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ABSTRACT

Large-scale recommendation systems are dominated by the memory and compu-
tational cost of their embedding tables. Standard approaches force a difficult com-
promise: either use independent embedding tables for each feature (“Separate”),
which offers high performance but can be inefficient in terms of parameters, or use
a single table shared by all features (“Monolithic Shared”), which is parameter-
efficient but imposes a naive, homogeneous structure that degrades model quality.
This paper argues that this is a false dilemma. We contend that the structure of a
shared embedding table should be neither fully separate nor fully monolithic, but
rather a learned, heterogeneous configuration optimized for the task. We propose
Shared Embedding Optimization (SEO), a novel two-stage framework to discover
and instantiate such a structure automatically. In Stage 1 (Search), we train an
over-parameterized model to learn an optimal, feature-specific policy for sharing
and allocating embedding chunks. In Stage 2 (Applier), we instantiate a new, com-
pact model based on this learned policy and retrain it from scratch. We provide a
theoretical justification showing our Applier’s hypothesis space is a superset of the
monolithic model. Comprehensive experiments on three large-scale benchmarks
(Criteo, Avazu, MovieLens 1M) demonstrate that SEO significantly and consis-
tently outperforms both ‘Separate‘ and ‘Monolithic Shared‘ baselines, given an
identical embedding parameter budget and a comparable recurring training time.

1 INTRODUCTION

Embedding layers are the cornerstone of modern deep learning models for categorical data, par-
ticularly in large-scale systems like click-through rate (CTR) prediction (Cheng et al., 2016; Anil
et al., 2022). These embedding tables map high-cardinality sparse features (e.g., user id, item id)
to dense vectors and often consume over 99% of total model parameters. At industrial scale, they
can grow to trillions of parameters, consuming petabytes of memory (Mudigere et al., 2022). This
massive size creates a bottleneck for model training, inference, and deployment, making parameter
efficiency a first-order research priority.

Current approaches to managing this parameter budget typically force practitioners into an unfortu-
nate compromise between two opposing philosophies. On one hand, Separate Embeddings assign
an independent embedding table to each categorical feature. While this allows each feature to learn a
specialized representation and often yields high performance, it is immensely parameter-inefficient,
fails to exploit potential inter-feature similarities, and scales poorly as feature count and cardinality
grow. On the other hand, Monolithic Shared Embeddings (MSE) utilize a single, unified em-
bedding table for all features—a strategy refined and successfully deployed at web-scale (Coleman
et al., 2023). This approach is highly parameter-efficient but imposes a naive, ‘one-size-fits-all’
structure. It forces features with vastly different characteristics—such as a high-cardinality user id
and a low-cardinality day of week—to share the same parameter space and capacity, leading to
representation collisions and a demonstrable degradation in model quality.

This paper argues that the choice between full separation and monolithic sharing represents a false
dilemma. We contend that the optimal solution lies not at these extremes, but in a heterogeneous
embedding structure, where the parameter budget is intelligently allocated and shared based on the
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specific needs of each feature and the overall task. To this end, we propose Shared Embedding Op-
timization (SEO), a novel two-stage framework that breaks this dilemma by learning this optimal,
heterogeneous structure automatically while adhering to a fixed total parameter budget.

The SEO framework operates in two stages.

• Stage 1 (Search): We design an over-parameterized search space where a base embedding
table is partitioned into many small ‘chunks’. We then employ a differentiable search
mechanism, adapted from the structured pruning literature (Yasuda et al., 2023; 2024), to
learn a sparse, feature-specific attention policy that discovers the optimal allocation and
sharing pattern for each feature.

• Stage 2 (Applier): After the search, we discard the search model’s weights entirely. In-
stead, we use the learned policy as a blueprint to instantiate a new, compact Applier model
that contains only the embedding chunks selected by the policy. This new, structurally-
efficient model is then retrained from scratch to converge to a superior solution.

Our contributions are as follows:

1. We propose SEO, a novel two-stage framework that learns a task-specific, heterogeneous
embedding structure to optimize the performance-per-parameter trade-off.

2. We provide a theoretical justification (Section 3.3) showing that our Applier model’s hy-
pothesis space is a strict superset of the Monolithic Shared Embedding baseline, guaran-
teeing a solution of at least equal quality.

3. We conduct comprehensive experiments on three large-scale public benchmarks (Criteo,
Avazu, MovieLens 1M). Our results (Section 4) show that, given an identical parame-
ter budget, our Applier models significantly outperform both Separate and Monolithic
Shared baselines (Table 1).

4. We present a detailed ablation study (Table 2) that validates our design, proving that the
two-stage (Search then Retrain) process is essential and that the search mechanism is ro-
bust. It also reveals the distinct advantages of our two Applier variants, Applier (RR) and
Applier (Exact), on different types of datasets.

5. We demonstrate (Table 3) that our method’s superior performance does not come at a high
cost; the recurring training time of our final Applier model is competitive with (and in
some cases, faster than) standard baselines.

2 RELATED WORK

The immense scale of embedding tables in deep learning recommender systems (DLRS) is a central
challenge, with models reaching trillions of parameters (Mudigere et al., 2022). Research to miti-
gate this has broadly followed two paths: reducing parameters via weight sharing and automating
the design of the embedding architecture itself. A foundational approach to parameter reduction
is the hashing trick (Moody & Darken, 1989; Weinberger et al., 2009), which maps features to a
fixed-size table but suffers from random collisions. This monolithic sharing philosophy has been re-
fined and successfully deployed in industrial-scale systems like Unified Embedding (Coleman et al.,
2023), which use a single, shared representation space. While highly effective, this “one-size-fits-
all” structure forces features with diverse characteristics to share capacity, creating an information
bottleneck. To address this, a more advanced paradigm uses automated machine learning (AutoML)
to discover an optimal embedding architecture, inspired by Neural Architecture Search (NAS) (Zoph
& Le, 2017; Liu et al., 2019). The most closely related works in this area are frameworks like Au-
toEmb (Zhao et al., 2021b) and AutoDim (Zhao et al., 2021a), which automatically assign a variable
embedding dimension to each feature. These methods, however, solve a different problem: they
ask, “What is the optimal embedding dimension (width) for each feature’s separate table?” This
typically results in multiple tables of varying widths.

In contrast, our work, Shared Embedding Optimization (SEO), addresses a distinct and complemen-
tary question:
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Given a single, unified embedding table with a fixed total parameter budget, what
is the optimal policy for allocating and sharing its internal subspaces (chunks)
among features?

This focus on learning the internal structure of a shared representation space under a strict budget
constraint is the core differentiator of our work. Our work is also inspired by recent advances in
differentiable structured pruning, particularly Yasuda et al. (2024), from which we adapt the core
differentiable search mechanism. However, it is crucial to distinguish our contribution. Methods
like SequentialAttention++ aim to prune an existing, fixed-size model by identifying and removing
unimportant weight blocks to improve inference efficiency. In contrast, SEO addresses the distinct
problem of embedding architecture search. We do not prune a model in-place; instead, we lever-
age the differentiable search to discover an optimal architectural blueprint for a shared embedding
table. This blueprint is then used to instantiate and train a new, compact, and structurally superior
model from scratch. Our contribution is thus the novel two-stage search-and-retrain framework for
embedding tables, not the search mechanism itself. For a more detailed discussion of foundational
compression techniques and other structured sharing methods, please see Appendix B.

3 METHOD: SHARED EMBEDDING OPTIMIZATION (SEO)

Shared Embedding Optimization (SEO) is a two-stage framework designed to discover and instan-
tiate a superior, heterogeneous structure for a unified embedding table, while strictly adhering to a
predefined parameter budget. The core principle is to decouple the complex problem of architec-
tural discovery from the final task of weight optimization. First, in a search stage, we explore an
over-parameterized space to identify an optimal, feature-specific policy for sharing and allocating
embedding subspaces. Second, using this policy as a blueprint, we construct a new, compact, and
structurally efficient model, which is then retrained from scratch to achieve superior performance.
Figure 1 provides a conceptual overview of baseline methods and the key components of our SEO
framework.

3.1 STAGE 1: SEARCH FOR AN OPTIMAL SHARING POLICY

Search Space Definition. We start by defining the total parameter budget, P = Bbase×D, which
equals that of a standard Monolithic Shared Embedding (MSE) model with an embedding table
WH ∈ RBbase×D. To create a sufficiently rich search space for discovering novel structures, we
construct an over-parameterized search model, MO. This is achieved by expanding the embedding
dimension from D to a larger search dimension, Dsearch, typically a multiple of D. This expanded
table, WO ∈ RB′

base×Dsearch , provides the necessary representation capacity for the search.

We then logically partition each row of this widened table into N ′ non-overlapping vectors, which
we term chunks. These N ′ partitions form a shared pool of candidate chunk types, each with
dimension dchunk (where N ′ × dchunk = Dsearch). The objective of the search stage is to learn a
distinct selection policy for each feature over this common pool of chunks.

Differentiable Structure Search. To learn a good chunk allocation for each feature, we employ a
differentiable search mechanism adapted from the structured pruning literature (Yasuda et al., 2023;
2024). We introduce a matrix of learnable logits, L ∈ RF×N ′

, where F is the number of categorical
features. The importance score, or attention weight αf,i for the i-th chunk of the f -th feature, is
computed via a global softmax across all possible chunks for all features:

αf,i =
exp(Lf,i/τ)∑F

f ′=1

∑N ′

j=1 exp(Lf ′,j/τ)
(1)

where τ is a temperature parameter. This global normalization ensures that all F × N ′ weights
form a single probability distribution. Yasuda et al. (2024) show that this is equivalent to imposing
a sparsity-inducing log-sum regularizer, which encourages the attention distribution α to become
sparse during training. This allows the model to identify and prioritize the most salient chunks for
each feature.
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(a) Separate Embeddings
(b) Unified (Monolithic) Em-
beddings

α2

y4x1

Feature X & Y

B

Dchunk

Embeddings

DNN

α1 α4α3

Down Projection (Optional)

α6

☉ Hadamard Product

Dsearch

x1

x2

x3

y1

y2

y3

y4

α5 α7 α8

(c) SEO Search Space (Stage 1)

(d) Applier Model (Exact Indices) (e) Applier Model (RR Load-Balanced)

Figure 1: Illustration of different embedding table structures. The diagrams show lookups for
different input values (e.g., x1, x2 are values for Feature X; y1, y4 are values for Feature Y). (a) The
Separate Embeddings baseline assigns an independent table to each feature. (b) The Monolithic
Shared baseline uses a single table for all features and their values. (c) Our SEO Stage 1 (Search)
operates in an over-parameterized space (Dsearch), partitioned into multiple ”chunks.” It learns a
policy to select the optimal chunks for each feature’s values. (d) and (e) depict the compact SEO
Stage 2 (Applier) models built from this policy. (d) The Applier (Exact Indices) variant instantiates
the precise chunk assignments discovered during search (e.g., values for Feature X use chunks 1,
2, and 4, while values for Feature Y use chunks 1 and 3). (e) The Applier (RR Load-Balanced)
variant uses the learned number of chunks per feature but reassigns them in a round-robin manner
to balance table utilization.

During the forward pass, the final embedding for an input xf of feature f is constructed by a
weighted concatenation of its looked-up chunks {C1(xf ), . . . , CN ′(xf )}:

Ef (xf ) = Concat (αf,1C1(xf ), . . . , αf,N ′CN ′(xf )) (2)

The resulting vector Ef (xf ) has dimension Dsearch. These feature-specific embeddings are then
passed to the downstream network.

Policy Derivation. Once the search model has converged, the learned logits L represent a contin-
uous distribution of chunk importance. We derive a discrete architectural policy from these scores.
For each feature f , we identify the set of chunk indices with the highest corresponding attention
scores {αf,i}. This final, discrete policy serves as the blueprint for constructing the new model in
Stage 2.

Practical Considerations for the Search Phase. Two configurations are introduced to manage
computational constraints and ensure experimental integrity during the search.
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• Use Down Projection (Memory-Efficient Search): The search model’s expanded em-
bedding width can cause out-of-memory errors when feature embeddings are concate-
nated. To mitigate this, we provide the use down projection option. Instead of view-
ing the output as F wide embeddings, we consider the complete pool of F × N ′ can-
didate chunks. For a given example, the set of looked-up vectors can be represented as
a matrix Cpool ∈ R(F×N ′)×dchunk . We then apply a learnable linear projection matrix
P ∈ R(F×N ′)×M to reduce this to a smaller set of M vectors, where M is the target num-
ber of chunks for the final model. The resulting projected vectors, Cproj ∈ RM×dchunk ,
are calculated as:

Cproj = PTCpool

These M vectors are then fed to subsequent layers, significantly reducing the memory
footprint. This projection is a temporary scaffold used only during the search.

• Adjust Hash Buckets (Optional for Search): In our experiments, the search model’s em-
bedding table is widened to provide candidate chunks. To maintain a comparable parame-
ter count against baselines during the search phase, we can optionally adjust the number of
hash buckets downwards to compensate. This is an optional setting for the search model,
as its primary purpose is exploration, not direct performance comparison.

3.2 STAGE 2: APPLIER MODEL INSTANTIATION AND RETRAINING

In the second stage, we discard the entire search model (MO), including its embedding table and
learned logits. We use the discrete policy derived in Stage 1 to construct a new, compact Applier
model, MA, from scratch.

Satisfying the Parameter Budget. A core tenet of our method is to ensure a fair comparison. The
Applier model is meticulously constructed to have the same parameter budget, P = Bbase ×D,
as the baselines. To achieve this, it is mandatory to apply the adjust hash buckets strategy. If
the learned policy results in a model with a total embedding width different from D, we adjust the
number of hash buckets in the Applier’s embedding table to precisely compensate, thereby ensuring
the total parameter count remains strictly P . This guarantees a direct and fair comparison against
the baseline models.

Assignment Strategies and Retraining from Scratch. We explore two strategies for instantiating
the learned policy within the Applier model, which has M available embedding sub-tables (slots):

• Applier (Exact Indices): This strategy faithfully preserves the specific chunk indices dis-
covered during the search. If feature F1 selected slots {2, 3} in the search space, its em-
bedding in the Applier model is constructed exclusively from the corresponding slots T2

and T3, precisely realizing the learned structure.

• Applier (RR Load-Balanced): This strategy abstracts the policy, retaining only the num-
ber of chunks selected per feature. It then reassigns chunks using a round-robin schedule.
For instance, if F1 requires 2 chunks and F2 requires 3, F1 is assigned slots {T1, T2} and
F2 is assigned {T3, T4, T1} (wrapping around from a total of M = 4 slots). This respects
the learned per-feature capacity while balancing the utilization of embedding slots.

Once the structure is fixed using one of these strategies, the final Applier model’s weights are ran-
domly initialized and it is trained from scratch. This retraining step is critical, as it allows the
model to find a superior solution within the optimized architecture, unencumbered by the compro-
mises made during the search phase.

3.3 THEORETICAL JUSTIFICATION

Our framework is theoretically grounded. The standard monolithic model can be viewed as a con-
strained, homogeneous special case of the heterogeneous models our Applier can represent.

Definition 1. Let the total embedding parameter budget be P = Bbase × D, partitioned into M
chunks, T1, ..., TM , each of size Bbase × dchunk where M × dchunk = D.

5
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• Let MH be the Monolithic Shared Embedding (MSE) hypothesis space, where the
embedding function for every feature f ∈ F is fixed to use all chunks: Ef (x) =
Concat(T1(xf ), ..., TM (xf )).

• Let MA be the Applier hypothesis space, where the embedding function for each feature f
is determined by a learnable policy Sf ⊆ {1, ...,M}: Ef (x,Sf ) = Concat({Ti(xf ) | i ∈
Sf}).

Theorem 1. The Monolithic Shared Embedding (MSE) hypothesis space MH is a strict subset of
the Applier hypothesis space MA. That is, MH ⊂ MA. (The proof is deferred to Appendix C.)

Corollary 1 (Optimization Guarantee). Given the same parameter budget P , the optimal model
found in the Applier space, M∗

A = argminMA∈MA
L(MA), has a training loss less than or equal

to the optimal model found in the Monolithic space, M∗
H = argminMH∈MH

L(MH). Concretely,

L(M∗
A) ≤ L(M∗

H). (3)

(The proof follows directly from Theorem 1 and is provided in Appendix C.)

The goal of SEO is therefore to find a non-trivial, heterogeneous policy S∗ that allows M∗
A to strictly

outperform M∗
H in practice.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets and Preprocessing. We evaluate on three public benchmarks: Criteo (online advertis-
ing, ∼45M examples, 26 categorical/13 continuous features (Criteo Labs, 2014)), Avazu (click-
prediction, ∼36M examples, 22 categorical features), and MovieLens 1M (collaborative filtering,
6 categorical features, framed as binary prediction for ratings ≥ 3 (Harper & Konstan, 2015)). We
embed all features. Preprocessing and data splits follow Wang et al. (2021) for Criteo/MovieLens
and Song et al. (2019) for Avazu.

Model Architecture and Compared Methods. All models use a standard DNN (MLP with ReLU
activations over concatenated embeddings) with a sigmoid output for binary classification. We com-
pare four embedding strategies: (1) Separate (independent hashed table per feature), (2) Monolithic
Shared Embedding (MSE) (one shared table), and our proposed two-stage method consisting of
the (3) Shared Optimizer (Stage 1 search) and (4) Shared Applier (Stage 2 retrain). We evaluate
two Applier variants: Applier (Exact Indices) and Applier (RR Load-Balanced).

Training and Evaluation. All models are trained using the Adam optimizer with a binary cross-
entropy loss. We evaluate performance using Area Under the ROC Curve (AUC) and LogLoss.
To ensure a fair comparison and robustness, we conduct a comprehensive hyperparameter search.
The MLP hidden layers are selected from [‘768,256,128’, ‘256,128’, ‘128,64’, ‘64’] for Criteo,
[‘1024,512,256’, ‘512,256,128’, ‘256,128,64’] for Avazu, and [‘256,128’, ‘128,64’, ‘64,32’] for
MovieLens. The key hyperparameter, Base Bucket Size (Bbase), which defines the total parameter
budget, is varied across [2k, 20k, 100k, 200k, 400k] for Criteo, [2k, 20k, 200k] for Avazu, and
[1k, 6k, 14k] for MovieLens. For the baseline and final Applier models, we use a base embedding
dimension of D = 16, with a chunk size of dchunk = 8. For the Stage 1 search model, we use an
expanded search dimension of Dsearch = 32 to provide a rich pool of candidate chunks. We report
the mean metrics over 5 runs with different random seeds.

4.2 RESULTS AND ANALYSIS

Performance Comparison. The full hyperparameter comparisons are available in Appendix D.
Figure 2 highlights the key findings on Test AUC. Table 1 provides a quantitative summary for a rep-
resentative configuration from each dataset. As shown in Table 1 and Figure 2, our proposed SEO-
Applier models achieve the highest Test AUC and lowest Test LogLoss on all three datasets for
the representative configurations. The full results in Appendix D confirm this trend across nearly all
hyperparameter combinations. The Applier models (blue and green bars in the plots) consistently
outperform the ‘Separate‘ and ‘Monolithic Shared‘ baselines (grey bars).
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Performance Comparison (Test AUC) on Criteo Small @ 100000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
Applier (Exact Indices) (Adj:T, Proj:T)

Applier (RR Load-Balanced) (Adj:F, Proj:F)
Applier (RR Load-Balanced) (Adj:F, Proj:T)
Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
Optimizer (Search Phase) (Adj:F, Proj:T)

Optimizer (Search Phase) (Adj:T, Proj:F)
Optimizer (Search Phase) (Adj:T, Proj:T)

(c) Criteo Small (Test AUC) @ 100k Base Bucket Size

Figure 2: Main results summary: Test AUC comparison on MovieLens, Avazu, and Criteo
Small datasets for a representative base bucket size. Each plot shows performance across dif-
ferent hidden layer dimensions (x-axis) and methods (bars). In method names, “Adj” denotes
adjust hash buckets and “Proj” denotes use down projection. The yellow stars highlight the
best-performing Applier or Baseline model. Full hyperparameter comparisons are available in Ap-
pendix D.

Embedding Parameter Budget. We designed our experiments for a fair parameter comparison.
All three main embedding strategies (‘Separate‘, ‘Monolithic Shared‘, and ‘Applier‘) are allocated
an identical total embedding parameter budget, defined as P = Bbase ×D, where Bbase is the
“base bucket size” (from the plots) and D = 16. For ‘Monolithic Shared (MSE)‘ and our ‘Applier‘
models, this budget is instantiated as a single unified table of size Bbase × 16. In contrast, for the
‘Separate (Baseline)‘, this same total budget is distributed across the F features; each feature is given
an independent table of width D = 16 and a bucket size of Bfeat ≈ Bbase/F , keeping the total
parameter count identical (F×(Bbase/F )×16 = Bbase×16). The results in Table 1 demonstrate our
core finding: given a fixed parameter budget, our ‘Applier‘ method significantly outperforms both
the standard ‘Separate‘ and ‘Monolithic Shared‘ approaches in terms of Test AUC and LogLoss. The
“efficiency” of our method lies in its superior performance-per-parameter, achieved by intelligently
structuring the unified embedding table based on the search phase results.

Ablation Study: Search Configuration and Applier Variants To validate our two-stage design,
we conduct a detailed ablation study across all three datasets, shown in Table 2. This study analyzes
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Dataset Model Test AUC Test LogLoss Params (M)
Criteo
(26 Feat, Bbase=100k)
(H=‘768,256,128’)

Separate (Baseline) 0.79510 0.45263 1.60
Monolithic Shared (MSE) 0.79705 0.45119 1.60
Applier (RR Load-Balanced) 0.79775 0.45062 1.60

Avazu
(22 Feat, Bbase=20k)
(H=‘512,256,128’)

Separate (Baseline) 0.76828 0.38359 0.32
Monolithic Shared (MSE) 0.77273 0.38111 0.32
Applier (RR Load-Balanced) 0.77363 0.38063 0.32

MovieLens 1M
(6 Feat, Bbase=6k)
(H=‘256,128’)

Separate (Baseline) 0.80361 0.41596 0.10
Monolithic Shared (MSE) 0.85068 0.36787 0.10
Applier (Exact Indices) 0.85310 0.36590 0.10

Table 1: Performance comparison on representative configurations. We report the mean Test AUC
and Test LogLoss over 5 random seeds. Best performance is in bold. All models within a dataset
are allocated an identical embedding parameter budget.

two key axes: (1) The impact of the Stage 1 ‘Search‘ configuration (DP and AH) on the final result,
and (2) the performance of our two proposed Stage 2 ‘Applier‘ variants. We observe three key
findings:

• Retraining (Stage 2) is Essential: On all three datasets, all ‘Applier‘ models (both ‘Exact‘
and ‘RR‘) consistently and significantly outperform their corresponding ‘Search Model
(Stage 1)‘. For example, on Criteo with the ‘(False, True)‘ search configuration, the ‘Search
Model‘ achieves an AUC of 0.79603, while its ‘Applier (RR)‘ counterpart improves to
0.79775. This confirms that the search model, designed for exploration, finds a suboptimal
local minimum, and retraining from scratch is necessary to unlock the true performance of
the discovered architecture.

• Choice of Applier Variant Matters: The ‘Applier (RR Load-Balanced)‘ variant consis-
tently achieves the best performance on the large-scale Criteo and Avazu datasets. Con-
versely, the ‘Applier (Exact Indices)‘ variant performs best on the smaller MovieLens 1M
dataset. This nuanced finding justifies our choice of using the optimal Applier variant for
each dataset in Table 1. This behavior can be attributed to the characteristics of the datasets.
Criteo and Avazu feature a large number of high-cardinality, sparse features, where the
load-balancing of the RR strategy acts as a powerful regularizer against hash collisions.
MovieLens, with fewer and denser features, benefits more from the precise structure dis-
covered by the search, which the ‘Exact‘ applier faithfully instantiates.

• Search is Robust: The choice of search parameters (DP/AH) has a minimal impact on the
final ‘Applier‘ model’s performance. On all datasets, the ‘Applier‘ results are extremely
stable regardless of the search configuration (e.g., Avazu ‘Applier (RR)‘ AUC is stable
between 0.77220 and 0.77363 across all four search settings). This indicates that our search
process is robust to these configuration choices.

Given these findings, we selected the best-performing Applier variant for each dataset (RR for
Criteo/Avazu, Exact for MovieLens) as our primary model for all other experiments.

4.3 TRAINING OVERHEAD ANALYSIS

A key consideration for our two-stage framework is its computational cost. We divide this analysis
into two parts: the recurring training cost of our final ‘Applier‘ model (Stage 2), and the one-time,
offline cost of the ‘Search‘ phase (Stage 1). Our experiments demonstrate that our ‘Applier‘ model
achieves superior predictive performance with a recurring training time that is highly comparable to
the baselines.

Table 3 details the per-epoch training times. To ensure robustness against systemic noise such as
scheduling and pre-emption from running on a shared CPU cluster, we report the median time over
5 runs. The results show that the recurring training cost of our ‘Applier‘ model is competitive. On
Criteo and Avazu, the ‘Applier‘ model’s training time (1,738.3s and 2,122.1s, respectively) is slightly
slower than the fastest baseline, MSE (1,527.1s and 1,949.2s), but remains substantially faster than
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Dataset Search Config (DP, AH) Search Model Applier Model (Stage 2)
Test AUC Applier (Exact) Applier (RR)

Criteo (False, False) 0.79651 0.79711 0.79710
(H=‘768,256,128’, (False, True) 0.79603 0.79728 0.79775
B=100k) (True, False) 0.79566 0.79755 0.79769

(True, True) 0.79512 0.79693 0.79724
Avazu (False, False) 0.77209 0.77348 0.77351
(H=‘512,256,128’, (False, True) 0.77042 0.77217 0.77229
B=20k) (True, False) 0.77171 0.77358 0.77363

(True, True) 0.77019 0.77235 0.77220

MovieLens 1M (False, False) 0.84721 0.85246 0.85275
(H=‘256,128’, (False, True) 0.82844 0.83343 0.83374
B=6k) (True, False) 0.84746 0.85310 0.85277

(True, True) 0.82954 0.83348 0.83379

Table 2: Detailed ablation study (Test AUC) on all three datasets, using the same configurations as
Table 1. We compare the final AUC of the Stage 1 Search Model against the two Stage 2 Applier
variants (Exact Indices vs. RR Load-Balanced) trained from its discovered policy.

Baselines (Recurring) Our Method (SEO)
Dataset Config Sep. MSE Applier (RR) Search (Stage 1)
Criteo (H=‘768,256,128’, B=100k) 2,211.3s 1,527.1s 1,738.3s

Search (DP=F, AH=F) 2,765.5s
Search (DP=F, AH=T) 2,069.9s
Search (DP=T, AH=F) 3,355.2s
Search (DP=T, AH=T) 1,985.2s

Avazu (H=‘512,256,128’, B=20k) 8,285.7s 1,949.2s 2,122.1s
Search (DP=F, AH=F) 2,418.1s
Search (DP=F, AH=T) 3,866.2s
Search (DP=T, AH=F) 3,406.5s
Search (DP=T, AH=T) 2,902.5s

MovieLens (H=‘256,128’, B=6k) 99.3s 131.8s 107.3s
Search (DP=F, AH=F) 97.2s
Search (DP=F, AH=T) 173.6s
Search (DP=T, AH=F) 109.0s
Search (DP=T, AH=T) 142.2s

Table 3: Training Time per Epoch (seconds) reported as the median over 5 runs. ‘DP‘ refers to
‘use down projection‘ and ‘AH‘ to ‘adjust hash buckets‘. The fastest recurring cost (baselines vs.
Applier (RR)) for each dataset is in bold.

the ‘Separate‘ baseline. On MovieLens, our ‘Applier‘ (107.3s) is faster than MSE (131.8s) and only
marginally slower than the ‘Separate‘ baseline (99.3s).

The ‘Search‘ phase does introduce a one-time, offline computation cost. However, this cost is rea-
sonable; for instance, on Criteo, the fastest search configuration (1,985.2s) is faster than the ‘Sep-
arate‘ baseline. On both MovieLens and Criteo, the search cost is comparable to a single epoch of
baseline training. This cost is incurred only once to determine the optimal embedding architecture
and is amortized over all subsequent training runs of the more performant ‘Applier‘ model. In sum-
mary, our two-stage approach’s recurring training cost is highly competitive, demonstrating that the
significant performance gains do not come with an unreasonable training overhead.

5 CONCLUSION

We proposed Shared Embedding Optimization (SEO), a two-stage (search-retrain) framework for
learning optimal, heterogeneous embedding structures. Theoretically, its hypothesis space supersets
the monolithic model, guaranteeing at least equal performance. Experimentally, our SEO Appliers
consistently outperform ‘Separate‘ and ‘Monolithic Shared‘ baselines on Criteo, Avazu, and Movie-
Lens 1M, given identical parameter budgets and comparable training times.
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ETHICS STATEMENT

Our research proposes a foundational method, Shared Embedding Optimization (SEO), for improv-
ing the parameter efficiency of embedding layers, primarily in deep learning recommender systems.
We have evaluated our method using three well-established, anonymized, and publicly available
benchmark datasets: Criteo, Avazu, and MovieLens 1M. Our study did not involve any new data
collection or human subjects.

We acknowledge that recommender systems, as a class of applications, can have broader societal
impacts, including potential fairness and bias issues. Our work focuses on the structural and compu-
tational efficiency of the embedding component, not the downstream recommendation logic itself.
The learned embedding-sharing policy could, in principle, interact with model fairness, for example,
by allocating representational capacity inequitably across different user groups. Our current study
does not investigate the fairness or bias implications of the learned structures. We believe this is
an important and necessary direction for future work, particularly analyzing how optimized embed-
ding architectures like those found by SEO interact with fairness-aware training objectives and bias
mitigation techniques. To our knowledge, our method does not introduce new privacy, security, or
ethical risks beyond those already associated with standard deep learning models.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. We will provide an anonymous link
to our source code, models, and experimental scripts as supplementary material. This repository will
contain implementations for our two-stage SEO framework’s Applier stage (Stage 2), all baseline
models (Separate and Monolithic Shared), and the experimental harnesses. The Search stage (Stage
1), as described in Section 3, utilizes a differentiable search mechanism adapted from Yasuda et al.
(2024). While our specific internal implementation of this search component cannot be open-sourced
due to proprietary constraints, we will provide detailed pseudo-code and a thorough description in
the appendix to facilitate reimplementation. Furthermore, we will release the exact architectural
policies discovered by our search for each experiment, allowing the community to directly run and
verify the Applier model, which is trained from scratch and represents a core component of our
contribution.

Our experiments are conducted on three public benchmarks (Criteo, Avazu, MovieLens 1M). We
detail our preprocessing and data splitting protocols in Section 4.1, which follow established prior
work (Wang et al., 2021; Song et al., 2019) to facilitate direct comparison. The theoretical justifica-
tion for our framework, introduced in Section 3.3, is accompanied by detailed proofs in Appendix
C. All critical hyperparameters, such as MLP architecture, base bucket size, and optimizer settings,
are described in Section 4.1. Furthermore, we provide a comprehensive set of results, including de-
tailed ablation studies (Table 2) and the full experimental outcomes across all tested hyperparameter
configurations in Appendix D, ensuring transparency and allowing for thorough verification of our
claims.
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A STATEMENT ON LLM USAGE

In accordance with the ICLR 2026 policy, we report that Large Language Models (LLMs) were used
as a general-purpose writing assistant for this paper. The use of LLMs was strictly limited to aiding
with and polishing the writing, such as improving grammar, clarity, and conciseness. LLMs did not
contribute to the research ideation, methodology, experimental analysis, or the generation of core
results. All authors have reviewed and take full responsibility for the final content.

B FURTHER RELATED WORK

This section provides additional context on related research areas that inform our work but are less
directly comparable to the specific problem solved by SEO.

B.1 FOUNDATIONAL EMBEDDING COMPRESSION

Foundational techniques aim to reduce the size of a pre-trained model, typically by lowering the nu-
merical precision of its parameters or removing them entirely. The seminal work of Han et al. (2016)
introduced a three-stage pipeline of pruning, trained quantization, and Huffman coding, demonstrat-
ing significant model size reduction on computer vision tasks without accuracy loss. This established
a powerful post-hoc compression paradigm. These methods are fundamentally different from our
Shared Embedding Optimization (SEO) framework. Pruning and quantization are post-hoc opti-
mizations applied to an already trained model; their goal is to minimize model size subject to a
constraint on accuracy degradation. In contrast, SEO is a pre-training structural optimization. It
operates under a strict constraint of a fixed parameter budget with the goal of improving model
accuracy.

B.2 HASHING VARIANTS AND STRUCTURED SHARING

The hashing trick is a cornerstone of parameter-efficient embeddings, but its random nature has
led to the development of more sophisticated variants. Hash embeddings (Svenstrup et al., 2017)
assign each feature to multiple rows in the table, with the final embedding being a weighted sum.
Other methods modify the lookup process itself. For instance, HashedNet (Chen et al., 2015) in-
dependently looks up each dimension of the embedding in a flattened parameter space, while deep
hash embeddings (Kang et al., 2021) use a neural network to directly output the embedding vector.
Beyond hashing, other structured approaches exist. Compositional embeddings construct a unique
representation for each feature by combining vectors from multiple smaller, shared codebooks, of-
ten using a fixed rule like summation or element-wise products (Shi et al., 2020). Another class
of methods uses tensor decomposition to re-parameterize a large embedding table as a product of
smaller, low-rank tensors. While SEO is conceptually related, with our “chunks” being analogous to
shared codebooks, a key distinction is that these methods typically employ a fixed, pre-defined com-
bination rule. SEO, in contrast, uses its Stage 1 Search phase to learn an optimal, feature-specific
combination policy.

C PROOFS

Proof of Theorem 1. We prove MH ⊆ MA by construction. Let MH be an arbitrary model in the
MSE hypothesis space MH , defined by its parameters θH = (WH ,WMLP ), where WH ∈ RB×D.
We construct a specific model MA ∈ MA as follows:

1. Set the Applier’s MLP parameters to be identical to the MSE model’s parameters:
W ′

MLP = WMLP .

2. Logically partition the MSE embedding table WH into M chunks T1, . . . , TM such that
WH = Concat(T1, ..., TM ). We set the Applier’s embedding table WA = WH .

3. Define the structural policy S for MA as the “trivial policy” Strivial, where for every feature
f ∈ F , the policy is to select all chunks: Sf = {1, ...,M}.
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This constructed model MA is, by definition, a member of the Applier hypothesis space MA. We
verify that it computes an identical function to MH . For any feature f , the embedding function of
MH is Ef (x) = Lookup(WH ,xf ) = Concat(T1(xf ), ..., TM (xf )). The embedding function of our
MA is Ef (x,Strivial) = Concat({Ti(xf ) | i ∈ Strivial,f}) = Concat(T1(xf ), ..., TM (xf )). Since
the embedding outputs are identical for all features and the MLP weights are identical, the models
compute the same function for all inputs. Thus, any MH ∈ MH has an equivalent MA ∈ MA.
The inclusion is strict (MH ̸= MA) because MA also contains all heterogeneous models where
Sf ̸= {1, ...,M} for at least one feature f (e.g., Sf = {1}). These models are not representable by
any model in MH .

Proof of Corollary 1. This follows directly from Theorem 1. Since MH ⊂ MA, the minimization
over the superset MA must find a solution at least as good as (and potentially better than) the
minimization over the subset MH .

D FULL HYPERPARAMETER RESULTS (TEST AUC)

This appendix contains the full Test AUC comparison plots for all ‘Base Bucket Size‘ (Bbase) con-
figurations tested for each dataset, complementing the representative results shown in Figure 2.

D.1 MOVIELENS 1M RESULTS
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Performance Comparison (Test AUC) on MovieLens @ 1000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)
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Applier (RR Load-Balanced) (Adj:F, Proj:F)
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Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
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Optimizer (Search Phase) (Adj:T, Proj:F)
Optimizer (Search Phase) (Adj:T, Proj:T)

Figure 3: MovieLens (Test AUC) @ 1k Base Bucket Size
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Performance Comparison (Test AUC) on MovieLens @ 6000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
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Optimizer (Search Phase) (Adj:T, Proj:F)
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Figure 4: MovieLens (Test AUC) @ 6k Base Bucket Size (Same as Figure 2a)
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Performance Comparison (Test AUC) on MovieLens @ 14000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
Applier (Exact Indices) (Adj:T, Proj:T)

Applier (RR Load-Balanced) (Adj:F, Proj:F)
Applier (RR Load-Balanced) (Adj:F, Proj:T)
Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
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Optimizer (Search Phase) (Adj:T, Proj:T)

Figure 5: MovieLens (Test AUC) @ 14k Base Bucket Size
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D.2 AVAZU RESULTS
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Performance Comparison (Test AUC) on Avazu @ 2000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
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Applier (RR Load-Balanced) (Adj:F, Proj:F)
Applier (RR Load-Balanced) (Adj:F, Proj:T)
Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
Optimizer (Search Phase) (Adj:F, Proj:T)

Optimizer (Search Phase) (Adj:T, Proj:F)
Optimizer (Search Phase) (Adj:T, Proj:T)

Figure 6: Avazu (Test AUC) @ 2k Base Bucket Size
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Performance Comparison (Test AUC) on Avazu @ 20000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
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Figure 7: Avazu (Test AUC) @ 20k Base Bucket Size (Same as Figure 2b)
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Performance Comparison (Test AUC) on Avazu @ 200000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
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Figure 8: Avazu (Test AUC) @ 200k Base Bucket Size
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D.3 CRITEO SMALL RESULTS
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Performance Comparison (Test AUC) on Criteo Small @ 2000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
Applier (Exact Indices) (Adj:T, Proj:T)

Applier (RR Load-Balanced) (Adj:F, Proj:F)
Applier (RR Load-Balanced) (Adj:F, Proj:T)
Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
Optimizer (Search Phase) (Adj:F, Proj:T)

Optimizer (Search Phase) (Adj:T, Proj:F)
Optimizer (Search Phase) (Adj:T, Proj:T)

Figure 9: Criteo Small (Test AUC) @ 2k Base Bucket Size
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Performance Comparison (Test AUC) on Criteo Small @ 20000 Buckets (with 95% CI)

Method & Configuration
Separate (Baseline)
Monolithic Shared (Baseline)
Applier (Exact Indices) (Adj:F, Proj:F)

Applier (Exact Indices) (Adj:F, Proj:T)
Applier (Exact Indices) (Adj:T, Proj:F)
Applier (Exact Indices) (Adj:T, Proj:T)

Applier (RR Load-Balanced) (Adj:F, Proj:F)
Applier (RR Load-Balanced) (Adj:F, Proj:T)
Applier (RR Load-Balanced) (Adj:T, Proj:F)

Applier (RR Load-Balanced) (Adj:T, Proj:T)
Optimizer (Search Phase) (Adj:F, Proj:F)
Optimizer (Search Phase) (Adj:F, Proj:T)

Optimizer (Search Phase) (Adj:T, Proj:F)
Optimizer (Search Phase) (Adj:T, Proj:T)

Figure 10: Criteo Small (Test AUC) @ 20k Base Bucket Size
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Performance Comparison (Test AUC) on Criteo Small @ 100000 Buckets (with 95% CI)
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Figure 11: Criteo Small (Test AUC) @ 100k Base Bucket Size (Same as Figure 2c)
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Performance Comparison (Test AUC) on Criteo Small @ 200000 Buckets (with 95% CI)
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Figure 12: Criteo Small (Test AUC) @ 200k Base Bucket Size
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Performance Comparison (Test AUC) on Criteo Small @ 400000 Buckets (with 95% CI)
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Figure 13: Criteo Small (Test AUC) @ 400k Base Bucket Size
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