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Abstract

Many clinical informatics tasks that are based
on electronic health records need relevant pa-
tient cohorts to be selected based on findings,
symptoms, and diseases. Frequently, these
conditions are described in radiology reports
which can be retrieved using information re-
trieval (IR) methods. The latest of these tech-
niques utilize neural IR models such as BERT
trained on clinical text. However, these meth-
ods still lack semantic understanding of the un-
derlying clinical conditions as well as ruled
out findings, resulting in poor precision dur-
ing retrieval. In this paper we combine clinical
finding detection with supervised query match
learning. Specifically, we use lexicon-driven
concept detection to detect relevant findings in
sentences. These findings are used as queries
to train a Sentence-BERT (SBERT) model us-
ing triplet loss on matched and unmatched
query-sentence pairs. We show that the pro-
posed supervised training task remarkably im-
proves the retrieval performance of SBERT.
The trained model generalizes well to unseen
queries and reports from different collections.

1 Introduction

Electronic health record (EHR) retrieval is impor-
tant for clinicians, staff and researchers. The tools
for performing clinically relevant searches could
aid in many use cases such as clinical decision sup-
port (Syeda-Mahmood, 2010), auditing, revenue
cycle management, and cohort selection for clin-
ical studies. Frequently, these searches involve
retrieval of patients based on clinical findings that
are often captured in unstructured textual reports
such as radiology reports, encounter notes, etc. Un-
like structured query-based lookup of EHR, re-
trieval of unstructured (free-text) EHRs is much
more challenging, requiring a semantic understand-
ing of the underlying clinical conditions present or
absent. Conventional exact or approximate term-
based retrieval methods such as BM25 (Robertson

and Zaragoza, 2009) often perform poorly in re-
sponse to ad-hoc queries (Chamberlin et al., 2020),
as these methods lack the ability of semantic under-
standing of the clinical as well as language context.
With the emergence of deep learning encoding mod-
els, new retrieval methods have emerged with stud-
ies showing BERT-based neural methods outper-
forming BM25 on multiple retrieval benchmarks
(Yilmaz et al., 2019a; Chang et al., 2020; Nogueira
and Cho, 2019; Yilmaz et al., 2019b; Qiao et al.,
2019). The BERT-based retrieval methods can be
classified into two categories: the cross-attention
(or interaction-based) models (Yilmaz et al., 2019a;
Nogueira and Cho, 2019; Yilmaz et al., 2019b)
and the embedding-based (or representation-based)
models (Chang et al., 2020; Reimers and Gurevych,
2019). While the BERT-style cross-attention mod-
els are very successful, they cannot be directly
applied to large-scale retrieval problems because
computing the similarity score for every possible
query-document pair during inference can be pro-
hibitively expensive. Therefore, they were often
used as a re-ranker after a initial candidate retrieval
round using BM25. The embedding-based meth-
ods can pre-encode the documents, and only the
queries need to be encoded upon retrieval. Re-
trieval can be achieved via approximate nearest-
neighbor search in the embedding space very ef-
ficiently (Johnson et al., 2021). In this study, we
focus on the embedding-based retrieval BERT mod-
els. Specifically, we adopted the sentence-level re-
trieval setting, as studies suggested that the "best"
sentence in a document provides a good proxy for
document relevance (Yilmaz et al., 2019a).

Different pre-training tasks were used to train
the BERT-based models for retrieval. The pre-
training tasks range from masked language mod-
elling (MLM) over unlabeled free-text to super-
vised training on labeled datasets such as STS (Cer
et al., 2017), MS MARCO (Nguyen et al., 2016)
or TREC Microblog track (Lin et al., 2014). How-



ever, MLM is not tailored for the purpose of in-
formation retrieval (IR), and labeled datasets are
usually small and not easily accessible. Recently,
pre-trained models on biomedical corpora such
as BioClinicalBERT (Alsentzer et al., 2019) and
BioBERT (Lee et al., 2020) can obtain embeddings
with medical-domain-specific knowledge, but they
were still trained with MLM.

Early studies (Natarajan et al., 2010) showed
that most clinical queries are actually short queries
(e.g. a disease or a syndrome). We found that the
existing BERT models pre-trained with MLM per-
formed poorly on short queries as well as negative
queries (i.e. queries asking for lack of a finding).
Ideally, if retrieval systems could be trained by
matched and unmatched query-sentence pairs, in
both positive and negated instances, we can expect
a higher precision and recall in retrieval. However,
manually labeling a large dataset is impractical, par-
ticularly for the medical domain where the number
of clinical findings is very large. Training neural IR
models using weak supervision has been previously
investigated (Dehghani et al., 2017; MacAvaney
et al., 2019), which use unsupervised methods (e.g.
BM25) or article headings to provide pseudo labels.
However, these pseudo labels are usually imprecise
and the article headings are not always available.

Motivated by these challenges, we present a hy-
brid approach in which we combine automated
clinical finding detection with supervised query-
sentence pair learning. Specifically, we use lexicon-
driven concept detection to automatically detect
relevant chest X-ray findings in sentences. These
findings paired with the sentences containing them
serve as training data for Sentence-BERT (SBERT)
(Reimers and Gurevych, 2019). The mapping of
queries to sentences are learned using triplet loss
utilizing matched and unmatched query-sentence
pairs. The resulting approach thus avoids manual
annotation and can be scaled for training on a large
number of query-sentence pairs. We show that
the proposed supervised training task remarkably
improves the retrieval performance of SBERT. Fur-
ther, the trained model generalizes well to unseen
queries and different report collections.

2 Methods

2.1 Fine-grained concept extraction

The algorithm for extracting findings from sen-
tences in reports uses a vocabulary-driven approach.
Specifically, a domain-specific chest X-ray find-

ing lexicon described in (Syeda-Mahmood et al.,
2020) was used. This lexicon captures the name
of finding along with its potential variants and
synonyms mined from over 200,000 chest radi-
ology reports. To spot the occurrence of a find-
ing lexicon phrase within reports, a string match-
ing algorithm called the longest common subfix
(LCF) algorithm was used. Given a query vocab-
ulary phrase P =< pips..pw > of W words
and a candidate sentence 1T’ =< tita...tyy > of
V' words, the longest common subfix is defined
as LCF(P,T) =< c¢jca...c, >, where L is
the largest subset of words from P that found a
partial match in 7" and ¢; is a partial match of a
word p; € PtoawordinT. A word p; in P is
said to partially match a word ¢; in T"if it shares
a maximum length common prefix ¢; such that
ci

WM

To determine if a core finding is positive or neg-
ative (e.g. ’no pneumothorax’), we use a two-step
approach that combines language structuring and
vocabulary-based negation detection. More details
including the accuracy analysis are described in
(Syeda-Mahmood et al., 2020).

> T, where 7 is a threshold.

2.2 Labeled data generation

In this paper, we focus on "anatomical findings"
as well as "disease concepts” as those are the
most commonly searched in EHR (Natarajan et al.,
2010). We refer to these finding modifiers as sur-
rogates for queries. For each sentence S; in our
data collection, we have a set with K; labeled data
entries Ij = {(Sj, Njﬂ;, Mj,i)}lging- For each
labeled entry (Sj, Njﬂ', Mj,i), Mjﬂ' is the ¢-th find-
ing for Sj, and N;; = yes|no indicates a posi-
tive or ruled out finding. By using the findings as
query surrogates, we can designate a query QQ;; =
(Njs, Mj;) paired with S;: if N;; equals to yes,
Qj is a positive query, otherwise ()} ; is a negative
query. For example, (yes, vascular congestion)
and (no, pulmonary edema hazy opacity) are
two queries for the sentence "lungs: central vas-
cular congestion without overt edema." The actual
retrieval queries may be more properly phrased
such as "presence or absence of ‘x’" but are still
represented by the above patterns.

Since we labeled all the sentences in our training
dataset extensively with all the finding types we
summarized, we can create a dictionary using each
unique query @ = (NN, M) as the key and the list of
all the sentences that contain that query as the dic-



tionary value. Any sentence in the list is considered
as a matched sentence for that query, whereas other
sentences are considered as unmatched sentences.

2.3 Model

We used SBERT as our retrieval model. MEAN-
pooling was used to derive a fixed size sentence
embedding (for either queries or EHR sentences).
We used the triplet objective function (Reimers
and Gurevych, 2019) to train our model. Given a
query ¢, a matched sentence m and an unmatched
sentence u, the triplet loss tunes the network such
that the distance between g and m is smaller than
the distance between ¢ and u by a margin €:

ma:n(Heq —emll — Heq —eull +6,0) (D)

where ey, e, and e, are the sentence embed-
dings for ¢, m and u, respectively. ||-|| is a distance
metric. We used the cosine distance and € = 0.5.

To improve training, we further used hard-
sampling (HS) to mine the hardest unmatched sen-
tence for the triplet loss within a training batch.
To be specific, we performed inference within a
batch beforehand to find the unmatched sentence
that has the highest cosine similarity (the most con-
fusing unmatched sentence) with the query in the
embedding space for each query. We further ap-
plied mega-batching (MB) (Wieting and Gimpel,
2018) to encourage the model to learn to distin-
guish "harder" unmatched sentences by increasing
the batch size.

3 Experiments and Results

3.1 Datasets

Our experiments were carried out on two public
collections of radiology reports provided by Indi-
ana University (Demner-Fushman et al., 2016) and
NIH (Wang et al., 2017). After pruning for dupli-
cates and applying our labeled data generation algo-
rithm described in Section 2.2, a total of 21,612 la-
beled entries were generated for the Indiana dataset,
which include 10,363 unique sentences, 200 posi-
tive queries and 75 negative queries. For the NIH
dataset, a total of 17,047 labeled entries were gen-
erated, which include 9,091 unique sentences, 250
positive queries and 30 negative queries.

3.2 Ablation study and parameter tuning

We first run an ablation study on the Indiana
dataset to investigate if hard-sampling (HS) and
mega-batching (MB) can bring improvement over

random-sampling (RS, randomly selecting un-
matched sentence within a batch) and normal-
batching (NB, size 32). We randomly split the In-
diana dataset into two halves with non-overlapping
findings with the constrain that they should roughly
have equal number of labeled entries. After the
split, the two sets have 117/44 and 83/31 posi-
tive/negative queries, respectively. We performed
2-fold cross-validation and reported the average of
the two test results regarding mean Average Preci-
sion (mAP). Such a setting also allows us to evalu-
ate the model performance on unseen queries. The
evaluation was performed in response to positive
queries (Pos. Q.), negative queries (Neg. Q.) and
all queries (All Q.) separately.

The results in Table 1 shows that the combination
of HS and MB achieved the best results. Increas-
ing the mega-batching size to 128 resulted the best
performance, but further increasing the batch size
slightly degraded the performance. The remarkable
improvent of R-BERT over the baseline BioClin-
icalBERT also suggests that the proposed model
can generalize well to unseen queries.

mean Average Precision (mAP)

Model Pos. Q. Neg. Q. All Q.
BioClinical BERT 0.213 0.254 0.224
SBERT/RS/NB(32) 0.353 0.312 0.349
SBERT/HS/NB(32) 0.384 0.334 0.371
SBERT/HS/MB(64) 0.388 0.318 0.369
SBERT/HS/MB(128) 0.399 0.392 0.397
SBERT/HS/MB(256) 0.392 0.352 0.381
SBERT/HS/MB(512) 0.380 0.344 0.370

Table 1: Ablation study and hyperparameter tuning on
the Indiana dataset.

3.3 Cross-dataset study

We also trained on the Indiana dataset (IND.)
and tested on the unique sentences in the NIH
dataset (NIH) and vice versa to investigate whether
a trained model can generalize well to a dataset
from another source (distribution). The best
SBERT model from Table 1 was used here. We
further included Okapi BM25 (k;=1.5, b=0.75),
the pre-trained BERT (Huggingface "BERT-base-
uncased"), the fine-tuned BERT (trained on the
EHR sentences using MLM, without using our
generated annotations), the BioClinical BERT and
SBERT pre-trained on MS MARCO dataset for
comparison. More details about these models are
given in the appendix. In addition to mAP, mean
Recall (over all the queries) was also reported,
where Recall was defined as the ratio of the number



Model mean Average Precision (mAP) mean Recall (mR)
Pos. Q. Neg. Q. All Q. Pos. Q. Neg. Q. All Q.

IND/NIH. IND/NIH. IND/NIH. | IND/NIH. IND/NIH. IND/NIH.
BM25 0.39/0.46 0.34/0.32 0.38/0.44 0.36/0.43 0.30/0.27 0.35/0.42
BERT 0.14/0.16 0.21/0.23 0.16/0.17 0.12/0.15 0.19/0.23 0.14/0.16
BERT (fine-tuned) 0.20/0.23 0.22/0.23 0.21/0.23 0.19/0.21 0.21/0.21 0.19/0.21
BioClinical BERT 0.16/0.28 0.21/0.25 0.17/0.27 0.14/0.27 0.19/0.22 0.15/0.26
SBERT (MS MARCO) | 0.40/0.44 0.35/0.36 0.39/0.43 0.37/0.40 0.31/0.31 0.35/0.39
SBERT (ours) 0.48/0.45 0.42/0.56 0.46 / 0.47 0.44/0.42 0.39/0.47 0.42/0.43

Table 2: Cross-dataset evaluation. The dataset name in the heading means the model was tested on that dataset.

of correctly retrieved sentences to the size of the
query’s ground truth list.

Table 2 shows that our fine-tuned SBERT per-
forms very well on the dataset from another col-
lection regarding both mAP and mR, and out-
performed the other BERT/SBERT models by
large margins. The baseline BERT without pre-
training over medical texts obtained the worst re-
sults. The results for BERT (fine-tuned) and Bio-
Clinical BERT suggest that MLM training over
the texts from the same domain can lead to
some improvements but is still not ideal for di-
rect use of retrieval. SBERT pre-trained on MS
MARCO dataset showed significant improvements
over BERT trained with MLM, but lacks domain-
specific knowledge and shows performance drop on
negative queries. BM25 performs well on positive
queries with performance degradation on negative
queries as well, because negation is not always
explicitly expressed in EHR.

3.4 Embedding separation analysis

Model IND. NIH

BERT -0.04£0.06  0.01£0.07
BERT (fine-tuned) 0.03£0.09  0.05+0.08
BioClinical BERT 0.01£0.05  0.01+0.03
SBERT (MS MARCO) | 0.01+0.01  0.02£0.01
SBERT (ours) 0.42+0.36  0.56+0.34

Table 3: Embedding space separation analysis.

Because we have the negation and finding labels
for each sentence, we can create opposite-negation
queries. For example, the opposite-negation query
for "no opacity" would be "opacity". Ideally, for
a given sentence, the similarity score between the
matched query and sentence should be larger than
that between the opposite-negation query and the
sentence. We reported (Table 3) the differences
(mean-std) between these two scores for all the en-
tries in each dataset with all the BERT embedding-
based methods. Our trained SBERT showed a clear
separation in the embedding space. The distances

for the other BERT models are all around zero with
even negative distances, suggesting that these mod-
els have poor negation awareness.

4 Discussion

In this paper we demonstrated that the proposed
supervised pre-training tasks with automated an-
notation can greatly improve the IR performance
of SBERT on short and negative queries. The pro-
posed labeled data generation method can also be
used to train the cross-attention BERT models for
further improvement when computation speed is
not the bottleneck.

We focused on short queries in this study, and
BM25 still performs well on positive queries. The
embedding-based BERT models are expected to
show more advantages over BM25 on complicated
queries that require semantic understanding. Hav-
ing the comprehensive negation and finding labels
for each sentence also allows us to assemble more
complicated queries that include more than one
finding, such as “A and B” or “A without C” where
A, B and C represent three different findings. These
more challenging tasks can be explored in the fu-
ture work. The label generation tool can also be
extended to training IR models in domains other
than medical domain, such as finance, law, or retail,
provided with the corresponding lexicons.

5 Conclusion

In this work we proposed to generate query-
sentence pairs automatically using a chest X-ray
lexicon for training embedding-based BERT mod-
els on the EHR retrieval problem. We showed that
the fine-tuned SBERT obtained a substantial perfor-
mance gain over the other pre-trained models. The
trained model can also generalize well to unseen
queries and data from another source. The pro-
posed method can be especially helpful in training
and evaluating neural IR models in domains with
limited human-labeled data.
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A Appendix: Model training details

Here we provide more details on the models used
in Section 3. We used the Huggingface "BERT-
base-uncased" model (pre-trained on BookCorpus
and English Wikipedia, availabel at: https://
huggingface.co/bert-base-uncased)
as our BERT model. The BERT (fine-tuned)
model was fine-tuned on the EHR text (Indi-
ana or NIH dataset) using MLM for 5 epochs
based on the "BERT-base-uncased" model. The
pre-trained BioClinicalBERT (Alsentzer et al.,
2019) (availabel at: https://github.com/
EmilyAlsentzer/clinicalBERT) was
initialized with BioBERT (Lee et al., 2020) and
fine-tuned on clinical notes.

Our SBERT model was initialized with the Bio-
Clinical BERT. We fine-tuned SBERT using triplet
loss for 10 epochs for all datasets in this study. We
used AdamW optimizer with learning rate 2e-5,
weight decay 0.01 and a linear learning rate warm-
up of 100 steps.

The SBERT model used as comparison was
pre-trained on 500K (query, answer) pairs from
the MS MARCO dataset. This pre-trained model
(msmarco-bert-base-dot-v5) was one of the recom-
mended sentence embedding models from the offi-

cial SBERT webpage (https://www.sbert.

net/docs/pretrained_models.html).
Among all the pre-trained models, we picked this
one because it is the only pre-trained model based

on "BERT-base" model, to be consistent with all
the other models (all based on "BERT-base") in
our experiments. Since this model was tuned to
be used with dot-product, we used dot-product
to calculate similarity scores only for this model
in the retrieval experiments in Table 2. For all
the other models, cosine-similarity was used to
calculate scores. However, for the embedding
separation analysis in Table 3, cosine-similarity
was used for SBERT (MS MARCO) as well so
that the scale of the similarity scores is comparable
to the others.
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