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ABSTRACT

Vision Transformer (ViT) and its variants have witnessed a significant success in
computer vision. However, they do not perform well in underwater dense prediction
tasks due to challenges like complex underwater environments, quality degradation,
and light scattering in underwater images. To solve this problem, we propose the
Vision Transformer Underwater-Adapter (ViT-UWA), the first detail-focused and
adapted ViT backbone for underwater dense prediction tasks, without requiring
task-specific pretraining. In ViT-UWA, we first introduce High-frequency Com-
ponents Prior (HFCP) to add high-frequency information of underwater images
to the plain ViT, which can help recover and capture lost high-frequency informa-
tion of underwater images. Then, we propose an Detail Aware Module (DAM)
to obtain a detail-focused multi-scale convolutional feature pyramid, which can
be used in kinds of dense prediction tasks. Through the ViT-CNN Interaction
Module (VCIM), we achieve bidirectional feature fusion between ViT and CNN.
We evaluate ViT-UWA on multiple underwater dense prediction tasks, including
semantic segmentation, instance segmentation, and object detection. Notably, with
only ImageNet-22K pretraining, our ViT-UWA-B yields state-of-the-art 46.4 box
AP and 44.2 mask AP on USIS10K dataset. We hope ViT-UWA could provide a
new backbone for future research on underwater dense prediction tasks.

1 INTRODUCTION

In recent years, with the increasing demand for underwater robot target capture and people’s emphasis
on the utilization of marine resources, there has been a growing focus on the field of underwater vision
[28]. Dense prediction tasks are a type of task in the field of computer vision that involves making
predictions for each pixel or small region of an image. Dense prediction tasks typically require
classification or regression of each pixel of an image and effective multi-scale feature representation
for classifying or detecting objects or regions with varying sizes [31]. Dense prediction tasks like
semantic segmentation, instance segmentation, and object detection have significant application value
in many underwater vision scenarios, such as visually-guided underwater robot [26], mapping and
monitoring of marine habitats [41], underwater target detection and segmentation [29].

Image ViT Ours

Figure 1: A simple comparison of ViT and ViT-
UWA on the SUIM dataset. Red boxes in the
second column show several ViT’s issues on un-
derwater dense prediction.

Inspired by the success of transformers in Nat-
ural Language Processing (NLP), vision trans-
formers [12] soon attracted attention and rose in
many computer vision tasks such as image clas-
sification, semantic segmentation, and object de-
tection, outperforming CNN models and reach-
ing state-of-the-art (SOTA) performance. These
models are mainly split into three branches:
the plain ViT [12, 35], vision-specific variants
(e.g., SegFormer [58], Swin [40], PVT [53])
and adapted ViT backbones (e.g., ViT-Adapter
[8], ViT-CoMer [56]). The plain ViT optimizes
the use of ViT features without changing the
framework of ViT. The vision-specific variants
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redesign the network structure by combining the advantages of CNN and Transformer. Adapted
ViT backbones only introduce CNN features by adding a parallel network, which leverages various
open-source pre-trained ViT weights and addresses the lack of interaction among local ViT features
and the limitation of single-scale representation. Adapted ViT backbones have made a remarkable
process in dense prediction tasks.

However, due to the uneven illumination, monotonous color, and complicated underwater background
of underwater images [28], underwater images usually suffer from quality degradation issues and
lose a large amount of high-frequency detail information. Thus, plain ViT often encounters issues
such as edge blurry in segmentation and detection, and incorrect category prediction (as shown in
Figure 1) in underwater dense prediction tasks. Existing methods (e.g., Sea-Thru [1], WaterGAN
[32]) address underwater degradations like color distortion based on the physics of underwater light
scattering, but most of them are primarily focused on underwater image enhancement rather than
underwater dense prediction. Recent studies (e.g., SUIM-Net [26], WaterMask [37], USIS-SAM
[36]) usually focus on a single underwater task, which is not universal enough. Underwater dense
prediction is still a challenging task for ViT and adapted ViT backbones.
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Figure 2: Instance segmentation performance
on USIS10K. It can be seen that the proposed
ViT-UWA achieves improvements to the plain ViT,
adapted ViT backbones and task-specific underwa-
ter methods.

To address the above issues and fill the gap
where there are currently no universal meth-
ods for underwater dense prediction tasks, we
propose the Vision Transformer Underwater-
Adapter (ViT-UWA). It is an additional network
that can adapt the plain ViT to downstream un-
derwater dense prediction tasks without modify-
ing ViT’s primary structure. Specifically, we de-
sign three modules for ViT-UWA, including (1)
an high-frequency components prior to recov-
ering and capturing lost high-frequency infor-
mation of underwater images, (2) a detail aware
module to improve ViT’s perception of high-
frequency details, (3) a ViT-CNN interaction
module to fuse features bidirectionally between
ViT and CNN. As shown in Figure 2, our mod-
els continuously achieve improved performance
compared to the plain ViT and recently adapted
ViT backbones under the fair pre-training strat-
egy.

The main contributions of our work are as follows:

• We propose a novel underwater dense prediction backbone by combining the plain ViT with
high-frequency components and multi-scale convolutional features. It fully leverages the prior
information of underwater images and the rich semantic representation of multi-scale features,
which enhances the perception of semantic boundaries in underwater images and recovers the
high-frequency information in the images.

• We introduce a high-frequency components prior and design a detail aware module and a ViT-CNN
interaction module. The former can help ViT recover and capture lost high-frequency information
of underwater images such as edges and textures. The latter two modules can obtain detail-focused
multi-scale convolutional features and perform bidirectional feature interaction between ViT and
CNN, respectively.

• We evaluate the ViT-UWA on three challenging underwater dense prediction benchmarks, including
SUIM [26], UIIS [37], and USIS10K [36]. Extensive experiments on public evaluation criteria
demonstrate the effectiveness of the proposed ViT-UWA. For underwater image semantic segmen-
tation, ViT-UWA-B reaches 75.3% mIoU on the SUIM dataset when using only ImageNet-1K
pre-training, outperforming ViT-Adapter-B by 2.9 points and ViT-CoMer-B by 2.2 points. More-
over, for underwater object detection and instance segmentation, our ViT-UWA-B yields 30.9% box
AP and 29.0% mask AP on the UIIS dataset, 46.4% box AP and 44.2% mask AP on the USIS10K
dataset, which is comparable with SOTA methods.
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2 RELATED WORK

Vision Transformer. In recent years, transformers have achieved significant success in multiple
domains, such as natural language processing, computer vision, and audio processing. Vision
Transformer (ViT) [12] first introduces the transformer to the image classification in computer vision
without much modification of the original structure, achieving excellent performance. Conformer
[45] first proposes a dual network to combine transformer and CNN. MAE [21] and BEiT serious
[3, 44, 54] explore the potential of ViT in self-supervised learning by masked image modeling
(MIM). Swin Transformer [40] designs window attention and hierarchical structure, introducing the
locality of convolution operation and saving computation. However, due to quality degradation issues
such as blurred edges and color cast of underwater images [18] and the weakness of single-scale
representation, ViT does not perform well in underwater tasks.

Underwater Dense Prediction. Dense prediction tasks include semantic segmentation, instance
segmentation, object detection, etc. Due to low visibility, blurred edges, low contrast, and color
deviation of underwater images, underwater dense prediction is challenging for models trained on
terrestrial datasets. SUIM-Net [26] introduces a fully convolutional encoder-decoder structure to
balance the trade-off between performance and computational efficiency while ensuring fast end-to-
end inference. UISS-Net [22] proposes an auxiliary feature extraction network and utilizes channel
attention mechanism to extract multi-scale features, enhancing the segmentation ability of edge
details. WaterMask [37] is the first work to explore underwater image instance segmentation, which
designs a difference similarity graph attention module and a multi-level feature refinement module
to reconstruct and refine the degraded image features of underwater images. USIS-SAM [36] first
applies the Segment Anything Model (SAM) to the underwater salient instance segmentation task,
and proposes an underwater adaptive ViT encoder and salient feature prompt generator to perform
highly precise end-to-end segmentation.

Adapted Backbones. Adapters are originally proposed in the NLP field as an efficient method for
fine-tuning large pre-trained models for each downstream task through compact and scalable models.
The emergence of large-scale models has spurred the development of various adapters. Adapters
[23] introduce new modules into the transformer encoder to fine-tune for specific tasks, enabling
the pre-trained model to quickly adapt to downstream NLP tasks. In [47], the concept of multi-task
learning is investigated, utilizing a single BERT model that was shared across several task-specific
parameters. The CLIP-based adapter [60, 17] proposes transferring pre-trained knowledge to zero-
shot or few-shot downstream tasks. In computer vision, VPT [27] proposes a method that freezes the
pre-trained weights of ViT and updates only the parameters of the adapter module during training.
Explicit Visual Prompting (EVP) [39] technique incorporates explicit visual prompts to the proposed
adapter. ViT-Adapter [8] introduces inductive bias to reconstruct fine-grained multi-scale features.
ViT-CoMer [56] performs multi-scale fusion across hierarchical features, which is beneficial for
handling dense prediction tasks. Our work explores a novel and effectively adapted backbone for
underwater dense prediction tasks.

3 VISION TRANSFORMER UNDERWATER-ADAPTER

3.1 OVERALL ARCHITECTURE

As illustrated in Figure 3, our ViT-UWA consists of three components: (a) Plain ViT with High-
frequency Components Prior (HFCP). (b) Detail Aware Module (DAM). (c) ViT-CNN Interaction
Module (VCIM).

For the ViT with HFCP, an input image with the shape of H × W × 3 and its high-frequency
components are first fed into the patch embedding to obtain 16 × 16 non-overlapping original
image patches and high-frequency components patches, respectively. Then, these patches are added,
flattened, and projected to C-dimensional feature tokens, and the feature resolution is reduced to 1/16
of the original image. After that, position embedding tokens are added with feature tokens as the
input of the first Vision Transformer encoder block.

For the DAM, the image passes through several convolutional neural networks (CNNs) to obtain
feature maps F1, F2, F3, and F4 with resolutions of 1/4, 1/8, 1/16 and 1/32. A High-frequency
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Figure 3: Overall architecture of ViT-UWA. ViT-UWA is mainly composed of three components:
(a) a plain ViT with high-frequency components prior, whose encoder is divided into N blocks evenly
(in Section 3.2). (b) a detail aware module to obtain detail-focused multi-scale features (in Section
3.3). (c) a ViT-CNN interaction module to fuse features of ViT and CNNs (in Section 3.4). In the
figure, HFDConv stands for High-frequency Detail Convolution, ViT-Bi stands for the i-th ViT block.

Detail Convolution is used to enhance the detail representation of feature maps and project them to
C dimensions. Then, the last three feature maps are flattened and concatenated into feature tokens,
as the input for VCIM. The whole process is parallel with the patch embedding of ViT. Given N
stage feature interactions, we split the encoder of ViT into N blocks. The high-frequency component
feature from the ViT with HFCP and detail-focused feature from DAM interact with each other
through multi-scale deformable attention [62]. After N -stage feature interactions, the detail-focused
multi-scale features from ViT and VCIM are added for underwater dense prediction tasks.

3.2 PLAIN VIT WITH HIGH-FREQUENCY COMPONENTS PRIOR

Recent studies [50, 39] have shown that high-frequency information of images like edges, textures,
and noise can improve the generalization ability of convolutional neural networks (CNNs), and it
is an effective visual prompting for ViT. However, due to the wavelength- and distance-dependent
light attenuation and scattering [18], underwater images usually suffer from quality degradation
issues such as blurred details, color cast, etc, and lose a large amount of high-frequency information.
Therefore, we use the Fourier Transform to recover and capture lost high-frequency information from
underwater images.

High-frequency Components. As shown in Figure 4(a), for the input image I of shape H ×W ,
we create an all 0 mask M0 with the same shape of I . Then we create a square area with all 1 of
side length l =

√
H ×W × τ at the center of M0, where τ indicates the surface ratio of the masked

regions. After that, we obtain a binary mask M ∈ {0, 1}H×W . For every pixel in this mask Mij , we
have:

Mi,j =

{
1, if

∣∣(H
2 − i

) (
W
2 − j

)∣∣ ≤ HWτ
4

0, otherwise
. (1)

Denoting fft and ifft as the Fast Fourier Transform and its inverse respectively, we have the frequency
component fc = fft(I). We apply M on fc to realize high-pass filtering, then the high-frequency
components of I can be computed:

Ihfc = ifft (fc · (1−M)) . (2)
We perform the above process on every channel of pixels independently for RGB images.

High-frequency Components Prior. As shown in Figure 4(b), after extracting high-frequency
components, Ihfc is fed into the patch embedding layer to be divided into small patches, denoting
Iphfc ∈ c and c = H

16 × W
16 × 3. Meanwhile, the input image is also fed into the patch embedding

layer to obtain 16 × 16 non-overlapping original image patches Iporig. By learning a linear layer
Lhfc, Iporig and Iphfc are added, flattened and projected into a C-dimensional feature Fhfc ∈ RC .
The formula is as follows:

Fhfc = Lhfc(I
p
orig + Iphfc). (3)

4
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Figure 4: (a) The process to obtain high-frequency components of the input image. High-
frequency components are obtained by fast Fourier transform and its inversion. Both the original
image and its high-frequency components are fed into the patch embedding layer. The red-boxed area
is set to 0 to highlight the high-frequency information. (b) The process to add HFCP to the plain
ViT. The patches of the original image and its high-frequency components are flattened, concatenated,
and projected to C-dimensional feature tokens, as the input of the first ViT block.

3.3 DETAIL AWARE MODULE

Recent researches indicate that convolutions enhance transformers’ ability to capture local spatial
information [43, 55]. And difference convolution (DC) can enhance the representation and gener-
alization capacity of vanilla convolution (VC) [48]. Inspired by these, we design the Detail Aware
Module (DAM) to utilize difference convolutions and detail-focused multi-scale features to enhance
the high-frequency detail representation of feature maps and structure a detail-focused multi-scale
feature pyramid, which can be used in dense prediction tasks.

High-frequency Detail Convolution. Difference convolution is typically characterized as the
convolution of pixel differences, wherein pixel differences are computed first and then convolved with
kernel weights to generate feature maps. Central difference convolution (CDC) and angular difference
convolution (ADC) are two typical types of difference convolutions, which optimize computational
cost and memory consumption by rearranging learned kernel weights [48]. Due to the complex
underwater environment, it is necessary to find accurate boundaries to distinguish different underwater
objects for underwater dense prediction tasks. However, due to uneven lighting and low contrast in
underwater images, the edges between objects and the waterbody are usually blurred. Difference
convolution and its variants have been shown to be effective in tasks that require high-frequency
information, such as edge detection [48] and single image dehazing [9]. Considering that a large
amount of high-frequency detail information such as edge and texture is lost in underwater images,
difference convolution helps enhance the visibility of details by detecting changes in pixel intensity,
thus restoring the edges and contours of objects.

Difference convolution can be combined with vanilla convolution to enhance the detail awareness
and understanding ability of CNNs [9]. Inspired by this, we propose an adaptive DC and high-
frequency detail convolution (HFDConv). For adaptive DC, we first rearrange VC’s weight W ∈
RCout×Cin×K×K as a two-dimensional matrix W ′ ∈ RCout×Cin×(K2), where Cin is the number of input
channels, Cout is the number of output channels, K ×K is the size of the convolution kernel. W ′ are
then adjusted for adaptive differencing:

W ′
ad = W ′ − θ ·W ′[:, :, permute], (4)

where permute is a specific sequence of convolution kernel indexes, like [3, 0, 1, 6, 4, 2, 7, 8, 5]. And
θ affecting the high-frequency response of the convolution kernel by decreasing or increasing the
influence of specific weight positions. Finally W ′

ad are rearranged to the original four-dimensional
tensor Wad ∈ RCout×Cin×K×K .

In HFDConv, We employ two convolution layers including one VC and one adaptive DC, deployed
in parallel for extracting detail-focused features, which is beneficial to segment blurred edges and
detect complicated objects in underwater images. The feature extraction process of HFDConv can be
formulated as:

HFDConv(F ) = F ∗ (Wad +Wvd) + (bad + bvd), (5)
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where Wad, Wvd and bad, bvd denote the weights and biases of DC and VC, respectively. ∗ represents
the convolution operation. HFDConv not only enhances the model’s perception of underwater
high-frequency details but also reduces computational costs.

Detail Aware Feature. As shown in Figure 3(b), firstly, we use several convolutional neural
networks consisting of vanilla stride-2 3×3 convolution and BatchNorm [24] to double the number of
channels and minimize the size of feature maps. Then, we obtain a feature pyramid {F1, F2, F3, F4}
containing 4 feature maps with resolutions of 1/4, 1/8, 1/16 and 1/32, respectively. After that, four
HFDConvs are applied to project these feature maps to C dimensions, which can enhance the detail
representation of feature maps and adjust channels to the same as ViT’s embedding dimension for
feature interaction. At end, we flatten and concatenate the last three detail-focused feature maps into
feature tokens F 1

da ∈ R(
HW
82

+HW
162

+HW
322

)×C named detail aware feature as the input for ViT-CNN
interaction module.

3.4 VIT-CNN INTERACTION MODULE

Due to limitation of single-scale representation and the non-hierarchical feature, the plain ViT does
not perform well on underwater dense prediction tasks compared to task-specific methods. The
hierarchical feature of CNNs can help solve ViTs’ issues on underwater dense prediction like blurred
edge segmentation and incorrect category prediction. As a result, inspired by [8], we design a
ViT-CNN interaction module (VCIM) to interact DAM’s detail-focused multi-scale features with ViT.

As shown in Figure 3(c), VCIM contains two deformable attention blocks and an MLP to conduct
multi-scale feature interaction and fusion between DAM and ViT. Firstly, the detail aware feature
F i

da ∈ R(
HW
82

+HW
162

+HW
322

)×C is input as key and value into the i-th VICM. The high-frequency
component feature of ViT F i

hfc ∈ R
HW
162

×C serves as the query, and the output feature F̂ i
hfc is obtained

through the first multi-scale deformable attention block. All features are normalized by LayerNorm
[2]. The formula is as follows:

F̂ i
hfc = F i

hfc + DeformAttn(F i
hfc, F

i
da), (6)

where DeformAttn(·) represents multi-scale deformable attention.

In contrast to the above process, we take the detail aware feature F i
da as a query, and the output F i+1

hfc
of the i-th ViT block as key and value for the second multi-scale deformable attention block. Then
we obtain the next multi-scale detail aware feature F i+1

da ∈ R(
HW
82

+HW
162

+HW
322

)×C through MLP. This
feature will serve as the input for the next VCIM. The process can be formulated as:

F̂ i
da = F i

da + DeformAttn(F i
da, F

i+1
hfc ), (7)

F i+1
da = F̂ i

da + MLP(F̂ i
da). (8)

4 EXPERIMENTS

We select typical tasks in underwater dense prediction: underwater images semantic segmentation,
object detection, and instance segmentation, and conduct extensive experiments (with different
model sizes, algorithm frameworks, and configurations) on SUIM [26], UIIS [37], and USIS10K
[36] datasets, to verify the effectiveness of ViT-UWA. ViT-UWA achieves results that are superior
to existing SOTA ViT-based methods (e.g., ViT-Adapter [8], ViT-CoMer [56]) and comparable to
task-specific advanced underwater methods (e.g., WaterMask [37], USIS-SAM [36]). In addition, we
perform ablation experiments on the proposed modules and qualitative experiments (As shown in
Figure 1 and Figure 5, more qualitative comparisons can be found in Appendix A) for underwater
dense prediction tasks. These results suggest that ViT-UWA can elevate the performance of plain ViT
and serve as a robust backbone for various underwater dense prediction tasks.

4.1 DATASETS

We conduct experiments on three underwater image datasets: SUIM [26], UIIS [37], and USIS10K
[36]. The former is for underwater semantic segmentation and the latter two are for underwater object
detection and instance segmentation.
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Method #Param #FLOPs
UperNet (IoU)

mIoU +MS
BW HD PF WR RO RI FV SR

ViT-T [34] 33.9M 222G 83.48 61.64 16.06 37.50 59.14 55.61 44.73 55.45 51.70 53.57
ViT-Adapter-T [8] 35.9M 231G 87.69 84.34 18.64 74.10 76.95 72.37 77.80 68.04 69.99 70.95
ViT-CoMer-T [56] 40.3M 231G 88.86 85.44 8.34 74.40 84.65 70.02 77.95 69.05 69.84 70.34

ViT-UWA-T (ours) 38.2M 230G 87.97 84.8 30.17 67.23 83.09 73.48 77.66 66.89 71.41 71.60
ViT-S [34] 53.5M 248G 82.27 64.69 11.17 41.19 70.74 56.86 49.81 52.95 53.71 54.51

Swin-T [40] 59.8M 222G 89.51 60.01 11.66 57.82 13.92 65.24 57.80 64.50 52.56 53.10
RevCol-T [4] 60.3M 234G 89.27 88.01 21.47 74.70 82.73 74.04 83.73 69.28 72.90 73.15

ViT-Adapter-S [8] 57.5M 266G 88.23 86.08 12.79 72.34 83.25 70.69 80.54 66.52 70.06 71.14
ViT-Comer-S [56] 61.3M 294G 88.13 87.79 15.28 75.14 84.79 71.01 80.10 69.30 71.44 72.30

ViT-UWA-S (ours) 62.1M 265G 88.05 86.19 35.71 77.61 83.85 71.20 79.12 65.86 73.45 74.35
ViT-B [34] 126.9M 339G 81.15 65.26 12.92 40.88 69.97 56.39 43.13 48.68 52.30 53.49

Swin-B [40] 121.2M 296G 89.44 64.43 0.99 56.62 19.05 65.54 53.68 65.08 51.85 52.71
RevCol-B [4] 168.8M 298G 88.37 88.83 15.39 79.63 80.07 76.50 86.22 66.56 72.70 73.28

ViT-Adapter-B [8] 133.5M 375G 88.44 87.15 23.21 71.41 84.99 72.53 83.56 67.82 72.39 73.19
ViT-Comer-B [56] 144.6M 452G 88.52 86.85 16.23 82.17 85.48 71.97 82.26 71.03 73.07 73.52

ViT-UWA-B (ours) 142.7M 374G 88.78 86.74 34.27 81.64 83.98 72.16 83.32 71.12 75.25 75.39
RevCol-L† [4] 306.6M 418G 89.48 88.38 12.72 80.56 86.88 73.04 86.67 72.08 73.73 73.94

ViT-Adapter-L† [8] 363.7M 667G 89.36 88.45 17.70 79.47 87.12 72.98 85.96 71.22 74.03 74.77
ViT-Comer-L† [56] 426.5M 1032G 88.71 87.39 17.31 78.44 86.16 72.55 86.28 70.35 73.40 74.39

ViT-UWA-L† (ours) 375.9M 665G 88.46 87.23 46.60 77.67 84.20 76.13 83.33 71.08 76.84 77.92

Table 1: Semantic Segmentation on the SUIM. UperNet [57] are used as segmentation frameworks.
“MS” means multi-scale testing. † denotes the use of ImageNet-22K pre-training, while the default is
to use the regular ImageNet-1K pre-training. The FLOPs are measured with 512×512 inputs. BW,
HD, PF, WR, RO, RI, FV and SR are 8 categories in the SUIM dataset, representing Waterbody, Hu-
man divers, Aquatic plants&sea-grass, Wrecks/ruins, Robots, Reefs&invertebrates, Fish&vertebrates,
and Sea-floor&rocks, respectively.

SUIM Dataset. The SUIM dataset [26] contains 1525 RGB images for training and validation, with
an additional 110 test images provided for benchmark evaluation of semantic segmentation models.
The images in the dataset were carefully selected from a large collection of samples gathered during
ocean explorations and experiments involving human-robot cooperation. These samples were taken
at various locations with different water types. All images of the SUIM dataset are pixel-annotated
by human participants.

Figure 5: Qualitative comparison on the
USIS10K dataset. The first row represents the
original image, and the second, third and fourth
rows represent the results of ViT, ViT-Adapter and
ours, respectively.

UIIS Dataset. The UIIS dataset [37] is the
first large-scale general underwater image in-
stance segmentation dataset. It contains 4628
RGB underwater images, of which 3937 im-
ages are used for training/validation and 691
images are used for benchmark evaluation. The
images in the dataset are high-quality images
carefully selected from approximately 25,000
images, covering multiple application areas such
as underwater image enhancement, instance seg-
mentation, and object detection.

USIS10K Dataset. The USIS10K dataset [36]
is the first large-scale Underwater Image Salient
Instance Segmentation dataset, consisting of
10,632 images from various underwater scenes
with pixel-level annotations. USIS10K is de-
signed to enhance research in the field of Salient
Instance Segmentation (SIS) by including cate-
gory labels, which aid in detecting semantically
dominant regions.
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4.2 SEMANTIC SEGMENTATION

Settings. Our semantic segmentation experiments are based on MMSegmentation [11] codebase and
the SUIM dataset [26]. For easier training, we reformat the SUIM dataset into the Pascal-VOC2012
dataset [13] format. We use UperNet [57] as the basic framework. We follow the same settings of
Swin [40] and encompass training for 160K iterations. All experiments are conducted on an NVIDIA
4090 GPU and the batch size is set to 2.

Comparisons with different backbones. Table 1 shows the comparisons of both single-scale
and multi-scale mIoU between ViT-UWA and various backbones pre-trained on ImageNet-1k and
ImageNet-22k, including the plain ViT, vision-specific backbones, and adapted ViT backbones in
underwater image semantic segmentation. It shows that, under similar model sizes, our method
outperforms other backbones on the SUIM dataset, reaching state-of-the-art performance. For
instance, our ViT-UWA-L achieves 76.84% mIoU, outperforming many strong counterparts such
as ViT-CoMer-L [56] (+3.44%) and ViT-Adapter-L [8] (+2.81%). These equitable comparisons
demonstrate the effectiveness of our ViT-UWA in the underwater image semantic segmentation task.
Moreover, our ViT-UWA is more computationally efficient compared to other adapted ViT backbones.

Method Backbone Pre-train #Param mIoU +MS

UperNet [57] InternImage-L [51] IN-22k 256M 75.5 75.9
Mask2Former [10] ViT-Adapter-H [8] BEiT3 [54] 1.9B 77.5 78.0
Mask2Former [10] ViT-Adapter-L [8] BEiTv2 [44] 571M 76.6 77.2
Mask2Former [10] ViT-CoMer-L [56] BEiTv2 [44] 601M 76.4 77.1
Mask2Former [10] ViT-UWA-L BEiTv2 [44] 583M 78.9 79.2

Table 2: Comparisons with previous SOTA for
underwater image semantic segmentation.

Comparisons with state-of-the-arts. In or-
der to further improve the performance, we con-
duct experiments based on Mask2Former [10],
using ViT-UWA as the backbone, and initial-
izing the model with multi-modal pre-training
BEiTv2 [44]. As show in Table 2, our ViT-UWA
achieves better performance to SOTA methods
on the SUIM. For instance, ViT-UWA-L re-
ports a competitive performance of 78.9% mIoU,
which is 1.4% higher than ViT-Adapter-G and 2.5% higher than ViT-CoMer-L.

4.3 OBJECT DETECTION AND INSTANCE SEGMENTATION

Method #Param #FLOPs
UIIS Dataset USIS10K Dataset

APb APb
50 APb

75 APm APm
50 APm

75 APb APb
50 APb

75 APm APm
50 APm

75

ViT-T [34] 26M 223G 23.9 43.6 23.6 23.4 42.6 23.4 36.8 55.1 41.9 37.1 54.9 41.6
ViT-Adapter-T [8] 28M 260G 26.2 43.7 26.2 24.7 41.8 25.4 39.9 56.0 45.0 37.6 54.9 41.6
ViT-CoMer-T [56] 29M 262G 24.7 43.8 25.4 23.7 40.9 25.2 38.5 55.0 43.2 37.4 54.1 43.0

ViT-UWA-T (ours) 30M 259G 26.8 45.2 26.7 25.7 44.2 27.1 40.9 56.6 46.5 38.8 56.0 44.4
ViT-S [34] 44M 329G 25.1 43.0 26.3 24.7 42.8 25.9 38.8 56.2 43.2 37.4 54.1 43.0

ViT-Adapter-S [8] 48M 401G 26.4 44.3 27.3 24.4 41.8 26.0 42.3 56.8 48.4 39.1 56.2 44.7
ViT-CoMer-S [56] 50M 407G 26.0 42.8 29.1 24.2 42.7 25.1 39.7 55.9 44.4 38.0 55.3 42.9
ViT-UWA-S (ours) 52M 399G 28.1 45.2 28.5 26.1 43.8 27.8 43.0 57.1 49.5 39.7 56.4 45.7

ViT-B [34] 113M 690G 24.9 44.7 26.2 26.3 44.2 25.4 40.9 58.1 47.7 40.2 57.9 45.4
ViT-Adapter-B [8] 120M 830G 28.2 44.7 31.0 26.1 43.4 28.3 42.1 57.1 48.0 39.8 56.9 45.0
ViT-CoMer-B [56] 129M 877G 27.0 45.1 28.9 25.4 43.8 27.6 40.5 57.0 45.9 39.2 56.0 44.5
ViT-UWA-B (ours) 129M 827G 29.8 46.0 32.5 26.8 44.6 29.5 44.9 58.8 51.3 42.0 58.8 47.6

ViT-UWA-B† (ours) 129M 827G 30.9 49.1 32.8 29.0 48.6 30.9 46.4 60.8 52.3 44.2 60.0 51.2

Table 3: Object detection and instance segmentation with Mask R-CNN on UIIS and USIS10K
datasets. All experiments are conducted with a training schedule 3× (36 epochs). † denotes the use
of ImageNet-22K pre-training, while the default is to use the regular ImageNet-1K pre-training. The
FLOPs are measured with 1280×800 inputs.

Settings. We utilize the MMDetection [6] codebase to implement our method and conduct object
detection and instance segmentation experiments on the UIIS dataset [37] and USIS10K dataset [36].
The object detection and instance segmentation frameworks involve Mask R-CNN [20], Cascade
Mask R-CNN [5], ATSS [61], and GFL [33]. We conduct all experiments with a training schedule 3×
(36 epochs) on an NVIDIA A100 GPU. We train 2 images on each GPU, using AdamW optimizer
with a starting learning rate of 1e-4 and weight decay of 0.05.
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Method #Param #FLOPs APb APb
50 APb

75

Cascade Mask R-CNN 3x schedule
ViT-S [34] 80M 804G 29.5 44.1 30.7

ViT-Adapter-S [8] 84M 876G 30.2 44.4 31.7
ViT-CoMer-S [56] 89M 882G 29.4 44.3 30.4
ViT-UWA-S (ours) 89M 874G 31.0 44.8 32.7

ATSS 3x schedule
ViT-S [34] 32M 270G 27.7 43.8 28.6

ViT-Adapter-S [8] 36M 342G 27.8 43.3 28.3
ViT-CoMer-S [56] 40M 348G 28.5 43.8 30.8
ViT-UWA-S (ours) 40M 341G 29.3 45.1 30.8

GFL 3x schedule
ViT-S [34] 32M 274G 27.3 42.2 29.1

ViT-Adapter-S [8] 36M 346G 29.5 44.1 31.0
ViT-CoMer-S [56] 40M 351G 28.6 44.1 29.5
ViT-UWA-S (ours) 40M 344G 29.7 43.7 31.3

Table 4: Object detection with different frame-
works on the UIIS dataset.

Comparisons with different backbones. Ta-
ble 3 presents a comparative analysis of ViT-
UWA against various scales of plain ViT and
adapted backbones using the UIIS and USIS10K
datasets for object detection and instance seg-
mentation. ViT-UWA consistently outperforms
competing backbones, particularly in underwa-
ter dense prediction tasks. For example, ViT-
UWA-B achieves an improvement of +4.9% in
box AP and +0.6% in mask AP over plain ViT-
B on the UIIS dataset. Similarly, ViT-UWA-B
achieves an impressive improvement of +4.0%
in box AP and +1.8% in mask AP over ViT-B on
the USIS10K dataset. Furthermore, ViT-UWA
continues to outperform adapted backbones such
as ViT-Adapter [8] and ViT-CoMer [56] across
both datasets, highlighting the effectiveness of
our approach.

Comparisons with different frameworks. We further evaluate ViT-UWA with different object
detection frameworks, the results are shown in Table 4. It can be seen that our approach uniformly
outperforms other backbones across various frameworks like Cascade Mask R-CNN [5], ATSS [61],
and GFL [33].

Method Backbone Pre-train #Param APb APm

Co-DETR [63] Swin-L [40] IN-22K 218M 45.5 -
CMask R-CNN [5] ViTDet-L [35] EVA-02 [14] 304M 44.7 42.0
Mask R-CNN [20] ViT-Adapter-L [8] DINOv2 [42] 348M 42.1 41.3
Mask R-CNN [20] ViT-Adapter-L [8] IN-22K 348M 43.1 41.4
Mask R-CNN [20] SAM-H [30] SA-1B [30] 641M - 38.5
RSPrompter [7] SAM-H [30] SA-1B [30] 632M - 40.2
Mask R-CNN [20] ViT-UWA-B† IN-22K 129M 46.4 44.2

Table 5: Comparisons with previous SOTA on
the USIS10K dataset for underwater image ob-
ject detection and instance segmentation.

Comparisons with state-of-the-arts. As
show in Table 5, our ViT-UWA-B† outperforms
the existing SOTA models (initialized with ad-
vanced pre-training like EVA-02 [14], DINOv2
[42] and SA-1B [30]) with fewer parameters
and only ImageNet-22K pre-training. For
example, ViT-UWA-B† achieves 1.7% box
AP and 2.2% mask AP gains compared to
ViTDet-L, which clearly demonstrates the
effectiveness of ViT-UWA.

4.4 COMPARISONS WITH TASK-SPECIFIC UNDERWATER METHODS.

Settings. We conducted experiments and compared them with advanced task-specific underwater
methods, including WaterMask [37] and USIS-SAM [36] for underwater instance segmentation, and
SUIM-Net [26] and UISS-Net [22] for underwater semantic segmentation

Results. As shown in Table 6, compared with task-specific underwater methods, our method can
achieve comparable performance, which demonstrates the great potential of our method in different
underwater dense prediction tasks.

UIIS APm AP50 AP75

WaterMask [37] 27.2 43.7 29.3
USIS-SAM [36] 29.0 45.4 31.5
ViT-UWA-B† 29.0 48.4 30.9

USIS10k APm AP50 AP75

WaterMask [37] 38.7 54.9 43.2
USIS-SAM [36] 43.1 59.0 48.5
ViT-UWA-B† 44.2 60.0 51.2

SUIM mIoU

SUIM-Net [26] 53.2
UISS-Net [22] 72.1
ViT-UWA-B 75.3

Table 6: Comparisons with task-specific underwater methods of instance segmentation and
semantic segmentation on UIIS, USIS10K, and SUIM datasets.

4.5 ABLATION STUDY

Settings. We conduct ablation experiments on the ViT-UWA-B, using Mask R-CNN (3×schedule)
for underwater image object detection and instance segmentation on the USIS10K dataset. The total
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batch size used during the training process is 2, the optimizer employed is AdamW, and the learning
rate and weight decay parameters are set to 1e-4 and 0.05 , respectively.

Detection Results Stride-4 Feature Stride-8 Feature

V
iT

-U
W

A
V

iT

Figure 6: Visualization of feature maps for ob-
ject detection and instance segmentation.

Ablation for components. The results of this
ablation experiment are shown in Table 7. (1)
DAM. We verify the effectiveness of DAM by
remove DAM from ViT-UWA. With DAM, the
model obtains a gain of 1.1 APb and 1.3 APm,
which indicates that the DAM helps the model
focus on high-frequency detail information in
underwater images. (2) VCIM. When analyz-
ing the validity of VCIM, we disable the feature
interaction and add features from CNNs to the
plain ViT directly. With VCIM, ViT-UWA has
an improvement of 0.7 APb and 0.4 APm, in-
dicating that bidirectional feature interaction is
beneficial for dense prediction. (3) HFCP. We evaluate the effectiveness of the HFCP by replacing
it by other underwater imagery restoration methods with light architectures. After replacing, the
model will utilize USUIR [16] to recover degraded underwater images. After the replacement, the
model’s APb and APm decrease by 2.3 and 0.6 AP. Compared to visually recovering underwater
images, HFCP can better recover high-frequency information that is of greater interest for dense
prediction tasks such as segmentation and detection.

In addition, we also visualize the stride-4 and stride-8 feature maps in Figure 6, which shows that the
features of our ViT-UWA are more fine-grained and have more high-frequency detail information like
edges and textures, further validating the validity of our components.

Methods APb APm

ViT-UWA 44.9 42.0
w/o DAM 43.8 (-1.1) 40.7 (-1.3)
w/o VCIM 44.1 (-0.7) 41.6 (-0.4)

replace HFCP 42.6 (-2.3) 41.4 (-0.6)

Table 7: Ablation for components.

N APb APm #Param

1 42.8 41.1 117M
2 43.4 41.5 121M
4 44.9 42.0 129M
6 44.8 41.8 137M

Table 8: Number of ViT-CNN interaction.
Number of ViT-CNN interaction. In Table 8, we analyze the influence of the number of ViT-CNN
interaction modules. We find that as N increases, the model performance reaches a plateau, and
introducing more interaction modules does not consistently improve performance. Consequently, we
set N to 4 as a standard.

τ APb APm

0.1 44.2 41.6
0.25 44.9 42.0
0.5 44.5 41.8
1 44.1 41.3
2 43.5 40.9

Table 9: Different mask ratio of HFCP. The
model performs best when τ = 0.25.

Different mask ratio of HFCP. Table 9 illus-
trates the influence of the varying mask ratio of
HFCP. The larger the mask ratio, the darker the
high-frequency component of the image, that is,
the less high-frequency information extracted.
Simultaneously, We observe that APb and APm

peak when τ = 0.25 and the performance de-
creases with the increase of mask ratio. There-
fore, we adopt τ = 0.25 as the default setting.

5 CONCLUSION

In this work, we propose ViT-UWA, a detail-focused and adapted ViT backbone for underwater
dense prediction tasks. Without altering the original ViT architecture, we introduce high-frequency
components prior to the plain ViT and improve ViT’s perception of underwater high-frequency
details by a detail aware module. Our method effectively solves the issues such as incorrect category
prediction and blurred segmented edges faced by ViT in underwater dense prediction tasks. Extensive
experiments on semantic segmentation, instance segmentation, and object detection for underwater
imagery show that our method can achieves comparable or superior performance compared to both
plain and adapted ViT backbones, as well as task-specific underwater methods.
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Figure 7: More qualitative comparison on the SUIM dataset for underwater semantic segmenta-
tion.

A MORE QUALITATIVE COMPARISON

A.1 SEMANTIC SEGMENTATION

We show more qualitative comparisons on the SUIM dataset for underwater semantic segmentation in
Figure 7 to demonstrate the effectiveness of our ViT-UWA. It can be seen that compared to adapted
ViT Backbone such as ViT-Adapter [8] and ViT-CoMer [56], benefiting from our High-frequency
Components Prior, ViT-UWA can better recover lost underwater high-frequency information like
edges and segment the accurate semantic boundaries (as shown in Figure 7, rows 6 and 8).

A.2 OBJECT DETECTION AND INSTANCE SEGMENTATION

We also present more visual comparisons on the USIS10K dataset for underwater object detection
and instance segmentation in Figure 8. It can be seen that ViT-UWA can enhance the perception of
high-frequency details and detect objects more accurately (as shown in Figure 8, rows 3 and 7) due to
the effectiveness of Detail Aware Module.
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Figure 8: More qualitative comparison on the USIS10K dataset for underwater object detection
and instance segmentation.

B MORE ABLATION EXPERIMENTS

B.1 GENERALIZATION ABILITY OF VIT-UWA

Method Pre-train #Param APb APm

PVT-T [53] IN-1K 33M 36.7 35.1
PVTv2-B1 [52] IN-1K 34M 41.8 38.8
ViTDet-T [35] IN-1K 26M 33.5 35.7
ViT-T [34] IN-1K 27M 35.5 33.5
ViT-Adapter-T [8] IN-1K 28M 41.1 37.5
ViT-CoMer-T [56] IN-1K 29M 42.1 38.0
ViT-UWA-T IN-1K 30M 41.8 38.1

Table 10: Object detection and instance segmen-
tation with Mask R-CNN on COCO val2017.

To verify the generalisation ability of ViT-UWA
on natural images, we retrained ViT-UWA-T on
the COCO dataset [38]. For fair comparison,
we set batch size to 16 and use Mask R-CNN
with a training schedule 1× (12 epochs). As
shown in Table 10, compared with the plain
ViT, vision-specific methods, and adapted ViT
backbones, our ViT-UWA achieves comparable
performance with similar model size. As some
modules are designed for underwater images,
ViT-UWA’s performance on natural images is somewhat compromised.
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B.2 HIGH-FREQUENCY DETAIL CONVOLUTION

DC APb APm #Param

adaptive DC 44.9 42.0 129M
CDC 43.5 (-1.4) 40.8 (-1.1) 129M
ADC 43.9 (-1.0) 41.2 (-0.8) 129M

CDC + ADC 44.1 (-0.8) 41.4 (-0.6) 134M

Table 11: Type of difference convolution.

We show the results of the following ablation
experiments about the type of difference convo-
lution of the High-frequency Detail Convolution
in Table 11. We replace the adaptive difference
convolution with central difference convolution
(CDC), angular difference convolution (ADC),
and their combination to evaluate the effective-
ness of the adaptive DC. The model gives the best performance when using adaptive DC. Notably,
it can be replaced by other more advanced and efficient difference convolutions to further improve
performance in the future.

B.3 DIFFERENT ATTENTION MECHANISMS

Attention Mechanism Complexity #Param #FLOPs APb APm

Cross Attention [49] Quadratic 32M 695G 40.1 38.2
Efficient Attention [46] Linear 31M 290G 40.5 38.4
Deformable Attention [62] Linear 30M 259G 40.9 38.8

Table 12: Ablation of different attention mecha-
nisms.

To explore the effect of attention mechanism
on the model, we adopt ViT-UWA-T as the ba-
sic model and study 3 different attention mech-
anisms in ViT-CNN interaction module. As
shown in Table 12, compared with ordinary
cross attention [49] with quadratic complexity,
deformable Attention [62] with linear complex-
ity can result in fewer parameters, faster computation, and better performance.

B.4 DETAIL AWARE MODULE

Method #Param #FLOPs APb APm

DAM (ours) 30M 259G 40.9 38.8
CNN [19] 28M 260G 38.9 37.0
SPM [8] 29M 261G 40.3 38.1
MRFP [56] 30M 264G 39.2 37.9
Stem + DS [51] 31M 268G 39.6 38.2

Table 13: Ablation of Detail Aware Module.
“DS” means downsampling layers.

To verify the effectiveness of our Detail Aware
Module (DAM), we replace DAM with simple
CNN structures borrowed from ResNet [19] and
similar-function modules from ViT-Adapter [8],
ViT-CoMer [56], and InternImage [51] to con-
struct multi-scale features in ViT-UWA-T. As
shown in Table 13, under a similar scale of pa-
rameters, our method achieves the lowest com-
putational cost and the best performance, indi-
cating that DAM can obtain multi-scale features with rich high-frequency details more efficiently.

B.5 DIFFERENT METHODS OF UNDERWATER ENHANCEMENT.

Method Enhancement Training strategy APb APm

ViT-UWA (Full Model) - End-to-End 44.9 42.0
ViT-UWA (w/o HFCP) - End-to-End 42.9 40.0
ViT-UWA (w/o HFCP) FUnIE [25] Enhance-then-Train 38.1 35.2
ViT-UWA (w/o HFCP) NU2Net [18] Enhance-then-Train 37.3 35.3
ViT-UWA (w/o HFCP) PUIE-Net [15] Enhance-then-Train 34.7 31.6

Table 14: Different methods of underwater en-
hancement. NU2Net and FUnIE are supervised
underwater image enhancement methods, while
PUIE-Net based on distribution estimation and con-
sistency.

To investigate the impact of High-frequency
Components Prior (HFCP) and different under-
water enhancement methods on the model, we
removed HFCP and trained the model with en-
hanced underwater images. We utilized vari-
ous open-source underwater image enhancement
methods from recent years (e.g., NU2Net [18],
PUIE-Net [15]) to enhance the training set of
USIS10K and evaluated the trained models us-
ing the original test set. Table 14 shows the
results of this ablation experiment, we observed
that when training with enhanced images, the
model’s performance experienced a certain degree of degradation, and similar conclusions were
also reported in [59, 36]. This may be due to underwater image enhancement methods altering
the feature distribution of underwater images and introducing additional noise (e.g., halo effect),
which negatively impacts dense prediction tasks. Moreover, we compare the visualization results of
feature maps between the original model and the model without HFCP in Figure 9 and Figure 10. It
can be seen that with HFCP, the model can recover more high-frequency information, such as finer
boundaries and richer details.
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Figure 9: More qualitative comparison of feature maps for underwater semantic segmentation.
With High-frequency Components Prior (HFCP), our ViT-UWA can capture more high-frequency
information (e.g., edges and textures), resulting in feature maps with sharper and more defined edges.
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Figure 10: More qualitative comparison of feature maps for underwater object detection and
instance segmentation. With High-frequency Components Prior (HFCP), our ViT-UWA can obtain
multi-scale features with richer details and textures.
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Figure 11: Qualitative comparison in challenging real-world underwater application scenarios.

B.6 REAL-WORLD EFFICIENCY ANALYSIS.

ViT-UWA-B ViT-CoMer-B ViT-Adapter-B

FLOPs 827G 877G 830G
inference time 83.3ms 98.0ms 76.34ms

Table 15: Comparison of FLOPs and inference
time.

We evaluated key metrics in Table 15 that are
critical for real-world applications, including
FLOPs and inference time. Our ViT-UWA
achieved minimal computational overhead and
relatively fast inference speed. Moreover, we
conducted qualitative comparison in some chal-
lenging real-world underwater application sce-
narios. As shown in Figure 11, in low-light and turbid underwater environments, other ViT-based
methods often encounter issues such as errors in object count detection and detection failures. In
contrast, our ViT-UWA can alleviate these issues to some extent. This demonstrates the significant
potential and value of our ViT-UWA in real-world applications.

18


	Introduction
	Related Work
	Vision Transformer Underwater-Adapter
	Overall Architecture
	Plain ViT with High-frequency Components Prior
	Detail Aware Module
	ViT-CNN Interaction Module

	Experiments
	Datasets
	Semantic Segmentation
	Object Detection and Instance Segmentation
	Comparisons with task-specific Underwater Methods.
	Ablation Study

	Conclusion
	More qualitative comparison
	Semantic Segmentation
	Object detection and instance segmentation

	More Ablation Experiments
	Generalization Ability of ViT-UWA
	High-frequency Detail Convolution
	different attention mechanisms
	Detail Aware Module
	Different methods of underwater enhancement.
	Real-World Efficiency Analysis.


