
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SHARED EMBEDDING OPTIMIZATION: A TWO-STAGE
APPROACH FOR EFFICIENT AND EFFECTIVE FEATURE
EMBEDDING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large-scale recommendation systems are dominated by the memory and compu-
tational cost of their embedding tables. Standard approaches force a difficult com-
promise: either use independent embedding tables for each feature (“Separate”),
which offers high performance but can be inefficient in terms of parameters, or use
a single table shared by all features (“Monolithic Shared”), which is parameter-
efficient but imposes a naive, homogeneous structure that degrades model quality.
This paper argues that this is a false dilemma. We contend that the structure of a
shared embedding table should be neither fully separate nor fully monolithic, but
rather a learned, heterogeneous configuration optimized for the task. We propose
Shared Embedding Optimization (SEO), a novel two-stage framework to discover
and instantiate such a structure automatically. In Stage 1 (Search), we train an
over-parameterized model to learn an optimal, feature-specific policy for sharing
and allocating embedding chunks. In Stage 2 (Applier), we instantiate a new, com-
pact model based on this learned policy and retrain it from scratch. We provide a
theoretical justification showing our Applier’s hypothesis space is a superset of the
monolithic model. Comprehensive experiments on three large-scale benchmarks
(Criteo, Avazu, MovieLens 1M) demonstrate that SEO significantly and consis-
tently outperforms both ‘Separate‘ and ‘Monolithic Shared‘ baselines, given an
identical embedding parameter budget and a comparable recurring training time.

1 INTRODUCTION

Embedding layers are the cornerstone of modern deep learning models for categorical data, par-
ticularly in large-scale systems like click-through rate (CTR) prediction (Cheng et al., 2016; Anil
et al., 2022). These embedding tables map high-cardinality sparse features (e.g., user id, item id)
to dense vectors and often consume over 99% of total model parameters. At industrial scale, they
can grow to trillions of parameters, consuming petabytes of memory (Mudigere et al., 2022). This
massive size creates a bottleneck for model training, inference, and deployment, making parameter
efficiency a first-order research priority.

Current approaches to managing this parameter budget typically force practitioners into an unfortu-
nate compromise between two opposing philosophies. On one hand, Separate Embeddings assign
an independent embedding table to each categorical feature. While this allows each feature to learn a
specialized representation and often yields high performance, it is immensely parameter-inefficient,
fails to exploit potential inter-feature similarities, and scales poorly as feature count and cardinality
grow. On the other hand, Monolithic Shared Embeddings (MSE) utilize a single, unified em-
bedding table for all features—a strategy refined and successfully deployed at web-scale (Coleman
et al., 2023). This approach is highly parameter-efficient but imposes a naive, ‘one-size-fits-all’
structure. It forces features with vastly different characteristics—such as a high-cardinality user id
and a low-cardinality day of week—to share the same parameter space and capacity, leading to
representation collisions and a demonstrable degradation in model quality.

This paper argues that the choice between full separation and monolithic sharing represents a false
dilemma. We contend that the optimal solution lies not at these extremes, but in a heterogeneous
embedding structure, where the parameter budget is intelligently allocated and shared based on the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

specific needs of each feature and the overall task. To this end, we propose Shared Embedding Op-
timization (SEO), a novel two-stage framework that breaks this dilemma by learning this optimal,
heterogeneous structure automatically while adhering to a fixed total parameter budget.

The SEO framework operates in two stages.

• Stage 1 (Search): We design an over-parameterized search space where a base embedding
table is partitioned into many small ‘chunks’. We then employ a differentiable search
mechanism, adapted from the structured pruning literature (Yasuda et al., 2023; 2024), to
learn a sparse, feature-specific attention policy that discovers the optimal allocation and
sharing pattern for each feature.

• Stage 2 (Applier): After the search, we discard the search model’s weights entirely. In-
stead, we use the learned policy as a blueprint to instantiate a new, compact Applier model
that contains only the embedding chunks selected by the policy. This new, structurally-
efficient model is then retrained from scratch to converge to a superior solution.

Our contributions are as follows:

1. We propose SEO, a novel two-stage framework that learns a task-specific, heterogeneous
embedding structure to optimize the performance-per-parameter trade-off.

2. We provide a theoretical justification (Section 3.3) showing that our Applier model’s hy-
pothesis space is a strict superset of the Monolithic Shared Embedding baseline, guaran-
teeing a solution of at least equal quality.

3. We conduct comprehensive experiments on three large-scale public benchmarks (Criteo,
Avazu, MovieLens 1M). Our results (Section 4) show that, given an identical parame-
ter budget, our Applier models significantly outperform both Separate and Monolithic
Shared baselines (Table 1).

4. We present a detailed ablation study (Table 2) that validates our design, proving that the
two-stage (Search then Retrain) process is essential and that the search mechanism is ro-
bust. It also reveals the distinct advantages of our two Applier variants, Applier (RR) and
Applier (Exact), on different types of datasets.

5. We demonstrate (Table 3) that our method’s superior performance does not come at a high
cost; the recurring training time of our final Applier model is competitive with (and in
some cases, faster than) standard baselines.

2 RELATED WORK

The immense scale of embedding tables in deep learning recommender systems (DLRS) is a central
challenge, with models reaching trillions of parameters (Mudigere et al., 2022). Research to miti-
gate this has broadly followed two paths: reducing parameters via weight sharing and automating
the design of the embedding architecture itself. A foundational approach to parameter reduction
is the hashing trick (Moody & Darken, 1989; Weinberger et al., 2009), which maps features to a
fixed-size table but suffers from random collisions. This monolithic sharing philosophy has been re-
fined and successfully deployed in industrial-scale systems like Unified Embedding (Coleman et al.,
2023), which use a single, shared representation space. While highly effective, this “one-size-fits-
all” structure forces features with diverse characteristics to share capacity, creating an information
bottleneck. To address this, a more advanced paradigm uses automated machine learning (AutoML)
to discover an optimal embedding architecture, inspired by Neural Architecture Search (NAS) (Zoph
& Le, 2017; Liu et al., 2019). The most closely related works in this area are frameworks like Au-
toEmb (Zhao et al., 2021b) and AutoDim (Zhao et al., 2021a), which automatically assign a variable
embedding dimension to each feature. These methods, however, solve a different problem: they
ask, “What is the optimal embedding dimension (width) for each feature’s separate table?” This
typically results in multiple tables of varying widths.

In contrast, our work, Shared Embedding Optimization (SEO), addresses a distinct and complemen-
tary question:

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Given a single, unified embedding table with a fixed total parameter budget, what
is the optimal policy for allocating and sharing its internal subspaces (chunks)
among features?

This focus on learning the internal structure of a shared representation space under a strict budget
constraint is the core differentiator of our work. Our work is also inspired by recent advances in
differentiable structured pruning, particularly Yasuda et al. (2024), from which we adapt the core
differentiable search mechanism. However, it is crucial to distinguish our contribution. Methods
like SequentialAttention++ aim to prune an existing, fixed-size model by identifying and removing
unimportant weight blocks to improve inference efficiency. In contrast, SEO addresses the distinct
problem of embedding architecture search. We do not prune a model in-place; instead, we lever-
age the differentiable search to discover an optimal architectural blueprint for a shared embedding
table. This blueprint is then used to instantiate and train a new, compact, and structurally superior
model from scratch. Our contribution is thus the novel two-stage search-and-retrain framework for
embedding tables, not the search mechanism itself. For a more detailed discussion of foundational
compression techniques and other structured sharing methods, please see Appendix B.

3 METHOD: SHARED EMBEDDING OPTIMIZATION (SEO)

Shared Embedding Optimization (SEO) is a two-stage framework designed to discover and instan-
tiate a superior, heterogeneous structure for a unified embedding table, while strictly adhering to a
predefined parameter budget. The core principle is to decouple the complex problem of architec-
tural discovery from the final task of weight optimization. First, in a search stage, we explore an
over-parameterized space to identify an optimal, feature-specific policy for sharing and allocating
embedding subspaces. Second, using this policy as a blueprint, we construct a new, compact, and
structurally efficient model, which is then retrained from scratch to achieve superior performance.
Figure 1 provides a conceptual overview of baseline methods and the key components of our SEO
framework.

3.1 STAGE 1: SEARCH FOR AN OPTIMAL SHARING POLICY

Search Space Definition. We start by defining the total parameter budget, P = Bbase×D, which
equals that of a standard Monolithic Shared Embedding (MSE) model with an embedding table
WH ∈ RBbase×D. To create a sufficiently rich search space for discovering novel structures, we
construct an over-parameterized search model, MO. This is achieved by expanding the embedding
dimension from D to a larger search dimension, Dsearch, typically a multiple of D. This expanded
table, WO ∈ RB′

base×Dsearch , provides the necessary representation capacity for the search.

We then logically partition each row of this widened table into N ′ non-overlapping vectors, which
we term chunks. These N ′ partitions form a shared pool of candidate chunk types, each with
dimension dchunk (where N ′ × dchunk = Dsearch). The objective of the search stage is to learn a
distinct selection policy for each feature over this common pool of chunks.

Differentiable Structure Search. To learn a good chunk allocation for each feature, we employ a
differentiable search mechanism adapted from the structured pruning literature (Yasuda et al., 2023;
2024). We introduce a matrix of learnable logits, L ∈ RF×N ′

, where F is the number of categorical
features. The importance score, or attention weight αf,i for the i-th chunk of the f -th feature, is
computed via a global softmax across all possible chunks for all features:

αf,i =
exp(Lf,i/τ)∑F

f ′=1

∑N ′

j=1 exp(Lf ′,j/τ)
(1)

where τ is a temperature parameter. This global normalization ensures that all F × N ′ weights
form a single probability distribution. Yasuda et al. (2024) show that this is equivalent to imposing
a sparsity-inducing log-sum regularizer, which encourages the attention distribution α to become
sparse during training. This allows the model to identify and prioritize the most salient chunks for
each feature.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

(a) Separate Embeddings
(b) Unified (Monolithic) Em-
beddings

α2

y4x1

Feature X & Y

B

Dchunk

Embeddings

DNN

α1 α4α3

Down Projection (Optional)

α6

☉ Hadamard Product

Dsearch

x1

x2

x3

y1

y2

y3

y4

α5 α7 α8

(c) SEO Search Space (Stage 1)

(d) Applier Model (Exact Indices) (e) Applier Model (RR Load-Balanced)

Figure 1: Illustration of different embedding table structures. The diagrams show lookups for
different input values (e.g., x1, x2 are values for Feature X; y1, y4 are values for Feature Y). (a) The
Separate Embeddings baseline assigns an independent table to each feature. (b) The Monolithic
Shared baseline uses a single table for all features and their values. (c) Our SEO Stage 1 (Search)
operates in an over-parameterized space (Dsearch), partitioned into multiple ”chunks.” It learns a
policy to select the optimal chunks for each feature’s values. (d) and (e) depict the compact SEO
Stage 2 (Applier) models built from this policy. (d) The Applier (Exact Indices) variant instantiates
the precise chunk assignments discovered during search (e.g., values for Feature X use chunks 1,
2, and 4, while values for Feature Y use chunks 1 and 3). (e) The Applier (RR Load-Balanced)
variant uses the learned number of chunks per feature but reassigns them in a round-robin manner
to balance table utilization.

During the forward pass, the final embedding for an input xf of feature f is constructed by a
weighted concatenation of its looked-up chunks {C1(xf ), . . . , CN ′(xf )}:

Ef (xf ) = Concat (αf,1C1(xf ), . . . , αf,N ′CN ′(xf )) (2)

The resulting vector Ef (xf ) has dimension Dsearch. These feature-specific embeddings are then
passed to the downstream network.

Policy Derivation. Once the search model has converged, the learned logits L represent a contin-
uous distribution of chunk importance. We derive a discrete architectural policy from these scores.
For each feature f , we identify the set of chunk indices with the highest corresponding attention
scores {αf,i}. This final, discrete policy serves as the blueprint for constructing the new model in
Stage 2.

Practical Considerations for the Search Phase. Two configurations are introduced to manage
computational constraints and ensure experimental integrity during the search.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Use Down Projection (Memory-Efficient Search): The search model’s expanded em-
bedding width can cause out-of-memory errors when feature embeddings are concate-
nated. To mitigate this, we provide the use down projection option. Instead of view-
ing the output as F wide embeddings, we consider the complete pool of F × N ′ can-
didate chunks. For a given example, the set of looked-up vectors can be represented as
a matrix Cpool ∈ R(F×N ′)×dchunk . We then apply a learnable linear projection matrix
P ∈ R(F×N ′)×M to reduce this to a smaller set of M vectors, where M is the target num-
ber of chunks for the final model. The resulting projected vectors, Cproj ∈ RM×dchunk ,
are calculated as:

Cproj = PTCpool

These M vectors are then fed to subsequent layers, significantly reducing the memory
footprint. This projection is a temporary scaffold used only during the search.

• Adjust Hash Buckets (Optional for Search): In our experiments, the search model’s em-
bedding table is widened to provide candidate chunks. To maintain a comparable parame-
ter count against baselines during the search phase, we can optionally adjust the number of
hash buckets downwards to compensate. This is an optional setting for the search model,
as its primary purpose is exploration, not direct performance comparison.

3.2 STAGE 2: APPLIER MODEL INSTANTIATION AND RETRAINING

In the second stage, we discard the entire search model (MO), including its embedding table and
learned logits. We use the discrete policy derived in Stage 1 to construct a new, compact Applier
model, MA, from scratch.

Satisfying the Parameter Budget. A core tenet of our method is to ensure a fair comparison. The
Applier model is meticulously constructed to have the same parameter budget, P = Bbase ×D,
as the baselines. To achieve this, it is mandatory to apply the adjust hash buckets strategy. If
the learned policy results in a model with a total embedding width different from D, we adjust the
number of hash buckets in the Applier’s embedding table to precisely compensate, thereby ensuring
the total parameter count remains strictly P . This guarantees a direct and fair comparison against
the baseline models.

Assignment Strategies and Retraining from Scratch. We explore two strategies for instantiating
the learned policy within the Applier model, which has M available embedding sub-tables (slots):

• Applier (Exact Indices): This strategy faithfully preserves the specific chunk indices dis-
covered during the search. If feature F1 selected slots {2, 3} in the search space, its em-
bedding in the Applier model is constructed exclusively from the corresponding slots T2

and T3, precisely realizing the learned structure.

• Applier (RR Load-Balanced): This strategy abstracts the policy, retaining only the num-
ber of chunks selected per feature. It then reassigns chunks using a round-robin schedule.
For instance, if F1 requires 2 chunks and F2 requires 3, F1 is assigned slots {T1, T2} and
F2 is assigned {T3, T4, T1} (wrapping around from a total of M = 4 slots). This respects
the learned per-feature capacity while balancing the utilization of embedding slots.

Once the structure is fixed using one of these strategies, the final Applier model’s weights are ran-
domly initialized and it is trained from scratch. This retraining step is critical, as it allows the
model to find a superior solution within the optimized architecture, unencumbered by the compro-
mises made during the search phase.

3.3 THEORETICAL JUSTIFICATION

Our framework is theoretically grounded. The standard monolithic model can be viewed as a con-
strained, homogeneous special case of the heterogeneous models our Applier can represent.

Definition 1. Let the total embedding parameter budget be P = Bbase × D, partitioned into M
chunks, T1, ..., TM , each of size Bbase × dchunk where M × dchunk = D.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

• Let MH be the Monolithic Shared Embedding (MSE) hypothesis space, where the
embedding function for every feature f ∈ F is fixed to use all chunks: Ef (x) =
Concat(T1(xf ), ..., TM (xf )).

• Let MA be the Applier hypothesis space, where the embedding function for each feature f
is determined by a learnable policy Sf ⊆ {1, ...,M}: Ef (x,Sf ) = Concat({Ti(xf ) | i ∈
Sf}).

Theorem 1. The Monolithic Shared Embedding (MSE) hypothesis space MH is a strict subset of
the Applier hypothesis space MA. That is, MH ⊂ MA. (The proof is deferred to Appendix C.)

Corollary 1 (Optimization Guarantee). Given the same parameter budget P , the optimal model
found in the Applier space, M∗

A = argminMA∈MA
L(MA), has a training loss less than or equal

to the optimal model found in the Monolithic space, M∗
H = argminMH∈MH

L(MH). Concretely,

L(M∗
A) ≤ L(M∗

H). (3)

(The proof follows directly from Theorem 1 and is provided in Appendix C.)

The goal of SEO is therefore to find a non-trivial, heterogeneous policy S∗ that allows M∗
A to strictly

outperform M∗
H in practice.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Preprocessing. We evaluate on three public benchmarks: Criteo (online advertis-
ing, ∼45M examples, 26 categorical/13 continuous features (Criteo Labs, 2014)), Avazu (click-
prediction, ∼36M examples, 22 categorical features), and MovieLens 1M (collaborative filtering,
6 categorical features, framed as binary prediction for ratings ≥ 3 (Harper & Konstan, 2015)). We
embed all features. Preprocessing and data splits follow Wang et al. (2021) for Criteo/MovieLens
and Song et al. (2019) for Avazu.

Model Architecture and Compared Methods. All models use a standard DNN (MLP with ReLU
activations over concatenated embeddings) with a sigmoid output for binary classification. We com-
pare four embedding strategies: (1) Separate (independent hashed table per feature), (2) Monolithic
Shared Embedding (MSE) (one shared table), and our proposed two-stage method consisting of
the (3) Shared Optimizer (Stage 1 search) and (4) Shared Applier (Stage 2 retrain). We evaluate
two Applier variants: Applier (Exact Indices) and Applier (RR Load-Balanced).

Training and Evaluation. All models are trained using the Adam optimizer with a binary cross-
entropy loss. We evaluate performance using Area Under the ROC Curve (AUC) and LogLoss.
To ensure a fair comparison and robustness, we conduct a comprehensive hyperparameter search.
The MLP hidden layers are selected from [‘768,256,128’, ‘256,128’, ‘128,64’, ‘64’] for Criteo,
[‘1024,512,256’, ‘512,256,128’, ‘256,128,64’] for Avazu, and [‘256,128’, ‘128,64’, ‘64,32’] for
MovieLens. The key hyperparameter, Base Bucket Size (Bbase), which defines the total parameter
budget, is varied across [2k, 20k, 100k, 200k, 400k] for Criteo, [2k, 20k, 200k] for Avazu, and
[1k, 6k, 14k] for MovieLens. For the baseline and final Applier models, we use a base embedding
dimension of D = 16, with a chunk size of dchunk = 8. For the Stage 1 search model, we use an
expanded search dimension of Dsearch = 32 to provide a rich pool of candidate chunks. We report
the mean metrics over 5 runs with different random seeds.

4.2 RESULTS AND ANALYSIS

Performance Comparison. The full hyperparameter comparisons are available in Appendix D.
Figure 2 highlights the key findings on Test AUC. Table 1 provides a quantitative summary for a rep-
resentative configuration from each dataset. As shown in Table 1 and Figure 2, our proposed SEO-
Applier models achieve the highest Test AUC and lowest Test LogLoss on all three datasets for
the representative configurations. The full results in Appendix D confirm this trend across nearly all
hyperparameter combinations. The Applier models (blue and green bars in the plots) consistently
outperform the ‘Separate‘ and ‘Monolithic Shared‘ baselines (grey bars).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

256,128 128,64 64,32
Hidden Layer Dimensions

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

M
ea

n 
Te

st
 A

UC
 (H

ig
he

r i
s B

et
te

r)

0.
80

36
1

0.
80

11
3

0.
80

08
8

0.
85

06
8

0.
84

95
5

0.
84

89
0

0.
85

24
6

0.
85

17
0

0.
85

09
4

0.
85

31
0

0.
85

21
0

0.
85

10
9

0.
83

34
3

0.
83

34
4

0.
83

23
1

0.
83

34
8

0.
83

29
9

0.
83

17
5

0.
85

27
5

0.
85

20
5

0.
85

10
3

0.
85

27
7

0.
85

23
8

0.
85

17
1

0.
83

37
4

0.
83

31
1

0.
83

24
6

0.
83

37
9

0.
83

32
6

0.
83

15
7

0.
84

72
1

0.
84

59
0

0.
84

55
5

0.
84

74
6

0.
84

75
5

0.
84

61
1

0.
82

84
4

0.
82

71
8

0.
82

60
1

0.
82

95
4

0.
82

74
8

0.
82

74
6

Performance Comparison (Test AUC) on MovieLens @ 6000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
Applier (Exact Indices) (Adj:T, Proj:T)

Applier (RR Load-Balanced) (Adj:F, Proj:F)
Applier (RR Load-Balanced) (Adj:F, Proj:T)
Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
Optimizer (Search Phase) (Adj:F, Proj:T)

Optimizer (Search Phase) (Adj:T, Proj:F)
Optimizer (Search Phase) (Adj:T, Proj:T)

(a) MovieLens (Test AUC) @ 6k Base Bucket Size

1024,512,256 512,256,128 256,128,64
Hidden Layer Dimensions

0.768

0.770

0.772

0.774

0.776

M
ea

n 
Te

st
 A

UC
 (H

ig
he

r i
s B

et
te

r)

0.
76

86
3

0.
76

82
8

0.
76

77
6

0.
77

28
9

0.
77

27
3

0.
77

23
90.

77
37

5

0.
77

34
8

0.
77

31
6

0.
77

38
0

0.
77

35
8

0.
77

34
6

0.
77

24
0

0.
77

21
7

0.
77

17
3

0.
77

24
2

0.
77

23
5

0.
77

18
4

0.
77

39
3

0.
77

35
1

0.
77

33
4

0.
77

38
7

0.
77

36
3

0.
77

33
5

0.
77

25
3

0.
77

22
9

0.
77

17
9

0.
77

24
8

0.
77

22
0

0.
77

20
9

0.
77

19
7

0.
77

20
9

0.
77

11
7

0.
77

21
0

0.
77

17
1

0.
77

12
7

0.
77

08
1

0.
77

04
2

0.
77

01
3

0.
77

03
6

0.
77

01
9

0.
76

98
0

Performance Comparison (Test AUC) on Avazu @ 20000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
Applier (Exact Indices) (Adj:T, Proj:T)

Applier (RR Load-Balanced) (Adj:F, Proj:F)
Applier (RR Load-Balanced) (Adj:F, Proj:T)
Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
Optimizer (Search Phase) (Adj:F, Proj:T)

Optimizer (Search Phase) (Adj:T, Proj:F)
Optimizer (Search Phase) (Adj:T, Proj:T)

(b) Avazu (Test AUC) @ 20k Base Bucket Size

768,256,128 256,128 128,64 64
Hidden Layer Dimensions

0.7850

0.7875

0.7900

0.7925

0.7950

0.7975

0.8000

0.8025

M
ea

n 
Te

st
 A

UC
 (H

ig
he

r i
s B

et
te

r)

0.
79

51
0

0.
79

28
9

0.
79

18
6

0.
78

66
1

0.
79

70
5

0.
79

60
2

0.
79

49
6

0.
79

16
1

0.
79

71
1

0.
79

71
1

0.
79

46
6

0.
79

16
5

0.
79

75
5

0.
79

60
3

0.
79

48
0

0.
79

18
6

0.
79

72
8

0.
79

66
3

0.
79

51
7

0.
79

15
2

0.
79

69
3

0.
79

65
1

0.
79

52
1

0.
79

15
4

0.
79

71
0

0.
79

76
4

0.
79

50
0

0.
79

21
5

0.
79

76
9

0.
79

59
2

0.
79

45
2

0.
79

22
9

0.
79

77
5

0.
79

64
8

0.
79

54
5

0.
79

18
5

0.
79

72
4

0.
79

66
2

0.
79

48
2

0.
79

18
5

0.
79

65
1

0.
79

62
9

0.
79

49
1

0.
79

20
1

0.
79

56
6

0.
79

47
6

0.
79

40
1

0.
79

23
0

0.
79

60
3

0.
79

56
9

0.
79

43
5

0.
79

16
7

0.
79

51
2

0.
79

46
3

0.
79

39
2

0.
79

13
8

Performance Comparison (Test AUC) on Criteo Small @ 100000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
Applier (Exact Indices) (Adj:T, Proj:T)

Applier (RR Load-Balanced) (Adj:F, Proj:F)
Applier (RR Load-Balanced) (Adj:F, Proj:T)
Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
Optimizer (Search Phase) (Adj:F, Proj:T)

Optimizer (Search Phase) (Adj:T, Proj:F)
Optimizer (Search Phase) (Adj:T, Proj:T)

(c) Criteo Small (Test AUC) @ 100k Base Bucket Size

Figure 2: Main results summary: Test AUC comparison on MovieLens, Avazu, and Criteo
Small datasets for a representative base bucket size. Each plot shows performance across dif-
ferent hidden layer dimensions (x-axis) and methods (bars). In method names, “Adj” denotes
adjust hash buckets and “Proj” denotes use down projection. The yellow stars highlight the
best-performing Applier or Baseline model. Full hyperparameter comparisons are available in Ap-
pendix D.

Embedding Parameter Budget. We designed our experiments for a fair parameter comparison.
All three main embedding strategies (‘Separate‘, ‘Monolithic Shared‘, and ‘Applier‘) are allocated
an identical total embedding parameter budget, defined as P = Bbase ×D, where Bbase is the
“base bucket size” (from the plots) and D = 16. For ‘Monolithic Shared (MSE)‘ and our ‘Applier‘
models, this budget is instantiated as a single unified table of size Bbase × 16. In contrast, for the
‘Separate (Baseline)‘, this same total budget is distributed across the F features; each feature is given
an independent table of width D = 16 and a bucket size of Bfeat ≈ Bbase/F , keeping the total
parameter count identical (F×(Bbase/F )×16 = Bbase×16). The results in Table 1 demonstrate our
core finding: given a fixed parameter budget, our ‘Applier‘ method significantly outperforms both
the standard ‘Separate‘ and ‘Monolithic Shared‘ approaches in terms of Test AUC and LogLoss. The
“efficiency” of our method lies in its superior performance-per-parameter, achieved by intelligently
structuring the unified embedding table based on the search phase results.

Ablation Study: Search Configuration and Applier Variants To validate our two-stage design,
we conduct a detailed ablation study across all three datasets, shown in Table 2. This study analyzes

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Dataset Model Test AUC Test LogLoss Params (M)
Criteo
(26 Feat, Bbase=100k)
(H=‘768,256,128’)

Separate (Baseline) 0.79510 0.45263 1.60
Monolithic Shared (MSE) 0.79705 0.45119 1.60
Applier (RR Load-Balanced) 0.79775 0.45062 1.60

Avazu
(22 Feat, Bbase=20k)
(H=‘512,256,128’)

Separate (Baseline) 0.76828 0.38359 0.32
Monolithic Shared (MSE) 0.77273 0.38111 0.32
Applier (RR Load-Balanced) 0.77363 0.38063 0.32

MovieLens 1M
(6 Feat, Bbase=6k)
(H=‘256,128’)

Separate (Baseline) 0.80361 0.41596 0.10
Monolithic Shared (MSE) 0.85068 0.36787 0.10
Applier (Exact Indices) 0.85310 0.36590 0.10

Table 1: Performance comparison on representative configurations. We report the mean Test AUC
and Test LogLoss over 5 random seeds. Best performance is in bold. All models within a dataset
are allocated an identical embedding parameter budget.

two key axes: (1) The impact of the Stage 1 ‘Search‘ configuration (DP and AH) on the final result,
and (2) the performance of our two proposed Stage 2 ‘Applier‘ variants. We observe three key
findings:

• Retraining (Stage 2) is Essential: On all three datasets, all ‘Applier‘ models (both ‘Exact‘
and ‘RR‘) consistently and significantly outperform their corresponding ‘Search Model
(Stage 1)‘. For example, on Criteo with the ‘(False, True)‘ search configuration, the ‘Search
Model‘ achieves an AUC of 0.79603, while its ‘Applier (RR)‘ counterpart improves to
0.79775. This confirms that the search model, designed for exploration, finds a suboptimal
local minimum, and retraining from scratch is necessary to unlock the true performance of
the discovered architecture.

• Choice of Applier Variant Matters: The ‘Applier (RR Load-Balanced)‘ variant consis-
tently achieves the best performance on the large-scale Criteo and Avazu datasets. Con-
versely, the ‘Applier (Exact Indices)‘ variant performs best on the smaller MovieLens 1M
dataset. This nuanced finding justifies our choice of using the optimal Applier variant for
each dataset in Table 1. This behavior can be attributed to the characteristics of the datasets.
Criteo and Avazu feature a large number of high-cardinality, sparse features, where the
load-balancing of the RR strategy acts as a powerful regularizer against hash collisions.
MovieLens, with fewer and denser features, benefits more from the precise structure dis-
covered by the search, which the ‘Exact‘ applier faithfully instantiates.

• Search is Robust: The choice of search parameters (DP/AH) has a minimal impact on the
final ‘Applier‘ model’s performance. On all datasets, the ‘Applier‘ results are extremely
stable regardless of the search configuration (e.g., Avazu ‘Applier (RR)‘ AUC is stable
between 0.77220 and 0.77363 across all four search settings). This indicates that our search
process is robust to these configuration choices.

Given these findings, we selected the best-performing Applier variant for each dataset (RR for
Criteo/Avazu, Exact for MovieLens) as our primary model for all other experiments.

4.3 TRAINING OVERHEAD ANALYSIS

A key consideration for our two-stage framework is its computational cost. We divide this analysis
into two parts: the recurring training cost of our final ‘Applier‘ model (Stage 2), and the one-time,
offline cost of the ‘Search‘ phase (Stage 1). Our experiments demonstrate that our ‘Applier‘ model
achieves superior predictive performance with a recurring training time that is highly comparable to
the baselines.

Table 3 details the per-epoch training times. To ensure robustness against systemic noise such as
scheduling and pre-emption from running on a shared CPU cluster, we report the median time over
5 runs. The results show that the recurring training cost of our ‘Applier‘ model is competitive. On
Criteo and Avazu, the ‘Applier‘ model’s training time (1,738.3s and 2,122.1s, respectively) is slightly
slower than the fastest baseline, MSE (1,527.1s and 1,949.2s), but remains substantially faster than

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Dataset Search Config (DP, AH) Search Model Applier Model (Stage 2)
Test AUC Applier (Exact) Applier (RR)

Criteo (False, False) 0.79651 0.79711 0.79710
(H=‘768,256,128’, (False, True) 0.79603 0.79728 0.79775
B=100k) (True, False) 0.79566 0.79755 0.79769

(True, True) 0.79512 0.79693 0.79724
Avazu (False, False) 0.77209 0.77348 0.77351
(H=‘512,256,128’, (False, True) 0.77042 0.77217 0.77229
B=20k) (True, False) 0.77171 0.77358 0.77363

(True, True) 0.77019 0.77235 0.77220

MovieLens 1M (False, False) 0.84721 0.85246 0.85275
(H=‘256,128’, (False, True) 0.82844 0.83343 0.83374
B=6k) (True, False) 0.84746 0.85310 0.85277

(True, True) 0.82954 0.83348 0.83379

Table 2: Detailed ablation study (Test AUC) on all three datasets, using the same configurations as
Table 1. We compare the final AUC of the Stage 1 Search Model against the two Stage 2 Applier
variants (Exact Indices vs. RR Load-Balanced) trained from its discovered policy.

Baselines (Recurring) Our Method (SEO)
Dataset Config Sep. MSE Applier (RR) Search (Stage 1)
Criteo (H=‘768,256,128’, B=100k) 2,211.3s 1,527.1s 1,738.3s

Search (DP=F, AH=F) 2,765.5s
Search (DP=F, AH=T) 2,069.9s
Search (DP=T, AH=F) 3,355.2s
Search (DP=T, AH=T) 1,985.2s

Avazu (H=‘512,256,128’, B=20k) 8,285.7s 1,949.2s 2,122.1s
Search (DP=F, AH=F) 2,418.1s
Search (DP=F, AH=T) 3,866.2s
Search (DP=T, AH=F) 3,406.5s
Search (DP=T, AH=T) 2,902.5s

MovieLens (H=‘256,128’, B=6k) 99.3s 131.8s 107.3s
Search (DP=F, AH=F) 97.2s
Search (DP=F, AH=T) 173.6s
Search (DP=T, AH=F) 109.0s
Search (DP=T, AH=T) 142.2s

Table 3: Training Time per Epoch (seconds) reported as the median over 5 runs. ‘DP‘ refers to
‘use down projection‘ and ‘AH‘ to ‘adjust hash buckets‘. The fastest recurring cost (baselines vs.
Applier (RR)) for each dataset is in bold.

the ‘Separate‘ baseline. On MovieLens, our ‘Applier‘ (107.3s) is faster than MSE (131.8s) and only
marginally slower than the ‘Separate‘ baseline (99.3s).

The ‘Search‘ phase does introduce a one-time, offline computation cost. However, this cost is rea-
sonable; for instance, on Criteo, the fastest search configuration (1,985.2s) is faster than the ‘Sep-
arate‘ baseline. On both MovieLens and Criteo, the search cost is comparable to a single epoch of
baseline training. This cost is incurred only once to determine the optimal embedding architecture
and is amortized over all subsequent training runs of the more performant ‘Applier‘ model. In sum-
mary, our two-stage approach’s recurring training cost is highly competitive, demonstrating that the
significant performance gains do not come with an unreasonable training overhead.

5 CONCLUSION

We proposed Shared Embedding Optimization (SEO), a two-stage (search-retrain) framework for
learning optimal, heterogeneous embedding structures. Theoretically, its hypothesis space supersets
the monolithic model, guaranteeing at least equal performance. Experimentally, our SEO Appliers
consistently outperform ‘Separate‘ and ‘Monolithic Shared‘ baselines on Criteo, Avazu, and Movie-
Lens 1M, given identical parameter budgets and comparable training times.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Our research proposes a foundational method, Shared Embedding Optimization (SEO), for improv-
ing the parameter efficiency of embedding layers, primarily in deep learning recommender systems.
We have evaluated our method using three well-established, anonymized, and publicly available
benchmark datasets: Criteo, Avazu, and MovieLens 1M. Our study did not involve any new data
collection or human subjects.

We acknowledge that recommender systems, as a class of applications, can have broader societal
impacts, including potential fairness and bias issues. Our work focuses on the structural and compu-
tational efficiency of the embedding component, not the downstream recommendation logic itself.
The learned embedding-sharing policy could, in principle, interact with model fairness, for example,
by allocating representational capacity inequitably across different user groups. Our current study
does not investigate the fairness or bias implications of the learned structures. We believe this is
an important and necessary direction for future work, particularly analyzing how optimized embed-
ding architectures like those found by SEO interact with fairness-aware training objectives and bias
mitigation techniques. To our knowledge, our method does not introduce new privacy, security, or
ethical risks beyond those already associated with standard deep learning models.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. We will provide an anonymous link
to our source code, models, and experimental scripts as supplementary material. This repository will
contain implementations for our two-stage SEO framework’s Applier stage (Stage 2), all baseline
models (Separate and Monolithic Shared), and the experimental harnesses. The Search stage (Stage
1), as described in Section 3, utilizes a differentiable search mechanism adapted from Yasuda et al.
(2024). While our specific internal implementation of this search component cannot be open-sourced
due to proprietary constraints, we will provide detailed pseudo-code and a thorough description in
the appendix to facilitate reimplementation. Furthermore, we will release the exact architectural
policies discovered by our search for each experiment, allowing the community to directly run and
verify the Applier model, which is trained from scratch and represents a core component of our
contribution.

Our experiments are conducted on three public benchmarks (Criteo, Avazu, MovieLens 1M). We
detail our preprocessing and data splitting protocols in Section 4.1, which follow established prior
work (Wang et al., 2021; Song et al., 2019) to facilitate direct comparison. The theoretical justifica-
tion for our framework, introduced in Section 3.3, is accompanied by detailed proofs in Appendix
C. All critical hyperparameters, such as MLP architecture, base bucket size, and optimizer settings,
are described in Section 4.1. Furthermore, we provide a comprehensive set of results, including de-
tailed ablation studies (Table 2) and the full experimental outcomes across all tested hyperparameter
configurations in Appendix D, ensuring transparency and allowing for thorough verification of our
claims.

REFERENCES

Rohan Anil, Sandra Gadanho, Da Huang, Nijith Jacob, Zhuoshu Li, Dong Lin, Todd Phillips,
Cristina Pop, Kevin Regan, Gil I. Shamir, Rakesh Shivanna, and Qiqi Yan. On the factory
floor: ML engineering for industrial-scale ads recommendation models. In Proceedings of the
5th Workshop on Online Recommender Systems and User Modeling co-located with the 16th
ACM Conference on Recommender Systems, 2022.

Wenlin Chen, James T. Wilson, Stephen Tyree, Kilian Q. Weinberger, and Yixin Chen. Compressing
neural networks with the hashing trick. In Proceedings of the 32nd International Conference on
Machine Learning, pp. 2285–2294. PMLR, 2015.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra, Hrishi Aradhye,
Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil, Zakaria Haque, Lichan
Hong, Vihan Jain, Xiaobing Liu, and Hemal Shah. Wide & deep learning for recommender
systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, pp.
7–10. ACM, 2016.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Benjamin Coleman, Wang-Cheng Kang, Matthew Fahrbach, Ruoxi Wang, Lichan Hong, Ed H. Chi,
and Derek Zhiyuan Cheng. Unified Embedding: Battle-tested feature representations for web-
scale ML systems. In Advances in Neural Information Processing Systems, pp. 1334–1353, 2023.

Criteo Labs. Display advertising challenge, 2014. URL https://www.kaggle.com/c/
criteo-display-ad-challenge.

Song Han, Huizi Mao, and William J. Dally. Deep Compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In International Conference on Learning
Representations, 2016.

F. Maxwell Harper and Joseph A. Konstan. The MovieLens datasets: History and context. ACM
Transactions on Interactive Intelligent Systems, 5(4):19:1–19:19, 2015.

Wang-Cheng Kang, Derek Zhiyuan Cheng, Tiansheng Yao, Xinyang Yi, Ting Chen, Lichan Hong,
and Ed H. Chi. Learning to embed categorical features without embedding tables for recommen-
dation. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, pp. 766–774. ACM, 2021.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019. URL https://openreview.net/
forum?id=S1eYHoC5FX.

John Moody and Christian J. Darken. Fast learning in networks of locally-tuned processing units.
Neural Computation, 1(2):281–294, 1989.

Dheevatsa Mudigere, Yuxi Hao, Jørgen Hansen, Jing Jiao, Liang Jiang, Aravind Koker, Minseok
Lee, Misha Liu, Meghan O’Boyle, Jongsoo Park, Raghuraman Singh, Sridhar Subramanian, Gu-
Yeon Tang, Hao Wu, Yuchen Zhang, and Hong Zhu. High-performance, distributed training of
large-scale deep learning recommendation models. In Proceedings of the 49th Annual Interna-
tional Symposium on Computer Architecture, pp. 526–541. ACM, 2022.

Hao-Jun Michael Shi, Panagiotis Tsiligkaridis, and Marinka Zitnik. Compositional embeddings
using complementary partitions for memory-efficient recommendation systems. In Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 337–345. ACM, 2020.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang.
AutoInt: Automatic feature interaction learning via self-attentive neural networks. In Proceed-
ings of the 28th ACM International Conference on Information and Knowledge Management, pp.
1161–1170. ACM, 2019.

Dan Svenstrup, Jonas Hansen, and Ole Winther. Hash embeddings for efficient word representations.
In Advances in Neural Information Processing Systems, volume 30, 2017.

Ruoxi Wang, Rakesh Shivanna, Derek Zhiyuan Cheng, Sagar Jain, Dong Lin, Lichan Hong, and
Ed H. Chi. DCN V2: Improved deep & cross network and practical lessons for web-scale learning
to rank systems. In Proceedings of the Web Conference 2021, pp. 1785–1797. ACM, 2021.

Kilian Q. Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Fea-
ture hashing for large scale multitask learning. In Proceedings of the 26th Annual International
Conference on Machine Learning, pp. 1113–1120, 2009.

Taisuke Yasuda, MohammadHossein Bateni, Lin Chen, Matthew Fahrbach, Gang Fu, and Vahab
Mirrokni. Sequential attention for feature selection. In International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=TTLLGx3eet.

Taisuke Yasuda, Kyriakos Axiotis, Gang Fu, MohammadHossein Bateni, and Vahab Mirrokni. Se-
quentialAttention++ for block sparsification: Differentiable pruning meets combinatorial opti-
mization. Advances in Neural Information Processing Systems, 37:74008–74033, 2024.

Xiangyu Zhao, Haochen Liu, Hui Liu, Jiliang Tang, Weiwei Guo, Jun Shi, Sida Wang, Huiji Gao,
and Bo Long. AutoDim: Field-aware embedding dimension search in recommender systems. In
Proceedings of The Web Conference 2021, pp. 3015–3022. ACM, 2021a.

11

https://www.kaggle.com/c/criteo-display-ad-challenge
https://www.kaggle.com/c/criteo-display-ad-challenge
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=TTLLGx3eet


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiangyu Zhao, Chong Wang, Ming Chen, Xudong Zheng, Xiaobing Liu, and Jiliang Tang. Au-
toEmb: Automated embedding dimensionality search in streaming recommendations. In 2021
IEEE International Conference on Data Mining, pp. 896–905. IEEE, 2021b.

Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning. In Interna-
tional Conference on Learning Representations, 2017. URL https://openreview.net/forum?
id=r1Ue8Hcxg.

12

https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A STATEMENT ON LLM USAGE

In accordance with the ICLR 2026 policy, we report that Large Language Models (LLMs) were used
as a general-purpose writing assistant for this paper. The use of LLMs was strictly limited to aiding
with and polishing the writing, such as improving grammar, clarity, and conciseness. LLMs did not
contribute to the research ideation, methodology, experimental analysis, or the generation of core
results. All authors have reviewed and take full responsibility for the final content.

B FURTHER RELATED WORK

This section provides additional context on related research areas that inform our work but are less
directly comparable to the specific problem solved by SEO.

B.1 FOUNDATIONAL EMBEDDING COMPRESSION

Foundational techniques aim to reduce the size of a pre-trained model, typically by lowering the nu-
merical precision of its parameters or removing them entirely. The seminal work of Han et al. (2016)
introduced a three-stage pipeline of pruning, trained quantization, and Huffman coding, demonstrat-
ing significant model size reduction on computer vision tasks without accuracy loss. This established
a powerful post-hoc compression paradigm. These methods are fundamentally different from our
Shared Embedding Optimization (SEO) framework. Pruning and quantization are post-hoc opti-
mizations applied to an already trained model; their goal is to minimize model size subject to a
constraint on accuracy degradation. In contrast, SEO is a pre-training structural optimization. It
operates under a strict constraint of a fixed parameter budget with the goal of improving model
accuracy.

B.2 HASHING VARIANTS AND STRUCTURED SHARING

The hashing trick is a cornerstone of parameter-efficient embeddings, but its random nature has
led to the development of more sophisticated variants. Hash embeddings (Svenstrup et al., 2017)
assign each feature to multiple rows in the table, with the final embedding being a weighted sum.
Other methods modify the lookup process itself. For instance, HashedNet (Chen et al., 2015) in-
dependently looks up each dimension of the embedding in a flattened parameter space, while deep
hash embeddings (Kang et al., 2021) use a neural network to directly output the embedding vector.
Beyond hashing, other structured approaches exist. Compositional embeddings construct a unique
representation for each feature by combining vectors from multiple smaller, shared codebooks, of-
ten using a fixed rule like summation or element-wise products (Shi et al., 2020). Another class
of methods uses tensor decomposition to re-parameterize a large embedding table as a product of
smaller, low-rank tensors. While SEO is conceptually related, with our “chunks” being analogous to
shared codebooks, a key distinction is that these methods typically employ a fixed, pre-defined com-
bination rule. SEO, in contrast, uses its Stage 1 Search phase to learn an optimal, feature-specific
combination policy.

C PROOFS

Proof of Theorem 1. We prove MH ⊆ MA by construction. Let MH be an arbitrary model in the
MSE hypothesis space MH , defined by its parameters θH = (WH ,WMLP ), where WH ∈ RB×D.
We construct a specific model MA ∈ MA as follows:

1. Set the Applier’s MLP parameters to be identical to the MSE model’s parameters:
W ′

MLP = WMLP .

2. Logically partition the MSE embedding table WH into M chunks T1, . . . , TM such that
WH = Concat(T1, ..., TM ). We set the Applier’s embedding table WA = WH .

3. Define the structural policy S for MA as the “trivial policy” Strivial, where for every feature
f ∈ F , the policy is to select all chunks: Sf = {1, ...,M}.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

This constructed model MA is, by definition, a member of the Applier hypothesis space MA. We
verify that it computes an identical function to MH . For any feature f , the embedding function of
MH is Ef (x) = Lookup(WH ,xf ) = Concat(T1(xf ), ..., TM (xf )). The embedding function of our
MA is Ef (x,Strivial) = Concat({Ti(xf ) | i ∈ Strivial,f}) = Concat(T1(xf ), ..., TM (xf )). Since
the embedding outputs are identical for all features and the MLP weights are identical, the models
compute the same function for all inputs. Thus, any MH ∈ MH has an equivalent MA ∈ MA.
The inclusion is strict (MH ̸= MA) because MA also contains all heterogeneous models where
Sf ̸= {1, ...,M} for at least one feature f (e.g., Sf = {1}). These models are not representable by
any model in MH .

Proof of Corollary 1. This follows directly from Theorem 1. Since MH ⊂ MA, the minimization
over the superset MA must find a solution at least as good as (and potentially better than) the
minimization over the subset MH .

D FULL HYPERPARAMETER RESULTS (TEST AUC)

This appendix contains the full Test AUC comparison plots for all ‘Base Bucket Size‘ (Bbase) con-
figurations tested for each dataset, complementing the representative results shown in Figure 2.

D.1 MOVIELENS 1M RESULTS

256,128 128,64 64,32
Hidden Layer Dimensions

0.74

0.76

0.78

0.80

0.82

M
ea

n 
Te

st
 A

UC
 (H

ig
he

r i
s B

et
te

r)

0.
75

06
7

0.
74

64
9

0.
74

48
3

0.
79

73
0

0.
79

63
7

0.
79

47
4

0.
79

96
3

0.
79

87
7

0.
79

76
4

0.
79

98
0

0.
79

94
4

0.
79

81
0

0.
76

75
5

0.
76

63
4

0.
76

71
7

0.
76

73
8

0.
76

78
1

0.
76

59
2

0.
79

91
9

0.
79

90
5

0.
79

69
1

0.
79

89
4

0.
79

95
7

0.
79

76
5

0.
76

75
5

0.
76

57
3

0.
76

69
5

0.
76

87
7

0.
76

65
7

0.
76

70
5

0.
79

52
4

0.
79

37
8

0.
79

06
2

0.
79

56
3

0.
79

54
1

0.
79

29
4

0.
76

51
7

0.
76

42
3

0.
76

21
6

0.
76

59
4

0.
76

44
8

0.
76

32
1

Performance Comparison (Test AUC) on MovieLens @ 1000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
Applier (Exact Indices) (Adj:T, Proj:T)

Applier (RR Load-Balanced) (Adj:F, Proj:F)
Applier (RR Load-Balanced) (Adj:F, Proj:T)
Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
Optimizer (Search Phase) (Adj:F, Proj:T)

Optimizer (Search Phase) (Adj:T, Proj:F)
Optimizer (Search Phase) (Adj:T, Proj:T)

Figure 3: MovieLens (Test AUC) @ 1k Base Bucket Size

256,128 128,64 64,32
Hidden Layer Dimensions

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

M
ea

n 
Te

st
 A

UC
 (H

ig
he

r i
s B

et
te

r)

0.
80

36
1

0.
80

11
3

0.
80

08
8

0.
85

06
8

0.
84

95
5

0.
84

89
0

0.
85

24
6

0.
85

17
0

0.
85

09
4

0.
85

31
0

0.
85

21
0

0.
85

10
9

0.
83

34
3

0.
83

34
4

0.
83

23
1

0.
83

34
8

0.
83

29
9

0.
83

17
5

0.
85

27
5

0.
85

20
5

0.
85

10
3

0.
85

27
7

0.
85

23
8

0.
85

17
1

0.
83

37
4

0.
83

31
1

0.
83

24
6

0.
83

37
9

0.
83

32
6

0.
83

15
7

0.
84

72
1

0.
84

59
0

0.
84

55
5

0.
84

74
6

0.
84

75
5

0.
84

61
1

0.
82

84
4

0.
82

71
8

0.
82

60
1

0.
82

95
4

0.
82

74
8

0.
82

74
6

Performance Comparison (Test AUC) on MovieLens @ 6000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
Applier (Exact Indices) (Adj:T, Proj:T)

Applier (RR Load-Balanced) (Adj:F, Proj:F)
Applier (RR Load-Balanced) (Adj:F, Proj:T)
Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
Optimizer (Search Phase) (Adj:F, Proj:T)

Optimizer (Search Phase) (Adj:T, Proj:F)
Optimizer (Search Phase) (Adj:T, Proj:T)

Figure 4: MovieLens (Test AUC) @ 6k Base Bucket Size (Same as Figure 2a)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

256,128 128,64 64,32
Hidden Layer Dimensions

0.83

0.84

0.85

0.86

0.87

0.88

M
ea

n 
Te

st
 A

UC
 (H

ig
he

r i
s B

et
te

r)

0.
83

20
4

0.
83

10
4

0.
83

24
8

0.
86

51
9

0.
86

39
4

0.
86

24
40.
86

93
5

0.
86

75
8

0.
86

47
3

0.
86

87
6

0.
86

71
2

0.
86

52
4

0.
85

87
0

0.
85

79
4

0.
85

60
8

0.
85

81
6

0.
85

74
7

0.
85

76
8

0.
86

90
0

0.
86

73
6

0.
86

57
3

0.
86

87
3

0.
86

69
1

0.
86

61
1

0.
85

89
1

0.
85

81
2

0.
85

68
1

0.
85

87
6

0.
85

73
4

0.
85

69
9

0.
85

99
3

0.
85

91
6

0.
85

81
1

0.
86

13
3

0.
86

03
4

0.
85

96
0

0.
85

07
4

0.
85

03
5

0.
84

93
0

0.
85

16
9

0.
85

12
1

0.
85

05
1

Performance Comparison (Test AUC) on MovieLens @ 14000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
Applier (Exact Indices) (Adj:T, Proj:T)

Applier (RR Load-Balanced) (Adj:F, Proj:F)
Applier (RR Load-Balanced) (Adj:F, Proj:T)
Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
Optimizer (Search Phase) (Adj:F, Proj:T)

Optimizer (Search Phase) (Adj:T, Proj:F)
Optimizer (Search Phase) (Adj:T, Proj:T)

Figure 5: MovieLens (Test AUC) @ 14k Base Bucket Size

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D.2 AVAZU RESULTS

1024,512,256 512,256,128 256,128,64
Hidden Layer Dimensions

0.760

0.762

0.764

0.766

0.768

0.770

0.772

M
ea

n 
Te

st
 A

UC
 (H

ig
he

r i
s B

et
te

r)

0.
76

27
9

0.
76

23
3

0.
76

14
8

0.
76

86
0

0.
76

81
5

0.
76

75
60.

76
94

8

0.
76

92
5

0.
76

88
0

0.
76

97
7

0.
76

93
6

0.
76

86
6

0.
76

81
3

0.
76

79
9

0.
76

74
3

0.
76

81
5

0.
76

78
0

0.
76

72
2

0.
76

96
0

0.
76

90
8

0.
76

89
4

0.
76

98
6

0.
76

94
0

0.
76

88
0

0.
76

85
9

0.
76

80
6

0.
76

72
9

0.
76

81
4

0.
76

78
3

0.
76

72
3

0.
76

74
8

0.
76

72
5

0.
76

69
3

0.
76

70
9

0.
76

66
4

0.
76

64
5

0.
76

62
6

0.
76

56
3

0.
76

51
7

0.
76

57
1

0.
76

55
1

0.
76

49
4

Performance Comparison (Test AUC) on Avazu @ 2000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
Applier (Exact Indices) (Adj:T, Proj:T)

Applier (RR Load-Balanced) (Adj:F, Proj:F)
Applier (RR Load-Balanced) (Adj:F, Proj:T)
Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
Optimizer (Search Phase) (Adj:F, Proj:T)

Optimizer (Search Phase) (Adj:T, Proj:F)
Optimizer (Search Phase) (Adj:T, Proj:T)

Figure 6: Avazu (Test AUC) @ 2k Base Bucket Size

1024,512,256 512,256,128 256,128,64
Hidden Layer Dimensions

0.768

0.770

0.772

0.774

0.776

M
ea

n 
Te

st
 A

UC
 (H

ig
he

r i
s B

et
te

r)

0.
76

86
3

0.
76

82
8

0.
76

77
6

0.
77

28
9

0.
77

27
3

0.
77

23
90.

77
37

5

0.
77

34
8

0.
77

31
6

0.
77

38
0

0.
77

35
8

0.
77

34
6

0.
77

24
0

0.
77

21
7

0.
77

17
3

0.
77

24
2

0.
77

23
5

0.
77

18
4

0.
77

39
3

0.
77

35
1

0.
77

33
4

0.
77

38
7

0.
77

36
3

0.
77

33
5

0.
77

25
3

0.
77

22
9

0.
77

17
9

0.
77

24
8

0.
77

22
0

0.
77

20
9

0.
77

19
7

0.
77

20
9

0.
77

11
7

0.
77

21
0

0.
77

17
1

0.
77

12
7

0.
77

08
1

0.
77

04
2

0.
77

01
3

0.
77

03
6

0.
77

01
9

0.
76

98
0

Performance Comparison (Test AUC) on Avazu @ 20000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
Applier (Exact Indices) (Adj:T, Proj:T)

Applier (RR Load-Balanced) (Adj:F, Proj:F)
Applier (RR Load-Balanced) (Adj:F, Proj:T)
Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
Optimizer (Search Phase) (Adj:F, Proj:T)

Optimizer (Search Phase) (Adj:T, Proj:F)
Optimizer (Search Phase) (Adj:T, Proj:T)

Figure 7: Avazu (Test AUC) @ 20k Base Bucket Size (Same as Figure 2b)

1024,512,256 512,256,128 256,128,64
Hidden Layer Dimensions

0.772

0.773

0.774

0.775

0.776

0.777

0.778

0.779

M
ea

n 
Te

st
 A

UC
 (H

ig
he

r i
s B

et
te

r)

0.
77

23
3

0.
77

27
0

0.
77

23
5

0.
77

60
8

0.
77

59
8

0.
77

55
7

0.
77

61
7

0.
77

59
7

0.
77

59
9

0.
77

60
7

0.
77

61
6

0.
77

55
3

0.
77

57
8

0.
77

55
9

0.
77

53
1

0.
77

58
6

0.
77

54
4

0.
77

51
4

0.
77

64
7

0.
77

64
8

0.
77

58
7

0.
77

63
8

0.
77

63
2

0.
77

61
6

0.
77

57
3

0.
77

56
2

0.
77

53
7

0.
77

57
4

0.
77

56
5

0.
77

52
0

0.
77

50
4

0.
77

48
6

0.
77

47
2

0.
77

49
7

0.
77

46
7

0.
77

43
8

0.
77

43
8

0.
77

41
9

0.
77

37
0

0.
77

43
0

0.
77

41
2

0.
77

37
7

Performance Comparison (Test AUC) on Avazu @ 200000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
Applier (Exact Indices) (Adj:T, Proj:T)

Applier (RR Load-Balanced) (Adj:F, Proj:F)
Applier (RR Load-Balanced) (Adj:F, Proj:T)
Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
Optimizer (Search Phase) (Adj:F, Proj:T)

Optimizer (Search Phase) (Adj:T, Proj:F)
Optimizer (Search Phase) (Adj:T, Proj:T)

Figure 8: Avazu (Test AUC) @ 200k Base Bucket Size

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.3 CRITEO SMALL RESULTS

768,256,128 256,128 128,64 64
Hidden Layer Dimensions

0.76

0.77

0.78

0.79

0.80

M
ea

n 
Te

st
 A

UC
 (H

ig
he

r i
s B

et
te

r)

0.
78

00
2

0.
77

56
0

0.
77

25
7

0.
76

26
6

0.
78

86
6

0.
78

65
6

0.
78

56
0

0.
78

20
8

0.
78

97
5

0.
78

69
1

0.
78

62
2

0.
78

20
6

0.
78

96
9

0.
78

77
5

0.
78

54
9

0.
78

25
2

0.
79

01
1

0.
78

72
7

0.
78

61
1

0.
78

27
50.

78
93

2

0.
78

78
4

0.
78

61
1

0.
78

26
8

0.
78

95
8

0.
78

69
3

0.
78

55
9

0.
78

32
50.

78
97

0

0.
78

78
3

0.
78

58
8

0.
78

20
8

0.
78

99
4

0.
78

73
9

0.
78

57
6

0.
78

25
90.

78
93

1

0.
78

76
4

0.
78

55
8

0.
78

23
5

0.
79

08
0

0.
78

91
0

0.
78

78
5

0.
78

52
40.
78

95
7

0.
78

84
2

0.
78

72
3

0.
78

41
7

0.
78

81
8

0.
78

58
7

0.
78

54
9

0.
78

25
8

0.
78

61
5

0.
78

48
5

0.
78

41
6

0.
78

15
0

Performance Comparison (Test AUC) on Criteo Small @ 2000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
Applier (Exact Indices) (Adj:T, Proj:T)

Applier (RR Load-Balanced) (Adj:F, Proj:F)
Applier (RR Load-Balanced) (Adj:F, Proj:T)
Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
Optimizer (Search Phase) (Adj:F, Proj:T)

Optimizer (Search Phase) (Adj:T, Proj:F)
Optimizer (Search Phase) (Adj:T, Proj:T)

Figure 9: Criteo Small (Test AUC) @ 2k Base Bucket Size

768,256,128 256,128 128,64 64
Hidden Layer Dimensions

0.775

0.780

0.785

0.790

0.795

0.800

0.805

M
ea

n 
Te

st
 A

UC
 (H

ig
he

r i
s B

et
te

r)

0.
78

99
7

0.
78

77
8

0.
78

53
6

0.
77

86
7

0.
79

53
1

0.
79

44
4

0.
79

25
8

0.
78

99
6

0.
79

59
7

0.
79

41
3

0.
79

30
9

0.
79

05
20.

79
52

2

0.
79

43
1

0.
79

36
7

0.
79

00
7

0.
79

57
0

0.
79

44
7

0.
79

28
5

0.
78

99
4

0.
79

57
2

0.
79

39
8

0.
79

30
0

0.
78

99
8

0.
79

56
1

0.
79

43
9

0.
79

30
2

0.
79

00
8

0.
79

56
3

0.
79

45
8

0.
79

36
5

0.
78

98
7

0.
79

52
8

0.
79

44
2

0.
79

30
1

0.
79

02
3

0.
79

55
1

0.
79

37
5

0.
79

27
4

0.
78

95
7

0.
79

56
6

0.
79

43
7

0.
79

34
8

0.
79

10
00.
79

41
9

0.
79

39
5

0.
79

30
6

0.
78

98
60.

79
43

2

0.
79

30
9

0.
79

25
5

0.
78

95
00.

79
33

2

0.
79

24
0

0.
79

14
8

0.
78

92
9

Performance Comparison (Test AUC) on Criteo Small @ 20000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
Applier (Exact Indices) (Adj:T, Proj:T)

Applier (RR Load-Balanced) (Adj:F, Proj:F)
Applier (RR Load-Balanced) (Adj:F, Proj:T)
Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
Optimizer (Search Phase) (Adj:F, Proj:T)

Optimizer (Search Phase) (Adj:T, Proj:F)
Optimizer (Search Phase) (Adj:T, Proj:T)

Figure 10: Criteo Small (Test AUC) @ 20k Base Bucket Size

768,256,128 256,128 128,64 64
Hidden Layer Dimensions

0.7850

0.7875

0.7900

0.7925

0.7950

0.7975

0.8000

0.8025

M
ea

n 
Te

st
 A

UC
 (H

ig
he

r i
s B

et
te

r)

0.
79

51
0

0.
79

28
9

0.
79

18
6

0.
78

66
1

0.
79

70
5

0.
79

60
2

0.
79

49
6

0.
79

16
1

0.
79

71
1

0.
79

71
1

0.
79

46
6

0.
79

16
5

0.
79

75
5

0.
79

60
3

0.
79

48
0

0.
79

18
6

0.
79

72
8

0.
79

66
3

0.
79

51
7

0.
79

15
2

0.
79

69
3

0.
79

65
1

0.
79

52
1

0.
79

15
4

0.
79

71
0

0.
79

76
4

0.
79

50
0

0.
79

21
5

0.
79

76
9

0.
79

59
2

0.
79

45
2

0.
79

22
9

0.
79

77
5

0.
79

64
8

0.
79

54
5

0.
79

18
5

0.
79

72
4

0.
79

66
2

0.
79

48
2

0.
79

18
5

0.
79

65
1

0.
79

62
9

0.
79

49
1

0.
79

20
1

0.
79

56
6

0.
79

47
6

0.
79

40
1

0.
79

23
0

0.
79

60
3

0.
79

56
9

0.
79

43
5

0.
79

16
7

0.
79

51
2

0.
79

46
3

0.
79

39
2

0.
79

13
8

Performance Comparison (Test AUC) on Criteo Small @ 100000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
Applier (Exact Indices) (Adj:T, Proj:T)

Applier (RR Load-Balanced) (Adj:F, Proj:F)
Applier (RR Load-Balanced) (Adj:F, Proj:T)
Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
Optimizer (Search Phase) (Adj:F, Proj:T)

Optimizer (Search Phase) (Adj:T, Proj:F)
Optimizer (Search Phase) (Adj:T, Proj:T)

Figure 11: Criteo Small (Test AUC) @ 100k Base Bucket Size (Same as Figure 2c)

768,256,128 256,128 128,64 64
Hidden Layer Dimensions

0.7875

0.7900

0.7925

0.7950

0.7975

0.8000

0.8025

0.8050

M
ea

n 
Te

st
 A

UC
 (H

ig
he

r i
s B

et
te

r)

0.
79

60
9

0.
79

41
3

0.
79

33
5

0.
78

91
4

0.
79

75
6

0.
79

64
0

0.
79

52
7

0.
79

18
1

0.
79

80
1

0.
79

60
3

0.
79

50
5

0.
79

19
6

0.
79

81
5

0.
79

62
0

0.
79

50
6

0.
79

10
4

0.
79

77
1

0.
79

61
6

0.
79

56
5

0.
79

18
2

0.
79

84
0

0.
79

64
2

0.
79

49
1

0.
79

24
3

0.
79

82
4

0.
79

62
3

0.
79

54
7

0.
79

21
8

0.
79

82
1

0.
79

64
4

0.
79

54
8

0.
79

11
5

0.
79

82
7

0.
79

61
4

0.
79

59
5

0.
79

21
1

0.
79

83
5

0.
79

64
7

0.
79

49
1

0.
79

27
1

0.
79

68
7

0.
79

59
1

0.
79

51
0

0.
79

20
4

0.
79

60
2

0.
79

49
4

0.
79

43
3

0.
79

13
7

0.
79

64
2

0.
79

52
2

0.
79

50
4

0.
79

16
7

0.
79

63
8

0.
79

50
2

0.
79

32
4

0.
79

22
4

Performance Comparison (Test AUC) on Criteo Small @ 200000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
Applier (Exact Indices) (Adj:T, Proj:T)

Applier (RR Load-Balanced) (Adj:F, Proj:F)
Applier (RR Load-Balanced) (Adj:F, Proj:T)
Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
Optimizer (Search Phase) (Adj:F, Proj:T)

Optimizer (Search Phase) (Adj:T, Proj:F)
Optimizer (Search Phase) (Adj:T, Proj:T)

Figure 12: Criteo Small (Test AUC) @ 200k Base Bucket Size

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

768,256,128 256,128 128,64 64
Hidden Layer Dimensions

0.790

0.792

0.794

0.796

0.798

0.800

0.802

0.804

M
ea

n 
Te

st
 A

UC
 (H

ig
he

r i
s B

et
te

r)

0.
79

69
7

0.
79

53
0

0.
79

47
0

0.
79

08
0

0.
79

74
5

0.
79

65
5

0.
79

53
6

0.
79

17
6

0.
79

82
0

0.
79

76
9

0.
79

50
1

0.
79

15
6

0.
79

82
1

0.
79

64
9

0.
79

52
2

0.
79

17
6

0.
79

85
0

0.
79

67
3

0.
79

54
1

0.
79

15
2

0.
79

74
7

0.
79

64
9

0.
79

53
1

0.
79

29
9

0.
79

82
7

0.
79

78
8

0.
79

51
9

0.
79

14
7

0.
79

86
8

0.
79

70
3

0.
79

54
3

0.
79

18
0

0.
79

81
0

0.
79

72
6

0.
79

55
9

0.
79

12
3

0.
79

76
3

0.
79

66
7

0.
79

57
8

0.
79

34
6

0.
79

68
3

0.
79

64
3

0.
79

45
5

0.
79

14
4

0.
79

62
0

0.
79

54
8

0.
79

40
6

0.
79

13
0

0.
79

67
4

0.
79

64
6

0.
79

43
1

0.
79

15
6

0.
79

59
8

0.
79

46
4

0.
79

43
1

0.
79

28
6

Performance Comparison (Test AUC) on Criteo Small @ 400000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
Applier (Exact Indices) (Adj:T, Proj:T)

Applier (RR Load-Balanced) (Adj:F, Proj:F)
Applier (RR Load-Balanced) (Adj:F, Proj:T)
Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
Optimizer (Search Phase) (Adj:F, Proj:T)

Optimizer (Search Phase) (Adj:T, Proj:F)
Optimizer (Search Phase) (Adj:T, Proj:T)

Figure 13: Criteo Small (Test AUC) @ 400k Base Bucket Size

18


	Introduction
	Related Work
	Method: Shared Embedding Optimization (SEO)
	Stage 1: Search for an Optimal Sharing Policy
	Stage 2: Applier Model Instantiation and Retraining
	Theoretical Justification

	Experiments
	Experimental Setup
	Results and Analysis
	Training Overhead Analysis

	Conclusion
	Statement on LLM Usage
	Further Related Work
	Foundational Embedding Compression
	Hashing Variants and Structured Sharing

	Proofs
	Full Hyperparameter Results (Test AUC)
	MovieLens 1M Results
	Avazu Results
	Criteo Small Results


