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Abstract

Many clinical informatics tasks that are based001
on electronic health records need relevant pa-002
tient cohorts to be selected based on findings,003
symptoms, and diseases. Frequently, these004
conditions are described in radiology reports005
which can be retrieved using information re-006
trieval (IR) methods. The latest of these tech-007
niques utilize neural IR models such as BERT008
trained on clinical text. However, these meth-009
ods still lack semantic understanding of the un-010
derlying clinical conditions as well as ruled011
out findings, resulting in poor precision dur-012
ing retrieval. In this paper we combine clinical013
finding detection with supervised query match014
learning. Specifically, we use lexicon-driven015
concept detection to detect relevant findings in016
sentences. These findings are used as queries017
to train a Sentence-BERT (SBERT) model us-018
ing triplet loss on matched and unmatched019
query-sentence pairs. We show that the pro-020
posed supervised training task remarkably im-021
proves the retrieval performance of SBERT.022
The trained model generalizes well to unseen023
queries and reports from different collections.024

1 Introduction025

Electronic health record (EHR) retrieval is impor-026

tant for clinicians, staff and researchers. The tools027

for performing clinically relevant searches could028

aid in many use cases such as clinical decision sup-029

port (Syeda-Mahmood, 2010), auditing, revenue030

cycle management, and cohort selection for clin-031

ical studies. Frequently, these searches involve032

retrieval of patients based on clinical findings that033

are often captured in unstructured textual reports034

such as radiology reports, encounter notes, etc. Un-035

like structured query-based lookup of EHR, re-036

trieval of unstructured (free-text) EHRs is much037

more challenging, requiring a semantic understand-038

ing of the underlying clinical conditions present or039

absent. Conventional exact or approximate term-040

based retrieval methods such as BM25 (Robertson041

and Zaragoza, 2009) often perform poorly in re- 042

sponse to ad-hoc queries (Chamberlin et al., 2020), 043

as these methods lack the ability of semantic under- 044

standing of the clinical as well as language context. 045

With the emergence of deep learning encoding mod- 046

els, new retrieval methods have emerged with stud- 047

ies showing BERT-based neural methods outper- 048

forming BM25 on multiple retrieval benchmarks 049

(Yilmaz et al., 2019a; Chang et al., 2020; Nogueira 050

and Cho, 2019; Yilmaz et al., 2019b; Qiao et al., 051

2019). The BERT-based retrieval methods can be 052

classified into two categories: the cross-attention 053

(or interaction-based) models (Yilmaz et al., 2019a; 054

Nogueira and Cho, 2019; Yilmaz et al., 2019b) 055

and the embedding-based (or representation-based) 056

models (Chang et al., 2020; Reimers and Gurevych, 057

2019). While the BERT-style cross-attention mod- 058

els are very successful, they cannot be directly 059

applied to large-scale retrieval problems because 060

computing the similarity score for every possible 061

query-document pair during inference can be pro- 062

hibitively expensive. Therefore, they were often 063

used as a re-ranker after a initial candidate retrieval 064

round using BM25. The embedding-based meth- 065

ods can pre-encode the documents, and only the 066

queries need to be encoded upon retrieval. Re- 067

trieval can be achieved via approximate nearest- 068

neighbor search in the embedding space very ef- 069

ficiently (Johnson et al., 2021). In this study, we 070

focus on the embedding-based retrieval BERT mod- 071

els. Specifically, we adopted the sentence-level re- 072

trieval setting, as studies suggested that the "best" 073

sentence in a document provides a good proxy for 074

document relevance (Yilmaz et al., 2019a). 075

Different pre-training tasks were used to train 076

the BERT-based models for retrieval. The pre- 077

training tasks range from masked language mod- 078

elling (MLM) over unlabeled free-text to super- 079

vised training on labeled datasets such as STS (Cer 080

et al., 2017), MS MARCO (Nguyen et al., 2016) 081

or TREC Microblog track (Lin et al., 2014). How- 082
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ever, MLM is not tailored for the purpose of in-083

formation retrieval (IR), and labeled datasets are084

usually small and not easily accessible. Recently,085

pre-trained models on biomedical corpora such086

as BioClinicalBERT (Alsentzer et al., 2019) and087

BioBERT (Lee et al., 2020) can obtain embeddings088

with medical-domain-specific knowledge, but they089

were still trained with MLM.090

Early studies (Natarajan et al., 2010) showed091

that most clinical queries are actually short queries092

(e.g. a disease or a syndrome). We found that the093

existing BERT models pre-trained with MLM per-094

formed poorly on short queries as well as negative095

queries (i.e. queries asking for lack of a finding).096

Ideally, if retrieval systems could be trained by097

matched and unmatched query-sentence pairs, in098

both positive and negated instances, we can expect099

a higher precision and recall in retrieval. However,100

manually labeling a large dataset is impractical, par-101

ticularly for the medical domain where the number102

of clinical findings is very large. Training neural IR103

models using weak supervision has been previously104

investigated (Dehghani et al., 2017; MacAvaney105

et al., 2019), which use unsupervised methods (e.g.106

BM25) or article headings to provide pseudo labels.107

However, these pseudo labels are usually imprecise108

and the article headings are not always available.109

Motivated by these challenges, we present a hy-110

brid approach in which we combine automated111

clinical finding detection with supervised query-112

sentence pair learning. Specifically, we use lexicon-113

driven concept detection to automatically detect114

relevant chest X-ray findings in sentences. These115

findings paired with the sentences containing them116

serve as training data for Sentence-BERT (SBERT)117

(Reimers and Gurevych, 2019). The mapping of118

queries to sentences are learned using triplet loss119

utilizing matched and unmatched query-sentence120

pairs. The resulting approach thus avoids manual121

annotation and can be scaled for training on a large122

number of query-sentence pairs. We show that123

the proposed supervised training task remarkably124

improves the retrieval performance of SBERT. Fur-125

ther, the trained model generalizes well to unseen126

queries and different report collections.127

2 Methods128

2.1 Fine-grained concept extraction129

The algorithm for extracting findings from sen-130

tences in reports uses a vocabulary-driven approach.131

Specifically, a domain-specific chest X-ray find-132

ing lexicon described in (Syeda-Mahmood et al., 133

2020) was used. This lexicon captures the name 134

of finding along with its potential variants and 135

synonyms mined from over 200,000 chest radi- 136

ology reports. To spot the occurrence of a find- 137

ing lexicon phrase within reports, a string match- 138

ing algorithm called the longest common subfix 139

(LCF) algorithm was used. Given a query vocab- 140

ulary phrase P =< p1p2...pW > of W words 141

and a candidate sentence T =< t1t2...tV > of 142

V words, the longest common subfix is defined 143

as LCF (P, T ) =< c1c2...cL > , where L is 144

the largest subset of words from P that found a 145

partial match in T and ci is a partial match of a 146

word pi ∈ P to a word in T . A word pi in P is 147

said to partially match a word tj in T if it shares 148

a maximum length common prefix ci such that 149
|ci|

max{|pi|,|tj |} > τ , where τ is a threshold. 150

To determine if a core finding is positive or neg- 151

ative (e.g. ”no pneumothorax”), we use a two-step 152

approach that combines language structuring and 153

vocabulary-based negation detection. More details 154

including the accuracy analysis are described in 155

(Syeda-Mahmood et al., 2020). 156

2.2 Labeled data generation 157

In this paper, we focus on "anatomical findings" 158

as well as "disease concepts" as those are the 159

most commonly searched in EHR (Natarajan et al., 160

2010). We refer to these finding modifiers as sur- 161

rogates for queries. For each sentence Sj in our 162

data collection, we have a set with Kj labeled data 163

entries Ij = {(Sj , Nj,i,Mj,i)}1≤i≤Kj . For each 164

labeled entry (Sj , Nj,i,Mj,i), Mj,i is the i-th find- 165

ing for Sj , and Nj,i = yes|no indicates a posi- 166

tive or ruled out finding. By using the findings as 167

query surrogates, we can designate a query Qj,i = 168

(Nj,i,Mj,i) paired with Sj : if Nj,i equals to yes, 169

Qj,i is a positive query, otherwise Qj,i is a negative 170

query. For example, (yes, vascular congestion) 171

and (no, pulmonary edema hazy opacity) are 172

two queries for the sentence "lungs: central vas- 173

cular congestion without overt edema." The actual 174

retrieval queries may be more properly phrased 175

such as "presence or absence of ‘x’" but are still 176

represented by the above patterns. 177

Since we labeled all the sentences in our training 178

dataset extensively with all the finding types we 179

summarized, we can create a dictionary using each 180

unique queryQ = (N,M) as the key and the list of 181

all the sentences that contain that query as the dic- 182
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tionary value. Any sentence in the list is considered183

as a matched sentence for that query, whereas other184

sentences are considered as unmatched sentences.185

2.3 Model186

We used SBERT as our retrieval model. MEAN-187

pooling was used to derive a fixed size sentence188

embedding (for either queries or EHR sentences).189

We used the triplet objective function (Reimers190

and Gurevych, 2019) to train our model. Given a191

query q, a matched sentence m and an unmatched192

sentence u, the triplet loss tunes the network such193

that the distance between q and m is smaller than194

the distance between q and u by a margin ε:195

max(‖eq − em‖ − ‖eq − eu‖+ ε, 0) (1)196

where eq, em and eu are the sentence embed-197

dings for q, m and u, respectively. ‖·‖ is a distance198

metric. We used the cosine distance and ε = 0.5.199

To improve training, we further used hard-200

sampling (HS) to mine the hardest unmatched sen-201

tence for the triplet loss within a training batch.202

To be specific, we performed inference within a203

batch beforehand to find the unmatched sentence204

that has the highest cosine similarity (the most con-205

fusing unmatched sentence) with the query in the206

embedding space for each query. We further ap-207

plied mega-batching (MB) (Wieting and Gimpel,208

2018) to encourage the model to learn to distin-209

guish "harder" unmatched sentences by increasing210

the batch size.211

3 Experiments and Results212

3.1 Datasets213

Our experiments were carried out on two public214

collections of radiology reports provided by Indi-215

ana University (Demner-Fushman et al., 2016) and216

NIH (Wang et al., 2017). After pruning for dupli-217

cates and applying our labeled data generation algo-218

rithm described in Section 2.2, a total of 21,612 la-219

beled entries were generated for the Indiana dataset,220

which include 10,363 unique sentences, 200 posi-221

tive queries and 75 negative queries. For the NIH222

dataset, a total of 17,047 labeled entries were gen-223

erated, which include 9,091 unique sentences, 250224

positive queries and 30 negative queries.225

3.2 Ablation study and parameter tuning226

We first run an ablation study on the Indiana227

dataset to investigate if hard-sampling (HS) and228

mega-batching (MB) can bring improvement over229

random-sampling (RS, randomly selecting un- 230

matched sentence within a batch) and normal- 231

batching (NB, size 32). We randomly split the In- 232

diana dataset into two halves with non-overlapping 233

findings with the constrain that they should roughly 234

have equal number of labeled entries. After the 235

split, the two sets have 117/44 and 83/31 posi- 236

tive/negative queries, respectively. We performed 237

2-fold cross-validation and reported the average of 238

the two test results regarding mean Average Preci- 239

sion (mAP). Such a setting also allows us to evalu- 240

ate the model performance on unseen queries. The 241

evaluation was performed in response to positive 242

queries (Pos. Q.), negative queries (Neg. Q.) and 243

all queries (All Q.) separately. 244

The results in Table 1 shows that the combination 245

of HS and MB achieved the best results. Increas- 246

ing the mega-batching size to 128 resulted the best 247

performance, but further increasing the batch size 248

slightly degraded the performance. The remarkable 249

improvent of R-BERT over the baseline BioClin- 250

icalBERT also suggests that the proposed model 251

can generalize well to unseen queries. 252

Model mean Average Precision (mAP)
Pos. Q. Neg. Q. All Q.

BioClinicalBERT 0.213 0.254 0.224
SBERT/RS/NB(32) 0.353 0.312 0.349
SBERT/HS/NB(32) 0.384 0.334 0.371
SBERT/HS/MB(64) 0.388 0.318 0.369
SBERT/HS/MB(128) 0.399 0.392 0.397
SBERT/HS/MB(256) 0.392 0.352 0.381
SBERT/HS/MB(512) 0.380 0.344 0.370

Table 1: Ablation study and hyperparameter tuning on
the Indiana dataset.

3.3 Cross-dataset study 253

We also trained on the Indiana dataset (IND.) 254

and tested on the unique sentences in the NIH 255

dataset (NIH) and vice versa to investigate whether 256

a trained model can generalize well to a dataset 257

from another source (distribution). The best 258

SBERT model from Table 1 was used here. We 259

further included Okapi BM25 (k1=1.5, b=0.75), 260

the pre-trained BERT (Huggingface "BERT-base- 261

uncased"), the fine-tuned BERT (trained on the 262

EHR sentences using MLM, without using our 263

generated annotations), the BioClinicalBERT and 264

SBERT pre-trained on MS MARCO dataset for 265

comparison. More details about these models are 266

given in the appendix. In addition to mAP, mean 267

Recall (over all the queries) was also reported, 268

where Recall was defined as the ratio of the number 269
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Model mean Average Precision (mAP) mean Recall (mR)
Pos. Q.

IND / NIH.
Neg. Q.

IND / NIH.
All Q.

IND / NIH.
Pos. Q.

IND / NIH.
Neg. Q.

IND / NIH.
All Q.

IND / NIH.
BM25 0.39 / 0.46 0.34 / 0.32 0.38 / 0.44 0.36 / 0.43 0.30 / 0.27 0.35 / 0.42
BERT 0.14 / 0.16 0.21 / 0.23 0.16 / 0.17 0.12 / 0.15 0.19 / 0.23 0.14 / 0.16
BERT (fine-tuned) 0.20 / 0.23 0.22 / 0.23 0.21 / 0.23 0.19 / 0.21 0.21 / 0.21 0.19 / 0.21
BioClinicalBERT 0.16 / 0.28 0.21 / 0.25 0.17 / 0.27 0.14 / 0.27 0.19 / 0.22 0.15 / 0.26
SBERT (MS MARCO) 0.40 / 0.44 0.35 / 0.36 0.39 / 0.43 0.37 / 0.40 0.31 / 0.31 0.35 / 0.39
SBERT (ours) 0.48 / 0.45 0.42 / 0.56 0.46 / 0.47 0.44 / 0.42 0.39 / 0.47 0.42 / 0.43

Table 2: Cross-dataset evaluation. The dataset name in the heading means the model was tested on that dataset.

of correctly retrieved sentences to the size of the270

query’s ground truth list.271

Table 2 shows that our fine-tuned SBERT per-272

forms very well on the dataset from another col-273

lection regarding both mAP and mR, and out-274

performed the other BERT/SBERT models by275

large margins. The baseline BERT without pre-276

training over medical texts obtained the worst re-277

sults. The results for BERT (fine-tuned) and Bio-278

ClinicalBERT suggest that MLM training over279

the texts from the same domain can lead to280

some improvements but is still not ideal for di-281

rect use of retrieval. SBERT pre-trained on MS282

MARCO dataset showed significant improvements283

over BERT trained with MLM, but lacks domain-284

specific knowledge and shows performance drop on285

negative queries. BM25 performs well on positive286

queries with performance degradation on negative287

queries as well, because negation is not always288

explicitly expressed in EHR.289

3.4 Embedding separation analysis290

Model IND. NIH
BERT -0.04±0.06 0.01±0.07
BERT (fine-tuned) 0.03±0.09 0.05±0.08
BioClinicalBERT 0.01±0.05 0.01±0.03
SBERT (MS MARCO) 0.01±0.01 0.02±0.01
SBERT (ours) 0.42±0.36 0.56±0.34

Table 3: Embedding space separation analysis.

Because we have the negation and finding labels291

for each sentence, we can create opposite-negation292

queries. For example, the opposite-negation query293

for "no opacity" would be "opacity". Ideally, for294

a given sentence, the similarity score between the295

matched query and sentence should be larger than296

that between the opposite-negation query and the297

sentence. We reported (Table 3) the differences298

(mean±std) between these two scores for all the en-299

tries in each dataset with all the BERT embedding-300

based methods. Our trained SBERT showed a clear301

separation in the embedding space. The distances302

for the other BERT models are all around zero with 303

even negative distances, suggesting that these mod- 304

els have poor negation awareness. 305

4 Discussion 306

In this paper we demonstrated that the proposed 307

supervised pre-training tasks with automated an- 308

notation can greatly improve the IR performance 309

of SBERT on short and negative queries. The pro- 310

posed labeled data generation method can also be 311

used to train the cross-attention BERT models for 312

further improvement when computation speed is 313

not the bottleneck. 314

We focused on short queries in this study, and 315

BM25 still performs well on positive queries. The 316

embedding-based BERT models are expected to 317

show more advantages over BM25 on complicated 318

queries that require semantic understanding. Hav- 319

ing the comprehensive negation and finding labels 320

for each sentence also allows us to assemble more 321

complicated queries that include more than one 322

finding, such as “A and B” or “A without C” where 323

A, B and C represent three different findings. These 324

more challenging tasks can be explored in the fu- 325

ture work. The label generation tool can also be 326

extended to training IR models in domains other 327

than medical domain, such as finance, law, or retail, 328

provided with the corresponding lexicons. 329

5 Conclusion 330

In this work we proposed to generate query- 331

sentence pairs automatically using a chest X-ray 332

lexicon for training embedding-based BERT mod- 333

els on the EHR retrieval problem. We showed that 334

the fine-tuned SBERT obtained a substantial perfor- 335

mance gain over the other pre-trained models. The 336

trained model can also generalize well to unseen 337

queries and data from another source. The pro- 338

posed method can be especially helpful in training 339

and evaluating neural IR models in domains with 340

limited human-labeled data. 341
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A Appendix: Model training details475

Here we provide more details on the models used476

in Section 3. We used the Huggingface "BERT-477

base-uncased" model (pre-trained on BookCorpus478

and English Wikipedia, availabel at: https://479

huggingface.co/bert-base-uncased)480

as our BERT model. The BERT (fine-tuned)481

model was fine-tuned on the EHR text (Indi-482

ana or NIH dataset) using MLM for 5 epochs483

based on the "BERT-base-uncased" model. The484

pre-trained BioClinicalBERT (Alsentzer et al.,485

2019) (availabel at: https://github.com/486

EmilyAlsentzer/clinicalBERT) was487

initialized with BioBERT (Lee et al., 2020) and488

fine-tuned on clinical notes.489

Our SBERT model was initialized with the Bio-490

ClinicalBERT. We fine-tuned SBERT using triplet491

loss for 10 epochs for all datasets in this study. We492

used AdamW optimizer with learning rate 2e-5,493

weight decay 0.01 and a linear learning rate warm-494

up of 100 steps.495

The SBERT model used as comparison was496

pre-trained on 500K (query, answer) pairs from497

the MS MARCO dataset. This pre-trained model498

(msmarco-bert-base-dot-v5) was one of the recom-499

mended sentence embedding models from the offi-500

cial SBERT webpage (https://www.sbert.501

net/docs/pretrained_models.html).502

Among all the pre-trained models, we picked this503

one because it is the only pre-trained model based504

on "BERT-base" model, to be consistent with all 505

the other models (all based on "BERT-base") in 506

our experiments. Since this model was tuned to 507

be used with dot-product, we used dot-product 508

to calculate similarity scores only for this model 509

in the retrieval experiments in Table 2. For all 510

the other models, cosine-similarity was used to 511

calculate scores. However, for the embedding 512

separation analysis in Table 3, cosine-similarity 513

was used for SBERT (MS MARCO) as well so 514

that the scale of the similarity scores is comparable 515

to the others. 516
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