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Abstract

The capacity to address counterfactual "what if" inquiries is crucial for understand-
ing and making use of causal influences. Traditional counterfactual inference, under
Pearls’ counterfactual framework, usually assumes the availability of a structural
causal model. Yet, in practice, such a causal model is often unknown and may not
be identifiable. This paper aims to perform reliable counterfactual inference based
on the (learned) qualitative causal structure and observational data, without necessi-
tating a given causal model or even the direct estimation of conditional distributions.
We re-cast counterfactual reasoning as an extended quantile regression problem,
implemented with deep neural networks to capture general causal relationships
and data distributions. The proposed approach offers superior statistical efficiency
compared to existing ones, and further, it enhances the potential for generalizing
the estimated counterfactual outcomes to previously unseen data, providing an
upper bound on the generalization error. Empirical results conducted on multiple
datasets offer compelling support for our theoretical assertions.

1 Introduction

Understanding and making use of cause-and-effect relationships play a central role in scientific
research, policy analysis, and everyday decision-making. Pearl’s causal ladder (Pearl, 2000) delineates
the hierarchy of prediction, intervention, and counterfactuals, reflecting their increasing complexity
and difficulty. Counterfactual inference, the most challenging level, allows us to explore what would
have happened if certain actions or conditions had been different, providing valuable insights into the
underlying causal relationships between variables.

Counterfactual inference poses significant challenges due to the lack of actual observations for
counterfactual scenarios. Consequently, conventional approaches to counterfactual inference often
rely on the availability of structural causal models. For instance, Pearl (2000) proposes a three-step
procedure to estimate the counterfactual outcome. This involves estimating the structural causal
model and the noise values, modifying the model through intervention, and using the modified model
and the noise value to compute the counterfactual value. Recently, various deep-learning-based
approaches have been proposed to achieve this goal (Pawlowski et al., 2020; De Brouwer, 2022;
Sanchez & Tsaftaris, 2022; Dhariwal & Nichol, 2021; Song et al., 2020; Chao et al., 2023; Lu et al.,
2020a; Nasr-Esfahany et al., 2023; Khemakhem et al., 2021; Xia et al., 2022; De Lara et al., 2021;
Melnychuk et al., 2022). Another widely-used approach is based on the potential outcomes framework
and is commonly employed in the individual treatment effect (ITE) estimation (Rubin, 1974). It is
important to note that Pearl’s framework and the potential outcomes framework on counterfactuals are
logically equivalent (Pearl, 2012). Population estimation methods for ITE estimation rely on fitting a
regression model for each group with matched covariate values or distributions (Johansson et al., 2016;
Yoon et al., 2018; Bica et al., 2020; Liuyi Yao, 2018; Li & Yao, 2022; Lu et al., 2020b). However,
in practical applications, these causal models are often unknown and are hard to be identified with
finite samples. Additionally, general causal models without specific functional constraints may lack
identifiability (Zhang et al., 2015), further complicating the estimation process.

This paper aims to tackle the challenge of reliable counterfactual inference without relying on a
predefined functional causal model or even direct estimations of conditional distributions. To this end,
we establish a novel connection between counterfactual inference and quantile regression. Building
on this insight, we propose a practical framework for efficient and effective counterfactual inference.
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Figure 1: Illustration of our proposed quantile-based counterfactual estimation. Samples are generated
by Y = f (X,Z, E) = sin(4πX) + Z + E and E ∼ N(0, 1). As shown in the left, we first estimate the
quantile τ = P(Y ≤ 0|X = 0.5,Z = 0.5) for the (orange) interested sample ⟨X = 0.5,Z = 0.5,Y = 0⟩.
The green points are samples that also have X = 0.5,Z = 0.5 but different noise values of E. Then
we train a quantile regression function µτ(X) such that P(Y ≤ µτ(x′)|X = x′,Z = 0.5) = τ for a new
value x′. We prove that µτ(x′) is equal to the true counterfactual outcome y′ = YX=x′ in theorem. 1
and thus, avoid the challenging task to identify the true causal model f . A more detailed explanation
is provided in the appendix A.

Given three random variables X,Y,Z and a latent noise variable EY , where X,Z, EY cause the outcome
Y , we demonstrate that the counterfactual outcome YX=x′ |X = x,Y = y,Z = z is equal to the τ-th
quantile of the conditional distribution P(Y |X = x′,Z = z), where Y = y is the τ-th quantile of
P(Y |X = x,Z = z). Consequently, we reframe counterfactual inference as an extended quantile
regression problem, yielding improved statistical efficiency compared to existing methods. An
illustration is provided in Fig. 1. Furthermore, our approach enhances the generalization ability of
estimated counterfactual outcomes for unseen data and provides an upper bound on the generalization
error. Our contributions can be summarized as follows.
• We introduce a novel framework that formulates counterfactual inference as an extended quantile

regression problem using neural networks, which not only offers superior statistical efficiency but
also enables the capture of broad causal relationships and data distributions.
• We assess the generalization capacity of our proposed approach to previously unseen data and

establish an upper bound on the generalization error.
• We conduct extensive experiments to validate our theories and showcase the effectiveness of our

proposed method in diverse scenarios.

2 Problem Formulation and RelatedWork

In this section, we introduce key concepts relevant to our study, including Pearl’s three-step procedure
for counterfactual inference, the technique of quantile regression, and recent works in counterfactual
inference under both Pear’s procedure and the potential outcomes framework. Below, we first give a
formal definition of counterfactual outcomes.
Definition 1 (Counterfactual outcomes (Pearl, 2000)). Suppose X, Y, and Z are random variables,
where X causes Y, and Z is a set of common causes to X and Y. Given observations ⟨X = x,Y =
y,Z = z⟩, the counterfactual outcome of Y is defined as the value of Y if X had been set to a different
value x′ and is mathematically represented as YX=x′ |Y = y, X = x,Z = z.

Pearl’s Three-Step Procedure for Counterfactual Inference In the context of a structural causal
model (SCM), Pearl (2000); Pearl et al. (2016) introduced a three-step procedure to address such
counterfactual reasoning.

Suppose the SCMs Y = fY (X,Z, EY ), X = fX(Z, EX), and Z = EZ are given, denoted by M, and that
we have evidence ⟨X = x,Y = y,Z = z⟩. The following steps outline the process of counterfactually
inferring Y if we had set X = x′ (Pearl, 2000; Pearl et al., 2016):
• Step 1 (abduction): Use the evidence ⟨X = x,Y = y,Z = z⟩ to determine the value of the noise

EY = e.
• Step 2 (action): Modify the model, M, by removing the structural equations for the variables in X

and replacing them with the functions X = x′, thereby obtaining the modified model, Mx′ .
• Step 3 (prediction): Use the modified model, Mx′ , and the estimated noise e to compute the

counterfactual of Y as YX=x′ = fY (x′, z, e).
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Note that in Step 1, we perform deterministic counterfactual reasoning, focusing on counterfactuals
pertaining to a single unit of the population, where the value of EY is determined.

Quantile Regression Traditional regression estimation focuses on estimating the conditional mean
of Y given X, typically represented by the function f (X). On the other hand, quantile regression
(Koenker & Hallock, 2001) is concerned with estimating conditional quantiles, specifically the τ-th
quantile µτ, which is the minimum value µ such that P(Y ≤ µ|X) = τ, where τ is a predefined value.
Simultaneous Quantile Regression (Tagasovska & Lopez-Paz, 2019) proposes a loss function to learn
all the conditional quantiles of a given target variable with neural networks to address the quantile
crossing problem (Takeuchi et al., 2009). In contrast, we only need to learn a single quantile for the
observation which contains important information about the noise term. An important advantage
of using quantile regression for counterfactual inference is that quantiles are certain properties of
conditional distributions. We find that using quantiles is enough to achieve counterfactual outcomes,
so it is not necessary to estimate the conditional distribution. Traditional methods along this line
usually need the estimation of conditional distributions or causal models, beyond just conditional
expectation.

Deep Counterfactual Inference CFQP (De Brouwer, 2022) considers a setting when the back-
ground variables are categorical and employs the Expectation-Maximization framework to predict
the cluster of the sample and perform counterfactual inference with the regression model trained on
the specific cluster. CTRL (Lu et al., 2020a) and BGM (Nasr-Esfahany et al., 2023; Nasr-Esfahany &
Kiciman, 2023) show that the counterfactual outcome is identifiable when the SCM is monotonic w.r.t.
the noise term. In particular, BGM uses conditional spline flow to mimic the generation process and
performs counterfactual inference by reversing the flow. There are also many important related works
(Pawlowski et al., 2020; Sanchez & Tsaftaris, 2022; Chao et al., 2023; Khemakhem et al., 2021;
Xia et al., 2022; Melnychuk et al., 2022) and we present more details in the appendix. Individual
treatment effect (ITE) estimation is also closely related to the counterfactual inference problem. A
major difference is that ITE focuses on the effect of treatment and the predictions of both factual
and counterfactual outcomes on unseen samples. An important line of research focuses on balancing
the representations from the treatment and control groups, such as CFRNet (Johansson et al., 2016),
ABCEI (Du et al., 2021), CBRE (Zhou et al., 2022), SITE (Liuyi Yao, 2018), CITE (Li & Yao,
2022). GANITE (Yoon et al., 2018) first learns a counterfactual generator with GAN by matching
the joint distribution of observed covariate and outcome variables, and then it generates a dataset
by feeding different treatment values and random noises and learns an ITE generator to predict the
factual and counterfactual outcomes. (Zhou et al., 2021b;a) propose to use two collaborating networks
to learn the inverse CDF of the conditional distribution for ITE task. They sample many data points
to approximate the average treatment effect. By contrast, our method focus on learning the quantile
for individual sample and obtain deterministic value of counterfactual outcome and we also provide
the identifiability of the counterfactual outcome. (Xie et al., 2020; Powell, 2020) propose ways to
estimate the quantile treatment effects unlike the average treatment effect. The quantile treatment
effect is measured on all samples with same value of the quantile. On the contrary, our method
learns different quantile for different individuals and use the quantile to represent the property of the
conditional distribution. More related works are presented in the appendix.

3 Quantile-Regression-based Counterfactual Inference: Theoretical Insights

Conventional counterfactual inference approaches typically rely on estimating both structural causal
models and noise values. However, the simultaneous estimation of these elements can be challeng-
ing. In this paper, we establish a novel connection between counterfactual inference and quantile
regression, drawing inspiration from the reinforcement learning literature Lu et al. (2020a). This
connection allows us to bypass the need for estimating both structural causal models and noise values.
Specifically, the counterfactual outcome YX=x′ |X = x,Y = y,Z = z corresponds to the τ-th quantile
of the conditional distribution P(Y |X = x′,Z = z), with Y = y representing the τ-th quantile of
P(Y |X = x,Z = z). Exploiting this connection, the counterfactual outcome can be directly estimated
through quantile regression alone. This fundamental relationship is formalized in the theorem below.
Theorem 1. Suppose a random variable Y satisfies the following structural causal model:

Y = f (X,Z, E)
where X and Z cause Y, with Z being a cause to X. E is the noise term, indicating some unmeasured
factors that influence Y, with E ⊥⊥ X,Z. We assume that the causal model f (which is unknown)
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is smooth and strictly monotonic in g(E) for fixed values of X and Z and g(·) denotes an arbitrary
function. Suppose we have observed ⟨X = x,Y = y,Z = z⟩. Then for the counterfactual inquiry, what
would be the outcome of Y if X had been set to x′, given the observed evidence (X = x,Y = y,Z = z),
the counterfactual outcome YX=x′ |X = x,Y = y,Z = z is equal to the τ-th quantile of the conditional
distribution P(Y |X = x′,Z = z), where Y = y represents the τ-th quantile of P(Y |X = x,Z = z).

The monotonicity condition with respect to an arbitrary function of the noise term is generally
applicable across a wide range of scenarios. It is crucial to emphasize that, under the monotonicity
condition, the structural causal models may not always be identified. In other words, even if the
structural causal model lacks identifiability, quantile regression can still be employed to identify the
counterfactual outcome. Below, we present a compilation of commonly encountered special cases
where this condition remains valid.
• Linear causal models: Y = aX + bZ + g(E).
• Nonlinear causal models with additive noise: Y = f (X,Z) + g(E).
• Nonlinear causal models with multiplicative noise: Y = f (X,Z) · g(E).
• Post-nonlinear causal models: Y = h( f (X,Z) + g(E)).
• Heteroscedastic noise models: Y = f (X,Z) + h(X,Z) · g(E).

Furthermore, note that the theorem remains valid regardless of whether the variables involved are
continuous or discrete. Our method makes the counterfactual inference easier since we do not need to
identify the whole interventional distribution and the structural causal model. Instead, we only need
to estimate the quantile of the specific point, an important property of the conditional distribution,
and the counterfactual outcome is proven to be identifiable in our method.

4 Quantile-Regression-based Counterfactual Inference: Practical Approaches

Building on the theoretical results presented in Section 3, we have established that counterfactual
inference can be reframed as an extended quantile regression problem. This reformulation eliminates
the requirement to estimate the structural causal model and noise values for addressing counterfactual
inquiries. Accordingly, in this section, we introduce a practical approach for counterfactual inference
with quantile regression and establish an upper bound on the generalization error.

In particular, in Section 4.1, we formulate counterfactual inference as a bi-level optimization problem.
The upper level is dedicated to estimating the targeted quantile level τ, while the lower level endeavors
to estimate the quantile regression function at the specific quantile level. To address this problem,
Section 4.2 introduces a practical estimation approach that employs neural networks capable of
accommodating general causal models and data distributions. Additionally, for more efficient
inference of multiple counterfactual samples, we adopt a compact representation to encapsulate
the variation in quantile regression functions for different samples, eliminating the need to retrain
the bilevel optimization for each new sample. Furthermore, Section 4.3 provides an in-depth
analysis of the generalization ability of the proposed approach and establishes an upper bound on the
generalization error.

4.1 Counterfactual Inference as a Bi-Level Optimization Problem

Suppose there are N samples {xi, yi, zi}
N
i=1 which are realizations of random variables X, Y , and

Z. We are interested in finding the counterfactual outcome y′ which is the realization of YX=x′

for a particularly interested sample point ⟨x, y, z⟩. An illustration of our method is provided in
Fig. 1: we first estimate the quantile τ = P(Y ≤ y|x, z) and its corresponding quantile function
µτ(X, z) = minµ[P(Y ≤ µ|X, z) = τ]. Then we can infer the counterfactual outcome with µτ(x′, z).

However, estimating τ and µτ remains a challenging problem. A straightforward way is to estimate
P(Y ≤ y|X = x,Z = z) as τ first, e.g., with Monte Carlo, and then perform standard quantile regression
to obtain the corresponding quantile function. However, P(Y ≤ y|x, z) can be difficult to estimate
with finite training samples. For example, there may be few or even only one training sample (itself)
that have X = x,Z = z, leading to inaccurate estimation of τ, which has been demonstrated in the
experiments in Section 5.2.

To address this challenging problem, we couple the estimations of τ and the quantile function µτ, and
formulate the counterfactual inference problem as a bi-level optimization problem:
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Figure 2: One training step of our proposed bi-level implementation.

τ̂ = arg min
τ

L(µ̂τ(x, z), y),with (1)

µ̂τ̂ = arg min
µ

Rτ̂[µ],

where the upper level is to estimate the quantile τ and L(., .) can be a regular regression loss, such as
L1 and L2 loss. As for the lower level problem, it is a standard quantile regression problem for the
particular quantile level, with the quantile regression function:

Rτ[µ] =
1
N

N∑
i=1

lτ(yi − µ(xi, zi)) (2)

and lτ(ξ) =
{
τξ, if ξ ≥ 0
(τ − 1)ξ, if ξ < 0.

(3)

We use the pin-ball loss lτ as the objective as it has been shown that the minimizer of the empirical
pin-ball loss converges to the true quantile µτ under some mild assumptions (Takeuchi et al., 2006).

After the bi-level optimization, we can obtain an accurate quantile regressor µ̂τ. Since the factual
outcome y is the τ-th quantile of the P(Y |x, z), τ is the minimizer of the objective L(µ̂∗τ(x, z), y). In
other words, we have τ̂ = τ = P(Y ≤ y|x, z), µ̂τ̂ = µτ. Through the lens of the above bi-level
optimization formulation, we avoid the direct estimation of P(Y ≤ y|x, z) with finite samples. Next,
we show how to solve this bi-level optimization problem empirically.

4.2 An Efficient Neural-Network-Based Implementation

Although we have identifiability guarantees for the counterfactual outcome, it still remains unclear
how should we implement the framework to solve the bi-level optimization problem. In this context,
we present a scalable and efficient neural network-based implementation, for both lower-level and
upper-level optimization. A training pipeline is given in Fig. 2.

Lower-level optimization. Since each sample of interest x corresponds to a different quantile τ
and quantile function µτ, the computational cost can be huge if we learn the quantile regression
function µ̂τ̂ for every interested sample separately. Hence, to achieve efficient quantile estimation
of counterfactual inference for multiple samples, we propose to learn a conditional neural network
g. Specifically, we use τ̂ to capture the difference in different samples and concatenate τk with each
training sample {xi, zi}

N
i=1 as input to the network g as shown in the right part of Fig. 2. It eliminates

the need to retrain the bilevel optimization for each interested sample:

µ̂τ̂(xi, zi) =⇒ g(xi, zi, τ̂).

Then for each τ̂, we minimize the pin-ball loss 1
N
∑N

i=1 lτ̂(yi−g(xi, zi, τ̂)) following Eq. 2. Accordingly,
after the optimization procedure, we have the τ-th quantile regression output as g(x, z, τ) for every
interested sample ⟨x, z, y⟩ with a shared neural network g.

Upper-level optimization. To recover the quantile P(Y ≤ y|X = x,Z = z) from the factual
observations ⟨x, y, z⟩, we propose a data-dependent model to learn the quantiles for each interested
sample automatically. Specifically, we employ a neural network h to infer τ from the observational
data, i.e., τ̂ = h(x, z, y), and use τ̂ as the input of the network f in the lower-level problem to perform
quantile regression. An important advantage of the data-dependent implementation is that it allows
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inferring τ and counterfactual outcomes for an unseen data sample ⟨x, z, y⟩. For example, we may
infer the τ for samples in the validation split even though they have not been used in the training.

The optimization of the upper-level problem is more challenging as we also need to consider the
lower-level constraint besides the upper-level regression loss L(., .). Thanks to the multi-level
optimization library–Betty (Choe et al., 2023), we are able to solve this bi-level optimization problem
without considering the complex interactions between the lower and upper-level problems. It uses
hyper-gradient (Liu et al., 2018) to update the network h automatically.

Summary of Training Pipeline. We present the training pipeline of one step in Fig. 2. In each
training step, we have 4 sub-steps: 1) fix the estimated quantiles (i.e., network h); 2) train the neural
network g with the pin-ball loss for each τ̂ by stochastic gradient descent (SGD) m times (m = 50
in our experiments); 3) send the optimized network g to the upper-level problem. 4) the bi-level
optimization library updates the network h one time by hyper-gradient to minimize the regression
loss L(., .). Then we continue the training steps until the models converge.

4.3 Generalization Bound of the Empirical Estimator

Ideally, the counterfactual outcome Yx′ |X = x,Z = z,Y = y is µτ(x′, z). However, we are usually
given a limited number of training samples and the pair (τ, µτ) is approximated by using the bi-level
optimization solution (τ̂, µ̂τ̂). For an interested sample ⟨x, y, z⟩, we have the estimated quantile
τ̂ = h(x, y, z) and counterfactual predictions y′ = µ̂τ̂(x′, z) = g(x′, z, τ̂) for any new value x′. An
essential problem is that we are unsure about the generalization ability of the regressor µ̂τ̂ on the
counterfactual input pair ⟨x′, z⟩ as the pair has not been seen by µ̂τ̂ during training.

More formally, we are interested in analyzing the upper bound of the generalization error
Ex,z[lτ̂(µτ̂(x, z) − µ̂τ̂(x, z))]. Below, we employ the Rademacher complexity proposed by Bartlett
& Mendelson (2002) to upper bound the generalization error.
Definition 2 (Rademacher complexity). Let F be a hypothesis class mapping from X to [0, b]. Let
{xi, zi}

N
i=1 be i.i.d. examples. Let {σi}

N
i=1 be independent Rademacher variables taking values in

{−1,+1} uniformly. The Rademacher complexity is defined as

R(F) = Ex,z,σ

sup
µ∈F

1
N

N∑
i=1

σiµ(xi, zi)

 .
Our main theoretical result is as follows.
Theorem 2. Let (τ̂, µ̂) ∈ (T, F) by the optimization solution, where T is the parameter space. Let the
loss function lτ be upper bounded by b. Then, for any δ > 0, with probability at least 1 − δ, we have

Ex,z[lτ̂(µτ̂(x, z) − µ̂τ̂(x, z))] ≤
1
N

N∑
i=1

lτ̂(µτ̂(xi, zi) − µ̂τ̂(xi, zi))

+ 4R(F) +
4b
√

N
+ b

√
log(1/δ)

2N
.

The Rademacher complexity has been widely used to derive generalization error bounds in the
statistical machine learning community (Mohri et al., 2018). Its upper bound has also been widely
studied. If F is an RKHS and the hypotheses are upper bounded, without any strong assumptions,
R(F) ≤ O(

√
1/N) (Bartlett & Mendelson, 2002).

The upper bound of Ex,z[lτ̂(µτ̂(x, z) − µ̂τ̂(x, z))] heavily relies on the (i) empirical value
1
N
∑N

i=1 lτ̂(µτ̂(xi, zi) − µ̂τ̂(xi, zi)), which can be minimized by utilizing the factual training samples and
(ii) the number of training samples N. Given a fixed number of training samples, our theoretical
results imply that the generalization error is bounded, i.e., the counterfactual predictions will be
very close to the ground truth counterfactual outcome. We also empirically show that our method
can achieve good performance given only 50 training samples in Section 5.4. In summary, the
performance of our proposed quantile regression method is guaranteed with finite samples.

5 Experimental Results
In this section, we begin by introducing the experimental setup including the datasets, evaluation
metrics, baseline methods, and implementation details. Then we analyze the learned quantiles under
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Table 1: Results on counterfactual inference tasks. We obtain the out-sample results by running the
trained model on unseen testing factual observations.

Method
ACT IHDP

In-sample Out-sample In-sample Out-sample
MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

CFQP-T .22 ± .0 .27 ± .0 .22 ± .0 .27 ± .0 2.71 ± .4 4.25 ± .6 2.79 ± .4 4.28 ± .6
CFQP-U .22 ± .0 .27 ± .0 .22 ± .0 .27 ± .0 1.42 ± .1 2.10 ± .2 1.44 ± .1 2.05 ± .2

BGM .22 ± .0 .28 ± .0 .23 ± .0 .29 ± .0 5.71 ± .5 7.25 ± .7 5.75 ± .5 7.35 ± .8
Ours .16 ± .0 .21 ± .0 .16 ± .0 .20 ± .0 1.12 ± .0 1.42 ± .0 1.11 ± .0 1.41 ± .0

Table 2: Results on individual treatment effect estimation tasks.

Method
IHDP JOBS

In-sample Out-sample In-sample Out-sample
√
ϵPEHE ↓ ϵAT E ↓

√
ϵPEHE ↓ ϵAT E ↓ Rpol ↓ Rpol ↓

CFR-Net .75 ± .0 .29 ± .04 .81 ± .1 .31 ± .04 .17 ± .0 .30 ± .0
GANITE 1.9 ± .4 - 2.4 ± .4 - .13 ± .0 .14 ± .0

SITE .87 ± .0 .38 ± .05 .94 ± .1 .37 ± .05 .23 ± .0 .25 ± .0
ABCEI .78 ± .1 .11 ± .02 .91 ± .1 .14 ± .02 .16± .0 .37 ± .0
CBRE .52 ± .0 .10 ± .01 .62 ± .1 14 ± .02 .23 ± .0 .28 ± .0
CITE .58 ± .1 .09 ± .01 .60 ± .1 .11 ± .02 .23 ± .0 .23 ± .0

CFQP-T 8.5 ± .8 3.1 ± .19 5.5 ± .9 1.5 ± .20 .27 ± .0 .31 ± .0
CFQP-U 9.5 ± .9 2.6 ± .07 2.5 ± .5 .47 ± .11 .24 ± .0 .27 ± .0

BGM 7.3 ± .7 2.9 ± .11 7.1 ± .7 2.8 ± .09 .25 ± .0 .32 ± .0
Ours .38 ± .0 .06 ± .01 .47 ± .1 .09 ± 0.01 .01 ± .0 .02 ± .0

different models and conduct a comprehensive comparison between our method and state-of-the-
art approaches across diverse datasets. We not only compare with approaches following Pearl’s
counterfactual framework, but also approaches following the potential outcomes framework for
ITE estimations. Additionally, we also study the sample efficiency of our method and the essential
monotonicity assumption.

5.1 Experiment Setup

Datasets. We evaluate the performance on the following datasets Age Covariate Treatment Dataset
(ACT), IHDP Hill (2011) and JOBS LaLonde (1986) dataset.

Evaluation Metrics. For the counterfactual inference tasks on ACT and IHDP datasets, we use RMSE
and MAE to measure the performance. For the individual treatment effect tasks, on the IHDP dataset,
we measure the performance with rooted Precision in Estimation of Heterogeneous Effect (

√
ϵPEHE)

and Average Treatment Effect (ATE), following Li & Yao (2022). Specifically, we have
√
ϵPEHE =√

1
N
∑N

i=1[(y1
i − y0

i ) − (ŷ1
i − ŷ0

i )]2, ϵAT E = | 1N [
∑N

i=1(y1
i − y0

i ) −
∑N

i=1(ŷ1
i − ŷ0

i )]|, where N is the number

of samples and y1
i , y

0
i (ŷ1

i , ŷ
0
i ) represents the (estimated) factual and counterfactual outcomes. As for

the JOBS dataset, there are no counterfactual outcomes, we measure the performance with policy
risk estimation Rpol = 1 − [E[(y1

i |π(xi) = 1)] · P(π(xi) = 1) + E[(y1
i |π(xi) = 0)] · P(π(xi) = 0)] where

π(xi) = 0 if ŷ1
i − ŷ0

i < 0 and π(xi) = 1, otherwise.

Baseline Methods For counterfactual inference tasks, we compare against the recent SOTA methods:
CFQP (De Brouwer, 2022) and BGM (Nasr-Esfahany & Kiciman, 2023). As the CFQP provides
two backbones, we use CFQP-T to denote the method with Transformer network and CFQP-U to
denote the method with U-Net backbone. We run the public code of baseline methods with their
recommended hyper-parameters. For the individual treatment effect tasks, we compare against the
strong baselines: CFR-Net (Johansson et al., 2016), GANITE (Yoon et al., 2018), SITE (Liuyi Yao,
2018), ABCEI (Du et al., 2021), CBRE (Zhou et al., 2022), CITE (Li & Yao, 2022). We also run
CFQP and BGM on these tasks.
5.2 Analysis on Quantile Learning

We synthesize the data where the corresponding τ has closed-form solutions, so we can compare
the learned quantiles against the ground truth. Specifically, we consider the following instantiations
of the five causal models mentioned in Section 3. Specifically, we generate samples with 1) linear
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Figure 3: Toy examples for counterfactual estimations and learned quantiles. The first row shows
the counterfactual inference results under the five causal models. Our method is able to recover
the true trajectory from factual observations. The second row presents the box plots of the learned
quantiles. The ground truth quantile is Φ(0.5) = 0.691. Compared to the Monte Carlo (MC) method,
our proposed bilevel optimization method learns the quantile stably while the MC method has a
significantly larger variance, which makes it unsuitable for counterfactual inference.

causal models, Y = X + Z + E; 2) nonlinear additive noise model, Y = sin(2πX + Z)+ E; 3) nonlinear
multiplicative noise model, Y = exp(X−Z+0.5)·E; 4) post-nonlinear model, Y = exp(sin(πX+Z)+E);
5) heteroscedastic model, Y = exp(−5X + Z) + exp(X + Z − 0.5) · E. For these five causal models, we
have F−1(τ) = E ⇒ τ = F(E) where F is the CDF of noise E. We set P(X) = P(Z) = U[0, 1]. As for
noise, we consider the isotropic Gaussian distributionN(0, 1). We sample 10,000 data points for each
case. For sample points of interest for counterfactual inference, we use X = 0.5,Z = 0.5, E = 0.5 and
generate Y . Our goal is to learn a quantile for this sample and the true quantile τ is Φ(0.5) ≈ 0.691.

First, as shown in the first row in Fig. 3, we also compare with the linear quantile regressor solved
by linear programming with specified quantiles [0.1, 0.5, 0.9]. However, they are limited by linear
parameterization and cannot handle nonlinear generation functions such as the second causal model.
Importantly, the baselines do not know the true quantile as they did not leverage the interested
factual observation. By contrast, we observe that our method is able to get accurate counterfactual
predictions under all five different causal models. Second, one more straightforward way to estimate
the quantiles would be Monte Carlo (MC). Specifically, we can use 1

m
∑m

i=1 I(yi ≤ y|xi = x, zi = z) to
approximate the quantiles P(Y ≤ y|X = x,Z = z), where m is the number of training samples that
satisfy xi = x, zi = z; the estimations are visualized in the second row of Fig. 3. We observe that the
variance of learned quantiles in different runs is very large for the MC method for the five simple
causal models. By contrast, our bi-level formulation learns the quantile and quantile function together
and estimated quantiles are much more accurate and stable. In particular, our method allows learning
the quantile functions for different samples simultaneously by conditioning the estimated quantiles in
the lower-level problem, which reduces the training time significantly.

5.3 Comparisons with State-of-the Art Approaches

Table 1 presents the results on the counterfactual inference task. The out-sample results means that
we test the trained model on the unseen testing factual observations. Our method achieves the lowest
MAE and RMSE across all datasets. We observe that the result of BGM (Nasr-Esfahany & Kiciman,
2023) on IHDP dataset is unsatisfactory. A possible explanation would be that IHDP has limited
training samples (671) and the expressive power of conditional flows used in BGM may be limited
compared to our unconstrained neural networks. To fully verify the performance of our method, we
also provide the results on individual treatment effects in Table 2. We observe that we achieve the
best results across the IHDP and JOBS datasets. Moreover, it is important to note that we did not
perform any matching technique to balance the covariate distributions in the treatment group and
the control group, while comparisons, such as CITE (Li & Yao, 2022) employ various matching
techniques to achieve better performance. Leveraging matching techniques to further improve the
performance will be covered in our future study.
5.4 Generalization Bound and Sample Efficiency
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Figure 4: Analysis on the monotonicity assumption. (a) Y = exp(cos(πX + 3Z) + cos(E)). (b)Y =
exp(cos(πX + 3Z) + E2). (c) Y = exp(cos(πX + 3Z) +MLP(E)). (d) Y = exp(MLP(X,Z) +MLP(E)).
Although Y is not monotonic w.r.t E, the counterfactual outcome is still identifiable since we may
have g(E) = E2, cos(E),MLP(E) and Y is monotonic w.r.t g(E). And empirically, the counterfactual
predictions are very close to the ground truth in the first four cases. As for the last case (e),
Y = exp(MLP(X,Z, E) + MLP(E)), it exhibits some deviation from the ground truth since the
monotonicity assumption is violated and the counterfactual outcome may not be identifiable.
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Figure 5: The study of sample
efficiency.

We have shown that the expectation of the generalization error is
bounded by the empirical risk and the number of samples. To verify
the theorem, we perform an ablation study on the number of training
samples. We work on the ACT dataset and run experiments with
different numbers of samples N=10, 50, 100, 200, 300, 500 and report
the out-sample results averaged over 10 different runs in Fig. 5.

From Fig. 5, we find that the recent baseline BGM (Nasr-Esfahany
& Kiciman, 2023) is very sensitive to the number of training samples
and its RMSE is still unsatisfactory after we have increased the
number of training samples to 500. By contrast to the generative
model BGM, our regression method can achieve good results given
only 50 samples and the performance becomes better as we increase
the number of training samples. Given only 50 samples, our method
achieve better performance than BGM with 500 training samples,
which supports our generalization bound and demonstrates that our method is more sample-efficient
than the baseline BGM.

5.5 Potential Limitation: the monotonicity

An essential assumption of our method is that there exists a function g(E) such that outcome Y is
strictly monotonic w.r.t g(E). Since g can be arbitrary, our assumption covers a very wide spectrum
of function classes, as demonstrated by the superior empirical performance of our method. However,
it may still be violated in some cases. To investigate this problem, we consider the five causal models
as shown in Fig. 4. In the first four cases, although we have Y is not monotonic w.r.t E, but when
we set g(E) = E2, cos(E) or more complex MLP(E), we have Y is monotonic w.r.t g(E). Therefore,
according to the Theorem 1, the counterfactual outcome should be identifiable and the results in
the first four cases strongly support this point. As for the last case, the monotonicity assumption is
violated and the counterfactual predictions exhibits some deviation from the ground truth, which is
expected. The identifiability of the counterfactual outcome in non-monotonic generation function
still remains an important yet challenge and we leave it as future work.

6 Conclusion

Counterfactual inference remains a significant challenge due to the lack of counterfactual outcomes
in the real world. In this paper, we advance counterfactual inference from a novel perspective through
quantile regression. We first build a connection between counterfactual outcomes and quantile
regression and show that the counterfactual outcome corresponds to certain quantile quantities under
mild conditions. Accordingly, we re-cast the counterfactual inference problem as a quantile regression
problem. We then propose an effective estimation approach based on neural-network implemented
bi-level optimization and show the generalization bound of the empirical estimator. We verify our
method on multiple simulated and semi-real-world datasets. The superior performance over strong
baselines highlights the effectiveness of our method.
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A An explanation to the Fig. 1

The underlying true counterfactual outcome for the interested sample is a real value y′ = YX=x′ =
sin(4πx′) + z + e. Since Y is strictly monotonic w.r.t E and noise e = −0.5 is fixed, we have
P(Y ≤ yX=x′ |X = x′,Z = z) = P(sin(4πX) + Z + E ≤ yX=x′ |X = x′,Z = z) = P(sin(4πx′) + z + E ≤
sin(4πx′)+z+e) = P(E ≤ e). At the same time, we have P(Y ≤ y|X = x,Z = z) = P(sin(4πx)+z+E ≤
y) = P(sin(4πx) + z + E ≤ sin(4πx) + z + e) = P(E ≤ e). So, we have P(Y ≤ yX=x′ |X = x′,Z = z) =
P(Y ≤ y|X = x,Z = z). Therefore, to obtain the counterfactual outcomes yX=x′ from observations
⟨x, z, y⟩, we need to estimate 1) the quantile τ = P(Y ≤ y|X = x,Z = z) and 2) the quantile function
µτ(X) = Y ′ such that P(Y ≤ Y ′|X,Z = z) = τ. After estimation, we can perform counterfactual
inference as y′ = YX=x′ = µτ(x′).

B RelatedWork

DeepSCM (Pawlowski et al., 2020) models the structural causal model with a conditional normalizing
flow, with access to the structure relationship among variables, and then approximates counterfactual
distributions by inverting the normalizing flow and Monte Carlo. Diff-SCM (Sanchez & Tsaftaris,
2022) models the bi-variate causal relationships with diffusion models, estimates the noise from
observations by the approximate inversion of the diffusion model (Dhariwal & Nichol, 2021) and
performs counterfactual inference via DDIM sampler (Song et al., 2020). DCM (Chao et al., 2023)
generalizes Diff-SCM to causal graphs containing multiple variables. CAREFL (Khemakhem
et al., 2021) learns the model with auto-regressive flows and reverses the flow to obtain the noise
value. NCM (Xia et al., 2022) presents the theory connecting the identification of counterfactual
outcomes and neural causal models. De Lara et al. (2021) connects the optimal transport theory
with counterfactual models. CausalTransformer (Melnychuk et al., 2022) proposes a counterfactual
domain fusion loss to address the confounder and long-range dependency problem with time-series
data.

CFRNet (Johansson et al., 2016) models ITE as a domain adaptation problem where there is a
distribution shift between effects under different treatment and match the marginal distributions
of representations under different treatments in the representation space. ABCEI (Du et al., 2021)
proposes to use adversarial learning to balance the representations from treatment and control
groups. CBRE (Zhou et al., 2022) proposes to use cycle consistency to preserve the semantics of the
representations from two groups. Based on GANITE, SCIGAN (Bica et al., 2020) further proposes a
hierarchical discriminator to learn the counterfactual generator when interventions are continuous,
e.g., the dosage of the treatment. SITE (Liuyi Yao, 2018) uses propensity score to select positive and
negative pairs and proposes to minimize the middle point distance to preserve the relationships in
the representation space. Based on SITE, CITE (Li & Yao, 2022) employs contrastive learning to
preserve the relationships. BV-NICE (Lu et al., 2020b) models the generation process as a latent
variable model where a confounder causes the treatment, covariate, and outcomes and addresses the
covariate imbalance with adversarial training.

The goal of (Zhou et al., 2021b) is to estimate uncertainty intervals by learning two networks in an
adversarial manner, where one is to estimate CDF and the other is to estimate the quantile. Later,
(Zhou et al., 2021a) extends (Zhou et al., 2021b) to the ITE task. Below, we would like to clarify
the main differences from our paper: (1). Zhou et al. (2021a) focuses on learning the conditional
distribution P(Y |Z, X) for each sample and during inference, and it samples 3000 points for each
test sample xi to compute the expectation E[Y |xi,Z] for ITE task. However, this may not be suitable
for counterfactual inference. For instance, given two samples < x1 = 1, z1 = 0, y1 = 1 > and
< x2 = 1, z2 = 0, y2 = 2 >, the difference between y1 and y2 is caused by true unknown noise e while
the method by Zhou et al. (2021b;a) are unable to distinguish the two samples. By contrast, our goal
is to estimate the quantile of noise e for the interested sample, then we can obtain a deterministic
value of the counterfactual outcome YX=x′ |x, y, z for the interested sample, which is important for
counterfactual inference. (2). Theoretically, we show that the counterfactual outcome for individual
samples is identifiable under some conditions. (3). Empirically, the PEHE of (Zhou et al., 2021a) on
IHDP dataset is 1.13 while our method achieves 0.47.

(Powell, 2020) and (Xie et al., 2020) are mainly developed for quantile treatment effect estimation,
where the quantile treatment effect is to estimate the τ-th quantile of the outcome distribution given the
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treatment variable, where the value of τ is pre-determined. It is different from the average treatment
effect, which is defined based on expectation, i.e., E[Y1 − Y0]. In evaluation, (Powell, 2020) measures
the RMSE for all samples, ranging the τ from 5 to 95. The quantile-treatment-effect studies focus on
the population level. In contrast, note that our work is to estimate the quantile for each individual
sample. To this end, we propose a bi-level optimization method to estimate τi for each interested
sample xi and use τi to perform counterfactual inference for the interested sample.

C Proof of Theorem 1

Proof. Denote g(E) by Ẽ. We know that without further restrictions on the function class of f , the
causal model f and the probabilistic distribution p(Ẽ) are not identifiable (Zhang et al., 2015). Denote
by f i and pi(Ẽ) as one solution, and we will see that the counterfactual outcome actually does not
depend on the index i; that is, it is independent of which f i and Pi(Ẽt+1) we choose. Given observed
evidence (X = x,Y = y,Z = z), because f i is strictly monotonic in Ẽi, we can determine its value ẽi,
with ẽi = f i

x,z
−1(y). Then, we can determine the value of the cumulative distribution function of Ẽi at

ẽi, denoted by τi.

Without loss of generality, we first show the case where f i is strictly increasing w.r.t. Ẽi. Because f
is strictly increasing in Ẽ and y = f i(x, z, ẽi), y is the τi-th quantile of P(Y |X = x,Z = z). Then it is
obvious that since y and P(Y |X = x,Z = z) are determined, the value of τi is independent of the index
i, that is, it is identifiable. Thus, below, we will use τ, instead of τi.

Since g(E) ⊥⊥ (X; Z), when doing interventions on X, the value ẽi will not change, as well as ei. Hence,
the counterfactual outcome YX=x′ |X = x,Y = y,Z = z can be calculated as f i(X = x′,Z = z, E = ei).
Because ẽi does not change after the intervention, the counterfactual outcome YX=x′ |X = x,Y = y,Z =
z is the τ-quantile of the conditional distribution P(Y |X = x′,Z = z). This quantile exists and it
depends only on the conditional distribution P(Y |X = x′,Z = z), but not the chosen function f i and
Pi(Ẽ).

Therefore, the counterfactual outcome YX=x′ |X = x,Y = y,Z = z corresponds to the τ-th quantile
of the conditional distribution P(Y |X = x′,Z = z), where Y = y represents the τ-th quantile of
P(Y |X = x,Z = z). □

D Proof of Theorem 2

Theorem 2 shows that the generalization error is bounded if we minimize the empirical loss, suggesting
that our method learns a good quantile estimator using finite training samples. As a consequence (of
this generalization bound and above identifiability theorem), our method is able to perform reliable
counterfactual inference given finite training samples.

In this section, we use f to represent µ. Further, for simplicity, we ignore z in the f function, which
doesn’t affect the generalization bound since the concatenation of z and x can be treated as a single
input.

We first give the following generalization error bound derived by Bartlett & Mendelson (2002).
Theorem 3. Let F be a hypothesis class mapping from X to [0, b]. Let {xi}

N
i=1 be training samples

with size N. Then, for any δ > 0, with probability at least 1 − δ, the following holds for all f ∈ F:

Ex[ f (x)] ≤
1
N

N∑
i=1

f (xi) + 2R(F) + b

√
log(1/δ)

2N
.

Inspired by the above theorem, we can derive a generalization error bound for counterfactual inference
by nonlinear quantile regression.

Theorem 4. Let (τ̂, f̂τ̂) ∈ (T, F) be the optimization solution. Let the loss function lτ be upper
bounded by b. Then, for any δ > 0, with probability at least 1 − δ, we have

E(x,y)[lτ̂( f ∗(x) − f̂ (x))] ≤
1
N

N∑
i=1

lτ̂( f ∗(xi) − f̂ (xi)) + 2R(T, F) + b

√
log(1/δ)

2N
,
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where

R(T, F) = Ex,σ

 sup
τ∈T, f∈F

1
N

N∑
i=1

σilτ( f ∗(xi) − f (xi))

 .
Furthermore, we can derive the following result.
Theorem 5.

R(T, F) ≤ 2R(F) +
2b
√

N
.

Proof. Let us rewrite lτ( f ∗(x) − f (x)) = τ( f ∗(x) − f (x)) − 1{ f ∗(x)− f (x)<0}( f ∗(x) − f (x)), where 1{A} is
the indicator function. We have

R(T, F) = Ex,σ

 sup
τ∈T, f∈F

1
N

N∑
i=1

σilτ( f ∗(xi) − f (xi))


= Ex,σ

 sup
τ∈T, f∈F

1
N

N∑
i=1

σi(τ( f ∗(xi) − f (xi)) − 1{ f ∗(xi)− f (xi)<0}( f ∗(xi) − f (xi)))


≤ Ex,σ

 sup
τ∈T, f∈F

τ ·
1
N

N∑
i=1

σi( f ∗(xi) − f (xi))


+ Ex,σ

sup
f∈F

1
N

N∑
i=1

σi1{ f ∗(xi)− f (xi)<0}( f ∗(xi) − f (xi))


= Ex,σ

sup
f∈F

1
N

N∑
i=1

σi( f ∗(xi) − f (xi))


+ Ex,σ

sup
f∈F

1
N

N∑
i=1

σi1{ f ∗(xi)− f (xi)<0}( f ∗(xi) − f (xi))


≤ 2Ex,σ

sup
f∈F

1
N

N∑
i=1

σi( f ∗(xi) − f (xi))


= 2Ex,σ

sup
f∈F

1
N

N∑
i=1

σi f (xi)

 + 2Ex,σ

 1
N

N∑
i=1

σi f ∗(xi)


≤ 2R(F) +

2b
√

N
where the second inequality holds because that R(ϕ ◦ F) ≤ LR(F) when ϕ : R→ R is an L-Lipschitz

and that 1x<0x is 1-Lipschitz w.r.t. x. The last inequality holds because Ex,σ

[
1
N
∑N

i=1 σi f ∗(xi)
]
≤

√
b
N .

Specifically,

Ex,σ

 1
N

N∑
i=1

σi f ∗(xi)

 = 1
N
E

 N∑
i=1

σi f ∗(xi)


≤

1
N

E

 N∑

i=1

σi f ∗(xi)

2



1/2

=
1
N

E
 N∑

i, j=1

σiσ j f ∗(xi) f ∗(x j)




1/2

=
1
N

E  N∑
i=1

( f ∗(xi))2

1/2
≤

b
√

N
(4)
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where the first inequality follows by Jensen’s inequality, the third equation holds because {σi}
N
i=1 are

i.i.d. and E[σiσ j] = E[σi]E[σ j] = 0 when i , j while E[σiσi] = 1.

Therefore, Theorem 2 can be derived by combining Theorem 4 and 5.

E Implementation Details

We use following datasets for evaluation.

• Age Covariate Treatment Dataset (ACT). We simulate 1000 subjects and split the training and
testing with 70/30%. The covariate represents the age of each subject, and the binary treatment
denotes whether the subject takes the dose.
• IHDP Dataset. IHDP is a widely-used semi-synthetic dataset from Hill (2011). There are 25

covariates and a binary treatment variable. In the counterfactual inference task, we use all the
training samples. In the individual treatment effect estimation task, we use 70 percent as training
and 30 percent as validation following Li & Yao (2022).
• JOBS Dataset. JOBS (LaLonde, 1986) is a real-world dataset without counterfactual outcomes.

We run the experiments on the dataset 100 times with different random seeds.

Here, we introduce our implementation details for counterfactual inference. We provide the source
code and all training configurations in the supplement.

Specifically, we adopt Betty (Choe et al., 2023) as our automatic differentiation library for bi-level
optimization. We choose DARTS (provided in Betty) as the hyper-gradient computation method to
update parameters in upper-level problems with lower-level parameters.

Hyper-parameter Selection Following Johansson et al. (2016); Li & Yao (2022), we also use
random search strategy (Bergstra & Bengio, 2012) to find the optimal hyper-parameters. On the ACT
and IHDP datasets, we use the MAE reconstruction error on the factual samples as the selection
criterion. On the IHDP and JOBS datasets, we use performance on the validation dataset to select the
models following Johansson et al. (2016). We use PEHE and Rpol for the IHDP and JOBS dataset,
respectively.

Network Architecture As for the lower problem, we first use a shared N-layer MLP with ELU
activation to map the covariate to a representation space. The quantile τ̂ is also fed into the MLP.
Then we use one MLP for the treatment group and another MLP for the control group. The unshared
MLPs are used to map the representation to the target space. We also concatenate the representation
with the quantile τ̂ in the unshared MLP inputs.

As for the upper-level problem, we use a Linear layer to map the scalar target to a representation
space. Then we map the covariate to the same representation space by an MLP. Then we add the two
representations and feed the summation into an MLP. We apply the sigmoid function to the output of
the last MLP such that it is within the range [0,1] (otherwise, it violates the definition of quantile).

Training Pipeline. As mentioned in the main paper, we use Betty (Choe et al., 2023) to perform
the bi-level optimization. In each training step, the model (quantile regressor g) in the lower-level
problem will be optimized m times with the pin-ball loss by SGD (we use Adam optimizer). The
learning rate is choosen from [0.0001, 0.001]. We usually set m = 50. As for the global training step,
we set the total training steps to 300 times and stopped the training after no improvement after 40
steps.

The Synthetic experiments in analyzing monotonic assumptions We sample the treatment value
from U[−3, 3] and use 20000 samples. For the MLP used in the synthetic experiments, we use two
layers with hidden dim as 100. The hidden activation is LeakyReLU while the output activation is
Tanh. Due to the small weights, we find that the outputs of the untrained MLP can be very small.
Therefore, we initialize the MLP with N(0, 0.25).

F Results on Confounding case

We tested our method under three different confounding case: (1) the confounder C causes X,Z; (2)
the confounder C causes X,Y; (3) the confounder C causes Z,Y .
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X ← C → Z X ← C → Y Z ← C → Y
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Figure 6: Results when we have confounders.

In the first case, we follow the toy2 case in the main paper and have Y = sin(Z′ + 2πX′) + E, but we
have Z′ = Z +C, X′ +C, where C ∼ U[−1, 1]. The result is shown in the left most figure on Fig. 6.
The estimated τ = 0.6892 which is close to the ground truth Φ(0.5) = 0.691 and predicted trajectory
heavily overlap with true trajectory. Our theory allows the existence of confounder between X and Z
as long as the monotonicity assumption holds and the figure also demonstrate this point.

In the second case, we have Y = sin(Z + 2πX′) + E + C and X′ = X + C,C ∼ U[−1, 1]. There is
deviation betwen our predictions and the ground truth counterfactual outcomes since our assumption
Y = f (X,Z, E) is violated and P(Y |X,Z) cannot represent the noise E again due to the existence of
unobserved C.

In this third case, we have Y = sin(Z′ + 2πX) + E + C and Z′ = Z + C, we have C ∼ U[−2π, 2π].
We observe that there is slight deviation betwen our predictions and the ground truth counterfactual
outcomes.

The existence of confounder has been an challenging issue in causality field and addressing this task
may requires additional information, we leave it as future work.
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