]
use the same architectural components, the MoCo objective Lyoco := Lcontrast ({qi}i[ih {Zi}f\;l U
Q2 Awoco; Tioco) can be incorporated into PsCo without additional costs. Note that (Ayeco)i,; = 1
if and only if ¢ = j, and z; := Normalize(g, o f4(¢; 2(x;))) following [9]. We optimize our model 0
via Liota1 := Lpsco + Luoco, and we update ¢ by EMA, i.e., ¢ < m¢ + (1 — m)6.

To successfully find the pseudo-label assignment matrix A, we apply weak augmentations for the
momentum representations as Zheng et al. [22] did. This reduces the noise in the representations and
consequently enhances the performance of PsCo as A becomes more accurate (see Appendix C).

Meta-test. At the meta-test stage, we discard the momentum network ¢ and use only the online
network 6. Given N-way K-shot task 7 consisting of query samples {x,} and support samples
S = {(xs,ys) }Y5, we first compute the query representation q, := Normalize(hg o go © fo(x,))
and the support representations zs := Normalize (gg o fy(xs))). Then we predict a label by the
following rule: § := arg max, qu c, where ¢, := Normalize() 1, —, - z) is the prototype vector.
This is inspired by our Lpsc,, Which can be interpreted as minimizing distance from the mean (i.e.,
prototype) of the shot representations.”

Under cross-domain few-shot classification scenarios, the model 6 should further adapt to the meta-
test domain due to the dissimilarity from meta-training. We here suggest an efficient adaptation
scheme using only a few labeled samples. Our idea is to consider the support samples as queries:
compute the query representation qs := Normalize(hg o gg o fy(xs)) for each support sample x,
and construct the label assignment matrix A’ as A;s, = 1 if and only if y; = ys. Then we simply
optimize only gg and hy via Leontrast ({Qs}, {Zs}, A'; Tpsco), for few iterations. We empirically
observe that this adaptation scheme is effective under cross-domain settings (see Appendix C).
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Table 1: Few-shot classification accuracy (%) on standard in-domain and cross-domain benchmarks.
Bold entries indicate the best for each task configuration, among unsupervised meta-learning methods.
MAML [3] and ProtoNet [2] are supervised meta-learning baselines using true labels.

(a) Standard few-shot benchmarks: Omniglot [12] and minilmageNet [13].

Omniglot (way, shot) minilmageNet (way, shot)
Method S B,5 @01 (20,5 B0 (5,5 (5200 (550)
Training from Scratch ~ 52.50 7478 2491 47.62 2759 3848 51.53 59.63
CACTUs [4] 68.84 87.78 48.09 73.36 3990 53.97 63.84 69.64
UMTRA [5] 8380 9543 7425 92.12 3993 50.73 61.11 67.15
LASIUM [6] 83.26 95.29 - - 40.19 5456 65.17 69.13
Meta-GMVAE [7] 9492 97.09 8221 90.61 42.82 5573 63.14 68.26
Meta-SVEBM [8] 91.85 9721 79.66 9221 4338 58.03 67.07 72.28
PsCo (Ours) 96.37 99.13 89.64 97.07 46.70 63.26 72.22 73.50
MAML 9446 9883 84.60 9629 46.81 62.13 71.03 75.54
ProtoNets 98.35 99.58 9531 98.81 46.56 6229 70.05 72.04
(b) Cross-domain few-shot (5-way 5-shot) benchmarks [23] using minilmageNet-trained ConvS models.
Method CUB Cars Places Plantae CropDiseases EuroSAT ISIC ChestX
Meta-GMVAE 4748 31.39 57.70 38.27 73.56 73.83 3348  23.23
Meta-SVEBM 4550 3427 51.27 38.12 71.82 70.83 38.85  26.26
SimCLR 52.11 37.40 60.10 43.42 79.90 79.14 42.83 25.14
MoCo v2 5323 38.65 59.09 43.97 80.96 79.94 4343 2524
SwAV 51.58 36.85 59.57 42.68 80.15 79.31 4321 2499
PsCo (Ours) 57.37 44.01 63.60 52.72 88.24 81.08 44.00 24.78
MAML 56.57 41.17  60.05 47.33 77.76 71.48 4734  22.61
ProtoNets 56.74 3898 59.39 45.89 76.01 64.91 40.62  23.15
(c) Cross-domain few-shot (5-way 5-shot) benchmarks [23] using ImageNet-trained ResNet-50 models.
Method CUB Cars Places Plantae CropDiseases EuroSAT ISIC ChestX
MoCo v2 64.16 47.67 81.39 61.36 82.89 76.96 3826  24.28
PsCo (Ours) 76.63 5345 83.87 69.17 89.85 83.99 41.64 23.60

3 Experiments

Setup. Following Lee et al. [7], we primarily focus on standard few-shot benchmarks, Omniglot [12]
and minilmageNet [13] with Conv4 and Conv5 architectures, respectively. All the implementation,
standard and cross-domain benchmark details are described in Appendix D, E, and F, respectively.

Standard few-shot benchmarks. Table 1a shows the results of the few-shot classification with
various (way, shot) tasks of Omniglot and minilmageNet. The proposed framework, PsCo, achieves
state-of-the-art performance on both Omniglot and minilmageNet benchmarks under the unsupervised
setting. For example, we obtain 5% accuracy gain (67.07 — 72.22) compared to the prior art, Meta-
SVEBM [8], on minilmageNet 5-way 20-shot tasks. Moreover, the performance is even competitive
with supervised meta-learning methods, ProtoNets [2], and MAML [3] as well.

Cross-domain few-shot benchmarks. To further evaluate the generalization ability across more
diverse tasks, we evaluate PsCo on cross-domain few-shot classification benchmarks following
Oh et al. [23]. The benchmark details are described in Appendix F. We here use our adaptation
scheme (Section 2.2) with 50 iterations. We first evaluate various Conv5 models meta-trained on
minilmageNet. Table 1b shows that PsCo outperforms all the baselines across all the benchmarks,
except ChestX, which is too different from the distribution of minilmageNet [23]. Somewhat
interestingly, PsCo performs better than supervised learning under these benchmarks.

We further validate that our meta-learning framework is applicable to the large-scale benchmark,
ImageNet [24], using ResNet-50 [25]. Table 1c shows that (i) PsCo consistently outperforms MoCo
v2 [16] under this setup (e.g., 12% accuracy gain in CUB), and (ii) PsCo much adds benefits from
the large-scale dataset as we obtain a huge amount of performance gain on the benchmarks. These
results show that our PsCo is applicable to large-scale unlabeled datasets.

Ablation study. We provide ablation experiments to validate PsCo’s components in Appendix C.
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A Pseudocode of PsCo

Algorithm 1 Pseudo-supervised Contrast (PsCo): PyTorch-like Pseudocode

# f, g, h: backbone, projector, and predictor
# {f,g}_ema: momentum backbone, and projector
# queue: momentum queue (Mxd)

# mm: matrix multiplication, mul: element-wise multiplication

def PsCo(x):
x1, x2 = augl(x), aug2(x)
q = h(g(£(x1)))
z = g_ema(f_ema(x2))
sim = mm(z, queue.T)
A_tilde = sinkhorn(sim)
s, A = select_topK(queue, A_tilde)

x: a mini-batch of N samples

two augmented views of x

(Nxd) N query representations

(Nxd) N query momentum representations
(NxM) similarity matrix

(NxM) soft pseudo-label assignment matrix
(NKxd) s: support momentum representations
(NxNK) A: pseudo-label assignment matrix

H HHHHHEHR

logits = mm(q, s.T) / temperature
loss = logits.logsumexp(dim=1) - mul(logits, A).sum(dim=1) / K
return loss.mean()

B Related works

Unsupervised meta-learning. Unsupervised meta-learning [4, 5, 7, 8, 6] links meta-learning and
unsupervised learning by constructing synthetic tasks and extracting the meaningful information
from unlabeled data. For example, CACTUs [4] cluster the data on the pretrained representations
at the beginning of meta-learning to assign pseudo-labels. Instead of pseudo-labeling, UMTRA
[5] and LASIUM [6] generate synthetic samples using data augmentations or pretrained generative
networks like BigBiGAN [26]. Meta-GMVAE [7] and Meta-SVEBM [8] represent unknown labels
via categorical latent variables using variational autoencoders [27] and energy-based models [28],
respectively. In this paper, we suggest a novel online pseudo-labeling strategy to construct diverse
tasks without help from any pretrained network or generative model. As a result, our method is easily
applicable to large-scale datasets.

Self-supervised learning. Self-supervised learning (SSL) [29] has shown remarkable success for
unsupervised representation learning across various domains, including vision [9, 15], speech [14],
and reinforcement learning [30]. Among SSL objectives, contrastive learning [14, 15, 9] is arguably
most popular for learning meaningful representations. In addition, recent advances have been made
with the development of various architectural components: e.g., Siamese networks [29], momentum
networks [9], and asymmetric architectures [18, 31]. In this paper, we utilize the SSL components to
construct diverse few-shot tasks in an unsupervised manner.



C Ablation study
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Figure 2: (a) Pseudo-label quality, measuring the agreement between pseudo-labels and true labels,
(b) Shot overlap ratio, measuring whether the shots for each pseudo-label are disjoint, during
meta-training. (c,d) Performance while adaptation on in-domain (minilmageNet) and cross-domain
(CropDiseases) benchmarks, respectively. We obtain these results from 100 random batches.

Table 2: Component ablation studies on Omniglot.
Momentum Predictor Sinkhorn Top-K sampling (5,1) (5,5) (20,1) (20,5)

v v 4 v 96.37 99.13 89.64 97.07

90.32 96.78 76.17  90.41
90.21 96.86 76.15 90.53
95.81 98.94 88.25 96.57
9495 98.81 86.32  96.05
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Component analysis. In Table 2, we demonstrate the necessity of each component in PsCo by
removing the components one by one: momentum encoder ¢, prediction head h, Sinkhorn-Knopp
algorithm, and top- K sampling for sampling support samples. We found that the momentum network
¢ and the prediction head h are critical architectural components in our framework like recent self-
supervised learning frameworks [18, 17]. To further validate that our task construction is progressively
improved during meta-learning, we evaluate whether a query and a corresponding support sample
have the same true label. Figure 2a shows that our task construction is progressively improved, i.e.,
the task requirement (i) described in Section 2.2 satisfies.

Table 2 also verifies the contribution of the Sinkhorn-Knopp algorithm and Top- K sampling for the
performance of PsCo. We further analyze the effect of the Sinkhorn-Knopp algorithm by measuring
the overlap ratio of selected supports between different pseudo-labels. As shown in Figure 2b, there
are almost zero overlaps when using the Sinkhorn-Knopp algorithm, which means the constructed
task is a valid few-shot task, satisfying the task requirement (ii) described in Section 2.2.

Adaptation effect on cross-domain. To validate the effect of our adaptation scheme (Section 2.2),
we evaluate the few-shot classification accuracy during the adaptation process on minilmageNet (i.e.,
in-domain) and CropDiseases (i.e., cross-domain) benchmarks. As shown in Figure 2d, we found
that the adaptation scheme is more useful in cross-domain benchmarks than in-domain ones. Based
on these results, we apply the scheme to only the cross-domain scenarios. We also found that our
adaptation does not cause over-fitting since we only optimize the projection and prediction heads gy
and hy. The results for the adaptation effect on the whole benchmarks are represented in Table 3.

Table 3: Before and after adaptation of PsCo in few-shot classification.
Adaptation minilmageNet CUB Cars Places Plantae CropDiseases EuroSAT ISIC ChestX

5-way 5-shot
X 63.26 55.15 4227 6298 48.31 79.75 74.73 41.18 2454
v 63.30 57.38 44.01 63.60 52.72 88.24 81.08 44.00 24.78
5-way 20-shot
X 72.22 62.35 51.02 70.85 5591 84.72 78.96 48.53  27.60
v 73.00 68.58 57.50 73.95 64.53 94.95 87.65 54.59  27.69




Table 4: The ablation study with varying augmentation Table 5: The ablation study with varying

choices for A; and A5 on minilmageNet. K on minilmageNet.

Az As 6, 1) (5,5 (5,200 (5,50) K G, 1) (5,5 5,200 (5,50)
Strong Strong 44.54 60.04 68.61 71.20 1 4588 61.84 70.25 72.76
Strong  Weak 46.70 63.26 72.22 73.50 4  46.70 6326 7222 73.50
Weak  Strong 43.56 58.77 67.21 69.46 16 4631 62.76 7091 73.43
Weak  Weak 40.68 55.05 63.32 65.82 64 46.60 6250 70.82 73.22

Augmentations. We here confirm that weak augmentation for the momentum network (i.e., As) is
more effective than strong augmentation unlike other self-supervised learning literature [15, 9]. We
denote the standard augmentation consisting of both geometric and color transformations by Strong,
and a weaker augmentation consisting of only geometric transformations as Weak (see details in
Appendix D). As shown in Table 4, utilizing the weak augmentation for 45 is much beneficial since
it is helpful for finding an accurate pseudo-label assignment matrix A.

Training K. We also look at the effect of the training K, i.e. number of shots sampled online.
We conduct the experiment with K € {1,4,16,64}. We observe that PsCo performs consistently
well regardless of the choice of K as shown in Table 5. The proper K is suggested to obtain the
best-performing models, e.g., K = 4 for minilmageNet and K = 1 for Omniglot are the best.

Table 6: Sensitivity of momentum m on minilm-  Table 7: Sensitivity of temperature Tpsc, On mini-

ageNet (way, shot). ImageNet (way, shot).
m 6,1 6,5 6,200 (5,50 Tesco (5, 1) (5,5) (5,20) (5,50)
0.9 46.49 62.18 70.21 7277 0.2 4643 6229 170.04 7222
099 46.70 63.26 72.22 73.50 0.5 4632 62.63 7050 73.15
0.999 4596 61.53 69.66 72.04 1.0 46.70 63.26 72.22 73.50

Momentum and temperature hyperparameters. For the small-scale experiments, we use a
momentum of m = 0.99 and a temperature of 7psco = 1. We here provide more ablation experiments
with varying the hyperparameters m and 7psc,. Table 6 and 7 show the sensitivity of hyperparameters
on minilmageNet dataset. We observe that PsCo achieves good performance even for non-optimal
hyperparameters.
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D Implementation details

We train our models via stochastic gradient descent (SGD) with a batch size of N = 256 for 400
epochs. Following Chen et al. [16], Chen and He [31], we use an initial learning rate of 0.03 with
the cosine learning schedule, Tyoco = 0.2, and a weight deacy of 5 x 10~%. We use a queue size of
M = 16384 since Omniglot [12] and minilmageNet [13] has roughly 100k meta-training samples.
Following Lee et al. [7], we use Conv4 and Conv5 for Omniglot and minilmageNet, respectively, for
the backbone feature extractor fy. We describe the detailed architectures in Table 8. For projection
and prediction MLPs, go and hy, we use 2-layer MLPs with a hidden size of 2048 and an output
dimenension of 128. For the hyperparameters of PsCo, we use Tpsco = 1 and a momentum parameter
of m = 0.99 (see Appendix C for the hyperparameter sensitivity). For the number of shots during
meta-learning, we use /' = 1 for Omniglot and K = 4 for minilmageNet (see Table 5 for sensitivity
of K). We use the last-epoch model for evaluation without any guidance from the meta-validation
dataset.

Table 8: Pytorch-like architecture descriptions for standard few-shot benchmarks

Backbone Layer descriptions Output shape

Conv4 [Conv2d(3x3, 64 filter), BatchNorm2d, ReLU, MaxPool2d(2x2)] x4 64 x2x 2
Conv5 [Conv2d(3x3, 64 filter), BatchNorm2d, ReLU, MaxPool2d(2x2)] x5 64 x2x2

Augmentations. We describe the augmentations for Omniglot and minilmagenet in Table 9. For
Omniglot, because it is difficult to apply many augmentations to gray-scale images, we use the same
rule for weak and strong augmentations. For minilmageNet, we use only geometric transformations
for the weak augmentation following Zheng et al. [22].

Table 9: Pytorch-like augmentation descriptions for Omniglot and minilmageNet

Dataset Augmentation  Descriptions

RandomResizeCrop(28, scale=(0.2, 1))
RandomHorizontalFlip()

RandomResizedCrop(84, scale=(0.2, 1))
RandomApply([ColorJitter(0.4, 0.4, 0.4, 0.1)], p=0.1)

Omniglot Strong, Weak

minilmacenct Strong RandomGrayScale(p=0.2)
& RandomHorizontalFlip()
Weak RandomResizedCrop(84, scale=(0.2, 1))

RandomHorizontalFlip()

Training procedures. To ensure performance of PsCo and self-supervised learning models, we use
three independently-trained models with random seeds and report the average performance of them.
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E Setup for standard few-shot benchmarks

We here describe details of benchmarks and baselines in Section E.1 and E.2, respectively, for the
standard few-shot classification experiments (Section 3).

E.1 Datasets

Omniglot [12] is a 28 x 28 gray-scale dataset of 1623 characters with 20 samples each. We follow
the setup of unsupervised meta-learning approaches [4]. We split the dataset into 120, 100, and 323
classes for meta-training, meta-validation, and meta-test respectively. In addition, the 0, 90, 180, and
270 degrees rotated views for each class become the different categories. Thus, we have a total of
6492, 400, and 1292 classes for meta-training, meta-validation, and meta-test respectively.

MiniImageNet [13] is an 84 x 84 resized subset of ILSVRC-2012 [24] with 600 samples each.
We split the dataset into 64, 16, and 20 classes for meta-training, meta-validation, and meta-test
respectively as introduced in Ravi and Larochelle [13].

E.2 Baselines

We compare our performance with unsupervised meta-learning, self-supervised learning, and super-
vised meta-learning methods. To be specific, (a) for the unsupervised meta-learning, we use CACTUs
[4] of the best options (ACAI clustering for Omniglot and DeepCluster for minilmageNet), UMTRA
[5], LASIUM [30] of the best options (LASIUM-RO-GAN for Omniglot and LASIUM-N-GAN for
minilmageNet), Meta-GMVAE [7], Meta-SVEBM [8]; (b) for the self-supervised learning methods,
we use SimCLR [15], MoCo v2 [16], and SWAV [20]; (c) for the supervised meta-learning, we use
the results of MAML [3] and ProtoNets [2] reported in [4].

For training self-supervised learning methods in our experimental setups, we use the same architecture
and hyperparameters. For the hyperparameter of temperature scaling, we use the value provided in
each paper: Tsipctr = 0.5 for SImMCLR, 7yco, = 0.2 for MoCo v2, and 7g,ay = 0.1 for SWAV. For
evaluation, we use K-Nearest Neightobrs (K-NN) for self-supervised learning methods since their
classification rules are not specified.
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F Setup for cross-domain few-shot benchmarks

We now describe the setup for cross-domain few-shot benchmarks, including detailed information on
datasets, baseline experiments, implementational details, and the setup for large-scale experiments.

F.1 Datasets

For the cross-domain few-shot benchmarks, we use eight different datasets. We describe the dataset
information in Table 10. We use the dataset split described in Tseng et al. [32] for the benchmark of
high-similarity and we use the dataset split described in Guo et al. [33] for the benchmark of low-
similarity. Because we do not perform the meta-training procedure using the datasets of cross-domain
benchmarks, we only utilize the meta-test splits on these datasets. We use the 84 x 84 resized samples
for evaluation on small-scale experiments.

Table 10: Information of datasets for cross-domain few-shot benchmarks.

ImageNet similarity ~ Datset #of classes  # of samples

CUB [34] 200 11,788
Hish Cars [35] 196 16,185

& Places [36] 365 1,800,000

Plantae [37] 5089 675,170
CropDiseases [38] 38 43,456
Low EuroSAT [39] 10 27,000
ISIC [40] 7 10,015
ChestX [41] 7 25,848

F.2 Baselines

We compare our performance with (a) previous in-domain state-of-the-art methods of unsupervised
meta-learning, self-supervised learning models, and supervised meta-learning models.

Unsupervised meta-learning models. We use previous in-domain state-of-the-art methods of unsu-
pervised meta-learning models, Meta-GMVAE][7] and Meta-SVEBM [8]. We use the minilmageNet
pretrained parameters that the paper provided, and follow the meta-test procedure of each model to
evaluate the performance.

Self-supervised learning models. We use SimCLR [15], MoCo v2 [16], and SWAV [20] of minilma-
geNet pretrained parameters as our baselines. Because self-supervised learning models are pretrained
on minilmageNet, we additionally fine-tune the models with a linear classifier to let the models adapt
to each domain. Following the setting provided in Guo et al. [33], Oh et al. [23], we detach the head
of the models gy and attach the linear classifier c, to the model. We freeze the base network fp while
fine-tuning and only ¢, is learned. We fine-tune the models via SGD with an initial learning rate of
0.01, a momentum of 0.9, weight decay of 0.001, and a batch size of N = 4 for 100 epochs.

Supervised meta-learning models. We use MAML [3] and ProtoNets [2] of Conv5 architectures of
minilmageNet pretrained. Following the procedure of Snell et al. [2], we train the models via Adam
[42] with a learning rate of 0.001 and cut the learning rate in half for every training of 2000 episodes.
We train them for 60K episodes and use the model of the best validation accuracy. We train them
through a 5-way 5-shot, and the rest of the hyperparameters are referenced in their respective papers.
We observe that their performances are similar to the performance described in Table 1.

F.3 Evaluation details

To evaluate our method, we apply our adaptation scheme. Following Section 2.2, we freeze the base
network fy. We train only projection head gy and prediction head hy via SGD with an initial learning
rate of 0.01, a momentum of 0.9, and weight decay of 0.001 as self-supervised learning models are
fine-tuned. We only apply 50 iterations of our adaptation scheme when reporting performance.
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F.4 Large-scale setup

Here, we describe the setup for large-scale experiments. For evaluating, we use the same protocol
with the small-scale experiments, except the scale of images is 224 x 224.

Augmentations. For large-scale experiments, we use 224 x 224-scaled data. Thus, we use similar
yet slightly different augmentation schemes with small-scale experiments. Following the strong
augmentation used in Chen et al. [16, 15], we additionally apply GaussianBlur as a random
augmentation. We use the same configuration for the weak augmentation. For evaluation, we resize
the images into 256 x 256 and then apply the CenterCrop to make 224 x 224 images by following
Guo et al. [33].

ImageNet pretraining. We pretrain MoCo v2 [16] and our PsCo of ResNet-18/50 [25] via SGD
with a batch size of N = 256 for 200 epochs. Following [16, 31], we use an initial learning rate of
0.03 with the cosine learning schedule, Tyoco = 0.2 and a weight decay of 0.0001. We use a queue
size of M = 65536 and momentum of m = 0.999. For the parameters of PsCo, we use 7psco = 0.2
and K = 16 as the queue is 4 times bigger.

14



G Experimental results with 95% confidence interval

We here provide the experimental results of Table 1, 1b, and lc with 95% confidence intervals in
Table 11, 12, and 13, respectively.

Table 11: Few-shot classification accuracy (%) on Omniglot and minilmageNet with a 95% confidence
interval over 2000 few-shot tasks.
Omniglot (way, shot) minilmageNet (way, shot)
Method (5,1) (5,5) (20, 1) (20, 5) (5, 1) (5,5) (5,20) (5, 50)

SimCLR 92.13£0.30  97.064+0.13  80.95+£0.21 91.60+0.12 43.35+£0.42 52.50+0.39 61.83+£0.35 64.85+0.32
MoCo v2 92.66+0.28 97.384+0.12 82,13+£0.21 92.3440.11 41.92+0.41 50.94+0.38 60.23+0.35 63.45+0.33
SwAV 93.13£0.27 97.324+0.13  82.63£0.21 92.124+0.12 43.24+0.42 52.41+0.39 61.36+£0.35 64.52+0.33

PsCo (ours)  96.37+0.20 99.13+0.07 89.60+0.17 97.07+0.07 46.70+0.42 63.26+0.37 72.224+0.32  73.50+0.29

Table 12: Few-shot classification accuracy (%) on cross-domain few-shot classification benchmarks
of Conv5 pretrained on minilmageNet with a 95% confidence interval over 2000 few-shot tasks.
(a) Cross-domain few-shot benchmarks similar to minilmageNet.
CUB Cars Places Plantae
Method 5,5) (5, 20) 5,5) (5, 20) 5,5) (5,20) (5,5) (5,20)

Meta-GMVAE  47.4840.47 54.08+£0.45 31.39+£0.34 38.36+0.35 57.70+0.47 65.08+0.38 38.27+£0.40 45.02+0.37
Meta-SVEBM  45.50+0.83 54.61£0.91 34.27+0.79 46.23+£0.87 51.27+0.82 61.09+0.85 38.124+0.86 46.22+0.85

SimCLR 52.11+£0.45 61.89+0.45 37.40£0.35 50.05+0.39 60.10+£0.40 69.93+0.35 43.42+£0.37 54.924+0.36
MoCo v2 53.23+£045 62.81+£0.45 38.65+0.35 51.77+0.39 59.09+0.40 69.08+0.36 43.97+0.37 55.45+0.36
SwWAV 51.58+£0.45 61.38+0.46 36.85+0.33 50.03+0.38 59.57+0.40 69.70+0.36 42.68+£0.37 54.03+0.36
PsCo (ours) 57.38+£0.44 68.58+0.41 44.01+0.39 57.50+0.40 63.60+0.41 73.95+0.36 52.72+£0.39 64.53+0.36
MAML 56.57+£0.43 64.174£0.40 41.17+0.40 48.82+0.40 60.05+0.42 67.54+0.37 47.33£0.41 54.86+0.38
ProtoNets 56.74+£0.43 65.03+£0.41 38.98+0.37 47.984+0.38 59.394+0.40 67.77£0.36 45.89+£0.40 54.29+0.38

(b) Cross-domain few-shot benchmarks dissimilar to minilmageNet.
CropDiseases EuroSAT ISIC ChestX
Method 5,95 (5,20) 5,95 (5,20) 5,95) (5,20) 5,5) (5,20)

Meta-GMVAE  73.56+0.53 81.22+0.39 73.83+£0.42 80.11+£0.35 33.48+0.30 39.484+0.28 23.23+0.23 26.26+0.24
Meta-SVEBM  71.82+1.03  83.13£0.78 70.83+£0.83 80.21+0.73 38.85+0.76 48.43+0.81 26.26+0.65 28.91+0.69

SimCLR 79.90+£0.39 88.73£0.28 79.14+0.38 85.05+0.32 42.83+0.29 51.35+0.27 25.14£0.23 29.21+0.24
MoCo v2 80.96+£0.37 89.85+£0.27 79.94+0.37 86.16+0.31 43.43+0.30 52.14+0.27 25.24+0.23 29.19+0.24
SwAV 80.15+£0.39  89.24+0.28 79.31+£0.39 85.62+0.31 43.21+0.30 51.99+£0.27 24.99+£0.23 28.57+0.24
PsCo (ours) 88.24+0.31 94.95+0.18 81.08+0.35 87.651+0.28 44.00+0.30 54.59+0.29 24.78+0.23 27.69+0.23
MAML 77.76£0.39 83.24+0.34 71.484+0.38 76.70+0.33 47.34+0.37 55.09+£0.34 22.61£0.22 24.25+0.22
ProtoNets 76.01£0.40 83.64+0.33 64.91+0.38 70.884+0.33 40.62+0.31 48.38+0.29 23.15£0.22 25.72+0.23

Table 13: Few-shot classification accuracy (%) on cross-domain few-shot classification benchmarks
of pretrained ResNet-18/50 on ImageNet with a 95% confidence interval (5-way 5-shot).

Methods CUB Cars Places Plantae CropDiseases  EuroSAT ISIC ChestX
ResNet-18 pretrained

MoCo v2 61.88+0.96 46.42+0.73 79.11+0.68 56.24+0.72  81.48+0.74  75.98+0.73 38.21+0.53 24.34+0.36
PsCo (Ours) 70.08+0.87 50.73+0.76 79.74+0.64 61.55+0.76  87.91+0.57  79.92+0.64 40.61+0.52 25.03+0.42
ResNet-50 pretrained

MoCo v2 64.16£0.91 47.67+£0.75 81.39+0.64 61.36+0.79  82.89+0.77  76.96+£0.68 38.26+0.56 24.28+0.39
PsCo (Ours) 76.63+0.84 53.45+0.76 83.87+0.58 69.17+0.70  89.85+0.78  83.99+0.52 41.64+0.55 23.60+0.36
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