
dattri: A Library for Efficient Data Attribution

Junwei Deng1* Ting-Wei Li1* Shiyuan Zhang1 Shixuan Liu2 Yijun Pan2

Hao Huang1 Xinhe Wang2 Pingbang Hu1 Xingjian Zhang2 Jiaqi W. Ma1

1University of Illinois Urbana-Champaign 2University of Michigan
*Equal Contribution

Abstract

Data attribution methods aim to quantify the influence of individual training sam-
ples on the prediction of artificial intelligence (AI) models. As training data plays
an increasingly crucial role in the modern development of large-scale AI models,
data attribution has found broad applications in improving AI performance and
safety. However, despite a surge of new data attribution methods being devel-
oped recently, there lacks a comprehensive library that facilitates the development,
benchmarking, and deployment of different data attribution methods. In this work,
we introduce dattri, an open-source data attribution library that addresses the
above needs. Specifically, dattri highlights three novel design features. Firstly,
dattri proposes a unified and easy-to-use API, allowing users to integrate differ-
ent data attribution methods into their PyTorch-based machine learning pipeline
with a few lines of code changed. Secondly, dattri modularizes low-level utility
functions that are commonly used in data attribution methods, such as Hessian-
vector product, inverse-Hessian-vector product or random projection, making it
easier for researchers to develop new data attribution methods. Thirdly, dattri
provides a comprehensive benchmark framework with pre-trained models and
ground truth annotations for a variety of benchmark settings, including generative
AI settings. We have implemented a variety of state-of-the-art efficient data at-
tribution methods that can be applied to large-scale neural network models, and
will continuously update the library in the future. Using the developed dattri
library, we are able to perform a comprehensive and fair benchmark analysis across
a wide range of data attribution methods. The source code of dattri is available
at https://github.com/TRAIS-Lab/dattri.

1 Introduction

Data attribution is a family of methods that aim to quantify the influence of individual training
samples on the output of artificial intelligence (AI) models. As training data is becoming increasingly
critical for the advancement of modern AI models, especially for large foundation models [19], there
has been a surge of data attribution methods developed recently [22, 29, 36, 27]. These methods have
found broad data-centric applications in improving the performance and safety of AI models, such as
noisy label detection [22], data selection [9], and copyright compensation [6].

However, a comprehensive infrastructural library that facilitates the development, benchmarking, and
deployment of efficient data attribution methods is lacking. This absence hinders the standardization
and acceleration of research in this area, creating inefficiencies and inconsistencies in how data
attribution methods are developed and applied. Although there have been a couple of prior efforts [33,
28, 18] for unifying APIs and benchmarking, many missing opportunities remain unaddressed,

38th Conference on Neural Information Processing Systems (NeurIPS 2024) Track on Datasets and Benchmarks.

https://github.com/TRAIS-Lab/dattri

motivating the need for this work. We defer to Section 2.2 for a detailed comparison between the
existing libraries and our work.

In this work, we introduce dattri, an open-source data attribution library with the following design
objectives. Firstly, for users deploying existing data attribution methods, we aim to provide a unified
and user-friendly API across different methods. Specifically, our API design emphasizes minimal
code invasion, i.e., allowing the data attribution methods to be integrated into most common PyTorch-
based machine learning pipelines with only a few lines of code changed. This is non-trivial as data
attribution methods often require access to internal information of the models, such as gradients
or hidden representations. We achieve this goal by providing helper decorators to streamline the
integration. Secondly, for researchers developing new data attribution methods, we aim to facilitate
the development by providing efficient implementations of low-level utility functions, such as
Hessian-vector product, inverse-Hessian-vector product or random projection. These functions are
used by multiple existing data attribution methods and will likely be useful in the development of
new methods. In dattri, we implement the data attribution methods in a carefully designed modular
fashion, providing both a set of modularized low-level functions and examples of the usage of these
functions. Finally, for both users and researchers, we aim to provide a benchmark suite that highlights
a comprehensive list of evaluation metrics and diverse benchmark settings, including generative
AI settings. In addition to the code for the evaluation metrics and benchmark experiments, we also
provide the trained model checkpoints for each benchmark setting. Since some evaluation metrics
for data attribution require hundreds or even thousands of model retraining, the provided trained
model checkpoints could significantly reduce the computational burden of benchmark evaluation.
The bolded features listed above are all novel designs in dattri compared to existing literature.

We have implemented a variety of data attribution methods, evaluation metrics, and benchmark
settings in dattri. Our library currently covers four families of data attribution methods, each named
after a representative method within its category. These families are: Influence Function (IF) [22],
TracIn [29], Representer Point Selection (RPS) [36], and TRAK [27]. We have excluded certain other
methods, notably the game-theoretic methods such as Data Shapley [10, 17] or Data Banzhaf [34],
to focus on computationally efficient methods that do not require extensive model retraining. We
have implemented three evaluation metrics commonly used in the data attribution literature: noisy
label detection [22], leave-one-out (LOO) correlation [22], and linear datamodeling score (LDS) [15].
We provide six benchmark settings on different combinations of models and datasets, with a variety
of machine learning tasks, including image classification, text generation, and music generation.
With the developed dattri library, we have performed a comprehensive and fair benchmark analysis
across the methods and settings. Our results suggest that IF performs well on linear models, while
TRAK generally outperforms other methods in most experimental settings.

In summary, dattri is a comprehensive library with numerous novel features tailored to facilitate
the development, benchmarking, and deployment of efficient data attribution methods. We will also
continuously update this library to include more efficient data attribution methods and benchmark
settings in future iterations.

2 Related Work

In this section, we briefly review data attribution methods in Section 2.1 and compare dattri with
existing data attribution libraries in Section 2.2.

2.1 Data attribution methods

The data attribution problem. Suppose we have a training set S = {x1, . . . , xn}, a test set
T = {x1, . . . , xm}, and a trained model output function fΘ that is parameterized by Θ. Typically, a
data attribution method τ derives the attribution scores τ(x,S; fΘ) ∈ Rn, where x ∈ T , to quantify
the influence of each training data point in S on the model output on x.

Data attribution methods. Our library aims to cover a diverse set of representative data attribution
methods while recognizing that it is impossible to implement all existing methods. Notably, we
have omitted one popular family of game-theoretic methods, including Data Shapley [10, 16] and
Data Banzhaf [34]. These methods often require repeatedly removing subsets of training data and

2

Table 1: A summary of the efficient data attribution methods available in dattri. These methods are
clustered into four families: IF, TracIn, RPS, and TRAK. The empirical experiments are demonstrated
separately by different evaluation metrics and models. The experimental settings are stated in
Section 3.3, and the results are detailed in Section 4. Here, we use the symbols “-/+/++” to qualitatively
indicate the performance of each efficient data attribution method to be “similar to random/better than
random/much better than random”. The “Linear” column is based on the result of logistic regression
(LR), while the “Non-linear” column is based on that of a variety of neural network models.

Family Algorithms LOO LDS AUC

Linear Non-linear Linear Non-linear Linear Non-linear

IF

Explicit [22] ++ - ++ - ++ -

CG [26] ++ - ++ + ++ +

LiSSA [1] ++ - ++ + ++ +

Arnoldi [30] + - + - ++ +

TracIn
TracInCP [29] + - + + ++ +

Grad-Dot [5] + - + + ++ +

Grad-Cos [5] + - + + - -

RPS RPS-L2 [36] + - + - ++ +

TRAK TRAK [27] ++ - ++ ++ ++ ++

retraining the model on the remaining data, making them computationally infeasible for large-scale
applications.

Prioritizing efficient data attribution methods applicable to large neural network models, we focus on
the following four families of methods. We have implemented most of the state-of-the-art methods.

One of the most popular and widely used data attribution families is the Influence Function (IF) [22],
which approximates the influence by calculating the Hessian matrix and the gradient of data samples.
Since explicitly calculating the Inverse-Hessian-Vector-Product can be prohibitively heavy in terms
of computational load and memory usage, many alternative methods are proposed to alleviate the
computation and memory cost. Some of the popular ones include Conjugate Gradients (CG) [26],
LiSSA [1], Arnoldi [30]. Another family of data attribution methods, TracIn [29], assumes the
hessian matrix to be an identity matrix and proposes to leverage multiple checkpoints during the
training and assume the hessian matrix to be an identity matrix. Existing literature [5] also proposes
two simplified versions, i.e., “Grad-Dot” and “Grad-Cos”. “Grad-Dot” can be seen as TracIn with
only one checkpoint, and “Grad-Cos” additionally normalizes the score with the gradient norm.
Representer Point Selection (RPS) [36] is another family of data attribution methods. It uses the
representer point theorem for kernels to represent the pre-activation prediction as a linear combination
of training samples. TRAK [27] is the last family; it leverages the empirical neural tangent kernel
approximation and random projection to improve efficiency and efficacy. The detailed formula
definition of each data attribution method is stated in Appendix A.

In Table 1, we summarize these methods and provide a qualitative overview of their performance
based on our benchmark experiments detailed in Section 4.

2.2 Data attribution libraries

There are three existing libraries aiming to benchmark or unify the implementations of different data
attribution methods, as summarized in Table 2. Specifically, OpenDataVal [18] primarily focuses
on game-theoretic methods. While it also implements a couple of IF variants, it misses most of the
efficient data attribution methods. The scale of the benchmark settings of OpenDataVal are also
mostly small. pyDVL [33] implements both the IF family of methods and game-theoretic methods, but
it does not have a benchmark component. The methods implemented by influenciae [28] are closer
to ours, yet we cover more data attribution methods as well as significantly more comprehensive
benchmark datasets, tasks, and metrics (so far influenciae only has one benchmark and metric).
Moreover, influenciae is based on Tensorflow and has only one evaluation metric for image
classification, which limits its applicability and flexibility. In contrast, our library is built on PyTorch,

3

Table 2: A summary of existing libraries and our library, dattri. Our library covers a broader set of
efficient data attribution methods and a more comprehensive benchmark suite.

Library Algorithm Framework Benchmark

IF TracIn RPS TRAK Game-Theoretic Model Type Metrics

pyDVL Yes / / / Yes PyTorch / /

OpenDataVal Partial / / / Yes PyTorch Classification Noisy Label/Feature Detection
Point Removal/Addition

Influenciae Yes Yes Yes / / Tensorflow Image Classification Noisy Label Detection

dattri Yes Yes Yes Yes / PyTorch
Image Classification Noisy Label Detection

Text Generation Linear Datamodeling Score (LDS)
Music Generation Leave-one-out (LOO) Correlation

Figure 1: Architecture of dattri and the functionalities of each module in dattri serve.

and includes a rich family of efficient data attribution methods and a comprehensive benchmarking
component. Our library also highlights novel design features as mentioned in Section 1 and detailed
in Section 3.

In addition, there is a remotely relevant library, Captum [23], that primarily focuses on machine
learning model interpretability. It implements several data attribution methods as part of its suite of
interpretability tools, alongside other techniques such as feature and neuron attribution methods [11].
However, the goals and scope of Captum differ significantly from those of dattri.

3 Design of dattri

In this section, we introduce the design of dattri that provides a unified and user-friendly API
(Section 3.1), modularized low-level utility functions (Section 3.2), and a comprehensive benchmark
suite (Section 3.3).

3.1 A unified and user-friendly API

Data attribution methods often require internal gradients or hidden representations of the model to
calculate the attribution scores. Consequently, many existing implementations of data attribution
methods are heavily invasive to the model training pipeline, i.e., the data attribution process is
significantly entangled with the model training code, making it challenging for users to adapt the
code to other models or applications.

4

dattri is carefully designed to provide a unified API that can be applied to the most common
PyTorch model training pipeline with minimal code invasion. Demo 1 shows an example of applying
IF methods on a PyTorch model.

Specifically, the user will first define an AttributionTask object. This object contains necessary
attribution task information such as the loss function from which the model is trained, the model
architecture, and the trained model checkpoints. Next, the user will initialize an Attributor
instance with the AttributionTask object and additional configuration parameters. Note that each
Attributor class corresponds to a specific attribution method. Finally, the Attributor will perform
data attribution using the training and test data loaders, which typically come directly from the model
training pipeline.

The same API works for all the data attribution methods available in dattri, so that users can easily
switch across different methods.

def f(params, data): # an example of loss function using CE loss
x, y = data
loss = nn.CrossEntropyLoss()
yhat = torch.func.functional_call(model, params, x)
return loss(yhat, y)

attr_task = AttributionTask(
loss_func=f,
model=model,
checkpoints=model.state_dict(),
target_func=f # the target function to be attributed could differ from the loss

function (e.g., this could be defined as the prediction logit)
)
attributor = IFAttributorCG(

task=attr_task,
device=torch.device("cuda"),
**attributor_hyperparams # e.g., regularization, ...

) # similar for other attributors
attributor.cache(train_loader) # optional pre-processing to accelerate the attribution
score = attributor.attribute(train_loader, test_loader)

Demo 1: Example usage of dattri to perform attribution on a PyTorch model. Users will first
define a AttributionTask object, task, that collects necessary configuration information about the
attribution task. Next, users can initialize a specific attributor class (in this demo, IFAttributorCG
corresponds to the influence function with CG method) that takes task as the input. Finally, users
feed the training and testing data loaders (typically from the model training pipeline) to attributor
and obtain the attribution scores.

3.2 Modularized low-level utility functions

Different data attribution methods can share common sub-routines in their algorithms. In dattri, we
modularize such sub-routines through low-level utility functions so that they can be reused in the
development of new methods.

There are two types of low-level utility functions, respectively, implemented in the modules
dattri.func and dattri.model_utils. The dattri.func module is built on top of torch.func1,
which allows flexible mathematical manipulation of numerical functions. This is a helpful abstraction
as data attribution methods often utilize mathematical operations beyond standard PyTorch operators
(e.g., operations involving higher-order derivatives). We implement a few such mathematical oper-
ations in dattri.func, including Hessian-vector product (HVP), inverse-Hessian-vector product
(IHVP) and random projection. The dattri.model_utils module, on the other hand, implements
model-level manipulations that have been shown to be useful in recent literature. Below, we provide
more details about several key low-level utility functions.

1See https://pytorch.org/docs/stable/func.html for more details about torch.func.

5

https://pytorch.org/docs/stable/func.html

HVP/IHVP. Mathematically, given a target function fΘ(x) with the Hessian denoted as H(x; Θ) =
∇2

ΘfΘ(x), and a vector v, the HVP function is defined as HVP(x, v; Θ) = H(x; Θ)v; while the IHVP
function is defined as IHVP(x, v; Θ) = H(x; Θ)−1v. We implement the HVP function with a thin
wrapper on the composition of Jacobian-vector product functions available in torch.func. We further
implement a variety of efficient approximated algorithms for the IHVP functions (such as Conjugate
Gradients (CG) [26] or LiSSA [1]), most of which re-use HVP as a sub-routine. For each of these
IHVP algorithms, we implemented two versions under dattri.func.hessian, ihvp_{alg_name}
and ihvp_at_x_{alg_name}. As can be seen in Demo 2 (with CG as an example), ihvp_cg takes
the target function as input and returns a function IHVP(x, v; Θ) (i.e., ihvp_func in Demo 2). On
the other hand, ihvp_at_x_cg further takes the data and parameters as input and returns a function
ihvp_at_x_func that only takes v as input. The latter implementation serves a specific need of data
attribution methods where we want to calculate IHVP(x, v; Θ) for multiple v’s with the same x and
Θ. This implementation allows us to pre-process and cache intermediate results that only depend on
x and Θ to accelerate the algorithm.

from dattri.func.hessian import ihvp_cg, ihvp_at_x_cg

def f(x, param): # target function
return torch.sin(x / param).sum()

x = torch.randn(2)
param = torch.randn(1)
v = torch.randn(5, 2)
ihvp_cg method
ihvp_func = ihvp_cg(f, argnums=0, max_iter=2) # argnums=0 indicates that the param

of (x, param) to be passed to ihvp_func is the model parameter
ihvp_result_1 = ihvp_func((x, param), v) # both (x, param) and v as the inputs
ihvp_at_x_cg method: (x, param) is cached
ihvp_at_x_func = ihvp_at_x_cg(f, x, param, argnums=0, max_iter=2)
ihvp_result_2 = ihvp_at_x_func(v) # only v as the input
the above two will give the same result
assert torch.allclose(ihvp_result_1, ihvp_result_2)

Demo 2: Example usage of the CG implementation of the IHVP function.

Random projection. Some data attribution methods, such as TRAK [27] and TracIn [29], involve
inner product among gradients of model parameters. This calculation can be significantly accelerated
by dimension reduction through random projection when the model parameter size is extremely large.
We provide a simple wrapper on top of the random projection toolkit, fast_jl, implemented by Park
et al. [27].

Researchers can leverage this utility function into the development of new data attribution methods
when dealing with high-dimensional model parameters.

Dropout ensemble. Recent studies [31, 27] have shown that the efficacy of many data attribution
methods can be significantly improved by ensembling multiple independently trained models with
different random seeds. Furthermore, a recent paper [7] proposes dropout ensemble, which utilizes
multiple dropout masks on the same model to perform ensembling, leading to superior efficiency-
efficacy trade-off in comparison to naive ensembles. In dattri.model_utils, we provide a utility
function activate_dropout to enable dropout ensemble for different data attribution methods.

3.3 A comprehensive benchmark suite

Data attribution metrics. As an emerging research area, data attribution has been evaluated by a
variety of metrics in the literature. Among them, there are two types of mainstream evaluation metrics.
The first type of metrics treats the change of model outputs after removing certain data points and
retraining the model as a gold standard for quantifying the influence of individual training samples:

• Leave-one-out (LOO) correlation [22]: This metric refers to the Pearson correlation between
the predicted model output difference (by data attribution method) and the model output with
leave-one-out training.

6

• Linear datamodeling score (LDS) [15]: This metric aims at probing data attribution methods’
ability to make counterfactual predictions based on the attribution score derived from the learned
model output function fΘ and the corresponding dataset to train fΘ. Because most data attribution
methods are assumed to be additive2, the data attribution scores can be used to predict the model
output function learned from a subset of training data in a summation form. More details of LDS
are deferred to Appendix B.

The second type of metrics evaluates data attribution methods through downstream applications,
where the most common ones are noisy label detection and data selection [22, 10]. However, a recent
study [35] demonstrates that the data selection task is problematic. Therefore we focus on noisy label
detection only in our benchmark:

• Area under the ROC curve (AUC) for noisy label detection: This metric is specifically for noisy
label detection tasks. For this task, a certain portion of the training samples’ labels are flipped and
data attribution methods are utilized to prioritize the training points with higher self-influence for
humans to inspect when repairing the dataset. The task can thus be treated as a ranking problem
(based on the magnitude of attribution scores) and evaluated by AUC.

Diverse experimental settings. dattri introduces diverse experimental settings including image
classification, music generation, and text generation, which are listed in Table 3. To summarize, we
consider a series of models with different architectures trained on diverse datasets: (1) a logistic
regression (LR) classifier and a three-layer MLP classifier trained on the MNIST-10 dataset [25], (2)
a ResNet-9 classifier [13] trained on CIFAR-10 [24] and CIFAR-2 dataset (a two-class subset of the
CIFAR-10 dataset), (3) a Music Transformer [14] trained on the MAESTRO dataset [12] and (4) a
NanoGPT [21] trained on the Shakespeare dataset [20]. In particular, the former two are supervised
image classification settings, while the latter two are generative settings. For the classification settings,
we sample 5000 training samples and 500 test samples from MNIST-10 and CIFAR-10/CIFAR-2
datasets. For the MAESTRO dataset, we sample 5000 training samples and 178 generated samples.
For the Shakespeare dataset, we use the full training set with size 3921 and sample 435 generated
samples. More detailed setups for each dataset and model are listed in Appendix C.

Table 3: The full experimental setting for data attribution benchmark.

Dataset Model Task Sample size (train,test) Parameter size Metrics Data Source

MNIST-10 LR Image Classification (5000,500) 7840 LOO/LDS/AUC [8]

MNIST-10 MLP Image Classification (5000,500) 0.11M LOO/LDS/AUC [8]

CIFAR-2 ResNet-9 Image Classification (5000,500) 4.83M LDS [24]

CIFAR-10 ResNet-9 Image Classification (5000,500) 4.83M AUC [24]

MAESTRO Music Transformer Music Generation (5000,178) 13.3M LDS [12]

Shakespeare NanoGPT Text Generation (3921,435) 10.7M LDS [20]

Pre-trained models with ground truth. For the aforementioned benchmark settings, we provide
pre-trained models, and ground truth annotations corresponding to each evaluation metric. For
MNIST-10 experiments, we provide pre-trained models produced by exact leave-one-out training
(i.e., 5000 models for each of the LR and MLP experiments). Across all settings, we pre-train 100
models for LDS calculation on a random half-dataset controlled by a fixed random seed generation
procedure. The first 50 models are used in our benchmark experiments to assemble and compute
the attribution scores. For example, TRAK and TracIn can utilize multiple models to improve their
performance on the same task. The last 50 models are used for LDS calculation, which requires
several models that are trained on a portion of the original training dataset. The formulation of LDS
is detailed in Appendix B.

7

Ex
pl

ici
t

CG
LiS

SA
Ar

no
ld

i

Tr
ac

In
Gr

ad
-D

ot
Gr

ad
-C

os

RP
S-

L2

TR
AK

-1
TR

AK
-1

0
TR

AK
-5

0

0.0

0.2

0.4

0.6

0.8

1.0

LO
O

LR on MNIST-10 (LOO)

(a) LOO correlation of LR on MNIST-10.

Ex
pl

ici
t

CG
LiS

SA
Ar

no
ld

i

Tr
ac

In
Gr

ad
-D

ot
Gr

ad
-C

os

RP
S-

L2

TR
AK

-1
TR

AK
-1

0
TR

AK
-5

0

0.0

0.2

0.4

0.6

0.8

1.0

LD
S

LR on MNIST-10 (LDS)

(b) LDS of LR on MNIST-10.

Ex
pl

ici
t

CG
LiS

SA
Ar

no
ld

i

Tr
ac

In
Gr

ad
-D

ot
Gr

ad
-C

os

RP
S-

L2

TR
AK

-1
TR

AK
-1

0
TR

AK
-5

0

0.0

0.1

0.2

0.3

0.4

0.5

LO
O

MLP on MNIST-10 (LOO)

(c) LOO correlation of MLP on MNIST-10.

Ex
pl

ici
t

CG
LiS

SA
Ar

no
ld

i

Tr
ac

In
Gr

ad
-D

ot
Gr

ad
-C

os

RP
S-

L2

TR
AK

-1
TR

AK
-1

0
TR

AK
-5

0

0.0

0.1

0.2

0.3

0.4

0.5

LD
S

MLP on MNIST-10 (LDS)

(d) LDS of MLP on MNIST-10.

Figure 2: The LOO correlation and LDS evaluation of each efficient data attribution method on LR
and MLP trained on MNIST-10. The red cross indicates that the experiment runs out of the time or
memory budget.

4 Benchmark Experiments

4.1 Experimental setup

Datasets and models. We follow the experimental settings listed in Table 3.

Data attribution methods. We benchmark data attribution methods listed in Table 1. Some of
the methods consist of a couple of hyperparameters related to their numerical stability. During the
benchmarking, we mildly tune the hyperparameters to avoid falling into the numerically unstable
region for each method. The details of the hyperparameter tuning are stated in Appendix C.1.
Furthermore, some methods become infeasible in terms of computation time or memory as the model
size and data size grow. In this case, their result is marked as a red cross in the plots. The TRAK
method can trade off computation for efficacy by ensembling several independently trained models.
We denote TRAK without ensembling as “TRAK-1” while TRAK with 10 or 50 model ensembling
respectively as “TRAK-10” and “TRAK-50”.

2If a data attribution method is additive, then it defines an attribution score that the overall influence of a
group is the sum of the individual influence in the group.

8

Ex
pl

ici
t

CG
LiS

SA
Ar

no
ld

i

Tr
ac

In
Gr

ad
-D

ot
Gr

ad
-C

os

RP
S-

L2

TR
AK

-1
TR

AK
-1

0
TR

AK
-5

0

0.0

0.1

0.2

0.3

0.4

0.5

LD
S

ResNet-9 on CIFAR-2 (LDS)

(a) ResNet-9 on CIFAR-2.

Ex
pl

ici
t

CG
LiS

SA
Ar

no
ld

i

Tr
ac

In
Gr

ad
-D

ot
Gr

ad
-C

os

RP
S-

L2

TR
AK

-1
TR

AK
-1

0
TR

AK
-5

0

0.0

0.1

0.2

0.3

0.4

0.5

LD
S

MusicTransformer on MAESTRO (LDS)

(b) Music Transformer on MAESTRO.

Ex
pl

ici
t

CG
LiS

SA
Ar

no
ld

i

Tr
ac

In
Gr

ad
-D

ot
Gr

ad
-C

os

RP
S-

L2

TR
AK

-1
TR

AK
-1

0
TR

AK
-5

0

0.0

0.1

0.2

0.3

0.4

0.5

LD
S

NanoGPT on Shakespare (LDS)

(c) NanoGPT on Shakespeare.

Figure 3: The LDS of each efficient data attribution method on ResNet-9 trained on Cifar-2, Music
Transformer trained on MAESTRO, and NanoGPT trained on Shakespare. The red cross indicates
that the experiment runs out of time or memory budget.

Ex
pl

ici
t

CG
LiS

SA
Ar

no
ld

i

Tr
ac

In
Gr

ad
-D

ot
Gr

ad
-C

os

RP
S-

L2

TR
AK

-1
TR

AK
-1

0
TR

AK
-5

0

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

LR on MNIST-10 (AUC)

(a) LR on MNIST-10.

Ex
pl

ici
t

CG
LiS

SA
Ar

no
ld

i

Tr
ac

In
Gr

ad
-D

ot
Gr

ad
-C

os

RP
S-

L2

TR
AK

-1
TR

AK
-1

0
TR

AK
-5

0

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

MLP on MNIST-10 (AUC)

(b) MLP on MNIST-10.

Ex
pl

ici
t

CG
LiS

SA
Ar

no
ld

i

Tr
ac

In
Gr

ad
-D

ot
Gr

ad
-C

os

RP
S-

L2

TR
AK

-1
TR

AK
-1

0
TR

AK
-5

0

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

ResNet-9 on CIFAR-10 (AUC)

(c) ResNet-9 on CIFAR-10.

Figure 4: The noisy label detection AUC evaluation of each efficient data attribution method on LR
and MLP trained on MNIST-10 and ResNet-9 trained on CIFAR10. The red cross indicates that the
experiment runs out of time or memory budget.

4.2 Experimental results

LOO/LDS performance on logistic regression (LR) and MLP. We first investigate the experimen-
tal setting of LR classifiers trained on MNIST-10, a linear model setting (Figure 2a and Figure 2b).
All methods have better-than-random performance in terms of LOO and LDS, i.e., positive LOO and
LDS. The IF and its variants (except for Arnoldi) perform better than other methods. TRAK-10 and
TRAK-50 achieve comparable results to IF methods, while TRAK-1 is worse than IF.

The experiment on MLP, a non-linear model, on the same dataset shows different results (Figures 2c
and 2d). None of the methods work well in terms of LOO. The LDS performance of most methods
also drops significantly in comparison to the results on LR. TRAK-50 achieves the best performance
in this setting.

These results align with the community understanding that IF methods are brittle for complicated
non-convex models [3] and that the LOO metric is less informative for the non-convex regime [2].

LDS performance on larger models. We also evaluate data attribution methods in terms of LDS
in larger experimental settings, including a larger image classification setting (ResNet-9 on CIFAR-2)
and two generative settings (Music Transformer on MAESTRO and NanoGPT on Shakespeare). As
shown in Figure 3, IF and its variants are not feasible for these settings because of the computational
cost. Among all the efficient data attribution methods implemented in dattri, only TRAK can
achieve non-trivial LDS results with the help of ensembling.

9

AUC performance. We further evaluate the data attribution methods in terms of the AUC in the
downstream noisy label detection task, as shown in Figure 4. Except for “Grad-Cos”3, most methods
have better-than-random performance (> 0.5) for the experiments on LR/MLP on MNIST-10, with
some methods achieving near-perfect AUC (close to 1). For the experiments on ResNet-9 on Cifar-
10, there is a significant performance drop for all methods, with only TRAK achieving non-trivial
performance (> 0.5).

Overall, we found that the IF family performs well in small experimental settings and linear models,
while TRAK generally outperforms other methods in most experimental settings.

Additionally, there are some limitations to the current evaluation metrics. Both the LOO and LDS
metrics require a large number of retrained models to obtain the "ground truth." The AUC metric,
meanwhile, is tied to a specific downstream application and is only applicable to classification tasks.
To address these limitations, and as a key contribution of dattri, we provide pre-trained model
checkpoints associated with the LOO and LDS metrics, allowing users to bypass the costly retraining
process for these evaluations.

5 Conclusion

In this work, we introduce dattri, a comprehensive open-source library that facilitates the research,
development, and deployment of data attribution methods. The main contribution of dattri is three-
fold: (1) a unified and user-friendly API for seamless integration into PyTorch-based ML pipelines,
(2) modularized implementations of low-level utility functions to aid researchers in developing
new methods, and (3) a fair benchmark suite with diverse evaluation metrics, experimental settings,
and pre-trained model checkpoints. dattri addresses critical infrastructural needs in the data
attribution domain, offering a collaborative platform that promotes standardization and accelerates
the development/deployment of data attribution methods.

Limitations and future work. While dattri has implemented a rich family of existing data
attribution methods and experimental settings, admittedly there are still a number of efficient data
attribution methods and benchmark datasets missing in our current library. As for future work, we
will continuously incorporate new methods, benchmarking experiments, and evaluation metrics,
advancing the state-of-the-art of efficient data attribution and unlocking the potential for large-scale
data-centric AI applications.

Acknowledgement

The authors would like to thank Juhan Bae and Kristian Georgiev for their helpful discussions.

This work was in part supported by NCSA Delta GPU at NCSA through allocation CIS230197
from the Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support (ACCESS)
program [4], which is supported by National Science Foundation grants #2138259, #2138286,
#2138307, #2137603, and #2138296.

References
[1] N. Agarwal, B. Bullins, and E. Hazan. Second-order stochastic optimization for machine

learning in linear time. Journal of Machine Learning Research, 18(116):1–40, 2017.

[2] J. Bae, N. Ng, A. Lo, M. Ghassemi, and R. B. Grosse. If influence functions are the answer, then
what is the question? Advances in Neural Information Processing Systems, 35:17953–17967,
2022.

[3] S. Basu, P. Pope, and S. Feizi. Influence functions in deep learning are fragile. arXiv preprint
arXiv:2006.14651, 2020.

[4] T. J. Boerner, S. Deems, T. R. Furlani, S. L. Knuth, and J. Towns. Access: Advancing innovation:
Nsf’s advanced cyberinfrastructure coordination ecosystem: Services & support. In Practice
and Experience in Advanced Research Computing, pages 173–176. 2023.

3In fact, Grad-Cos is theoretically no better than a random guess baseline on the noisy label detection task.
See the Grad-Cos paragraph in Appendix A for more details.

10

[5] G. Charpiat, N. Girard, L. Felardos, and Y. Tarabalka. Input similarity from the neural network
perspective. Advances in Neural Information Processing Systems, 32, 2019.

[6] J. Deng and J. Ma. Computational copyright: Towards a royalty model for ai music generation
platforms. arXiv preprint arXiv:2312.06646, 2023.

[7] J. Deng, T.-W. Li, S. Zhang, and J. Ma. Efficient ensembles improve training data attribution.
arXiv preprint arXiv:2405.17293, 2024.

[8] L. Deng. The mnist database of handwritten digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142, 2012.

[9] L. Engstrom, A. Feldmann, and A. Madry. Dsdm: Model-aware dataset selection with datamod-
els. arXiv preprint arXiv:2401.12926, 2024.

[10] A. Ghorbani and J. Zou. Data shapley: Equitable valuation of data for machine learning. In
International conference on machine learning, pages 2242–2251. PMLR, 2019.

[11] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal. Explaining explanations:
An overview of interpretability of machine learning. In 2018 IEEE 5th International Conference
on data science and advanced analytics (DSAA), pages 80–89. IEEE, 2018.

[12] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C.-Z. A. Huang, S. Dieleman, E. Elsen,
J. Engel, and D. Eck. Enabling factorized piano music modeling and generation with the
MAESTRO dataset. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=r1lYRjC9F7.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[14] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, N. Shazeer, C. Hawthorne, A. M. Dai, M. D. Hoffman,
and D. Eck. Music transformer: Generating music with long-term structure. arXiv preprint
arXiv:1809.04281, 2018.

[15] A. Ilyas, S. M. Park, L. Engstrom, G. Leclerc, and A. Madry. Datamodels: Predicting predictions
from training data. In Proceedings of the 39th International Conference on Machine Learning,
2022.

[16] R. Jia, D. Dao, B. Wang, F. A. Hubis, N. M. Gurel, B. Li, C. Zhang, C. J. Spanos, and
D. Song. Efficient task-specific data valuation for nearest neighbor algorithms. arXiv preprint
arXiv:1908.08619, 2019.

[17] R. Jia, D. Dao, B. Wang, F. A. Hubis, N. Hynes, N. M. Gürel, B. Li, C. Zhang, D. Song, and C. J.
Spanos. Towards efficient data valuation based on the shapley value. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages 1167–1176. PMLR, 2019.

[18] K. Jiang, W. Liang, J. Y. Zou, and Y. Kwon. Opendataval: a unified benchmark for data
valuation. Advances in Neural Information Processing Systems, 36, 2023.

[19] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown, B. Chess, R. Child, S. Gray, A. Rad-
ford, J. Wu, and D. Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

[20] A. Karpathy. char-rnn. https://github.com/karpathy/char-rnn, 2015.

[21] A. Karpathy. nano-gpt. https://github.com/karpathy/nanoGPT, 2022.

[22] P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. In
International conference on machine learning, pages 1885–1894. PMLR, 2017.

[23] N. Kokhlikyan, V. Miglani, M. Martin, E. Wang, B. Alsallakh, J. Reynolds, A. Melnikov,
N. Kliushkina, C. Araya, S. Yan, et al. Captum: A unified and generic model interpretability
library for pytorch. arXiv preprint arXiv:2009.07896, 2020.

11

https://openreview.net/forum?id=r1lYRjC9F7
https://github.com/karpathy/char-rnn
https://github.com/karpathy/nanoGPT

[24] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of features from tiny images. University
of Toronto, 2009.

[25] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[26] J. Martens et al. Deep learning via hessian-free optimization. In Icml, volume 27, pages
735–742, 2010.

[27] S. M. Park, K. Georgiev, A. Ilyas, G. Leclerc, and A. Madry. Trak: Attributing model behavior
at scale. arXiv preprint arXiv:2303.14186, 2023.

[28] A. M. Picard, L. Hervier, T. Fel, and D. Vigouroux. Influenciæ: A library for tracing the
influence back to the data-points. working paper or preprint, Nov. 2023. URL https://hal.
science/hal-04284178.

[29] G. Pruthi, F. Liu, S. Kale, and M. Sundararajan. Estimating training data influence by tracing
gradient descent. Advances in Neural Information Processing Systems, 33:19920–19930, 2020.

[30] A. Schioppa, P. Zablotskaia, D. Vilar, and A. Sokolov. Scaling up influence functions. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 8179–8186,
2022.

[31] A. Søgaard et al. Revisiting methods for finding influential examples. arXiv preprint
arXiv:2111.04683, 2021.

[32] C. Spearman. The proof and measurement of association between two things. The American
Journal of Psychology, 15(1):72–101, 1904.

[33] TransferLab Team. Pydvl. https://pydvl.org/stable/, 2024. Version 0.9.2.

[34] J. T. Wang and R. Jia. Data banzhaf: A robust data valuation framework for machine learning.
In International Conference on Artificial Intelligence and Statistics, pages 6388–6421. PMLR,
2023.

[35] J. T. Wang, T. Yang, J. Zou, Y. Kwon, and R. Jia. Rethinking data shapley for data selection
tasks: Misleads and merits. arXiv preprint arXiv:2405.03875, 2024.

[36] C.-K. Yeh, J. Kim, I. E.-H. Yen, and P. K. Ravikumar. Representer point selection for explaining
deep neural networks. Advances in neural information processing systems, 31, 2018.

12

https://hal.science/hal-04284178
https://hal.science/hal-04284178
https://pydvl.org/stable/

A Data attribution methods

In Section 2.1, we introduce the data attribution methods we implemented in dattri. Here, we
provide a more detailed introduction to these data attribution methods.

Influence function. First proposed by Koh and Liang [22], the influence function (IF) is defined as:

τIF(x,S; fΘ) =
[
gfΘ(xj)

⊤H−1
fΘ

gfΘ(x) : xj ∈ S
]
,

where gfΘ(x) is the vector gradient of loss function with respect to the parameters Θ evaluated at
testing sample x, H−1

fΘ
is the inverse hessian matrix with respect to the training set, and gfΘ(xj)

⊤ is
the vector gradient evaluated at training sample xj . The product of the first two terms is an inverse-
hessian-vector-product (IHVP) problem, where we implement the explicit calculation, conjugate
gradients, LiSSA method, and Arnoldi iteration approximation to solve it. We refer readers to check
the original papers [22, 30] for more details.

TracInCP. Pruthi et al. [29] proposes TracIn, which aims at tracing the training samples’ influence
throughout the process of model training. Multiple checkpoints (i.e., {Θ(i)}Ii=1) stored during the
training process are combined to give the final estimate of training data attribution. The formulation
can be summarized as follows:

τTracInCP(x,S; {fΘ(i)}Ii=1) =

[
I∑

i=1

ηi · gf
Θ(i)

(x)⊤gf
Θ(i)

(xj) : xj ∈ S

]
,

where ηi is the step size used by the optimizer during the (i− 1)-th and i-th checkpoints, gf
Θ(i)

(x)⊤

is the vector gradient of model output fΘ(i) with respect to the parameters Θ(i) evaluated at testing
sample x, and gf

Θ(i)
(xj)

⊤ is the gradient of loss function with respect to the i-th checkpoint’s
parameters evaluated at training sample xj .

Grad-Dot. Grad-Dot is proposed by Charpiat et al. [5], which can be seen as a special case of
TracIn where only the final checkpoint of the trained model is used to compute the data attribution
score. Formally, it can be fomulatd as follows:

τGrad-Dot(x,S; fΘ) =
[
gfΘ(x)

⊤gfΘ(xj) : xj ∈ S
]
,

where gfΘ(x) is the vector gradient of model output fΘ with respect to the parameters Θ evaluated at
testing sample x, and gfΘ(xj)

⊤ is the gradient of loss function evaluated at the training sample xj .

Grad-Cos. Similar to Grad-Dot [5] but with a normalization operation performed on the gradients,
Grad-Cos can be summarized as follows:

τGrad-Cos(x,S; fΘ) =
[

gfΘ(x)
⊤gfΘ(xj)

∥gfΘ(x)∥∥gfΘ(xj)∥
: xj ∈ S

]
,

where gfΘ(x) is the vector gradient of model output fΘ with respect to the parameters Θ evaluated
at testing sample x, and gfΘ(xj)

⊤ is the vector gradient of loss function evaluated at the training
sample xj .

It is worth pointing out that Grad-Cos is theoretically no better than a random guess baseline on the
noisy label detection task. Specifically, noisy label detection by data attribution methods relies on the
self-influence score, i.e., the influence/attribution score of a training data point with the target data
point setting as itself. As a result, the gradient of the training data point is the same as that of the
target data point, which leads to a Grad-Cos score always being 1. Therefore, Grad-Cos score has no
discrimination power for the noisy label detection task.

Representer point selection (RPS-L2). Yeh et al. [36] proposes representer point selection (RPS),
which leverages the representer theorem to decompose the pre-activation prediction layer’s output in
a neural network model by a linear combination over kernel evaluations at the training data points.
Formally, we can represent the model output function fΘ as f{Θ1,Θ2} = Φ(xj ,Θ1) := Θ1hj with

13

Θ1 as the parameters of the last linear classification layer and hj as the last intermediate layer feature
for input xj ∈ S. Note that here hj = Φ2(xj ,Θ2) and Θ2 are all the parameters to generate the
last intermediate layer from the input xj . The authors stated that if Θ∗ is a stationary point of the
following L2-constrained optimization problem:

min
Θ

 1

n

n∑
j=1

L(xj ,Θ) + λ∥|Θ1∥22

 ,

for a pre-specified loss function L(·) and a regularization coefficient λ > 0, then the representer
values, which can be considered as the data attribution scores, can be computed as follows:

τRPS-L2(x,S; fΘ) =
[

1

−2λn

∂L(x,Θ∗)

∂Φ(xj ,Θ∗)
· hT

j h : xj ∈ S
]
,

where n is the number of training points in training set S , hj is the last intermediate layer feature for
training sample xj and h is the last intermediate layer feature for testing sample x.

Tracing with the Randomly-projected After Kernel (TRAK). This is a state-of-the-art data
attribution method introduced by Park et al. [27]. Formally, TRAK is formulated as follows:

τTRAK(x,S; {fΘ(i)}Ii=1) =

(
1

I

I∑
i=1

Qf
Θ(i)

)(
1

I

I∑
i=1

ϕf
Θ(i)

(
Φ⊤

f
Θ(i)

Φf
Θ(i)

)−1

Φ⊤
f
Θ(i)

)
,

where Θ(i) are parameters of models independently trained on the training set S; Qf
Θ(i)

is a diagonal
matrix with each diagonal element corresponding to the “one minus correct-class probability” of
a training data point under model fΘ(i) ; ϕf

Θ(i)
is the vector gradient of fΘ(i)(x) with respect to

Θ(i); and Φf
Θ(i)

is the matrix of the vector gradients of fΘ(i)(xj) stacked over the training samples
xj ∈ S.4

B Details on linear datamodeling score (LDS)

Introduced by Park et al. [27], the linear datamodeling score (LDS) is proposed to probe the data
attribution method’s ability to make counterfactual predictions based on the attribution score derived
from the learned model output function fΘ and the corresponding dataset to train fΘ. Formally, the
attribution-based output predictions of the model output function fΘS′ is defined as follows:

gτ (x,S ′;S) ≜
∑

i:xi∈S′

τ(x,S; fΘ)i, (1)

where S is the training set, S ′ ⊆ S is a subset of S and fΘS′ is the model output function with
ΘS′ learned from S ′. Intuitively, gτ (x,S ′;S) computes the overall attribution of the subset S ′ on
example x by summing up the individual attribution scores for training samples in the set S ′, which
can be seen as a powerful indicator of the model prediction on x (i.e., fΘS′ (x)) if the data attribution
method performs properly. The linear datamodeling score (LDS) is defined to measure the predictive
power of gτ (x,S ′;S) and can be formalized as follows:
Definition B.1 (Linear datamodeling score). Given a training set S , a model output function fΘ, and
a corresponding data attribution method τ . Let {S1, . . . ,Sm : Sj ⊆ S} be m randomly sampled
subsets of S , each of size α× n for some fixed α ∈ (0, 1). The linear datamodeling score (LDS) of τ
for a specific example x is defined as

LDS(τ, x) ≜ ρ({fΘSj
(x) : j ∈ [m]}, {gτ (x,Sj ;S) : j ∈ [m]}),

where ρ is the Spearman rank correlation [32], fΘSj
is the model output function with ΘSj

learned
from Sj and gτ (x,Sj ;S) is defined in Equation (1).

For all benchmark experiments that are evaluated by LDS, we use 50 models that are independently
trained on random subsets with size half of the full dataset (i.e., we set m = 50 and α = 0.5 in
Theorem B.1).

4Some details of the TRAK formulation are omitted here. Please refer to the original paper for more details.

14

C Detailed benchmark experiment setup

In this section, we provide the detailed setup for each benchmark experiment mentioned in Section 3.3.
The experiment is run on an internal server with an Nvidia A40 GPU for around 500 hours.

LR/MLP on MNIST-10. Firstly, we use a simple logistic regression architecture, which consists
of a linear layer and a sigmoid activation layer. The linear layer has 7840 parameters in total. We
employ an SGD optimizer with a learning rate of 0.01, momentum 0.9 and batch size 64 to train the
model for 20 epochs. Secondly, we use a 3-layer MLP with hidden layer sizes equal to 128 and 64
and placed dropout layers after the first two linear layers with a rate of 0.1, which results in a total of
about 0.11M parameters. We employ the same optimizer and batch size to train this MLP classifier
for 50 epochs.

ResNet-9 on CIFAR-2/CIFAR-10. For CIFAR-2 experiment, we construct the CIFAR-2 dataset
by sampling from the CIFAR-10 dataset that only include the “cat” and “dog” classes. We train a
Resnet-9 model [13] on this dataset, which has a total of about 0.38M parameters. We place dropout
layers after all convolution layers with a rate of 0.1. We employ an SGD optimizer with a learning rate
of 0.01, momentum of 0.9, and batch size 64 to train this MLP classifier for 50 epochs. The model
has roughly 4.83M trainable parameters, and we train this model for 50 epochs. For the CIFAR-10
experiment, we follow the setting without any subsampling on the dataset and change only the last
linear layer of the ResNet-9 model for 10-way classifications.

Music Transformer on MAESTRO. For the MAESTRO experiment, we utilize the MIDI and
Audio Edited for Synchronous TRacks and Organization (MAESTRO) dataset (v2.0.0) [12] and
construct a Music Transformer corresponding to the default setting specified in [14]. Specifically, the
number of transformer layers equals 6, the number of multi-heads equals 8, the input feature size
is 512, and the dimension of the feedforward network is 1024. For data pre-processing, we follow
the experiment setup detailed in [6]. To be more specific, we define a vocabulary set of size equal to
388, which includes “NOTE ON” and “NOTE OFF” events for 128 different pitches, 100 “TIME
SHIFT” events, and 32 “VELOCITY” events. The raw data is processed as sequences of about 90K
events. When training the Music Transformer, the batch size is set to be 64, and the model is trained
by a classic seq2seq loss function. We employ an Adam optimizer with a learning rate equal to 1e-4,
β1 = 0.9 and β2 = 0.98. We apply zero warm-up steps, and we train the model for 20 epochs. For
music event generation, we use 178 samples from the official testing dataset as prompts to generate
music with a single event.

NanoGPT on Shakespeare. For the Shakespeare experiment, we utilize the Tiny Shakespeare
dataset [20] and build a nanoGPT model [21]. Specifically, the number of transformer layers is equal
to 6, and the number of multi-heads is equal to 6. For data pre-processing, we define the block size
to be 256 and the full dataset can be processed into 3921 samples. During the training, the batch
size is set to 32, and we employ an Adam optimizer with a learning rate equal to 1e-3, β1 = 0.9
and β2 = 0.99. We train the model for 5000 samples. The training follows the default setting of
https://github.com/karpathy/nanoGPT.

For data licenses, the MNIST-10 dataset holds a CC BY-SA 3.0 license, the CIFAR-10 dataset holds a
CC-BY 4.0 license, the MAESTRO dataset holds a CC BY-NC-SA 4.0 license, and the Shakespeare
dataset is in public domain.

C.1 Data attribution methods hyperparameters

The experimental results of each data attribution method record the best performance over a hyperpa-
rameter search space. Here, we list the hyperparameter search space.

• “explicit”: search “regularization” among [1e-1, 1e-2, 5e-3, 1e-3, 1e-4, 1e-5]
• “CG”: search “regularization” among [1e-1, 1e-2, 5e-3, 1e-3, 1e-4, 1e-5], “max_iter”: 10.
• “LiSSA”: search among [{“recursion_depth”: 500, “batch_size”: 10}, {“recursion_depth”:

500, “batch_size”: 50}]
• “Arnoldi”: search “regularization” among [1e-1, 1e-2, 5e-3, 1e-3, 1e-4, 1e-5], “max_iter”:

50.

15

https://github.com/karpathy/nanoGPT

• “RPS-L2”: search “L2 regularization strength”: among [10, 1, 1e-1, 1e-2, 1e-3, 1e-4],
“feature normalization”: among [True, False].

• “TRAK”: search “projection dimension” among [512, 2048].

D Runtime and memory

We report the runtime and memory usage of different data attribution methods for MLP on MNIST-10
and ResNet-9 on CIFAR-2. For the IF family, Arnoldi is faster and can be scaled to larger settings
than other variants in the IF family, such as CG and Explicit. The TracIN family is mostly faster
and requires less memory than IF. The RPS family is the fastest and lightest because it only cares
about the last layer parameters. The runtime of TRAK increases nearly linearly with respect to the
number of ensemble models. In terms of memory, TRAK has a constant memory overhead due to the
gradient projection, which grows with the model size but does not grow with the number of ensemble
models, and another part of memory cost that grows linearly with the number of ensemble models.

Table 4: Runtime and Memory of different data attribution methods on MNIST-10+MLP and CIFAR-
2+ResNet-9 experiments. The numbers are recorded on a single A40 GPU with 48GB memory.

Family Algorithms MNIST-10+MLP CIFAR-2+ResNet-9

Runtime Peak Memory Runtime Peak Memory

IF

Explicit X OOM X OOM

Conjugate Gradients (CG) 610.79s 966.99M X OOM

LiSSA 498.53s 323.54M X OOM

Arnoldi 455.80s 250.50M 732.92s 16405.30M

TracIn
TracInCP-10 85.89s 214.24M 2250.02s 9475.81M

Grad-Dot 9.06s 214.24M 226.50s 9476.98M

Grad-Cos 8.76s 214.24M 235.01s 9475.54M

RPS RPS-L2 1.08s 72.09M 1.22s 296.81M

TRAK
TRAK-1 1.83s 206.99M 36.98s 7048.40M

TRAK-10 13.71s 598.67M 316.22s 7440.87M

TRAK-50 67.74s 2236.08M 1549.24s 9077.21M

E Demo of using low-level utility functions to build new data attribution
methods

We demonstrate how developers can build new data attribution methods using low-level utility
functions implemented in dattri. In this example, we will replace the random projection used in
TRAK with the Arnoldi projection, leading to a new data attribution method.

grad_t = self.grad_loss_func(parameters, train_batch_data)
grad_t = torch.nan_to_num(grad_t) / self.norm_scaler
grad_p = random_project(
grad_t,
train_batch_data[0].shape[0],
**self.projector_kwargs,
)(grad_t, ensemble_id=ckpt_seed).clone().detach()

Demo 3: The original TRAK using random_project as the projection method.

16

grad_t = self.grad_loss_func(parameters, train_batch_data)
grad_t = torch.nan_to_num(grad_t) / self.norm_scaler
grad_p = arnoldi_project(
grad_t,
self.target_func,
parameters,
**self.projector_kwargs,
)(grad_t).clone().detach()

Demo 4: A new variant of TRAK using arnoldi_project as the projection method.

F Quick start demo

The following is a quick start demo using dattri to conduct data attribution for the logistic regression
model on MNIST.

import torch
from torch import nn

from dattri.algorithm import IFAttributorCG
from dattri.task import AttributionTask
from dattri.benchmark.datasets.mnist import train_mnist_lr, create_mnist_dataset
from dattri.benchmark.utils import SubsetSampler

dataset_train, dataset_test = create_mnist_dataset("./data")

train_loader = torch.utils.data.DataLoader(
dataset_train,
batch_size=1000,
sampler=SubsetSampler(range(1000)),

)
test_loader = torch.utils.data.DataLoader(

dataset_test,
batch_size=100,
sampler=SubsetSampler(range(100)),

)

model = train_mnist_lr(train_loader)

1 def f(params, data_target_pair):
2 x, y = data_target_pair
3 loss = nn.CrossEntropyLoss()
4 yhat = torch.func.functional_call(model, params, x)
5 return loss(yhat, y)
6

7 task = AttributionTask(loss_func=f,
8 model=model,
9 checkpoints=model.state_dict())

10

11 attributor = IFAttributorCG(
12 task=task,
13 max_iter=10,
14 regularization=1e-2
15)
16

17 attributor.cache(train_loader)
18 score = attributor.attribute(train_loader, test_loader)

Demo 5: Quick start demo. The yellow code block is where we apply dattri for data attribution.

17

G Uncertainty analysis

We report the uncertainty of LDS scores for different data attribution methods under two sources
of randomness, algorithm randomness and ground-truth randomness. For algorithm randomness,
we train independent models with five different random seeds as the models to be attributed and
evaluate the data attribution methods on the same sets of randomly sampled subsets. For ground-truth
randomness, we fix the seed for model training but evaluate the data attribution methods on five
independent sets of randomly sampled subsets.

As shown in Figure 5, we report the error bars of the LDS scores on two experimental settings,
MLP on MNIST-10 and RseNet-9 on CIFAR-2, coupled with the aforementioned two sources of
randomness. Overall, the error bars are small among all settings, except for those methods that have
very poor performance (with LDS scores close to 0).

Ex
pl

ici
t

CG
LiS

SA
Ar

no
ld

i

Tr
ac

In
Gr

ad
-D

ot
Gr

ad
-C

os

RP
S-

L2

TR
AK

-1
TR

AK
-1

0
TR

AK
-5

0

0.0

0.1

0.2

0.3

0.4

0.5
MLP on MNIST-10 (algorithms uncertainty) (LDS)

(a) LDS of MLP on MNIST-10
(algorithm randomness).

Ex
pl

ici
t

CG
LiS

SA
Ar

no
ld

i

Tr
ac

In
Gr

ad
-D

ot
Gr

ad
-C

os

RP
S-

L2

TR
AK

-1
TR

AK
-1

0
TR

AK
-5

0

0.0

0.1

0.2

0.3

0.4

0.5
MLP on MNIST-10 (groundtruth uncertainty) (LDS)

(b) LDS of MLP on MNIST-10
(ground-truth randomness).

Ex
pl

ici
t

CG
LiS

SA
Ar

no
ld

i

Tr
ac

In
Gr

ad
-D

ot
Gr

ad
-C

os

RP
S-

L2

TR
AK

-1
TR

AK
-1

0
TR

AK
-5

0

0.0

0.1

0.2

0.3

0.4

0.5
ResNet-9 on Cifar-2 (algorithms uncertainty) (LDS)

(c) LDS of ResNet-9 on CIFAR-2
(algorithm randomness).

Ex
pl

ici
t

CG
LiS

SA
Ar

no
ld

i

Tr
ac

In
Gr

ad
-D

ot
Gr

ad
-C

os

RP
S-

L2

TR
AK

-1
TR

AK
-1

0
TR

AK
-5

0

0.0

0.1

0.2

0.3

0.4

0.5
ResNet-9 on Cifar-2 (groundtruth uncertainty) (LDS)

(d) LDS of ResNet-9 on CIFAR-2
(ground-truth randomness).

Figure 5: The LDS evaluation of different data attribution methods on MLP trained on MNIST-10 and
ResNet-9 trained on CIFAR-2 with two sources of randomness. The error bars reflect the standard
error of the mean.

18

	Introduction
	Related Work
	Data attribution methods
	Data attribution libraries

	Design of dattri
	A unified and user-friendly API
	Modularized low-level utility functions
	A comprehensive benchmark suite

	Benchmark Experiments
	Experimental setup
	Experimental results

	Conclusion
	Data attribution methods
	Details on linear datamodeling score (LDS)
	Detailed benchmark experiment setup
	Data attribution methods hyperparameters

	Runtime and memory
	Demo of using low-level utility functions to build new data attribution methods
	Quick start demo
	Uncertainty analysis

