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ABSTRACT

Reinforcement learning from human feedback (RLHF) aligns large language mod-
els by encouraging their generations to have high rewards, using a reward model
trained on human preferences. To prevent forgetting of pre-trained knowledge,
RLHF usually incorporates a KL regularization; this forces the policy to remain
close to its initialization, though it hinders the reward optimization. To address the
trade-off between KL and reward, in this paper we introduce a novel alignment
strategy named Weight Averaged Rewarded Policies (WARP), merging policies
in the weight space at three distinct stages. First, it uses the exponential moving
average of the policy as a dynamic anchor in the KL regularization. Second, it
applies spherical interpolation to merge independently fine-tuned policies into a
new enhanced one. Third, it linearly interpolates between this merged model and
the initialization, to recover features from pre-training. This procedure is then
applied iteratively, with each iteration’s final model used as an advanced initial-
ization for the next, progressively refining the KL-reward trade-off, achieving
superior rewards at fixed KL. Experiments with Gemma policies validate that
WARP improves their quality and alignment, outperforming open-source models.

1 INTRODUCTION

LLM alignment. Large language models (LLMs) like Gemini (Gemini Team, 2023) and GPT-4
(OpenAI, 2023), along with their open-weight counterparts (Jiang et al., 2023; Gemma Team et al.,
2024), demonstrate remarkable abilities as chatbots, but also for tasks like mathematics and coding
(Bubeck et al., 2023). These capabilities largely emerge from pre-training on next-token prediction
(Radford et al., 2018; 2019), subsequently refined through supervised fine-tuning (SFT) (Raffel et al.,
2020; Wei et al., 2022). As these LLMs become more powerful, aligning them with human values
becomes increasingly crucial to ensure safe deployment (Amodei et al., 2016; Hendrycks & Mazeika,
2022). To this end, reinforcement learning from human feedback (RLHF) has become the prominent
strategy (Christiano et al., 2017; Ziegler et al., 2019; Stiennon et al., 2020), first learning a reward
model (RM) on human preferences, before optimizing the LLM to maximize predicted rewards.

Challenges in RLHF. However, RLHF introduces several unresolved challenges (Casper et al.,
2023). First, the limited scope of fine-tuning, often restricted to relatively small datasets, can lead
to excessive specialization and catastrophic forgetting (French, 1992) of the broad and diverse
knowledge acquired during pre-training (Goodfellow et al., 2013; Li & Hoiem, 2017; Kirkpatrick
et al., 2017; Kumar et al., 2022). Such alignment tax (Ouyang et al., 2022) can degrade the LLM’s
reasoning capabilities and performance on NLP benchmarks (Dong et al., 2023a; Lin et al., 2024a).
Second, maximizing an imperfect RM presents several issues on its own, as the LLM can learn to
exploit loopholes in the RM (Clark & Amodei, 2016; Pan et al., 2022) when it deviates significantly
from its initialization (Gao et al., 2023). Such reward hacking (Askell et al., 2021; Skalse et al., 2022)
can produce outputs that are linguistically flawed (Lewis et al., 2017), excessively verbose (Singhal
et al., 2023), or sycophantic (Perez et al., 2022; Sharma et al., 2023), thereby raising misalignment
(Taylor et al., 2016; Ngo et al., 2022) and safety (Amodei et al., 2016; Hendrycks & Mazeika, 2022)
concerns. Finally, RLHF can reduce the diversity of generations (Kirk et al., 2024), potentially
leading to policy collapse (Moalla et al., 2024; Hamilton, 2024). Such loss of diversity limits use in
creative or exploratory tasks and can result in the LLM systematically refusing to answer. Overall,
achieving high rewards based on an imperfect RM on a selected distribution of prompts is insufficient
due to potential reward misspecification and distribution shifts upon deployment.
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(a) WARP with three model merging stages, applicable iteratively.
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Figure 1: Figure 1(a) illustrates the RLHF alignment process with WARP from a supervised fine-tuned
(SFT) LLM. WARP uses model merging by weight averaging at three different stages. First, the
exponential moving average (EMA) (Izmailov et al., 2018) of the policy serves as the anchor for KL
regularization (Jaques et al., 2017). Second, the independently fine-tuned policies are merged by
spherical linear interpolation (SLERP) (Shoemake, 1985) of their task vectors (Ilharco et al., 2023).
Third, we interpolate towards the initialization (LITI) (Wortsman et al., 2022b), revealing a Pareto
front of solutions as we slide the interpolating coefficient η from 1 to 0. This results in the “WARP: 1st

iteration” curve from Figure 1(b) which improves over the REINFORCE (Williams, 1992) fine-tuning
trajectories. Critically, iteratively using a point from this front as an advanced initialization for the
next episode WARP improves performance. Details in Figure 4(c).

RL with KL regularization. To address these issues, previous works constrained the reward
optimization by integrating a Kullback-Leibler (KL) regularization (Jaques et al., 2017; Geist et al.,
2019), using the SFT initialization as the anchor. As clarified in Section 2, this KL regularization
forces the policy to remain close to its initialization (Lazaridou et al., 2020; Lu et al., 2020), mitigating
forgetting and reward hacking (Gao et al., 2023). However, employing the SFT model as the anchor
may lead to reward underfitting: indeed, there is a fundamental tension between reducing KL and
maximizing reward. Thus, different policies should be compared in terms of trade-off between
KL-reward as in Figure 1(b), where the x-axis is the KL and the y-axis is the reward as estimated by
the RM, with the optimal policies located in the top-left of the plot.

On model merging by weight averaging. To improve the trade-off between KL and reward during
RLHF, we leverage the ability to merge LLMs by weight averaging (WA) (Utans, 1996). WA
relies on the linear mode connectivity (Frankle et al., 2020; Neyshabur et al., 2020), an empirical
observation revealing linear paths of high performance between models fine-tuned from a shared
pre-trained initialization. Model merging was shown to improve robustness under distribution shifts
(Izmailov et al., 2018; Wortsman et al., 2022a; Ramé et al., 2022) by promoting generalization
and reducing memorization (Ramé et al., 2024), to combine models’ abilities (Ilharco et al., 2023;
2022; Ramé et al., 2023), to reduce forgetting in continual learning (Stojanovski et al., 2022), to
enable collaborative (Raffel, 2023) and distributed (Douillard et al., 2023) learning at scale, without
computational overheads at inference time. Model merging is increasingly adopted within the
open-source community (Goddard et al., 2024; Lambert & Morrison, 2024), leading to state-of-
the-art models in specialized domains (Labrak et al., 2024) but also significant advancements on
general-purpose benchmarks (Labonne, 2024b;a). In particular, while WA was initially mostly used
for discriminative tasks (Wortsman et al., 2022a) such as reward modeling (Ramé et al., 2024), it
is now becoming popular for generative tasks (Rofin et al., 2022; Akiba et al., 2024); its use in
KL-constrained RLHF has already shown preliminary successes in a few recent works (Ramé et al.,
2023; Noukhovitch et al., 2023; Lin et al., 2024a; Liu et al., 2024; Gorbatovski et al., 2024; Munos
et al., 2023), further elaborated in Section 5.

WARP. In this paper, we propose Weight Averaged Rewarded Policies (WARP), a simple strategy for
aligning LLMs, illustrated in Figure 1(a) and detailed in Section 3. WARP is designed to optimize the
KL-reward Pareto front of solutions, as demonstrated in Figure 1(b). WARP uses three variants of
WA at three different stages of the alignment procedure, for three distinct reasons.
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Stage 1: Exponential Moving Average (EMA). During RL fine-tuning, instead of regularizing
the policy towards the SFT initialization, WARP uses the policy’s own exponential moving
average (Polyak & Juditsky, 1992) as a dynamic updatable anchor in the KL. This stage
enables stable exploration with distillation from an EMA teacher (Tarvainen & Valpola, 2017)
and annealed constraint.

Stage 2: Spherical Linear intERPolation of task vectors (SLERP). Considering M policies
RL fine-tuned independently with their own EMA anchor, we merge them by spherical linear
interpolation (Shoemake, 1985) of their task vectors (Ilharco et al., 2023). This stage creates a
merged model with higher reward by combining the strengths of the M individual policies.

Stage 3: Linear Interpolation Towards Initialization (LITI). Considering the merged policy
from SLERP, WARP linearly interpolates towards the initialization, akin to WiSE-FT (Worts-
man et al., 2022b). This stage allows to run through an improved Pareto front simply by
adjusting the interpolating coefficient η between 1 (high reward but high KL) and 0 (small KL
but small reward). Critically, selecting an intermediate value for 0 < η < 1 offers a balanced
model that can serve as a new and improved initialization for subsequent iterations of WARP.

Experiments and discussion. In Section 4, we validate the efficacy of WARP for the fine-tuning
of Gemma 7B (Gemma Team et al., 2024). Finally, in Section 6, we discuss the connections
between WARP, the distributed learning literature (Raffel, 2023; Douillard et al., 2023) and iterated
amplification (Christiano et al., 2018), illustrating how WARP embodies their principles to enable
scaling post-training, for continuous alignment and improvement of LLMs.

2 CONTEXT AND NOTATIONS

RL for LLMs. We consider a transformer (Vaswani et al., 2017) LLM f(·, θ) parameterized
by θ. Following the foundation model paradigm (Bommasani et al., 2021) and the principles of
transfer learning (Oquab et al., 2014), those weights are trained via a three-stage procedure: pre-
training through next token prediction, supervised fine-tuning resulting in θsft, and ultimately, RLHF
(Christiano et al., 2017; Ouyang et al., 2022) to optimize a reward r as determined by a RM trained
to reflect human preferences. In this RL stage, θ defines a policy πθ(· | x) by auto-regressively
generating token sequences y from the prompt x. The primary objective is to find weights maximizing
the average reward over a dataset of prompts X : argmaxθ Ex∈XEy∼πθ(·|x)

[
r(x,y)

]
.

KL vs. reward. Optimizing solely for r can (i) forget general abilities from pre-training (French,
1992) as an alignment tax (Ouyang et al., 2022; Lin et al., 2024a), (ii) hack the reward (Askell et al.,
2021; Skalse et al., 2022) leading to potential misalignment, or (iii) reduce the diversity of possible
generations (Kirk et al., 2024) (as visible in Appendix F). To mitigate these risks, a KL regularization
is usually integrated to balance fidelity to the initialization and high rewards:

argmax
θ

Ex∈X
[
Ey∼πθ(·|x)r(x,y)− βKL(πθ(· | x)∥πθanchor(· | x))

]
, (1)

where usually θanchor ← θsft and β is an hyperparameter, with high values leading to low KL yet
also lower reward. The KL-regularized reward function is then r(x,y)− β log

(
πθ(y|x)

πθanchor
(y|x)

)
. Our

base RL algorithm is a variant of REINFORCE (Williams, 1992). This choice follows recent RLHF
works (Roit et al., 2023; Lee et al., 2024a; Ramé et al., 2024) and the findings from Li et al. (2023);
Tajwar et al. (2024); Ahmadian et al. (2024) that, in terms of KL-reward trade-off, REINFORCE
performs better than the more complex PPO (Schulman et al., 2017) and also better than various
offline algorithms such as DPO (Rafailov et al., 2023), IPO (Azar et al., 2023) or RAFT (Dong et al.,
2023b). Practitioners then employ early stopping to select an optimal point on the trajectory.

Weight averaging. The question of how best to merge models has recently garnered significant
attention, driven by the discoveries that deep models can be merged in the weight space (Utans, 1996;
Izmailov et al., 2018; Wortsman et al., 2023) instead of in the prediction space, as traditionally done
in ensembling (Lakshminarayanan et al., 2017). Specifically, be given two sets of weights θ1 and θ2,
the different strategies merge them into a new set of weights θ, parameterizing the same non-linear
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network architecture. For clarity, we collectively refer to them as weight averaging (WA). The most
basic one, uniform linear averaging, is also the most common; in this case, θ = θ1+θ2

2 .

3 WARP

We introduce a novel alignment framework named Weight Averaged Rewarded Policies (WARP),
illustrated in Figure 1(a) and described in Algorithm 1 below. WARP merges LLMs in the weight
space to enhance the KL-reward front of policies. The following Sections 3.1 to 3.3 describe the
motivations behind applying three distinct variants of WA at the three different stages of WARP. In
particular, we summarize the key insights as observations, that will be experimentally validated in
Section 4 (and in Appendices C and D), and theoretically motivated in Appendix B when possible.
Overall, we observe that WARP outperforms other RL alignment strategies, without any memory or
inference overhead at test time. However, training WARP is costly, requiring multiple RL runs at each
iteration: see Section 6 for a detailed discussion on the required compute scaling.

Algorithm 1 WARP to improve the KL-reward trade-off in alignment

Input: Weights θsft pre-trained and supervised fine-tuned
Reward model r, prompt dataset X , optimizer Opt
I iterations with M RL runs each for T training steps
µ EMA update rate, η LITI update rate

1: Define θinit ← θsft
2: for iteration i from 1 to I do
3: for run m from 1 to M do ▷ Run in parallel
4: Define θm, θmema ← θinit
5: for step t from 1 to T do
6: Generate completion y ∼ πθm(· | x) for x ∈ X
7: Compute rβ(y)← r(x,y)− β log πθm (y|x)

πθmema
(y|x) ▷ KL regularized reward

8: Update θm ← Opt(θm, rβ(y)∇θ[log πθm(y | x)]) ▷ Policy gradient
9: Update θmema ← (1− µ) · θmema + µ · θm ▷ Equation (EMA): update anchor

10: end for
11: end for
12: Define θislerp ← slerp

(
θinit, {θm}Mm=1, λ = 1

M

)
▷ Equation (SLERP): merge M weights

13: Update θinit ← (1− η) · θinit + η · θislerp ▷ Equation (LITI): interpolate towards init
14: end for
Output: KL-reward front of weights {(1− κ) · θsft + κ · θIslerp | 0 ≤ κ ≤ 1}

3.1 STAGE 1: EXPONENTIAL MOVING AVERAGE AS A DYNAMIC ANCHOR IN KL
REGULARIZATION

EMA anchor. RLHF algorithms typically use the SFT initialization as a static anchor (Jaques et al.,
2017; Roit et al., 2023) in the KL regularization, but in RL (notably for control tasks) it is common
to regularly update the anchor (Schulman et al., 2015; Abdolmaleki et al., 2018). In this spirit,
WARP uses the policy’s own exponential moving average (EMA) (Polyak & Juditsky, 1992), updated
throughout the RL fine-tuning process such as, at each training step with µ = 0.01:

θema ← (1− µ) · θema + µ · θpolicy. (EMA)

Using θema as the anchor θanchor in Equation (1) provides several benefits, outlined below.
Observation 1 (EMA). Policies trained with an exponential moving average anchor benefit from
automatic annealing of the KL regularization and from distillation from a dynamic mean teacher (Tar-
vainen & Valpola, 2017). Empirical evidence in Section 4.1.

Benefits from EMA. Unlike a static SFT anchor, the dynamic nature of an EMA anchor induces
a gradual automatic annealing and relaxation of the KL regularization. Specifically, the policy is
initially strongly tied to the SFT initialization, and then progressively unleashed, allowing for more
aggressive gradient updates later in training, leading to higher rewards. Moreover, by progressively
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incorporating knowledge from the training, EMA acts as slow weight (Stojanovski et al., 2022; Lee
et al., 2024b), and thus performing better than the initialization. But, by also maintaining essential
information from the initialization, EMA can even perform better than the final policy’s weights;
studies (Szegedy et al., 2016; Izmailov et al., 2018; Arpit et al., 2021) (see Morales-Brotons et al.
(2024) for a review), and specifically (Kaddour, 2022) within the context of LLMs, indicate that
averaging checkpoints over steps improves internal representations and thus predictions. Then, EMA
guides the policy by KL distillation (Hinton et al., 2015) of high-quality target predictions, akin to
a mean teacher (Tarvainen & Valpola, 2017) for self-supervised (Sohn et al., 2020; He et al., 2020;
Oquab et al., 2024; Caron et al., 2021; Grill et al., 2020) learning. This also relates to deep RL
techniques where EMA stabilizes exploration toward a Nash equilibrium (Awheda & Schwartz, 2013;
2016; Gorbatovski et al., 2024; Munos et al., 2023), and approximates mirror descent (Bubeck et al.,
2015; Geist et al., 2019; Tomar et al., 2020).

3.2 STAGE 2: SPHERICAL LINEAR INTERPOLATION OF INDEPENDENTLY REWARDED POLICIES

SLERP. While EMA helps for a single RL and a fixed compute budget, it faces limitations due to
the similarity of the weights collected along a single fine-tuning (Ramé et al., 2022). In this second
stage, we merge M weights RL fine-tuned independently (each with their own EMA anchor). This
follows model soups from Wortsman et al. (2022a) and its variants (Ramé et al., 2022; 2023) showing
that WA improves generalization, and that task vectors (Ilharco et al., 2023) (the difference between
fine-tuned weights and their initialization) can be arithmetically manipulated by linear interpolation
(LERP) (Utans, 1996). Yet, this time, we use spherical linear interpolation (SLERP) (Shoemake,
1985), illustrated in Figure 2 and defined below for M = 2:

slerp
(
θinit, θ

1, θ2, λ
)
= θinit +

sin[(1− λ)Ω]

sinΩ
· δ1 + sin[λΩ]

sinΩ
· δ2, (SLERP)

where Ω is the angle between the two task vectors δ1 = θ1 − θinit and δ2 = θ2 − θinit, and λ
the interpolation coefficient. Critically SLERP is applied layer by layer, each having a different
angle. In Appendix B.3 we clarify how SLERP can be used iteratively to merge M > 2 models. To
enforce diversity across weights, we simply vary the order in which text prompts x are given in each
run: this was empirically sufficient, though other diversity strategies could help, e.g., varying the
hyperparameters or the reward objectives (as explored in Figure 18(c)).

θinit

θ1

θ2

Ω ≈ 90◦

θλslerp

θλlerpδ1

δ2

Figure 2: SLERP vs. LERP.

Benefits from SLERP vs. LERP. Merging task vectors, either
with SLERP or LERP, combines their abililities (Ilharco et al.,
2023). The difference is that SLERP preserves their norms, reach-
ing higher rewards than the base models; this is summarized in
Observation 2. In contrast, and as summarized in Observation 3,
the more standard LERP has less impact on reward, but has the ad-
vantage of reducing KL; indeed, as shown in Appendix B, LERP
tends to pull the merged model towards the initialization, espe-
cially as the angle Ω between task vectors is near-orthogonal (see
Observation 3).
Observation 2 (SLERP). Spherical linear interpolation boosts rewards, yet slightly increases KL.
Empirical evidence in Section 4.2 and theoretical insights in Lemma 1.
Observation 3 (LERP). Linear interpolation reduces KL, yet has reduced impact on reward. Empir-
ical evidence in Appendix C.1 and theoretical insights in Lemmas 2 and 3.
Observation 4 (Task vectors). Task vectors δ are close to orthogonal with Ω ≈ 90◦, while the full
weights θ are collinear. Empirical evidence in Appendix C.2.

3.3 STAGE 3: LINEAR INTERPOLATION TOWARDS INITIALIZATION

LITI. In the previous stage, SLERP combines multiple policies into one with higher rewards and
slightly higher KL. This third stage, inspired by WiSE-FT from Wortsman et al. (2022b), interpolates
from the merged model towards the initialization:

θη ← (1− η) · θinit + η · θslerp. (LITI)

Adjusting the interpolating coefficient η ∈ [0, 1] trades off between some newly acquired behaviors
leading to high rewards vs. general knowledge from the SFT initialization. Specifically, large values
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η ≈ 1 provide high rewards but also high KL, while smaller values η ≈ 0 lean towards smaller
rewards and minimal KL. Fortunately, we observe that the reduction in KL is proportionally greater
than the reduction in reward when decreasing η. Then, LITI empirically yields Pareto fronts that are
noticeably above the “diagonal”, but also above those revealed during the base RL training runs.
Observation 5 (LITI). Interpolating weights towards the initialization reveals a better Pareto front
than the one revealed during RL fine-tuning. Empirical evidence in Figure 1(b) and Section 4.3, and
theoretical insights in Lemmas 4 and 5.

Benefits from LITI. Previous works tried to understand how weight interpolation can mitigate
forgetting while increasing robustness and generalization. Wortsman et al. (2022b) argue that WiSE-
FT, akin to LITI in supervised learning contexts, recovers generalizable features from pre-training
that might be lost during fine-tuning (Kumar et al., 2022), consistently with WA reducing catastrophic
forgetting (Stojanovski et al., 2022; Eeckt et al., 2022) in continual learning. Then in the context
of RL, Lin et al. (2024a) argue that LITI increases feature diversity, efficiently balancing between
generality and task specificity. Finally, Jang et al. (2024) argues that the geometric projection of the
ideal weights is located between the merged model and the initialization.

3.4 ITERATIVE WARP

Iterative training. The model merging strategies previously described not only establish an improved
Pareto front of solutions, but also set the stage for iterative improvements. Indeed, if the computational
budget is sufficient, we can apply those three stages iteratively, using θη from previous Pareto front
(usually with η = 0.3, choice ablated in Appendix D.3) as the initialization θinit for the next iteration,
following the model recycling (Don-Yehiya et al., 2023; Ramé et al., 2023) strategies. Then, the
entire training procedure is made of multiple iterations, each consisting of those three stages, where
the final weight from a given iteration serves as an improved initialization for the next one.
Observation 6 (Iterative WARP). The application of WARP iteratively progressively refines the
Pareto front. Empirical evidence in Sections 4.4 and 4.5.

4 EXPERIMENTS: ON THE BENEFITS OF WARP

Setup. We consider the Gemma 7B (Gemma Team et al., 2024) LLM, which we seek to fine-tune
with RLHF into a better conversational agent. We use REINFORCE (Williams, 1992) policy gradient
to optimize the KL-regularized reward. The dataset X contains conversation prompts. We generate
on-policy samples with temperature 0.9, batch size of 128, Adam (Kingma & Ba, 2015) optimizer
with learning rate 10−6 and warmup of 100 steps. SLERP is applied independently to the 28 layers.
Except when stated otherwise, we train for T = 9k steps, with KL strength β = 0.1, EMA update
rate µ = 0.01, merging M = 2 policies uniformly λ = 0.5, and LITI update rate η = 0.3; we analyze
those values in Appendix D. We rely on a high capacity reward model, whose architecture is an order
of magnitude larger than our policy.

Summary. In our experiments, we analyze the KL to the SFT policy (reflecting the forgetting of
pre-trained knowledge) and the reward (evaluating alignment to the RM). In Section 4.1, we first
show the benefits of using an EMA anchor; then in Section 4.2, we show that merging policies
trained independently helps. Moreover, in Section 4.3, we show that LITI improves the KL-reward
Pareto front; critically, repeating those three WARP stages can iteratively improve performances
in Section 4.4. A limitation is that our RM accurately approximates true human preferences only
in low KL region (Gao et al., 2023). Therefore, we finally report other metrics in Section 4.5,
specifically comparing against open-source baselines such as Mixtral (Jiang et al., 2024), and
reporting performance on standard benchmarks such as MMLU (Hendrycks et al., 2020).

4.1 STAGE 1: EXPONENTIAL MOVING AVERAGE AS A DYNAMIC ANCHOR IN KL
REGULARIZATION

In Figures 3(a) and 3(b), we compare the training trajectories of different REINFORCE variants,
where the changes lie in the choice of the anchor in the KL regularization and of the hyperparameter
β controlling its strength. Results are computed every 100 training steps. In our proposed version,
the anchor is the EMA of the trained policy with β = 0.1 and an EMA update rate µ = 0.1 (other
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Figure 3: EMA and SLERP experiments. We first compare RL runs with different anchors and
strengths β in the KL regularization. We show their results along training in Figure 3(a), and their
KL-reward Pareto fronts in Figure 3(b). We perform evaluation every 100 steps, and train them for
T = 9k steps, though we stopped the trainings if they ever reach a KL of 200 (e.g., after T = 1k
training steps when β = 0.0). Figure 3(c) plots the reward obtained when merging two policies
(trained independently after T RL steps with their own EMA anchor) with interpolating coefficient λ;
highest rewards are with SLERP for λ = 0.5 and T = 9k steps.

values are ablated in Figure 15). As the Pareto front for our strategy is above and to the left in
Figure 3(b), this confirms the superiority of using such an adaptive anchor. The baseline variants all
use the SFT as the anchor, with different values of β. The lack of regularization (β = 0.0) leads to
very fast optimization of the reward in Figure 3(a), but largely through hacking, as visible by the
KL exploding in just a few training steps in Figure 3(b). In contrast, higher values such as β = 0.1
fail to optimize the reward as regularization is too strong, causing a quick reward saturation around
−0.62 in Figure 3(a). Higher values such as β = 0.01 can match our EMA anchor in low KL regime,
but saturates around a reward of −0.46. In contrast, as argued in Observation 1, the dynamic EMA
anchor progressively moves away from the SFT initialization, causing implicit annealing of the
regularization. In conclusion, relaxing the anchor with EMA updates improves the trade-off between
KL and reward, at any given KL level, for a fixed compute budget. We refer the interested reader to
additional experiments in Figure 14 from Appendix D.2 where we compare the trained policies with
their online EMA version.

4.2 STAGE 2: SPHERICAL LINEAR INTERPOLATION OF INDEPENDENTLY REWARDED POLICIES

In Figure 3(c), we plot λ→ r
(
slerp

(
θinit, θ

1, θ2, λ
))

showing reward convexity when interpolating
policies via SLERP, validating Observation 2. This mirrors the linear mode connectivity (Frankle et al.,
2020) property across weights fine-tuned from a shared initialization, i.e., the fact that interpolated
weights perform better than the initial models (recovered for λ = 0 or λ = 1). Moreover, SLERP
consistently obtains higher rewards than LERP; yet, this is at slightly higher KL, as further detailed
in Appendices B and C.1, where we analyze respectively their theoretical and empirical differences.

4.3 STAGE 3: LINEAR INTERPOLATION TOWARDS INITIALIZATION

In Figure 4(a), we merge policies trained for T steps, and then apply the LITI procedure. Critically,
sliding the interpolating coefficient η ∈ {0, 0.1, 0.3, 0.5, 0.8, 1.0} reveals various Pareto fronts,
consistently above the training trajectories obtained during the two independent RL fine-tunings.
Interestingly, longer fine-tunings improve performances, at high KL, but also at lower KL, simply by
using a smaller η afterwards. Then in Figure 4(b), we report the Pareto fronts when merging up to
M = 5 weights. We note that all Pareto fronts revealed when applying LITI are consistently above
the ones from RL fine-tunings, validating Observation 5. More precisely, best results are achieved by
merging an higher number of policies M , suggesting a promising scaling direction.
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(c) Iterative WARP.

Figure 4: LITI and iterative experiments. Figure 4(a) considers the LITI of the SLERP of M = 2
policies after T steps with λ = 0.5, interpolating towards their SFT init as we slide η, revealing
Pareto fronts above the M = 2 REINFORCE training trajectories. Then Figure 4(b) plots the LITI
of the SLERP of M weights with λ = 1

M after T = 9k steps: light-colored areas show standard
deviations across 5 experiments. The iterative WARP procedure is illustrated in Figure 4(c); we
fine-tune M = 2 policies with their own EMA as the anchor, merge them with SLERP, interpolate
towards their init with LITI, and iteratively leverage the weights obtained with η = 0.3 as the new
initialization for the next iteration.

4.4 ITERATIVE WARP

In Figure 4(c), we apply the iterative procedure described in Section 3.4. At each of the I = 5
iterations we train M = 2 policies for T steps, with T = 9k for the first iteration, and T = 7k
for iterations 2 and 3, and then T = 5k for computational reasons. The LITI curves interpolate
towards their own initialization (while Figure 1(b) interpolated towards the SFT initialization, see
Appendix D.4 for a comparison). We systematically observe that LITI curves are above the RL training
trajectories used to obtain the inits. Results get better at every iteration, validating Observation 6,
although with reduced returns after a few iterations.

4.5 COMPARISONS AND BENCHMARKS

Side by side comparisons. To conclude our experiments, we compare our trained policies against
Mistral (Jiang et al., 2023) and Mixtral (Jiang et al., 2024) LLMs. Each policy generates a candidate
answer on an held-out collection of prompts. Then we compute side by side preference rates (Zheng
et al., 2023) with “much better”, “better” and “slightly better” receiving scores of±1.5,±1, and±0.5
respectively (and ties receiving a score of 0). The reported score is then the average over all prompts.
A positive score represents better policies. The results in Table 1 validate the efficiency of WARP, as
our policies are preferred over Mistral variants, and also outperform the two open-sourced Gemma
7B sharing the same pre-training. However, we note that results stagnate after the 3rd iteration.

Table 1: Side by side comparisons.

Methods Mistral 7B v1 Mistral 7B v2 Mixtral 8x7B
Gemma 7B 1.0 0.24 -0.01 -0.08
Gemma 7B 1.1 0.37 0.16 0.08
REINFORCE EMA anchor 0.37 0.16 0.07
WARP: 1st iter 0.42 0.23 0.13
WARP: 2nd iter 0.45 0.25 0.16
WARP: 3rd iter 0.45 0.26 0.18
WARP: 4th iter 0.45 0.25 0.16
WARP: 5th iter 0.45 0.24 0.17
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Table 2: Benchmark results.

Methods MBPP MMLU GSM8K MATH HumanEval BBH

Gemma 7B 1.1 39.0 56.4 55.6 25.6 46.9 53.1
WARP 45.4 57.6 66.8 31.0 50.0 58.8

Benchmarks. Table 2 compares WARP (3rd iter) and Gemma 7B 1.1 (Gemma Team et al., 2024)
on popular benchmarks in the zero-shot setup: MBPP (Austin et al., 2021) and HumanEval (Chen
et al., 2021) benchmarking coding capabilities, MMLU (Hendrycks et al., 2020) assessing STEM
knowledge, the GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) benchmarks
targeting reasoning abilities, and the Big Bench Hard (BBH) (Suzgun et al., 2022) benchmark
evaluating general capabilities through questions that were deemed difficult for frontier LLMs.
WARP has particularly strong results on mathematics benchmarks, suggesting higher analytical
capabilities.Finally, we refer the reader to Appendix G, where we show how the performances in
terms of reward-KL are transposed in terms of SxS and accuracy on real-world benchmarks.

5 RELATED WORK

How to merge models. The most common model merging strategy is LERP, initially used to average
checkpoints collected along a single run, uniformly (Szegedy et al., 2016; Izmailov et al., 2018) or
with an exponential moving average (EMA) (Polyak & Juditsky, 1992). Following the linear mode
connectivity (Frankle et al., 2020) observation, the model soups variants (Wortsman et al., 2022a;
Ilharco et al., 2023; Ramé et al., 2023) linearly interpolate from different fine-tunings; this relies
on the shared pre-training, limiting divergence (Neyshabur et al., 2020) such as models remain in
constrained weight regions (Gueta et al., 2023), which also suggests that pre-training mitigates the
need to explicitly enforce trust regions in gradient updates (Schulman et al., 2015; 2017). Subsequent
works such as TIES merging (Yadav et al., 2023) and DARE (Yu et al., 2023) reduce interferences in
multi-task setups with sparse task vectors (Ilharco et al., 2023). In contrast, we use SLERP, introduced
in Shoemake (1985), increasingly popular in the open-source community (Goddard et al., 2024) but
relatively underexplored in the academic literature, with limited studies such as Kim et al. (2024).
Some tried to align weights trained from scratch (Entezari et al., 2022; Ainsworth et al., 2022) or
with different architectures (Wan et al., 2024); yet, the methods are complex, less robust, and usually
require additional training.

Benefits of model merging. WA boosts generalization by reducing variance (Wortsman et al., 2022a;
Ramé et al., 2022), decreasing memorization (Lin et al., 2024b; Zaman et al., 2023; Ramé et al.,
2024) and flattening the loss landscape (Cha et al., 2021). Additionally, merging weights combines
their strengths (Ilharco et al., 2023), which helps in multi-task setups (Ilharco et al., 2022; Ramé
et al., 2023), to tackle forgetting (Stojanovski et al., 2022; Eeckt et al., 2022; Alexandrov et al., 2024)
or to provide better initializations (Don-Yehiya et al., 2023), as explored in Jain et al. (2023); Jang
et al. (2024); Huang et al. (2024) for iterative procedures in classification tasks. In particular, we
considered using the geometric insights from Eq. 2 in Jang et al. (2024); yet, as our task vectors
are nearly orthogonal Ω ≈ 90◦ (see Appendix C.2), using the update rule η → 2 cosΩ

1+cosΩ failed. WA
is now also used in RL setups (Nikishin et al., 2018; Gaya et al., 2022; Lawson & Qureshi, 2023);
for example, WARM (Ramé et al., 2024) merges reward models to boost their efficiency, robustness
and reliability. Actually, WARP is conceived as a response to WARM, demonstrating that model
merging can tackle two key RLHF challenges; policy learning in WARP and reward design in WARM.
The most similar works are the following, which also explore how WA can improve policy learning.
Noukhovitch et al. (2023) propose an iterative approach with the EMA as a new initialization for
subsequent iterations. Gorbatovski et al. (2024) and Munos et al. (2023) use EMA as the reference,
but only for direct preference optimization. Ramé et al. (2023) employ LERP to improve alignment
in multi-objective RLHF when dealing with different objectives; similarly, Xiao et al. (2023) target
multi-task setups with LERP. Finally, Lin et al. (2024a) and Fu et al. (2024) use model merging
to reduce the alignment tax, although without incorporating EMA during training, without merging
multiple rewarded policies and not iteratively. Critically, none of these works focus on KL as a
measure of forgetting, use EMA as the anchor in KL, apply SLERP or use LITI as the initialization
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for subsequent RL iterations. In contrast, WARP integrates all those elements, collectively leading to
an LLM outperforming Mixtral (Jiang et al., 2024).

6 DISCUSSION

Distributed learning for parallelization and open-source. WARP addresses a crucial challenge:
aligning LLMs with human values and societal norms, while preserving the capabilities that emerged
from pre-training. To this end, we leverage a (perhaps surprising) ability: policies trained in parallel
can combine their strengths within a single policy by weight averaging. Then, the distributed nature
of WARP makes it flexible and scalable, as it is easily parallelizable by enabling intermittent weight
sharing across workers. Actually, iterative WARP shares similarities with DiLoCo (Douillard et al.,
2023): by analogy, the first stage performs inner optimization on multiple workers independently;
the second stage merges gradients from different workers; the third stage performs SGD outer
optimization with a learning rate equal to η. More generally, WARP could facilitate open-source
(Goddard et al., 2024) collaborative training of policies (Raffel, 2023), optimizing resource and
supporting privacy in federated learning (McMahan et al., 2017) scenarios; collaborators could
train and share their LLMs, while keeping their data and RMs private. In particular, we show in
Appendix E that WARP can handle diverse objectives.

Iterated amplification. WARP improves LLM alignment by leveraging the principles of iterated
amplification (Christiano et al., 2018) and progressive collaboration of multiple agents. By analogy,
model merging via WA acts as an effective alternative to debate (Irving et al., 2018), with agents
communicating within the weight space instead of the token space, ensuring that only essential
information is retained (Ramé et al., 2024). Then, WARP refines the training signal by combining
insights and exploration from diverse models, iteratively achieving higher rewards through self-
distillation (Tarvainen & Valpola, 2017), surpassing the capabilities of any single agent. If this is the
way forward, then an iterative safety assessment would be required to detect and mitigate potential
risks early, ensuring that the development remains aligned with safety standards.

Scaling alignment. The WARP procedure increases the compute training cost by performing multiple
fine-tunings at each iteration. Yet, this should be viewed as “a feature rather than a bug”. Specifically,
by preventing memorization and forgetting, we see WARP as a fine-tuning method that can transform
additional compute allocated to alignment into enhanced capabilities and safety. This would allow
scaling (the traditionally cheap) post-training alignment, in the same way pre-training has been
scaled (Hoffmann et al., 2022). Indeed, historically, pre-training efforts have benefited much more
from compute scaling, fine-tuning efforts remaining significantly cheaper. Critically for large-scale
deployment, the acquired knowledge is within a single (merged) model, thus without inference
or memory overhead, in contrast to “more agents” approaches (Li et al., 2024; Wang et al., 2024).
Finally, although WARP improves policy optimization, it is important to recognize that WARP does not
address other critical challenges in RLHF (Casper et al., 2023): to mitigate the safety risks (Amodei
et al., 2016; Hendrycks & Mazeika, 2022; Hendrycks, 2023) from misalignment (Taylor et al., 2016;
Ngo et al., 2022), WARP should be part of a broader responsible AI framework.

7 CONCLUSION

We introduce Weight Averaged Rewarded Policies (WARP), a novel RLHF strategy to align LLMs
with three distinct stages of model merging: exponential moving average as a dynamic anchor during
RL, spherical interpolation to combine multiple policies rewarded independently, and interpolation
towards the shared initialization. This iterative application of WARP improves the KL-reward Pareto
front, aligning the LLMs while protecting the knowledge from pre-training, and compares favorably
against state-of-the-art baselines. We hope WARP could contribute to safe and powerful AI systems
by scaling alignment, and spur further exploration of the magic behind model merging.
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WARP: On the Benefits of Weight Averaged Rewarded Policies

Supplementary material

This supplementary material is organized as follows:

• Appendix A provides additional illustration of the WARP procedure.
• Appendix B details theoretical insights on task vectors, SLERP, LERP and LITI.
• Appendix C details empirical insights on task vectors, SLERP, LERP and LITI.
• Appendix D shows the impact of different design choices in WARP.
• Appendix E investigates a potential length bias in WARP, and how to fix it.
• Appendix F explores the relationship between KL and diversity in generations.
• Appendix G provides additional SxS and benchmark results.

A STRATEGY ILLUSTRATION

In Figure 5, we propose an alternative illustration of WARP, where the different stages are more
detailed than in Figure 1(a). Then in Figure 6, we also refine our illustration showcasing the similarity
and difference between SLERP and LERP.

REINFORCE (Williams, 1992)
KL (Jaques et al., 2017)
EMA (Izmailov et al., 2018)
SLERP (Shoemake, 1985) of task vectors (Ilharco et al., 2023)
LITI (Wortsman et al., 2022b)

θinit θ′init

θ1ema

θ2ema

θ1rl

θ2rl

θslerp θ′slerp

...

...

(1− η) · θinit + η · θ′slerp

Figure 5: Detailed illustration of the WARP strategy. From a (pre-trained and supervised fine-tuned)
LLM θinit, we launch M = 2 fine-tunings (black arrows ). The innovation of WARP lies in the
use of model merging by weight averaging at three different stages. First, the exponential moving
averages (EMA, blue dashed arrows ) of the policy (collected at different training steps) serves
as the anchor for the KL regularization (black double-headed dotted arrows ). The fine-tuned
networks are weight averaged using spherical linear interpolation of task vectors (SLERP, yellow
dashed arrows ). Third, we interpolate towards the initialization (LITI, red dashed arrows ).
This obtained model θ′init serves as an updated initialization for the next iteration, progressively
refining the model’s capabilities and alignment. Overall, the final model θ′slerp has high reward but
also high KL. Then, by interpolation towards the SFT init, we reveal a KL-reward Pareto front of
solutions: {(1− η) · θsft + η · θIslerp | 0 ≤ η ≤ 1}.
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Figure 6: Illustration of the difference between the full weights θm and their task vectors δm =
θm − θinit, where darker areas are of better performance. We found in Appendix C.2 that Ω ≈ 90◦

where Ω is the angle between task vectors such as cosΩ = δ1·δ2
∥δ1∥∥δ2∥ , while ω the angle between the

full weights such as cosω = θ1·θ2
∥θ1∥∥θ2∥ satisfies ω ≈ 0◦.

B THEORETICAL INSIGHTS ON TASK VECTORS, SLERP, LERP AND LITI

Based on the insights from Ilharco et al. (2023) that task vectors (the differences between a fine-tuned
model and its initialization) are semantically manipulable and interpretable units in the weight space,
we compare SLERP and LERP merging operations by analyzing their task vectors.

Background. Linear interpolation (LERP) (Utans, 1996) is the simplest merging strategy, notably
used in the model soups variants (Wortsman et al., 2022a), and defined as:

lerp
(
θ1, θ2, λ

)
= (1− λ) · θ1 + λ · θ2. (LERP)

Then, as illustrated in Figure 6, the task vector for LERP with interpolating coefficient λ is
given by: δλlerp = lerp

(
θ1, θ2, λ

)
− θinit = (1 − λ) · δ1 + λ · δ2. Similarly, we define

δλslerp = slerp
(
θinit, θ

1, θ2, λ
)
− θinit where slerp is defined in Equation (SLERP).

B.1 THEORETICAL INSIGHTS ON THE SLERP AND LERP TASK VECTORS

We denote Ω the angle between the the task vectors δ1 and δ2:

cosΩ =
δ1 · δ2
∥δ1∥∥δ2∥

. (2)

Based on the empirical observations from Jang et al. (2024), confirmed in our Figure 11(c), we
introduce the following Assumption 1 for simplicity.

Assumption 1 (Task vectors of equal norm). Independently fine-tuned task vectors have a same
norm l:

∥δ1∥ = ∥δ2∥ = l. (3)

Lemma 1 (SLERP task vector). Under Assumption 1, SLERP preserves the norm of the task vector:

∥δλslerp∥ = l. (4)

Proof. By definition,

δλslerp =
sin[(1− λ)Ω]

sinΩ
· δ1 + sin[λΩ]

sinΩ
· δ2 (5)
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Then, as δ1 · δ2 = l2 cosΩ,

∥δλslerp∥2

l2
=

(
sin[(1− λ)Ω]

sinΩ

)2

+ 2
sin[(1− λ)Ω]

sinΩ

sin[λΩ]

sinΩ
cos(Ω) +

(
sin[λΩ]

sinΩ

)2

(6)

=
sin2[(1− λ)Ω] + 2 sin[(1− λ)Ω] sin[λΩ] cos(Ω) + sin2[λΩ]

sin2 Ω
(7)

=
sin2 Ω

sin2 Ω
(8)

= 1 (9)

using trigonometric identities, proving Lemma 1.

Lemma 2 (LERP task vector). Under Assumption 1, LERP reduces the norm of the task vector:

∥δλlerp∥ = l
√

1− 2(1− cosΩ)(λ− λ2). (10)

We recover that averaging weights with λ = 0.5 tends to reduce the norm of the task vectors, as
previously highlighted in Jang et al. (2024).

Proof. By definition:

δλlerp = (1− λ) · δ1 + λ · δ2. (11)

Then, as δ1 · δ2 = l2 cosΩ,

∥δλslerp∥2

l2
= (1− λ)2 + 2λ(1− λ) cosΩ + λ2 (12)

= 1− 2λ(1− cosΩ) + 2λ2(1− cosΩ) (13)

= 1− 2(1− cosΩ)(λ− λ2), (14)

proving Lemma 2 when 0 < λ < 1.

B.2 THEORETICAL INSIGHTS ON THE KL

B.2.1 LINEAR REGIME

Assumption 2 (Linear regime (Wortsman et al., 2022b)). We assume that the predictions of a model
f , with weights initialized from θ0 and fine-tuned into θ, can be approximated by first-order Taylor
expansion: ∀x,

f(x, θ) ≈ f(x, θ0) + (θ − θ0) · ∇θf(x, θ0). (15)

Assumption 2 defines a neural tangent (Jacot et al., 2018) space in which the relationship between
weights and functions is linear. As previously argued in Wortsman et al. (2022a); Ramé et al.
(2022), this Taylor expansion is reasonable partly because weights remain close during fine-tunings
(Neyshabur et al., 2020), as confirmed in Figure 11 where they have equal norms and a cosine of one.
Yet, please note that Ortiz-Jimenez et al. (2023) highlighted some limitations.

B.2.2 KL VARIATIONS FOR LERP

We consider θ1 and θ2 weights fine-tuned from a shared SFT initialization θsft. Then in the linear
regime from Assumption 2, weight and prediction ensembling behaves similarly:

f
(
x, (1− λ) · θ1 + λ · θ2

)
≈ (1− λ) · f(x, θ1) + λ · f(x, θ2). (16)

This similarity enables to prove the following Lemma 3.
Lemma 3 (LERP reduces KL). For an interpolating coefficient 0 ≤ λ ≤ 1, denoting πλ the LERP
policy from weight interpolation (1− λ) · θ1 + λ · θ2, and π̂λ the ensembling policy from prediction
interpolation (1− λ) · πθ1 + λ · πθ2 , then under Assumption 2,

KL(πλ||πθsft) ≈ KL(π̂λ||πθsft) ≤ (1− λ)KL(πθ1 ||πθsft) + λKL(πθ2 ||πθsft), (17)

i.e., the KL for LERP is lower than the interpolated KL.
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Proof. The following proof applies the linear assumption and properties of the KL divergence.

Approximation of KL. The first approximate equality is a direct application of Assumption 2 to πλ.
Precisely, applying Equation (16) to the definition of πλ = π(1−λ)θ1+λθ2 yields that πλ ≈ π̂λ.

Upper bound of the KL. The KL divergence is convex in both its arguments (Csiszár, 1975), thus
we directly have that

KL((1− λ) · πθ1 + λ · πθ2 ||πθsft) ≤ (1− λ)KL(πθ1 ||πθsft) + λKL(πθ2 ||πθsft), (18)

which completes the proof.

Remark 1. Lemma 3 shows that the LERP πλ is closer in KL to the original SFT initialization. This
relates to Lemma 2, where we show that the linear interpolation reduces the norm to the initialization.
As the interpolation brings the weights of the models closer, it is natural that it would also bring the
resulting policies closer.

B.2.3 KL AND REWARD VARIATION FOR LITI

We now consider a given weight θ (in practice either obtained from LERP or SLERP of multiple
fine-tuned weights) and its associated task vector δ = θ−θsft. In the linear regime from Assumption 2,
for each η ∈ [0, 1], we have the following:

f(x, θsft + η · δ)− f(x, θsft) ≈ η · (f(x, θsft + δ)− f(x, θsft)). (19)

We try to show that:
KL(πθsft+η·δ∥πθsft) ≤ η ·KL(πθsft+δ∥πθsft). (20)

Lemma 4 (KL upper bound for interpolated distributions). For an interpolating coefficient 0 ≤ η ≤ 1,
denoting πη the LITI policy from weight interpolation θsft + η · δ, and π̂η the ensembling policy from
prediction interpolation (1− η) · πθsft + η · πθsft+δ , then under Assumption 2,

KL(πη∥πθsft) ≈ KL(π̂η∥πθsft) ≤ ηKL(πθsft+δ∥πθsft). (21)

Proof. The following proof uses the same method as the one of Lemma 3. We use Assumption 2 to
link the policy with the interpolation of polices, and the inequality is a result of the KL convexity.

Approximation of KL. The first approximate equality is a direct application of Assumption 2 to πη .
Precisely, applying Equation (19) to the definition of πη = πθsft+η·δ yields that πη ≈ π̂η .

Upper bound of the KL. Using the fact that the KL is convex, we have

KL(η · πθsft+δ + (1− η) · πθsft ||πθsft) ≤ ηKL(πθsft+δ∥πθsft). (22)

Assumption 3 (LITI reward is above the expected reward). The rewards for the LITI interpolated
weights are above the interpolated rewards:

r(π0 + η · (π − πθsft)) ≥ ηr(π) + (1− η)r(πθsft), (23)

This Assumption 3 is based on observations from Figure 9(b), and extends to a reward maximization
setup the notion of linear mode connectivity (Frankle et al., 2020), usually defined w.r.t. the accuracy
in supervised learning.
Lemma 5 (LITI for KL-reward trade-off). Be given the convexity of the KL from Lemma 4 and
the concavity of the reward r in Assumption 3, then the reward vs. KL front of LITI is above the
diagonal. Illustration in Figure 7.

Proof. We obtain a policy πθ fine-tuned from πθsft . The LITI policy for θη = (1− η) · θsft + η · θ is
noted πη . Combining the approximation from Lemma 4 and Assumption 3, we have that

r(πη) ≥ (1− η)r(πθsft) + ηr(πθ). (24)
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KL(π||πθsft)

r(π)
Equation (24)

Equation (25)

πθsft

πθ

LITI front

ηKL(π||πθsft)

πη

Figure 7: Illustration of Lemma 5. Based on experimental observation and theoretical insights, we
see that the Pareto front of the LITI policy is better than the identity. It highlights how Equations (24)
and (25) place LITI policies on the KL-reward plane.

And, from Lemma 4, we also have that

KL(πη∥πθsft) ≤ ηKL(πθ∥πθsft). (25)

This means that for every LITI coefficient η, the LITI policy has a higher reward than the interpolated
reward at a lower KL. Geometrically, this means that each point on the Reward-KL front from LITI
is on the top left quadrant of the plane according to the corresponding point on the diagonal.

B.3 UNIFORMLY AVERAGING M > 2 WEIGHTS WITH SLERP

The SLERP merging formula from Equation (SLERP) is only defined for M = 2 weights. We trivially
(and certainly suboptimally) generalize this to M > 2 weights in the uniform averaging setup, thus
giving an equal coefficient to each of them, i.e., λ = 1

M . In that setup, removing the dependency
of θinit that is assumed shared, we generalize SLERP to merge M weights uniformly through the
iterative procedure defined below:

slerpm
(
{θm}Mm=1

)
= slerp

(
slerpm

(
{θm}M−1

m=1

)
, θM , λ =

1

M

)
. (26)

Though these operations are not associative, the standard deviations in performances are small, as
indicated by the shaded areas in Figure 4(b).

C EMPIRICAL INSIGHTS ON TASK VECTORS, SLERP, LERP AND LITI

C.1 EMPIRICAL INSIGHTS ON THE DIFFERENCE BETWEEN SLERP AND LERP

We now empirically investigate how those theoretical differences between SLERP and LERP affect
the performance of the merged policies.

SLERP vs. LERP. In Figure 8 we adjust the interpolating coefficient λ, highlighting distinct
behaviors for SLERP and LERP. SLERP consistently enhances rewards more than LERP, as depicted
in Figures 3(c) and 8(a). However, a comprehensive evaluation must consider both KL and reward.
As shown in Figure 8(b), LERP consistently reduces KL, corroborating with Lemma 2 that LERP
reduces the norm of updates (while SLERP preserves it). When plotting these metrics together in
Figure 8(c), we observe that SLERP and LERP target different regions on the Pareto front: SLERP
achieves higher rewards at the expense of increased KL, while the main impact of LERP is to lower
KL. This is consistent with Lemmas 2 and 3, be given the orthogonal angles between task vectors
Ω ≈ 90◦ (as shown in Figure 11(a)).
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Combining SLERP and LERP with LITI. We also compare the behaviours of SLERP and LERP
when we apply LITI, as we adjust the interpolating coefficient η. Figure 9(a) and Figure 9(b) validate
that KL is convexe with regard to η while the reward is concave with regard to η, for different values
of M . This is also highlighted in Figure 10(a), which reproduces the results from Figure 4(b) (and
maintaining the same axis limits), replacing SLERP by LERP: this leads to critical changes in the
Pareto fronts. Inded, increasing M now tends to decrease KL for LERP, while it used to increase
reward with SLERP. In Figure 10(b), we explore the extrapolation strategies from (Zheng et al.,
2024), using 0 ≤ η ≤ 2 to compare the full extrapolated fronts from LERP and SLERP. While both
perform similarly on low KL, our results suggest that SLERP perform better in high KL regions.

Conclusion. SLERP demonstrates some key advantages. In particular, it reveals the full Pareto front
of solutions, while LERP only exposes a portion; extrapolation Figure 10(b) with η > 1 can partially
mitigate this but as our experiments suggest, LERP curves consistently lag behind SLERP curves in
high-reward regions. Moreover, from a practical perspective, SLERP scales the choice of η effectively,
where 1 represents full updates and a fixed value of 0.3 always corresponds to the same operational
region, optimizing for high reward and KL.
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Figure 8: SLERP vs. LERP when sliding the interpolating coefficient λ. Considering M = 2
weights after T = 9k RL steps, we merge them using either SLERP or LERP, while sliding the
interpolating coefficient λ between 0 and 1. We then evaluate the merged checkpoints. Figure 8(a)
shows that SLERP leads to higher reward than LERP, as previously in Figure 3(c). Figure 8(b) shows
that LERP signicantly reduces the KL (consistently with Lemma 3) while SLERP slightly increases
it. Figure 8(c) shows how this impact the KL-reward Pareto front, where larger markers/darker colors
indicate higher values of λ; while SLERP covers high KL-high reward regions, LERP tends to cover
regions of lower KL and thus also lower rewards.
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Figure 9: SLERP vs. LERP when sliding the interpolating coefficient η of LITI. In Figure 9(a)
we show that the KL is convex (and almost linear) with regard to η, consistently with Lemma 4. In
contrast, Figure 9(b) shows that the reward is concave, validating Assumption 3.
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(a) LITI of LERP of M weights.
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(b) Extrapolation with 0 ≤ η ≤ 2.
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Figure 10: SLERP vs. LERP when sliding the interpolating coefficient η of LITI. Figure 10(a)
merges M policies with LERP and λ = 1

M (the endpoints on the top right of the solid lines), and
then interpolates towards their SFT init, where light-colored areas show standard deviations across 5
experiments, and with 0 ≤ η ≤ 1. In contrast, in Figure 10(b) we investigate extrapolation (Zheng
et al., 2024), using 0 ≤ η ≤ 2 enabling to compare the full fronts of solutions with LERP and SLERP.
Finally, Figure 10(c) confirms that applying SLERP on the full weights θ rather than on the task
vectors δ perform very similarly to LERP.

C.2 EMPIRICAL INSIGHTS ON THE ROLE OF TASK VECTORS

We now explore the effectiveness of applying SLERP on task vectors δ vs. full weights θ, as illustrated
in Figure 6. To this end, in Figure 11 we draw inspiration from Jang et al. (2024) and plot the angles
Ω and ω and norms of δ and θ.

Angles of task vectors Ω ≈ 90◦. Figure 11(a) shows that the task vectors are typically orthogonal
(Ω ≈ 90◦), highlighting the diverse trajectories of the different RL fine-tunings. This is in contrast
with (Jang et al., 2024) for supervised fine-tunings, where Ω typically range between 40◦ and 80◦.
We suspect that this is related to the underlying differences between reinforcement and supervised
learning; in RL the policies are trained on their own generations, creating more orthogonal task
vectors, whereas in supervised learning the LLM try to imitate the groundtruth labels, leading to
more similar task vectors. The orthogonality of our task vectors prevents the use of the update rule
η → 2 cosΩ

1+cosΩ suggested from Eq. 2 in Jang et al. (2024), as it would lead to η ≈ 0, deleting any
potential update.

Angles of full weights ω ≈ 0◦. In contrast, Figure 11(b) show that full weights remain collinear
(ω ≈ 0◦). This explains the empirical results from Figure 10(c), where applying SLERP directly to
full weights results in behaviors similar to LERP. Indeed, as the angles ω ≈ 0◦, spherical interpolation
effect is minimal because sin(x) ≈ x+O(x3), and thus sin[λω]

sinω ≈
λω
ω ≈ λ.

Norms consistency. Figure 11(c) confirms the consistency in the norms of different task vectors,
supporting our Assumption 1. This uniformity is aligned with previous research (Jang et al., 2024).
As a side note, this consistency extends to full weights θ, confirming that fine-tuning typically results
in minimal changes to the overall weight (Neyshabur et al., 2020).
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Figure 11: Angles and norms of (full) weights θm and their task vectors δm = θm − θinit. The
histograms are across the 28 layers of the Gemma 7B architecture. Figure 11(a) plots the histograms
of task vector cosines. Figure 11(b) plots the histograms of weights cosines. Figure 11(c) plots the
histograms of task vector norms ratio. Figure 11(d) plots the histograms of weights norms ratio.

D EMPIRICAL INVESTIGATION OF SEVERAL DESIGN CHOICES

We include several experiments showcasing the robustness of WARP to different design choices, while
further demonstrating its superiority in terms of KL-reward trade-off. Specifically, Appendix D.1
analyzes the performances along training at different steps T ; Appendix D.2 provides results with
different values for the hyperparameters µ and β; Appendix D.3 shows the impact of the update rate
η to provide an improved initialization for the 2nd iteration of WARP; finally, Appendix D.4 shows
that in iterative WARP, interpolating towards the episode initialization or the SFT initialization both
perform similarly.

D.1 ANALYZING THE NUMBER OF TRAINING STEPS
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(a) Reward along training.
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Figure 12: Rewards and KL at different number of training steps T . Figures 12(a) and 12(b)
complement Figure 3(b) and Figure 4(c), this time plotting rewards and KL separately as a function
of the number of training steps T . Regarding iterative WARP, we observe that each iteration has
higher rewards but also higher KL (by starting at training step 0 from a new initialization). Regarding
the baseline (REINFORCE with SFT anchor), we observe that low values of β lead to very fast
hacking of the reward, as visible by the KL exploding, while high values of β slow down the training.
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Figure 13: LITI with M = 1 at different number of training steps T . The reward gain is
significantly reduced compared to Figure 4(a) where we first merged M = 2 policies before applying
LITI. We also try to perform moving average (MA) (Izmailov et al., 2018) before applying LITI,
averaging checkpoints collected along a single RL fine-tuning at steps {6k, 7k, 8k, 9k}; this does not
improve performances, suggesting the need to merge weights from independent fine-tunings to have
enough diversity (Ramé et al., 2022).

D.2 ANALYZING THE VALUES OF µ AND β
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(a) Reward vs. KL.
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(b) Reward vs. steps.
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(c) KL vs. steps.

Figure 14: EMA vs. their base policies, extending Figures 3(a) and 3(b). Figure 14(a) shows that
the EMA of all variants (with SFT anchor) perform similarly or better than their base policies in
KL-reward. As a reminder, we perform evaluation every 100 steps, and train them for T = 9k
steps, though we stopped the trainings if the base policy ever reaches a KL of 200. This confirms
Observation 1; the benefits of our variant with EMA anchor is partly explained by distillation from an
improved mean teacher (Tarvainen & Valpola, 2017).
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(a) Reward vs. KL.
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(b) Reward vs. steps.

Figure 15: Experiments ablating the values for the EMA update rate µ and the KL regularization
strength β. So far we have systematically used µ = 0.01 and β = 0.1 for all EMA-based runs,
including in the iterative WARP. These hyperparameters were chosen at the project’s onset and
have remained unchanged. In Figures 15(a) and 15(b) we increase regularization with µ = 0.005
and β = 0.2. Our results indicate that reducing µ or increasing β behaves similarly, marginally
improving the KL-reward Pareto front but slowing down training. Additionally, we include the
training trajectory when using a length penalty (LP), as detailed in Appendix E.

D.3 ANALYZING THE VALUES OF η
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Figure 16: Experiments ablating the LITI update rate η. As we initiate the 2nd iteration of WARP,
selecting an appropriate value for η is key, as it determines the starting point θη and functions similarly
to an outer learning rate (see Section 6). We usually set η = 0.3, but now provide results with an
increased η = 0.5, starting the 2nd iteration from a more “advanced” position on the previous Pareto
front. We run and average M = 2 fine-tunings from each of those two initializations for T = 7k
steps, before applying LITI. Our results indicate that a higher η (0.5) performs better in regions of
high KL, whereas a lower η (0.3) helps in regions with KL below 65. This suggests that the optimal
choice for η is compute-dependent; a lower η is appropriate if further iterations can explore high
KL regions, whereas a limited compute budget might benefit from a higher η. This resembles the
learning rate trade-off in optimization, where lower rates improve results but require more training
steps. As a final note, we can also use different η for the different fine-tunings; notably, we observe
that merging all those M = 4 RLs perform better (though it doubles the compute).
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D.4 INTERPOLATE TOWARDS THE INITIALIZATION? OR TOWARDS THE SFT?
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Figure 17: Experiments ablating the initialization in LITI. We compare LITI either towards
the episode-specific initialization (the θη selected from previous iteration) or towards the SFT (the
initialization of the 1st episode). The two resulting fronts are similar. However, in our iterative
experiments we interpolate towards the episode-specific initialization as it allows maintaining a
constant η at each WARP iteration, enabling a smooth progression towards the high KL regions.

E ADDRESSING LENGTH BIAS IN WARP
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(a) Length bias in iterative WARP.

0 20 40 60 80 100 120 140
KL

200

220

240

260

280

300

320

# 
to

ke
ns

= 0.0

= 0.1 = 0.3 = 0.5

= 0.8
= 1.0

WARP of 1 w/o LP + 1 w/ LP
WARP of 2 w/o LP
REINFORCE w/ LP
1st REINFORCE w/o LP
2nd REINFORCE w/o LP

(b) Adding length penalty (LP).
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(c) Benefits of diversity.

Figure 18: Addressing length bias in WARP. Figure 18(a) explores how length and KL change in
successive WARP iterations. Figure 18(b) demonstrates the effectiveness of length penalty (LP) in
reducing output length, and how such policies can merge with others trained without LP. Finally,
Figure 18(c) shows that merging policies trained with different objectives further improves the
KL-reward trade-off.

Problem: length bias. We investigate a potential length bias in WARP. LLMs after RLHF tend to
be unnecessarily verbose (Shen et al., 2023) because RMs often prefer longer generations to shorter
ones, leading to this form of reward hacking. We confirm such a phenomenon in Figure 18(a), where
the length of the generation increases with higher KL values. This trend is even more pronounced in
iterative WARP, where the 3rd iteration generates longer sentences than the 1st iteration at same KL.

Mitigation strategy: length penalty. To mitigate this length bias, we integrate a length penalty (LP)
into the reward: −0.0005× len(y), following Singhal et al. (2023). From SFT, we launch one RL
fine-tuning run with LP, highlighted with red stars in Figure 18(b). This LP leads to shorter outputs
as KL increases along training, in contrast to policies trained without LP.

SLERP with different configurations. Figure 18(b) displays the generation lengths from a SLERP
of two policies, one trained with the LP and the other without. Critically, merging policies from
diverse training configurations not only mitigates the length bias but also improves the Pareto front, as
illustrated in Figure 18(c). This improvement is likely due to the increased diversity across policies,
which appears beneficial for generalization, as shown in supervised learning (Ramé et al., 2022).
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Conclusion. Those experiments highlight the possibility to fix the length bias, and also the benefits
of merging policies trained with diverse rewards.

F DIVERSITY IN PREDICTIONS
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Figure 19: Confirming diversity loss in RLHF. The x-axis is the KL compared to the SFT
initialization; the y-axis is the similarity across two generations from a given policy when decoding
with temperature 0.9.

Finally, we investigate the loss in diversity across generations when aligning LLMs, as reported in
Kirk et al. (2024). This could have negative consequences for creative or exploratory tasks, or even
lead to policy collapse (Moalla et al., 2024; Hamilton, 2024). In Figure 19 we plot the BLEURT
similarity (Sellam et al., 2020) across generations, during REINFORCE, or in LITI (as we interpolate
back towards the SFT initialization). We observe that KL is strongly positively correlated with
similarity across generations, confirming that RLHF induces a loss of diversity across generations.
This experiment confirms that protecting the KL enables to trade-off between alignment and other
benefits from pre-training, such as diversity in generations.

G SXS AND BENCHMARK SCORES AT DIFFERENT KL
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(a) SxS.
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(b) Benchmark.

Figure 20: SxS and benchmark scores at different KL. The different checkpoints were ob-
tained by LITI between the SFT and the SLERP at the end of the 3rd iter, with coefficients
η ∈ {0, 0.1, 0.3, 0.5, 0.8, 1.0}. In particular, the one with η = 0.8 was highlighted in Tables 1
and 2. In terms of SxS, hacking appears around around 110 of KL. In terms of accuracies, the
alignment tax is benchmark dependent; while GSM8K seems to benefit from RLHF, scores on
MMLU significantly reduces while they are stable on MBPP.
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