
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WARP: ON THE BENEFITS OF WEIGHT AVERAGED
REWARDED POLICIES

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning from human feedback (RLHF) aligns large language mod-
els by encouraging their generations to have high rewards, using a reward model
trained on human preferences. To prevent forgetting of pre-trained knowledge,
RLHF usually incorporates a KL regularization; this forces the policy to remain
close to its initialization, though it hinders the reward optimization. To address the
trade-off between KL and reward, in this paper we introduce a novel alignment
strategy named Weight Averaged Rewarded Policies (WARP), merging policies
in the weight space at three distinct stages. First, it uses the exponential moving
average of the policy as a dynamic anchor in the KL regularization. Second, it
applies spherical interpolation to merge independently fine-tuned policies into a
new enhanced one. Third, it linearly interpolates between this merged model and
the initialization, to recover features from pre-training. This procedure is then
applied iteratively, with each iteration’s final model used as an advanced initial-
ization for the next, progressively refining the KL-reward trade-off, achieving
superior rewards at fixed KL. Experiments with Gemma policies validate that
WARP improves their quality and alignment, outperforming open-source models.

1 INTRODUCTION

LLM alignment. Large language models (LLMs) like Gemini (Gemini Team, 2023) and GPT-4
(OpenAI, 2023), along with their open-weight counterparts (Jiang et al., 2023; Gemma Team et al.,
2024), demonstrate remarkable abilities as chatbots, but also for tasks like mathematics and coding
(Bubeck et al., 2023). These capabilities largely emerge from pre-training on next-token prediction
(Radford et al., 2018; 2019), subsequently refined through supervised fine-tuning (SFT) (Raffel et al.,
2020; Wei et al., 2022). As these LLMs become more powerful, aligning them with human values
becomes increasingly crucial to ensure safe deployment (Amodei et al., 2016; Hendrycks & Mazeika,
2022). To this end, reinforcement learning from human feedback (RLHF) has become the prominent
strategy (Christiano et al., 2017; Ziegler et al., 2019; Stiennon et al., 2020), first learning a reward
model (RM) on human preferences, before optimizing the LLM to maximize predicted rewards.

Challenges in RLHF. However, RLHF introduces several unresolved challenges (Casper et al.,
2023). First, the limited scope of fine-tuning, often restricted to relatively small datasets, can lead
to excessive specialization and catastrophic forgetting (French, 1992) of the broad and diverse
knowledge acquired during pre-training (Goodfellow et al., 2013; Li & Hoiem, 2017; Kirkpatrick
et al., 2017; Kumar et al., 2022). Such alignment tax (Ouyang et al., 2022) can degrade the LLM’s
reasoning capabilities and performance on NLP benchmarks (Dong et al., 2023a; Lin et al., 2024a).
Second, maximizing an imperfect RM presents several issues on its own, as the LLM can learn to
exploit loopholes in the RM (Clark & Amodei, 2016; Pan et al., 2022) when it deviates significantly
from its initialization (Gao et al., 2023). Such reward hacking (Askell et al., 2021; Skalse et al., 2022)
can produce outputs that are linguistically flawed (Lewis et al., 2017), excessively verbose (Singhal
et al., 2023), or sycophantic (Perez et al., 2022; Sharma et al., 2023), thereby raising misalignment
(Taylor et al., 2016; Ngo et al., 2022) and safety (Amodei et al., 2016; Hendrycks & Mazeika, 2022)
concerns. Finally, RLHF can reduce the diversity of generations (Kirk et al., 2024), potentially
leading to policy collapse (Moalla et al., 2024; Hamilton, 2024). Such loss of diversity limits use in
creative or exploratory tasks and can result in the LLM systematically refusing to answer. Overall,
achieving high rewards based on an imperfect RM on a selected distribution of prompts is insufficient
due to potential reward misspecification and distribution shifts upon deployment.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

SFT init

1. RLHF with EMA
anchor in KL

2. Spherical averaging
of rewarded policies

… and iterate from
the new init ♻

New init

3. Linear interpolation
towards init

(a) WARP with three model merging stages, applicable iteratively.

0 20 40 60 80 100 120 140 160
KL

0.7

0.6

0.5

0.4

0.3

Re
wa

rd

= 0.0

= 0.1

= 0.3

= 0.5

= 0.8 = 1.0

WARP: 5th iteration
WARP: 4th iteration
WARP: 3rd iteration
WARP: 2nd iteration
WARP: 1st iteration
REINFORCE: EMA anchor
REINFORCE: SFT anchor

(b) KL-reward fronts.

Figure 1: Figure 1(a) illustrates the RLHF alignment process with WARP from a supervised fine-tuned
(SFT) LLM. WARP uses model merging by weight averaging at three different stages. First, the
exponential moving average (EMA) (Izmailov et al., 2018) of the policy serves as the anchor for KL
regularization (Jaques et al., 2017). Second, the independently fine-tuned policies are merged by
spherical linear interpolation (SLERP) (Shoemake, 1985) of their task vectors (Ilharco et al., 2023).
Third, we interpolate towards the initialization (LITI) (Wortsman et al., 2022b), revealing a Pareto
front of solutions as we slide the interpolating coefficient η from 1 to 0. This results in the “WARP: 1st

iteration” curve from Figure 1(b) which improves over the REINFORCE (Williams, 1992) fine-tuning
trajectories. Critically, iteratively using a point from this front as an advanced initialization for the
next episode WARP improves performance. Details in Figure 4(c).

RL with KL regularization. To address these issues, previous works constrained the reward
optimization by integrating a Kullback-Leibler (KL) regularization (Jaques et al., 2017; Geist et al.,
2019), using the SFT initialization as the anchor. As clarified in Section 2, this KL regularization
forces the policy to remain close to its initialization (Lazaridou et al., 2020; Lu et al., 2020), mitigating
forgetting and reward hacking (Gao et al., 2023). However, employing the SFT model as the anchor
may lead to reward underfitting: indeed, there is a fundamental tension between reducing KL and
maximizing reward. Thus, different policies should be compared in terms of trade-off between
KL-reward as in Figure 1(b), where the x-axis is the KL and the y-axis is the reward as estimated by
the RM, with the optimal policies located in the top-left of the plot.

On model merging by weight averaging. To improve the trade-off between KL and reward during
RLHF, we leverage the ability to merge LLMs by weight averaging (WA) (Utans, 1996). WA
relies on the linear mode connectivity (Frankle et al., 2020; Neyshabur et al., 2020), an empirical
observation revealing linear paths of high performance between models fine-tuned from a shared
pre-trained initialization. Model merging was shown to improve robustness under distribution shifts
(Izmailov et al., 2018; Wortsman et al., 2022a; Ramé et al., 2022) by promoting generalization
and reducing memorization (Ramé et al., 2024), to combine models’ abilities (Ilharco et al., 2023;
2022; Ramé et al., 2023), to reduce forgetting in continual learning (Stojanovski et al., 2022), to
enable collaborative (Raffel, 2023) and distributed (Douillard et al., 2023) learning at scale, without
computational overheads at inference time. Model merging is increasingly adopted within the
open-source community (Goddard et al., 2024; Lambert & Morrison, 2024), leading to state-of-
the-art models in specialized domains (Labrak et al., 2024) but also significant advancements on
general-purpose benchmarks (Labonne, 2024b;a). In particular, while WA was initially mostly used
for discriminative tasks (Wortsman et al., 2022a) such as reward modeling (Ramé et al., 2024), it
is now becoming popular for generative tasks (Rofin et al., 2022; Akiba et al., 2024); its use in
KL-constrained RLHF has already shown preliminary successes in a few recent works (Ramé et al.,
2023; Noukhovitch et al., 2023; Lin et al., 2024a; Liu et al., 2024; Gorbatovski et al., 2024; Munos
et al., 2023), further elaborated in Section 5.

WARP. In this paper, we propose Weight Averaged Rewarded Policies (WARP), a simple strategy for
aligning LLMs, illustrated in Figure 1(a) and detailed in Section 3. WARP is designed to optimize the
KL-reward Pareto front of solutions, as demonstrated in Figure 1(b). WARP uses three variants of
WA at three different stages of the alignment procedure, for three distinct reasons.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Stage 1: Exponential Moving Average (EMA). During RL fine-tuning, instead of regularizing
the policy towards the SFT initialization, WARP uses the policy’s own exponential moving
average (Polyak & Juditsky, 1992) as a dynamic updatable anchor in the KL. This stage
enables stable exploration with distillation from an EMA teacher (Tarvainen & Valpola, 2017)
and annealed constraint.

Stage 2: Spherical Linear intERPolation of task vectors (SLERP). Considering M policies
RL fine-tuned independently with their own EMA anchor, we merge them by spherical linear
interpolation (Shoemake, 1985) of their task vectors (Ilharco et al., 2023). This stage creates a
merged model with higher reward by combining the strengths of the M individual policies.

Stage 3: Linear Interpolation Towards Initialization (LITI). Considering the merged policy
from SLERP, WARP linearly interpolates towards the initialization, akin to WiSE-FT (Worts-
man et al., 2022b). This stage allows to run through an improved Pareto front simply by
adjusting the interpolating coefficient η between 1 (high reward but high KL) and 0 (small KL
but small reward). Critically, selecting an intermediate value for 0 < η < 1 offers a balanced
model that can serve as a new and improved initialization for subsequent iterations of WARP.

Experiments and discussion. In Section 4, we validate the efficacy of WARP for the fine-tuning
of Gemma 7B (Gemma Team et al., 2024). Finally, in Section 6, we discuss the connections
between WARP, the distributed learning literature (Raffel, 2023; Douillard et al., 2023) and iterated
amplification (Christiano et al., 2018), illustrating how WARP embodies their principles to enable
scaling post-training, for continuous alignment and improvement of LLMs.

2 CONTEXT AND NOTATIONS

RL for LLMs. We consider a transformer (Vaswani et al., 2017) LLM f(·, θ) parameterized
by θ. Following the foundation model paradigm (Bommasani et al., 2021) and the principles of
transfer learning (Oquab et al., 2014), those weights are trained via a three-stage procedure: pre-
training through next token prediction, supervised fine-tuning resulting in θsft, and ultimately, RLHF
(Christiano et al., 2017; Ouyang et al., 2022) to optimize a reward r as determined by a RM trained
to reflect human preferences. In this RL stage, θ defines a policy πθ(· | x) by auto-regressively
generating token sequences y from the prompt x. The primary objective is to find weights maximizing
the average reward over a dataset of prompts X : argmaxθ Ex∈XEy∼πθ(·|x)

[
r(x,y)

]
.

KL vs. reward. Optimizing solely for r can (i) forget general abilities from pre-training (French,
1992) as an alignment tax (Ouyang et al., 2022; Lin et al., 2024a), (ii) hack the reward (Askell et al.,
2021; Skalse et al., 2022) leading to potential misalignment, or (iii) reduce the diversity of possible
generations (Kirk et al., 2024) (as visible in Appendix F). To mitigate these risks, a KL regularization
is usually integrated to balance fidelity to the initialization and high rewards:

argmax
θ

Ex∈X
[
Ey∼πθ(·|x)r(x,y)− βKL(πθ(· | x)∥πθanchor(· | x))

]
, (1)

where usually θanchor ← θsft and β is an hyperparameter, with high values leading to low KL yet
also lower reward. The KL-regularized reward function is then r(x,y)− β log

(
πθ(y|x)

πθanchor
(y|x)

)
. Our

base RL algorithm is a variant of REINFORCE (Williams, 1992). This choice follows recent RLHF
works (Roit et al., 2023; Lee et al., 2024a; Ramé et al., 2024) and the findings from Li et al. (2023);
Tajwar et al. (2024); Ahmadian et al. (2024) that, in terms of KL-reward trade-off, REINFORCE
performs better than the more complex PPO (Schulman et al., 2017) and also better than various
offline algorithms such as DPO (Rafailov et al., 2023), IPO (Azar et al., 2023) or RAFT (Dong et al.,
2023b). Practitioners then employ early stopping to select an optimal point on the trajectory.

Weight averaging. The question of how best to merge models has recently garnered significant
attention, driven by the discoveries that deep models can be merged in the weight space (Utans, 1996;
Izmailov et al., 2018; Wortsman et al., 2023) instead of in the prediction space, as traditionally done
in ensembling (Lakshminarayanan et al., 2017). Specifically, be given two sets of weights θ1 and θ2,
the different strategies merge them into a new set of weights θ, parameterizing the same non-linear

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

network architecture. For clarity, we collectively refer to them as weight averaging (WA). The most
basic one, uniform linear averaging, is also the most common; in this case, θ = θ1+θ2

2 .

3 WARP

We introduce a novel alignment framework named Weight Averaged Rewarded Policies (WARP),
illustrated in Figure 1(a) and described in Algorithm 1 below. WARP merges LLMs in the weight
space to enhance the KL-reward front of policies. The following Sections 3.1 to 3.3 describe the
motivations behind applying three distinct variants of WA at the three different stages of WARP. In
particular, we summarize the key insights as observations, that will be experimentally validated in
Section 4 (and in Appendices C and D), and theoretically motivated in Appendix B when possible.
Overall, we observe that WARP outperforms other RL alignment strategies, without any memory or
inference overhead at test time. However, training WARP is costly, requiring multiple RL runs at each
iteration: see Section 6 for a detailed discussion on the required compute scaling.

Algorithm 1 WARP to improve the KL-reward trade-off in alignment

Input: Weights θsft pre-trained and supervised fine-tuned
Reward model r, prompt dataset X , optimizer Opt
I iterations with M RL runs each for T training steps
µ EMA update rate, η LITI update rate

1: Define θinit ← θsft
2: for iteration i from 1 to I do
3: for run m from 1 to M do ▷ Run in parallel
4: Define θm, θmema ← θinit
5: for step t from 1 to T do
6: Generate completion y ∼ πθm(· | x) for x ∈ X
7: Compute rβ(y)← r(x,y)− β log πθm (y|x)

πθmema
(y|x) ▷ KL regularized reward

8: Update θm ← Opt(θm, rβ(y)∇θ[log πθm(y | x)]) ▷ Policy gradient
9: Update θmema ← (1− µ) · θmema + µ · θm ▷ Equation (EMA): update anchor

10: end for
11: end for
12: Define θislerp ← slerp

(
θinit, {θm}Mm=1, λ = 1

M

)
▷ Equation (SLERP): merge M weights

13: Update θinit ← (1− η) · θinit + η · θislerp ▷ Equation (LITI): interpolate towards init
14: end for
Output: KL-reward front of weights {(1− κ) · θsft + κ · θIslerp | 0 ≤ κ ≤ 1}

3.1 STAGE 1: EXPONENTIAL MOVING AVERAGE AS A DYNAMIC ANCHOR IN KL
REGULARIZATION

EMA anchor. RLHF algorithms typically use the SFT initialization as a static anchor (Jaques et al.,
2017; Roit et al., 2023) in the KL regularization, but in RL (notably for control tasks) it is common
to regularly update the anchor (Schulman et al., 2015; Abdolmaleki et al., 2018). In this spirit,
WARP uses the policy’s own exponential moving average (EMA) (Polyak & Juditsky, 1992), updated
throughout the RL fine-tuning process such as, at each training step with µ = 0.01:

θema ← (1− µ) · θema + µ · θpolicy. (EMA)

Using θema as the anchor θanchor in Equation (1) provides several benefits, outlined below.
Observation 1 (EMA). Policies trained with an exponential moving average anchor benefit from
automatic annealing of the KL regularization and from distillation from a dynamic mean teacher (Tar-
vainen & Valpola, 2017). Empirical evidence in Section 4.1.

Benefits from EMA. Unlike a static SFT anchor, the dynamic nature of an EMA anchor induces
a gradual automatic annealing and relaxation of the KL regularization. Specifically, the policy is
initially strongly tied to the SFT initialization, and then progressively unleashed, allowing for more
aggressive gradient updates later in training, leading to higher rewards. Moreover, by progressively

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

incorporating knowledge from the training, EMA acts as slow weight (Stojanovski et al., 2022; Lee
et al., 2024b), and thus performing better than the initialization. But, by also maintaining essential
information from the initialization, EMA can even perform better than the final policy’s weights;
studies (Szegedy et al., 2016; Izmailov et al., 2018; Arpit et al., 2021) (see Morales-Brotons et al.
(2024) for a review), and specifically (Kaddour, 2022) within the context of LLMs, indicate that
averaging checkpoints over steps improves internal representations and thus predictions. Then, EMA
guides the policy by KL distillation (Hinton et al., 2015) of high-quality target predictions, akin to
a mean teacher (Tarvainen & Valpola, 2017) for self-supervised (Sohn et al., 2020; He et al., 2020;
Oquab et al., 2024; Caron et al., 2021; Grill et al., 2020) learning. This also relates to deep RL
techniques where EMA stabilizes exploration toward a Nash equilibrium (Awheda & Schwartz, 2013;
2016; Gorbatovski et al., 2024; Munos et al., 2023), and approximates mirror descent (Bubeck et al.,
2015; Geist et al., 2019; Tomar et al., 2020).

3.2 STAGE 2: SPHERICAL LINEAR INTERPOLATION OF INDEPENDENTLY REWARDED POLICIES

SLERP. While EMA helps for a single RL and a fixed compute budget, it faces limitations due to
the similarity of the weights collected along a single fine-tuning (Ramé et al., 2022). In this second
stage, we merge M weights RL fine-tuned independently (each with their own EMA anchor). This
follows model soups from Wortsman et al. (2022a) and its variants (Ramé et al., 2022; 2023) showing
that WA improves generalization, and that task vectors (Ilharco et al., 2023) (the difference between
fine-tuned weights and their initialization) can be arithmetically manipulated by linear interpolation
(LERP) (Utans, 1996). Yet, this time, we use spherical linear interpolation (SLERP) (Shoemake,
1985), illustrated in Figure 2 and defined below for M = 2:

slerp
(
θinit, θ

1, θ2, λ
)
= θinit +

sin[(1− λ)Ω]

sinΩ
· δ1 + sin[λΩ]

sinΩ
· δ2, (SLERP)

where Ω is the angle between the two task vectors δ1 = θ1 − θinit and δ2 = θ2 − θinit, and λ
the interpolation coefficient. Critically SLERP is applied layer by layer, each having a different
angle. In Appendix B.3 we clarify how SLERP can be used iteratively to merge M > 2 models. To
enforce diversity across weights, we simply vary the order in which text prompts x are given in each
run: this was empirically sufficient, though other diversity strategies could help, e.g., varying the
hyperparameters or the reward objectives (as explored in Figure 18(c)).

θinit

θ1

θ2

Ω ≈ 90◦

θλslerp

θλlerpδ1

δ2

Figure 2: SLERP vs. LERP.

Benefits from SLERP vs. LERP. Merging task vectors, either
with SLERP or LERP, combines their abililities (Ilharco et al.,
2023). The difference is that SLERP preserves their norms, reach-
ing higher rewards than the base models; this is summarized in
Observation 2. In contrast, and as summarized in Observation 3,
the more standard LERP has less impact on reward, but has the ad-
vantage of reducing KL; indeed, as shown in Appendix B, LERP
tends to pull the merged model towards the initialization, espe-
cially as the angle Ω between task vectors is near-orthogonal (see
Observation 3).
Observation 2 (SLERP). Spherical linear interpolation boosts rewards, yet slightly increases KL.
Empirical evidence in Section 4.2 and theoretical insights in Lemma 1.
Observation 3 (LERP). Linear interpolation reduces KL, yet has reduced impact on reward. Empir-
ical evidence in Appendix C.1 and theoretical insights in Lemmas 2 and 3.
Observation 4 (Task vectors). Task vectors δ are close to orthogonal with Ω ≈ 90◦, while the full
weights θ are collinear. Empirical evidence in Appendix C.2.

3.3 STAGE 3: LINEAR INTERPOLATION TOWARDS INITIALIZATION

LITI. In the previous stage, SLERP combines multiple policies into one with higher rewards and
slightly higher KL. This third stage, inspired by WiSE-FT from Wortsman et al. (2022b), interpolates
from the merged model towards the initialization:

θη ← (1− η) · θinit + η · θslerp. (LITI)

Adjusting the interpolating coefficient η ∈ [0, 1] trades off between some newly acquired behaviors
leading to high rewards vs. general knowledge from the SFT initialization. Specifically, large values

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

η ≈ 1 provide high rewards but also high KL, while smaller values η ≈ 0 lean towards smaller
rewards and minimal KL. Fortunately, we observe that the reduction in KL is proportionally greater
than the reduction in reward when decreasing η. Then, LITI empirically yields Pareto fronts that are
noticeably above the “diagonal”, but also above those revealed during the base RL training runs.
Observation 5 (LITI). Interpolating weights towards the initialization reveals a better Pareto front
than the one revealed during RL fine-tuning. Empirical evidence in Figure 1(b) and Section 4.3, and
theoretical insights in Lemmas 4 and 5.

Benefits from LITI. Previous works tried to understand how weight interpolation can mitigate
forgetting while increasing robustness and generalization. Wortsman et al. (2022b) argue that WiSE-
FT, akin to LITI in supervised learning contexts, recovers generalizable features from pre-training
that might be lost during fine-tuning (Kumar et al., 2022), consistently with WA reducing catastrophic
forgetting (Stojanovski et al., 2022; Eeckt et al., 2022) in continual learning. Then in the context
of RL, Lin et al. (2024a) argue that LITI increases feature diversity, efficiently balancing between
generality and task specificity. Finally, Jang et al. (2024) argues that the geometric projection of the
ideal weights is located between the merged model and the initialization.

3.4 ITERATIVE WARP

Iterative training. The model merging strategies previously described not only establish an improved
Pareto front of solutions, but also set the stage for iterative improvements. Indeed, if the computational
budget is sufficient, we can apply those three stages iteratively, using θη from previous Pareto front
(usually with η = 0.3, choice ablated in Appendix D.3) as the initialization θinit for the next iteration,
following the model recycling (Don-Yehiya et al., 2023; Ramé et al., 2023) strategies. Then, the
entire training procedure is made of multiple iterations, each consisting of those three stages, where
the final weight from a given iteration serves as an improved initialization for the next one.
Observation 6 (Iterative WARP). The application of WARP iteratively progressively refines the
Pareto front. Empirical evidence in Sections 4.4 and 4.5.

4 EXPERIMENTS: ON THE BENEFITS OF WARP

Setup. We consider the Gemma 7B (Gemma Team et al., 2024) LLM, which we seek to fine-tune
with RLHF into a better conversational agent. We use REINFORCE (Williams, 1992) policy gradient
to optimize the KL-regularized reward. The dataset X contains conversation prompts. We generate
on-policy samples with temperature 0.9, batch size of 128, Adam (Kingma & Ba, 2015) optimizer
with learning rate 10−6 and warmup of 100 steps. SLERP is applied independently to the 28 layers.
Except when stated otherwise, we train for T = 9k steps, with KL strength β = 0.1, EMA update
rate µ = 0.01, merging M = 2 policies uniformly λ = 0.5, and LITI update rate η = 0.3; we analyze
those values in Appendix D. We rely on a high capacity reward model, whose architecture is an order
of magnitude larger than our policy.

Summary. In our experiments, we analyze the KL to the SFT policy (reflecting the forgetting of
pre-trained knowledge) and the reward (evaluating alignment to the RM). In Section 4.1, we first
show the benefits of using an EMA anchor; then in Section 4.2, we show that merging policies
trained independently helps. Moreover, in Section 4.3, we show that LITI improves the KL-reward
Pareto front; critically, repeating those three WARP stages can iteratively improve performances
in Section 4.4. A limitation is that our RM accurately approximates true human preferences only
in low KL region (Gao et al., 2023). Therefore, we finally report other metrics in Section 4.5,
specifically comparing against open-source baselines such as Mixtral (Jiang et al., 2024), and
reporting performance on standard benchmarks such as MMLU (Hendrycks et al., 2020).

4.1 STAGE 1: EXPONENTIAL MOVING AVERAGE AS A DYNAMIC ANCHOR IN KL
REGULARIZATION

In Figures 3(a) and 3(b), we compare the training trajectories of different REINFORCE variants,
where the changes lie in the choice of the anchor in the KL regularization and of the hyperparameter
β controlling its strength. Results are computed every 100 training steps. In our proposed version,
the anchor is the EMA of the trained policy with β = 0.1 and an EMA update rate µ = 0.1 (other

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000
steps

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

Re
wa

rd

EMA anchor: = 0.1
SFT anchor: = 0.0
SFT anchor: = 0.0001
SFT anchor: = 0.001
SFT anchor: = 0.01
SFT anchor: = 0.1

(a) Reward vs. steps.

0 20 40 60 80 100 120
KL

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

Re
wa

rd

EMA anchor: = 0.1
SFT anchor: = 0.0
SFT anchor: = 0.0001
SFT anchor: = 0.001
SFT anchor: = 0.01
SFT anchor: = 0.1

(b) Reward vs. KL.

0.0 0.2 0.4 0.6 0.8 1.0

0.46

0.44

0.42

0.40

0.38

0.36

Re
wa

rd

SLERP at T = 9k
LERP at T = 9k
SLERP at T = 7k
LERP at T = 7k
SLERP at T = 5k
LERP at T = 5k
SLERP at T = 3k
LERP at T = 3k

(c) SLERP vs. LERP.

Figure 3: EMA and SLERP experiments. We first compare RL runs with different anchors and
strengths β in the KL regularization. We show their results along training in Figure 3(a), and their
KL-reward Pareto fronts in Figure 3(b). We perform evaluation every 100 steps, and train them for
T = 9k steps, though we stopped the trainings if they ever reach a KL of 200 (e.g., after T = 1k
training steps when β = 0.0). Figure 3(c) plots the reward obtained when merging two policies
(trained independently after T RL steps with their own EMA anchor) with interpolating coefficient λ;
highest rewards are with SLERP for λ = 0.5 and T = 9k steps.

values are ablated in Figure 15). As the Pareto front for our strategy is above and to the left in
Figure 3(b), this confirms the superiority of using such an adaptive anchor. The baseline variants all
use the SFT as the anchor, with different values of β. The lack of regularization (β = 0.0) leads to
very fast optimization of the reward in Figure 3(a), but largely through hacking, as visible by the
KL exploding in just a few training steps in Figure 3(b). In contrast, higher values such as β = 0.1
fail to optimize the reward as regularization is too strong, causing a quick reward saturation around
−0.62 in Figure 3(a). Higher values such as β = 0.01 can match our EMA anchor in low KL regime,
but saturates around a reward of −0.46. In contrast, as argued in Observation 1, the dynamic EMA
anchor progressively moves away from the SFT initialization, causing implicit annealing of the
regularization. In conclusion, relaxing the anchor with EMA updates improves the trade-off between
KL and reward, at any given KL level, for a fixed compute budget. We refer the interested reader to
additional experiments in Figure 14 from Appendix D.2 where we compare the trained policies with
their online EMA version.

4.2 STAGE 2: SPHERICAL LINEAR INTERPOLATION OF INDEPENDENTLY REWARDED POLICIES

In Figure 3(c), we plot λ→ r
(
slerp

(
θinit, θ

1, θ2, λ
))

showing reward convexity when interpolating
policies via SLERP, validating Observation 2. This mirrors the linear mode connectivity (Frankle et al.,
2020) property across weights fine-tuned from a shared initialization, i.e., the fact that interpolated
weights perform better than the initial models (recovered for λ = 0 or λ = 1). Moreover, SLERP
consistently obtains higher rewards than LERP; yet, this is at slightly higher KL, as further detailed
in Appendices B and C.1, where we analyze respectively their theoretical and empirical differences.

4.3 STAGE 3: LINEAR INTERPOLATION TOWARDS INITIALIZATION

In Figure 4(a), we merge policies trained for T steps, and then apply the LITI procedure. Critically,
sliding the interpolating coefficient η ∈ {0, 0.1, 0.3, 0.5, 0.8, 1.0} reveals various Pareto fronts,
consistently above the training trajectories obtained during the two independent RL fine-tunings.
Interestingly, longer fine-tunings improve performances, at high KL, but also at lower KL, simply by
using a smaller η afterwards. Then in Figure 4(b), we report the Pareto fronts when merging up to
M = 5 weights. We note that all Pareto fronts revealed when applying LITI are consistently above
the ones from RL fine-tunings, validating Observation 5. More precisely, best results are achieved by
merging an higher number of policies M , suggesting a promising scaling direction.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100 120 140
KL

0.7

0.6

0.5

0.4

Re
wa

rd

= 0.0

= 0.1

= 0.3

= 0.5
= 0.8 = 1.0

T = 9k
T = 7k
T = 5k
T = 3k
REINFORCE v1
REINFORCE v2

(a) LITI of SLERP after T steps.

0 20 40 60 80 100 120 140 160
KL

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

Re
wa

rd

= 0.0

= 0.1

= 0.3

= 0.5 = 0.8 = 1.0

M = 5
M = 4
M = 3
M = 2
M = 1
REINFORCE

(b) LITI of SLERP of M weights.

0 20 40 60 80 100 120 140
KL

0.7

0.6

0.5

0.4

0.3

Re
wa

rd

= 0.0

= 0.1

= 0.3

= 0.5
= 0.8 = 1.0

5th iter: LITI
5th iter: REINFORCE
4th iter: LITI
4th iter: REINFORCE
3rd iter: LITI
3rd iter: REINFORCE
2nd iter: LITI
2nd iter: REINFORCE
1st iter: LITI
1st iter: REINFORCE

(c) Iterative WARP.

Figure 4: LITI and iterative experiments. Figure 4(a) considers the LITI of the SLERP of M = 2
policies after T steps with λ = 0.5, interpolating towards their SFT init as we slide η, revealing
Pareto fronts above the M = 2 REINFORCE training trajectories. Then Figure 4(b) plots the LITI
of the SLERP of M weights with λ = 1

M after T = 9k steps: light-colored areas show standard
deviations across 5 experiments. The iterative WARP procedure is illustrated in Figure 4(c); we
fine-tune M = 2 policies with their own EMA as the anchor, merge them with SLERP, interpolate
towards their init with LITI, and iteratively leverage the weights obtained with η = 0.3 as the new
initialization for the next iteration.

4.4 ITERATIVE WARP

In Figure 4(c), we apply the iterative procedure described in Section 3.4. At each of the I = 5
iterations we train M = 2 policies for T steps, with T = 9k for the first iteration, and T = 7k
for iterations 2 and 3, and then T = 5k for computational reasons. The LITI curves interpolate
towards their own initialization (while Figure 1(b) interpolated towards the SFT initialization, see
Appendix D.4 for a comparison). We systematically observe that LITI curves are above the RL training
trajectories used to obtain the inits. Results get better at every iteration, validating Observation 6,
although with reduced returns after a few iterations.

4.5 COMPARISONS AND BENCHMARKS

Side by side comparisons. To conclude our experiments, we compare our trained policies against
Mistral (Jiang et al., 2023) and Mixtral (Jiang et al., 2024) LLMs. Each policy generates a candidate
answer on an held-out collection of prompts. Then we compute side by side preference rates (Zheng
et al., 2023) with “much better”, “better” and “slightly better” receiving scores of±1.5,±1, and±0.5
respectively (and ties receiving a score of 0). The reported score is then the average over all prompts.
A positive score represents better policies. The results in Table 1 validate the efficiency of WARP, as
our policies are preferred over Mistral variants, and also outperform the two open-sourced Gemma
7B sharing the same pre-training. However, we note that results stagnate after the 3rd iteration.

Table 1: Side by side comparisons.

Methods Mistral 7B v1 Mistral 7B v2 Mixtral 8x7B
Gemma 7B 1.0 0.24 -0.01 -0.08
Gemma 7B 1.1 0.37 0.16 0.08
REINFORCE EMA anchor 0.37 0.16 0.07
WARP: 1st iter 0.42 0.23 0.13
WARP: 2nd iter 0.45 0.25 0.16
WARP: 3rd iter 0.45 0.26 0.18
WARP: 4th iter 0.45 0.25 0.16
WARP: 5th iter 0.45 0.24 0.17

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Benchmark results.

Methods MBPP MMLU GSM8K MATH HumanEval BBH

Gemma 7B 1.1 39.0 56.4 55.6 25.6 46.9 53.1
WARP 45.4 57.6 66.8 31.0 50.0 58.8

Benchmarks. Table 2 compares WARP (3rd iter) and Gemma 7B 1.1 (Gemma Team et al., 2024)
on popular benchmarks in the zero-shot setup: MBPP (Austin et al., 2021) and HumanEval (Chen
et al., 2021) benchmarking coding capabilities, MMLU (Hendrycks et al., 2020) assessing STEM
knowledge, the GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) benchmarks
targeting reasoning abilities, and the Big Bench Hard (BBH) (Suzgun et al., 2022) benchmark
evaluating general capabilities through questions that were deemed difficult for frontier LLMs.
WARP has particularly strong results on mathematics benchmarks, suggesting higher analytical
capabilities.Finally, we refer the reader to Appendix G, where we show how the performances in
terms of reward-KL are transposed in terms of SxS and accuracy on real-world benchmarks.

5 RELATED WORK

How to merge models. The most common model merging strategy is LERP, initially used to average
checkpoints collected along a single run, uniformly (Szegedy et al., 2016; Izmailov et al., 2018) or
with an exponential moving average (EMA) (Polyak & Juditsky, 1992). Following the linear mode
connectivity (Frankle et al., 2020) observation, the model soups variants (Wortsman et al., 2022a;
Ilharco et al., 2023; Ramé et al., 2023) linearly interpolate from different fine-tunings; this relies
on the shared pre-training, limiting divergence (Neyshabur et al., 2020) such as models remain in
constrained weight regions (Gueta et al., 2023), which also suggests that pre-training mitigates the
need to explicitly enforce trust regions in gradient updates (Schulman et al., 2015; 2017). Subsequent
works such as TIES merging (Yadav et al., 2023) and DARE (Yu et al., 2023) reduce interferences in
multi-task setups with sparse task vectors (Ilharco et al., 2023). In contrast, we use SLERP, introduced
in Shoemake (1985), increasingly popular in the open-source community (Goddard et al., 2024) but
relatively underexplored in the academic literature, with limited studies such as Kim et al. (2024).
Some tried to align weights trained from scratch (Entezari et al., 2022; Ainsworth et al., 2022) or
with different architectures (Wan et al., 2024); yet, the methods are complex, less robust, and usually
require additional training.

Benefits of model merging. WA boosts generalization by reducing variance (Wortsman et al., 2022a;
Ramé et al., 2022), decreasing memorization (Lin et al., 2024b; Zaman et al., 2023; Ramé et al.,
2024) and flattening the loss landscape (Cha et al., 2021). Additionally, merging weights combines
their strengths (Ilharco et al., 2023), which helps in multi-task setups (Ilharco et al., 2022; Ramé
et al., 2023), to tackle forgetting (Stojanovski et al., 2022; Eeckt et al., 2022; Alexandrov et al., 2024)
or to provide better initializations (Don-Yehiya et al., 2023), as explored in Jain et al. (2023); Jang
et al. (2024); Huang et al. (2024) for iterative procedures in classification tasks. In particular, we
considered using the geometric insights from Eq. 2 in Jang et al. (2024); yet, as our task vectors
are nearly orthogonal Ω ≈ 90◦ (see Appendix C.2), using the update rule η → 2 cosΩ

1+cosΩ failed. WA
is now also used in RL setups (Nikishin et al., 2018; Gaya et al., 2022; Lawson & Qureshi, 2023);
for example, WARM (Ramé et al., 2024) merges reward models to boost their efficiency, robustness
and reliability. Actually, WARP is conceived as a response to WARM, demonstrating that model
merging can tackle two key RLHF challenges; policy learning in WARP and reward design in WARM.
The most similar works are the following, which also explore how WA can improve policy learning.
Noukhovitch et al. (2023) propose an iterative approach with the EMA as a new initialization for
subsequent iterations. Gorbatovski et al. (2024) and Munos et al. (2023) use EMA as the reference,
but only for direct preference optimization. Ramé et al. (2023) employ LERP to improve alignment
in multi-objective RLHF when dealing with different objectives; similarly, Xiao et al. (2023) target
multi-task setups with LERP. Finally, Lin et al. (2024a) and Fu et al. (2024) use model merging
to reduce the alignment tax, although without incorporating EMA during training, without merging
multiple rewarded policies and not iteratively. Critically, none of these works focus on KL as a
measure of forgetting, use EMA as the anchor in KL, apply SLERP or use LITI as the initialization

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

for subsequent RL iterations. In contrast, WARP integrates all those elements, collectively leading to
an LLM outperforming Mixtral (Jiang et al., 2024).

6 DISCUSSION

Distributed learning for parallelization and open-source. WARP addresses a crucial challenge:
aligning LLMs with human values and societal norms, while preserving the capabilities that emerged
from pre-training. To this end, we leverage a (perhaps surprising) ability: policies trained in parallel
can combine their strengths within a single policy by weight averaging. Then, the distributed nature
of WARP makes it flexible and scalable, as it is easily parallelizable by enabling intermittent weight
sharing across workers. Actually, iterative WARP shares similarities with DiLoCo (Douillard et al.,
2023): by analogy, the first stage performs inner optimization on multiple workers independently;
the second stage merges gradients from different workers; the third stage performs SGD outer
optimization with a learning rate equal to η. More generally, WARP could facilitate open-source
(Goddard et al., 2024) collaborative training of policies (Raffel, 2023), optimizing resource and
supporting privacy in federated learning (McMahan et al., 2017) scenarios; collaborators could
train and share their LLMs, while keeping their data and RMs private. In particular, we show in
Appendix E that WARP can handle diverse objectives.

Iterated amplification. WARP improves LLM alignment by leveraging the principles of iterated
amplification (Christiano et al., 2018) and progressive collaboration of multiple agents. By analogy,
model merging via WA acts as an effective alternative to debate (Irving et al., 2018), with agents
communicating within the weight space instead of the token space, ensuring that only essential
information is retained (Ramé et al., 2024). Then, WARP refines the training signal by combining
insights and exploration from diverse models, iteratively achieving higher rewards through self-
distillation (Tarvainen & Valpola, 2017), surpassing the capabilities of any single agent. If this is the
way forward, then an iterative safety assessment would be required to detect and mitigate potential
risks early, ensuring that the development remains aligned with safety standards.

Scaling alignment. The WARP procedure increases the compute training cost by performing multiple
fine-tunings at each iteration. Yet, this should be viewed as “a feature rather than a bug”. Specifically,
by preventing memorization and forgetting, we see WARP as a fine-tuning method that can transform
additional compute allocated to alignment into enhanced capabilities and safety. This would allow
scaling (the traditionally cheap) post-training alignment, in the same way pre-training has been
scaled (Hoffmann et al., 2022). Indeed, historically, pre-training efforts have benefited much more
from compute scaling, fine-tuning efforts remaining significantly cheaper. Critically for large-scale
deployment, the acquired knowledge is within a single (merged) model, thus without inference
or memory overhead, in contrast to “more agents” approaches (Li et al., 2024; Wang et al., 2024).
Finally, although WARP improves policy optimization, it is important to recognize that WARP does not
address other critical challenges in RLHF (Casper et al., 2023): to mitigate the safety risks (Amodei
et al., 2016; Hendrycks & Mazeika, 2022; Hendrycks, 2023) from misalignment (Taylor et al., 2016;
Ngo et al., 2022), WARP should be part of a broader responsible AI framework.

7 CONCLUSION

We introduce Weight Averaged Rewarded Policies (WARP), a novel RLHF strategy to align LLMs
with three distinct stages of model merging: exponential moving average as a dynamic anchor during
RL, spherical interpolation to combine multiple policies rewarded independently, and interpolation
towards the shared initialization. This iterative application of WARP improves the KL-reward Pareto
front, aligning the LLMs while protecting the knowledge from pre-training, and compares favorably
against state-of-the-art baselines. We hope WARP could contribute to safe and powerful AI systems
by scaling alignment, and spur further exploration of the magic behind model merging.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Martin
Riedmiller. Maximum a posteriori policy optimisation. ICLR, 2018. (p. 4)

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Ahmet Üstün, and
Sara Hooker. Back to basics: Revisiting REINFORCE style optimization for learning from human
feedback in LLMs. arXiv preprint, 2024. (p. 3)

Samuel K. Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. In ICLR, 2022. (p. 9)

Takuya Akiba, Makoto Shing, Yujin Tang, Qi Sun, and David Ha. Evolutionary optimization of
model merging recipes. arXiv preprint, 2024. (p. 2)

Anton Alexandrov, Veselin Raychev, Mark Niklas Müller, Ce Zhang, Martin Vechev, and Kristina
Toutanova. Mitigating catastrophic forgetting in language transfer via model merging. arXiv
preprint, 2024. (p. 9)

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in AI safety. arXiv preprint, 2016. (pp. 1 and 10)

Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming Xiong. Ensemble of averages: Improving
model selection and boosting performance in domain generalization. In NeurIPS, 2021. (p. 5)

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Ben Mann, Nova DasSarma, Nelson Elhage, Zac Hatfield-Dodds, Danny Hernan-
dez, Jackson Kernion, Kamal Ndousse, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark,
Sam McCandlish, Chris Olah, and Jared Kaplan. A general language assistant as a laboratory for
alignment. arXiv preprint, 2021. (pp. 1 and 3)

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint, 2021. (p. 9)

Mostafa D Awheda and Howard M Schwartz. Exponential moving average Q-learning algorithm. In
ADPRL, 2013. (p. 5)

Mostafa D Awheda and Howard M Schwartz. Exponential moving average based multiagent rein-
forcement learning algorithms. Artificial Intelligence Review, 2016. (p. 5)

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. A general theoretical paradigm to understand learning from human
preferences. arXiv preprint, 2023. (p. 3)

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportuni-
ties and risks of foundation models. arXiv preprint, 2021. (p. 3)

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint, 2023. (p. 1)

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends
in ML, 2015. (p. 5)

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021. (p. 5)

Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open problems
and fundamental limitations of reinforcement learning from human feedback. TMLR, 2023. (pp. 1
and 10)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
Sungrae Park. SWAD: Domain generalization by seeking flat minima. In NeurIPS, 2021. (p. 9)

Mark Chen, Jerry Tworek, Heewoo Jun, et al. Evaluating large language models trained on code.
arXiv preprint, 2021. (p. 9)

Paul Christiano, Buck Shlegeris, and Dario Amodei. Supervising strong learners by amplifying weak
experts. arXiv preprint, 2018. (pp. 3 and 10)

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In NeurIPS, 2017. (pp. 1 and 3)

Jack Clark and Dario Amodei. Faulty Reward Functions in the Wild. https://openai.com/r
esearch/faulty-reward-functions, 2016. (p. 1)

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021. (p. 9)

Imre Csiszár. I-divergence geometry of probability distributions and minimization problems. The
annals of probability, pp. 146–158, 1975. (p. 22)

Shachar Don-Yehiya, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem Choshen.
ColD fusion: Collaborative descent for distributed multitask finetuning. In ACL, 2023. (pp. 6 and 9)

Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang,
Zheng Yuan, Chang Zhou, and Jingren Zhou. How abilities in large language models are affected
by supervised fine-tuning data composition. arXiv preprint, 2023a. (p. 1)

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, KaShun SHUM, and Tong Zhang. RAFT: Reward ranked finetuning for generative
foundation model alignment. TMLR, 2023b. (p. 3)

Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
communication training of language models. arXiv preprint, 2023. (pp. 2, 3, and 10)

Steven Vander Eeckt et al. Weight averaging: A simple yet effective method to overcome catastrophic
forgetting in automatic speech recognition. arXiv preprint, 2022. (pp. 6 and 9)

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. In ICLR, 2022. (p. 9)

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In ICML, 2020. (pp. 2, 7, 9, and 22)

Robert M French. Semi-distributed representations and catastrophic forgetting in connectionist
networks. Connection Science, 1992. (pp. 1 and 3)

Tingchen Fu, Deng Cai, Lemao Liu, Shuming Shi, and Rui Yan. Disperse-then-merge: Pushing the
limits of instruction tuning via alignment tax reduction. arXiv preprint, 2024. (p. 9)

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
ICML, 2023. (pp. 1, 2, and 6)

Jean-Baptiste Gaya, Laure Soulier, and Ludovic Denoyer. Learning a subspace of policies for online
adaptation in reinforcement learning. In ICLR, 2022. (p. 9)

Matthieu Geist, Bruno Scherrer, and Olivier Pietquin. A theory of regularized markov decision
processes. In ICML, 2019. (pp. 2 and 5)

Google Gemini Team. Gemini: A family of highly capable multimodal models. 2023. (p. 1)

12

https://openai.com/research/faulty-reward-functions
https://openai.com/research/faulty-reward-functions

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Google Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint, 2024. (pp. 1, 3, 6, and 9)

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging large
language models. arXiv preprint, 2024. (pp. 2, 9, and 10)

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint, 2013.
(p. 1)

Alexey Gorbatovski, Boris Shaposhnikov, Alexey Malakhov, Nikita Surnachev, Yaroslav Aksenov,
Ian Maksimov, Nikita Balagansky, and Daniil Gavrilov. Learn your reference model for real good
alignment. arXiv preprint, 2024. (pp. 2, 5, and 9)

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. NeurIPS, 2020. (p. 5)

Almog Gueta, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem Choshen. Knowl-
edge is a region in weight space for fine-tuned language models. In EMNLP, 2023. (p. 9)

Sil Hamilton. Detecting mode collapse in language models via narration. arXiv preprint, 2024. (pp. 1
and 30)

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
unsupervised visual representation learning. In CVPR, 2020. (p. 5)

Dan Hendrycks. Natural selection favors AIs over humans. arXiv preprint, 2023. (p. 10)

Dan Hendrycks and Mantas Mazeika. X-risk analysis for AI research. arXiv preprint, 2022. (pp. 1
and 10)

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. arXiv preprint, 2020. (pp. 6
and 9)

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
NeurIPS, 2021. (p. 9)

Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network. In
NeurIPS, 2015. (p. 5)

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. In NeurIPS, 2022. (p. 10)

Zitong Huang, Ze Chen, Bowen Dong, Chaoqi Liang, Erjin Zhou, and Wangmeng Zuo. Imwa:
Iterative model weight averaging benefits class-imbalanced learning tasks. arXiv preprint, 2024.
(p. 9)

Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi, Simon
Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by interpolating
weights. In NeurIPS, 2022. (pp. 2 and 9)

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. In ICLR, 2023. (pp. 2,
3, 5, 9, 19, and 20)

Geoffrey Irving, Paul Christiano, and Dario Amodei. Ai safety via debate. arXiv preprint, 2018.
(p. 10)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson.
Averaging weights leads to wider optima and better generalization. In UAI, 2018. (pp. 2, 3, 5, 9, 19,
and 27)

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural Tangent Kernel: Convergence and
generalization in neural networks. In NeurIPS, 2018. (p. 21)

Samyak Jain, Sravanti Addepalli, Pawan Kumar Sahu, Priyam Dey, and R Venkatesh Babu. Dart:
Diversify-aggregate-repeat training improves generalization of neural networks. In CVPR, 2023.
(p. 9)

Dong-Hwan Jang, Sangdoo Yun, and Dongyoon Han. Model stock: All we need is just a few
fine-tuned models. arXiv preprint, 2024. (pp. 6, 9, 20, 21, and 25)

Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, José Miguel Hernández-Lobato, Richard E Turner,
and Douglas Eck. Sequence tutor: Conservative fine-tuning of sequence generation models with
kl-control. In ICML, 2017. (pp. 2, 4, and 19)

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint, 2023. (pp. 1 and 8)

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024. (pp. 6, 8, and 10)

Jean Kaddour. Stop wasting my time! saving days of ImageNet and BERT training with latest weight
averaging. In NeurIPS Workshop, 2022. (p. 5)

Minchul Kim, Shangqian Gao, Yen-Chang Hsu, Yilin Shen, and Hongxia Jin. Token fusion: Bridging
the gap between token pruning and token merging. In WACV, 2024. (p. 9)

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
(p. 6)

Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
Grefenstette, and Roberta Raileanu. Understanding the effects of RLHF on LLM generalisation
and diversity. In ICLR, 2024. (pp. 1, 3, and 30)

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcoming
catastrophic forgetting in neural networks. In PNAS, 2017. (p. 1)

Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang. Fine-
tuning can distort pretrained features and underperform out-of-distribution. In ICLR, 2022. (pp. 1
and 6)

Maxime Labonne. Merge Large Language Models with mergekit, 2024a. URL https://huggin
gface.co/blog/mlabonne/merge-models. (p. 2)

Maxime Labonne. NeuralBeagle14-7B. https://huggingface.co/mlabonne/Neural
Beagle14-7B-GGUF, 2024b. (p. 2)

Yanis Labrak, Adrien Bazoge, Emmanuel Morin, Pierre-Antoine Gourraud, Mickael Rouvier, and
Richard Dufour. Biomistral: A collection of open-source pretrained large language models for
medical domains. arXiv preprint, 2024. (p. 2)

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
uncertainty estimation using deep ensembles. In NeurIPS, 2017. (p. 3)

Nathan Lambert and Jacob Morrison. Model merging lessons in The Waifu Research Department,
2024. URL https://www.interconnects.ai/p/model-merging. (p. 2)

Daniel Lawson and Ahmed H Qureshi. Merging decision transformers: Weight averaging for forming
multi-task policies. In ICLR RRL Workshop, 2023. (p. 9)

14

https://huggingface.co/blog/mlabonne/merge-models
https://huggingface.co/blog/mlabonne/merge-models
https://huggingface.co/mlabonne/NeuralBeagle14-7B-GGUF
https://huggingface.co/mlabonne/NeuralBeagle14-7B-GGUF
https://www.interconnects.ai/p/model-merging

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Angeliki Lazaridou, Anna Potapenko, and Olivier Tieleman. Multi-agent communication meets
natural language: Synergies between functional and structural language learning. In ACL, 2020.
(p. 2)

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton
Bishop, Victor Carbune, and Abhinav Rastogi. RLAIF: Scaling reinforcement learning from
human feedback with AI feedback. In ICML, 2024a. (p. 3)

Jaerin Lee, Bong Gyun Kang, Kihoon Kim, and Kyoung Mu Lee. Grokfast: Accelerated grokking by
amplifying slow gradients. arXiv preprint, 2024b. (p. 5)

Mike Lewis, Denis Yarats, Yann N Dauphin, Devi Parikh, and Dhruv Batra. Deal or no deal?
end-to-end learning for negotiation dialogues. arXiv preprint, 2017. (p. 1)

Junyou Li, Qin Zhang, Yangbin Yu, Qiang Fu, and Deheng Ye. More agents is all you need. arXiv
preprint, 2024. (p. 10)

Zhizhong Li and Derek Hoiem. Learning without forgetting. TPAMI, 2017. (p. 1)

Ziniu Li, Tian Xu, Yushun Zhang, Yang Yu, Ruoyu Sun, and Zhi-Quan Luo. Remax: A simple,
effective, and efficient reinforcement learning method for aligning large language models. arXiv
preprint, 2023. (p. 3)

Yong Lin, Hangyu Lin, Wei Xiong, Shizhe Diao, Jianmeng Liu, Jipeng Zhang, Rui Pan, Haoxiang
Wang, Wenbin Hu, Hanning Zhang, Hanze Dong, Renjie Pi, Han Zhao, Nan Jiang, Heng Ji, Yuan
Yao, and Tong Zhang. Mitigating the alignment tax of rlhf. arXiv preprint, 2024a. (pp. 1, 2, 3, 6,
and 9)

Yong Lin, Lu Tan, Yifan Hao, Honam Wong, Hanze Dong, Weizhong Zhang, Yujiu Yang, and Tong
Zhang. Spurious feature diversification improves out-of-distribution generalization. In ICLR,
2024b. (p. 9)

Tianlin Liu, Shangmin Guo, Leonardo Bianco, Daniele Calandriello, Quentin Berthet, Felipe Llinares,
Jessica Hoffmann, Lucas Dixon, Michal Valko, and Mathieu Blondel. Decoding-time realignment
of language models. In ICML, 2024. (p. 2)

Yuchen Lu, Soumye Singhal, Florian Strub, Aaron Courville, and Olivier Pietquin. Countering
language drift with seeded iterated learning. In ICML, 2020. (p. 2)

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In AISTATS, 2017.
(p. 10)

Skander Moalla, Andrea Miele, Razvan Pascanu, and Caglar Gulcehre. No representation, no trust:
Connecting representation, collapse, and trust issues in ppo. arXiv preprint, 2024. (pp. 1 and 30)

Daniel Morales-Brotons, Thijs Vogels, and Hadrien Hendrikx. Exponential moving average of
weights in deep learning: Dynamics and benefits. TMLR, 2024. (p. 5)

Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al. Nash
learning from human feedback. arXiv preprint, 2023. (pp. 2, 5, and 9)

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer learning?
In NeurIPS, 2020. (pp. 2, 9, 21, and 25)

Richard Ngo, Lawrence Chan, and Soren Mindermann. The alignment problem from a deep learning
perspective. arXiv preprint, 2022. (pp. 1 and 10)

Evgenii Nikishin, Pavel Izmailov, Ben Athiwaratkun, Dmitrii Podoprikhin, Timur Garipov, Pavel
Shvechikov, Dmitry Vetrov, and Andrew Gordon Wilson. Improving stability in deep reinforcement
learning with weight averaging. In UDL, 2018. (p. 9)

Michael Noukhovitch, Samuel Lavoie, Florian Strub, and Aaron Courville. Language model align-
ment with elastic reset. In NeurIPS, 2023. (pp. 2 and 9)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

OpenAI. Gpt-4 technical report. 2023. (p. 1)

Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-level
image representations using convolutional neural networks. In CVPR, 2014. (p. 3)

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel HAZIZA, Francisco Massa, Alaaeldin El-Nouby, Mido Assran, Nicolas
Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herve Jegou, Julien Mairal, Patrick Labatut, Ar-
mand Joulin, and Piotr Bojanowski. DINOv2: Learning robust visual features without supervision.
TMLR, 2024. (p. 5)

Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent
space: Improved editing of pre-trained models. In NeurIPS, 2023. (p. 21)

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. NeurIPS, 2022. (pp. 1 and 3)

Alexander Pan, Kush Bhatia, and Jacob Steinhardt. The effects of reward misspecification: Mapping
and mitigating misaligned models. In ICLR, 2022. (p. 1)

Ethan Perez, Sam Ringer, Kamilė Lukošiūtė, Karina Nguyen, Edwin Chen, Scott Heiner, Craig Pettit,
Catherine Olsson, Sandipan Kundu, Saurav Kadavath, et al. Discovering language model behaviors
with model-written evaluations. arXiv preprint, 2022. (p. 1)

Boris T Polyak and Anatoli B Juditsky. Acceleration of stochastic approximation by averaging. SIAM,
1992. (pp. 3, 4, and 9)

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training. 2018. (p. 1)

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019. (p. 1)

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. arXiv
preprint, 2023. (p. 3)

Colin Raffel. Building Machine Learning Models Like Open Source Software. ACM, 2023. (pp. 2, 3,
and 10)

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. JMLR, 2020. (p. 1)

Alexandre Ramé, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Gallinari,
and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. In NeurIPS,
2022. (pp. 2, 5, 9, 21, 27, and 29)

Alexandre Ramé, Kartik Ahuja, Jianyu Zhang, Matthieu Cord, Léon Bottou, and David Lopez-Paz.
Model ratatouille: Recycling diverse models for out-of-distribution generalization. In ICML, 2023.
(pp. 5, 6, and 9)

Alexandre Ramé, Nino Vieillard, Léonard Hussenot, Robert Dadashi, Geoffrey Cideron, Olivier
Bachem, and Johan Ferret. WARM: On the benefits of weight averaged reward models. In ICML,
2024. (pp. 2, 3, 9, and 10)

Alexandre Ramé, Guillaume Couairon, Mustafa Shukor, Corentin Dancette, Jean-Baptiste Gaya,
Laure Soulier, and Matthieu Cord. Rewarded soups: towards pareto-optimal alignment by interpo-
lating weights fine-tuned on diverse rewards. In NeurIPS, 2023. (pp. 2 and 9)

Mark Rofin, Nikita Balagansky, and Daniil Gavrilov. Linear interpolation in parameter space is good
enough for fine-tuned language models. arXiv preprint, 2022. (p. 2)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Paul Roit, Johan Ferret, Lior Shani, Roee Aharoni, Geoffrey Cideron, Robert Dadashi, Matthieu
Geist, Sertan Girgin, Léonard Hussenot, Orgad Keller, et al. Factually consistent summarization
via reinforcement learning with textual entailment feedback. In ACL, 2023. (pp. 3 and 4)

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In ICML, 2015. (pp. 4 and 9)

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint, 2017. (pp. 3 and 9)

Thibault Sellam, Dipanjan Das, and Ankur Parikh. BLEURT: Learning robust metrics for text
generation. In ACL, 2020. (p. 30)

Mrinank Sharma, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell, Samuel R Bowman,
Newton Cheng, Esin Durmus, Zac Hatfield-Dodds, Scott R Johnston, et al. Towards understanding
sycophancy in language models. arXiv preprint, 2023. (p. 1)

Wei Shen, Rui Zheng, Wenyu Zhan, Jun Zhao, Shihan Dou, Tao Gui, Qi Zhang, and Xuanjing Huang.
Loose lips sink ships: Mitigating length bias in reinforcement learning from human feedback. In
ACL, 2023. (p. 29)

Ken Shoemake. Animating rotation with quaternion curves. In SIGGRAPH, 1985. (pp. 2, 3, 5, 9,
and 19)

Prasann Singhal, Tanya Goyal, Jiacheng Xu, and Greg Durrett. A long way to go: Investigating
length correlations in rlhf. arXiv preprint, 2023. (pp. 1 and 29)

Joar Max Viktor Skalse, Nikolaus H. R. Howe, Dmitrii Krasheninnikov, and David Krueger. Defining
and characterizing reward gaming. In NeurIPS, 2022. (pp. 1 and 3)

Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini, Ekin D. Cubuk,
Alex Kurakin, Han Zhang, and Colin Raffel. Fixmatch: Simplifying semi-supervised learning with
consistency and confidence. In NeurIPS, 2020. (p. 5)

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. NeurIPS,
2020. (p. 1)

Zafir Stojanovski, Karsten Roth, and Zeynep Akata. Momentum-based weight interpolation of strong
zero-shot models for continual learning. In NeurIPS Workshop, 2022. (pp. 2, 5, 6, and 9)

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, , and Jason Wei. Challenging
big-bench tasks and whether chain-of-thought can solve them. arXiv preprint, 2022. (p. 9)

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In CVPR, 2016. (pp. 5 and 9)

Fahim Tajwar, Anikait Singh, Archit Sharma, Rafael Rafailov, Jeff Schneider, Tengyang Xie, Stefano
Ermon, Chelsea Finn, and Aviral Kumar. Preference fine-tuning of llms should leverage suboptimal,
on-policy data. arXiv preprint, 2024. (p. 3)

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged consistency
targets improve semi-supervised deep learning results. NeurIPS, 2017. (pp. 3, 4, 5, 10, and 27)

Jessica Taylor, Eliezer Yudkowsky, Patrick LaVictoire, and Andrew Critch. Alignment for advanced
machine learning systems. Ethics of AI, 2016. (pp. 1 and 10)

Manan Tomar, Lior Shani, Yonathan Efroni, and Mohammad Ghavamzadeh. Mirror descent policy
optimization. arXiv preprint, 2020. (p. 5)

Joachim Utans. Weight averaging for neural networks and local resampling schemes. In AAAI, 1996.
(pp. 2, 3, 5, and 20)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017. (p. 3)

Fanqi Wan, Xinting Huang, Deng Cai, Xiaojun Quan, Wei Bi, and Shuming Shi. Knowledge fusion
of large language models. arXiv preprint, 2024. (p. 9)

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities. arXiv preprint, 2024. (p. 10)

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In ICLR,
2022. (p. 1)

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Reinforcement learning, 1992. (pp. 2, 3, 6, and 19)

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy
without increasing inference time. In ICML, 2022a. (pp. 2, 5, 9, 20, and 21)

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Hanna Hajishirzi, Ali Farhadi,
Hongseok Namkoong, and Ludwig Schmidt. Robust fine-tuning of zero-shot models. In CVPR,
2022b. (pp. 2, 3, 5, 6, 19, and 21)

Mitchell Wortsman, Suchin Gururangan, Shen Li, Ali Farhadi, Ludwig Schmidt, Michael Rabbat,
and Ari S. Morcos. lo-fi: distributed fine-tuning without communication. TMLR, 2023. (p. 3)

Shitao Xiao, Zheng Liu, Peitian Zhang, and Xingrun Xing. LM-cocktail: Resilient tuning of language
models via model merging. arXiv preprint, 2023. (p. 9)

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. TIES-merging:
Resolving interference when merging models. In NeurIPS, 2023. (p. 9)

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario:
Absorbing abilities from homologous models as a free lunch. arXiv preprint, 2023. (p. 9)

Kerem Zaman, Leshem Choshen, and Shashank Srivastava. Fuse to forget: Bias reduction and
selective memorization through model fusion. arXiv preprint, 2023. (p. 9)

Chujie Zheng, Ziqi Wang, Heng Ji, Minlie Huang, and Nanyun Peng. Weak-to-strong extrapolation
expedites alignment. arXiv preprint, 2024. (pp. 24 and 25)

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. In NeurIPS, 2023. (p. 8)

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint, 2019. (p. 1)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

WARP: On the Benefits of Weight Averaged Rewarded Policies

Supplementary material

This supplementary material is organized as follows:

• Appendix A provides additional illustration of the WARP procedure.
• Appendix B details theoretical insights on task vectors, SLERP, LERP and LITI.
• Appendix C details empirical insights on task vectors, SLERP, LERP and LITI.
• Appendix D shows the impact of different design choices in WARP.
• Appendix E investigates a potential length bias in WARP, and how to fix it.
• Appendix F explores the relationship between KL and diversity in generations.
• Appendix G provides additional SxS and benchmark results.

A STRATEGY ILLUSTRATION

In Figure 5, we propose an alternative illustration of WARP, where the different stages are more
detailed than in Figure 1(a). Then in Figure 6, we also refine our illustration showcasing the similarity
and difference between SLERP and LERP.

REINFORCE (Williams, 1992)
KL (Jaques et al., 2017)
EMA (Izmailov et al., 2018)
SLERP (Shoemake, 1985) of task vectors (Ilharco et al., 2023)
LITI (Wortsman et al., 2022b)

θinit θ′init

θ1ema

θ2ema

θ1rl

θ2rl

θslerp θ′slerp

...

...

(1− η) · θinit + η · θ′slerp

Figure 5: Detailed illustration of the WARP strategy. From a (pre-trained and supervised fine-tuned)
LLM θinit, we launch M = 2 fine-tunings (black arrows). The innovation of WARP lies in the
use of model merging by weight averaging at three different stages. First, the exponential moving
averages (EMA, blue dashed arrows) of the policy (collected at different training steps) serves
as the anchor for the KL regularization (black double-headed dotted arrows). The fine-tuned
networks are weight averaged using spherical linear interpolation of task vectors (SLERP, yellow
dashed arrows). Third, we interpolate towards the initialization (LITI, red dashed arrows).
This obtained model θ′init serves as an updated initialization for the next iteration, progressively
refining the model’s capabilities and alignment. Overall, the final model θ′slerp has high reward but
also high KL. Then, by interpolation towards the SFT init, we reveal a KL-reward Pareto front of
solutions: {(1− η) · θsft + η · θIslerp | 0 ≤ η ≤ 1}.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

θ0

θinit

θ1

θ2ω ≈ 0◦

Ω ≈ 90◦

θλslerp

θλlerpδ
λ
sl
er
p

δ
λ
ler

p

δ1

δ2

Figure 6: Illustration of the difference between the full weights θm and their task vectors δm =
θm − θinit, where darker areas are of better performance. We found in Appendix C.2 that Ω ≈ 90◦

where Ω is the angle between task vectors such as cosΩ = δ1·δ2
∥δ1∥∥δ2∥ , while ω the angle between the

full weights such as cosω = θ1·θ2
∥θ1∥∥θ2∥ satisfies ω ≈ 0◦.

B THEORETICAL INSIGHTS ON TASK VECTORS, SLERP, LERP AND LITI

Based on the insights from Ilharco et al. (2023) that task vectors (the differences between a fine-tuned
model and its initialization) are semantically manipulable and interpretable units in the weight space,
we compare SLERP and LERP merging operations by analyzing their task vectors.

Background. Linear interpolation (LERP) (Utans, 1996) is the simplest merging strategy, notably
used in the model soups variants (Wortsman et al., 2022a), and defined as:

lerp
(
θ1, θ2, λ

)
= (1− λ) · θ1 + λ · θ2. (LERP)

Then, as illustrated in Figure 6, the task vector for LERP with interpolating coefficient λ is
given by: δλlerp = lerp

(
θ1, θ2, λ

)
− θinit = (1 − λ) · δ1 + λ · δ2. Similarly, we define

δλslerp = slerp
(
θinit, θ

1, θ2, λ
)
− θinit where slerp is defined in Equation (SLERP).

B.1 THEORETICAL INSIGHTS ON THE SLERP AND LERP TASK VECTORS

We denote Ω the angle between the the task vectors δ1 and δ2:

cosΩ =
δ1 · δ2
∥δ1∥∥δ2∥

. (2)

Based on the empirical observations from Jang et al. (2024), confirmed in our Figure 11(c), we
introduce the following Assumption 1 for simplicity.

Assumption 1 (Task vectors of equal norm). Independently fine-tuned task vectors have a same
norm l:

∥δ1∥ = ∥δ2∥ = l. (3)

Lemma 1 (SLERP task vector). Under Assumption 1, SLERP preserves the norm of the task vector:

∥δλslerp∥ = l. (4)

Proof. By definition,

δλslerp =
sin[(1− λ)Ω]

sinΩ
· δ1 + sin[λΩ]

sinΩ
· δ2 (5)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Then, as δ1 · δ2 = l2 cosΩ,

∥δλslerp∥2

l2
=

(
sin[(1− λ)Ω]

sinΩ

)2

+ 2
sin[(1− λ)Ω]

sinΩ

sin[λΩ]

sinΩ
cos(Ω) +

(
sin[λΩ]

sinΩ

)2

(6)

=
sin2[(1− λ)Ω] + 2 sin[(1− λ)Ω] sin[λΩ] cos(Ω) + sin2[λΩ]

sin2 Ω
(7)

=
sin2 Ω

sin2 Ω
(8)

= 1 (9)

using trigonometric identities, proving Lemma 1.

Lemma 2 (LERP task vector). Under Assumption 1, LERP reduces the norm of the task vector:

∥δλlerp∥ = l
√

1− 2(1− cosΩ)(λ− λ2). (10)

We recover that averaging weights with λ = 0.5 tends to reduce the norm of the task vectors, as
previously highlighted in Jang et al. (2024).

Proof. By definition:

δλlerp = (1− λ) · δ1 + λ · δ2. (11)

Then, as δ1 · δ2 = l2 cosΩ,

∥δλslerp∥2

l2
= (1− λ)2 + 2λ(1− λ) cosΩ + λ2 (12)

= 1− 2λ(1− cosΩ) + 2λ2(1− cosΩ) (13)

= 1− 2(1− cosΩ)(λ− λ2), (14)

proving Lemma 2 when 0 < λ < 1.

B.2 THEORETICAL INSIGHTS ON THE KL

B.2.1 LINEAR REGIME

Assumption 2 (Linear regime (Wortsman et al., 2022b)). We assume that the predictions of a model
f , with weights initialized from θ0 and fine-tuned into θ, can be approximated by first-order Taylor
expansion: ∀x,

f(x, θ) ≈ f(x, θ0) + (θ − θ0) · ∇θf(x, θ0). (15)

Assumption 2 defines a neural tangent (Jacot et al., 2018) space in which the relationship between
weights and functions is linear. As previously argued in Wortsman et al. (2022a); Ramé et al.
(2022), this Taylor expansion is reasonable partly because weights remain close during fine-tunings
(Neyshabur et al., 2020), as confirmed in Figure 11 where they have equal norms and a cosine of one.
Yet, please note that Ortiz-Jimenez et al. (2023) highlighted some limitations.

B.2.2 KL VARIATIONS FOR LERP

We consider θ1 and θ2 weights fine-tuned from a shared SFT initialization θsft. Then in the linear
regime from Assumption 2, weight and prediction ensembling behaves similarly:

f
(
x, (1− λ) · θ1 + λ · θ2

)
≈ (1− λ) · f(x, θ1) + λ · f(x, θ2). (16)

This similarity enables to prove the following Lemma 3.
Lemma 3 (LERP reduces KL). For an interpolating coefficient 0 ≤ λ ≤ 1, denoting πλ the LERP
policy from weight interpolation (1− λ) · θ1 + λ · θ2, and π̂λ the ensembling policy from prediction
interpolation (1− λ) · πθ1 + λ · πθ2 , then under Assumption 2,

KL(πλ||πθsft) ≈ KL(π̂λ||πθsft) ≤ (1− λ)KL(πθ1 ||πθsft) + λKL(πθ2 ||πθsft), (17)

i.e., the KL for LERP is lower than the interpolated KL.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proof. The following proof applies the linear assumption and properties of the KL divergence.

Approximation of KL. The first approximate equality is a direct application of Assumption 2 to πλ.
Precisely, applying Equation (16) to the definition of πλ = π(1−λ)θ1+λθ2 yields that πλ ≈ π̂λ.

Upper bound of the KL. The KL divergence is convex in both its arguments (Csiszár, 1975), thus
we directly have that

KL((1− λ) · πθ1 + λ · πθ2 ||πθsft) ≤ (1− λ)KL(πθ1 ||πθsft) + λKL(πθ2 ||πθsft), (18)

which completes the proof.

Remark 1. Lemma 3 shows that the LERP πλ is closer in KL to the original SFT initialization. This
relates to Lemma 2, where we show that the linear interpolation reduces the norm to the initialization.
As the interpolation brings the weights of the models closer, it is natural that it would also bring the
resulting policies closer.

B.2.3 KL AND REWARD VARIATION FOR LITI

We now consider a given weight θ (in practice either obtained from LERP or SLERP of multiple
fine-tuned weights) and its associated task vector δ = θ−θsft. In the linear regime from Assumption 2,
for each η ∈ [0, 1], we have the following:

f(x, θsft + η · δ)− f(x, θsft) ≈ η · (f(x, θsft + δ)− f(x, θsft)). (19)

We try to show that:
KL(πθsft+η·δ∥πθsft) ≤ η ·KL(πθsft+δ∥πθsft). (20)

Lemma 4 (KL upper bound for interpolated distributions). For an interpolating coefficient 0 ≤ η ≤ 1,
denoting πη the LITI policy from weight interpolation θsft + η · δ, and π̂η the ensembling policy from
prediction interpolation (1− η) · πθsft + η · πθsft+δ , then under Assumption 2,

KL(πη∥πθsft) ≈ KL(π̂η∥πθsft) ≤ ηKL(πθsft+δ∥πθsft). (21)

Proof. The following proof uses the same method as the one of Lemma 3. We use Assumption 2 to
link the policy with the interpolation of polices, and the inequality is a result of the KL convexity.

Approximation of KL. The first approximate equality is a direct application of Assumption 2 to πη .
Precisely, applying Equation (19) to the definition of πη = πθsft+η·δ yields that πη ≈ π̂η .

Upper bound of the KL. Using the fact that the KL is convex, we have

KL(η · πθsft+δ + (1− η) · πθsft ||πθsft) ≤ ηKL(πθsft+δ∥πθsft). (22)

Assumption 3 (LITI reward is above the expected reward). The rewards for the LITI interpolated
weights are above the interpolated rewards:

r(π0 + η · (π − πθsft)) ≥ ηr(π) + (1− η)r(πθsft), (23)

This Assumption 3 is based on observations from Figure 9(b), and extends to a reward maximization
setup the notion of linear mode connectivity (Frankle et al., 2020), usually defined w.r.t. the accuracy
in supervised learning.
Lemma 5 (LITI for KL-reward trade-off). Be given the convexity of the KL from Lemma 4 and
the concavity of the reward r in Assumption 3, then the reward vs. KL front of LITI is above the
diagonal. Illustration in Figure 7.

Proof. We obtain a policy πθ fine-tuned from πθsft . The LITI policy for θη = (1− η) · θsft + η · θ is
noted πη . Combining the approximation from Lemma 4 and Assumption 3, we have that

r(πη) ≥ (1− η)r(πθsft) + ηr(πθ). (24)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

KL(π||πθsft)

r(π)
Equation (24)

Equation (25)

πθsft

πθ

LITI front

ηKL(π||πθsft)

πη

Figure 7: Illustration of Lemma 5. Based on experimental observation and theoretical insights, we
see that the Pareto front of the LITI policy is better than the identity. It highlights how Equations (24)
and (25) place LITI policies on the KL-reward plane.

And, from Lemma 4, we also have that

KL(πη∥πθsft) ≤ ηKL(πθ∥πθsft). (25)

This means that for every LITI coefficient η, the LITI policy has a higher reward than the interpolated
reward at a lower KL. Geometrically, this means that each point on the Reward-KL front from LITI
is on the top left quadrant of the plane according to the corresponding point on the diagonal.

B.3 UNIFORMLY AVERAGING M > 2 WEIGHTS WITH SLERP

The SLERP merging formula from Equation (SLERP) is only defined for M = 2 weights. We trivially
(and certainly suboptimally) generalize this to M > 2 weights in the uniform averaging setup, thus
giving an equal coefficient to each of them, i.e., λ = 1

M . In that setup, removing the dependency
of θinit that is assumed shared, we generalize SLERP to merge M weights uniformly through the
iterative procedure defined below:

slerpm
(
{θm}Mm=1

)
= slerp

(
slerpm

(
{θm}M−1

m=1

)
, θM , λ =

1

M

)
. (26)

Though these operations are not associative, the standard deviations in performances are small, as
indicated by the shaded areas in Figure 4(b).

C EMPIRICAL INSIGHTS ON TASK VECTORS, SLERP, LERP AND LITI

C.1 EMPIRICAL INSIGHTS ON THE DIFFERENCE BETWEEN SLERP AND LERP

We now empirically investigate how those theoretical differences between SLERP and LERP affect
the performance of the merged policies.

SLERP vs. LERP. In Figure 8 we adjust the interpolating coefficient λ, highlighting distinct
behaviors for SLERP and LERP. SLERP consistently enhances rewards more than LERP, as depicted
in Figures 3(c) and 8(a). However, a comprehensive evaluation must consider both KL and reward.
As shown in Figure 8(b), LERP consistently reduces KL, corroborating with Lemma 2 that LERP
reduces the norm of updates (while SLERP preserves it). When plotting these metrics together in
Figure 8(c), we observe that SLERP and LERP target different regions on the Pareto front: SLERP
achieves higher rewards at the expense of increased KL, while the main impact of LERP is to lower
KL. This is consistent with Lemmas 2 and 3, be given the orthogonal angles between task vectors
Ω ≈ 90◦ (as shown in Figure 11(a)).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Combining SLERP and LERP with LITI. We also compare the behaviours of SLERP and LERP
when we apply LITI, as we adjust the interpolating coefficient η. Figure 9(a) and Figure 9(b) validate
that KL is convexe with regard to η while the reward is concave with regard to η, for different values
of M . This is also highlighted in Figure 10(a), which reproduces the results from Figure 4(b) (and
maintaining the same axis limits), replacing SLERP by LERP: this leads to critical changes in the
Pareto fronts. Inded, increasing M now tends to decrease KL for LERP, while it used to increase
reward with SLERP. In Figure 10(b), we explore the extrapolation strategies from (Zheng et al.,
2024), using 0 ≤ η ≤ 2 to compare the full extrapolated fronts from LERP and SLERP. While both
perform similarly on low KL, our results suggest that SLERP perform better in high KL regions.

Conclusion. SLERP demonstrates some key advantages. In particular, it reveals the full Pareto front
of solutions, while LERP only exposes a portion; extrapolation Figure 10(b) with η > 1 can partially
mitigate this but as our experiments suggest, LERP curves consistently lag behind SLERP curves in
high-reward regions. Moreover, from a practical perspective, SLERP scales the choice of η effectively,
where 1 represents full updates and a fixed value of 0.3 always corresponds to the same operational
region, optimizing for high reward and KL.

0.0 0.2 0.4 0.6 0.8 1.0

0.39

0.38

0.37

0.36

0.35

Re
wa

rd

SLERP
LERP

(a) Reward vs. λ.

0.0 0.2 0.4 0.6 0.8 1.0

90

100

110

120

130

140

KL

SLERP
LERP

(b) KL vs. λ.

90 100 110 120 130 140
KL

0.39

0.38

0.37

0.36

0.35

Re
wa

rd

= 0.0

= 0.1

= 0.2
= 0.3

= 0.4

= 0.5

= 0.6

= 0.7

= 0.8

= 0.9

= 1.0
= 0.0= 0.1= 0.2

= 0.3
= 0.4= 0.5

= 0.6

= 0.7

= 0.8

= 0.9

= 1.0

SLERP
LERP

(c) Reward vs. KL.

Figure 8: SLERP vs. LERP when sliding the interpolating coefficient λ. Considering M = 2
weights after T = 9k RL steps, we merge them using either SLERP or LERP, while sliding the
interpolating coefficient λ between 0 and 1. We then evaluate the merged checkpoints. Figure 8(a)
shows that SLERP leads to higher reward than LERP, as previously in Figure 3(c). Figure 8(b) shows
that LERP signicantly reduces the KL (consistently with Lemma 3) while SLERP slightly increases
it. Figure 8(c) shows how this impact the KL-reward Pareto front, where larger markers/darker colors
indicate higher values of λ; while SLERP covers high KL-high reward regions, LERP tends to cover
regions of lower KL and thus also lower rewards.

0.0 0.2 0.4 0.6 0.8 1.0

0

20

40

60

80

100

120

140

160

KL

SLERP M = 5
LERP M = 5
SLERP M = 4
LERP M = 4
SLERP M = 3
LERP M = 3
SLERP M = 2
LERP M = 2
M = 1

(a) KL for η.

0.0 0.2 0.4 0.6 0.8 1.0
0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

Re
wa

rd SLERP M = 5
LERP M = 5
SLERP M = 4
LERP M = 4
SLERP M = 3
LERP M = 3
SLERP M = 2
LERP M = 2
M = 1

(b) Reward for η.

Figure 9: SLERP vs. LERP when sliding the interpolating coefficient η of LITI. In Figure 9(a)
we show that the KL is convex (and almost linear) with regard to η, consistently with Lemma 4. In
contrast, Figure 9(b) shows that the reward is concave, validating Assumption 3.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100 120 140 160
KL

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

Re
wa

rd

= 0.0

= 0.1

= 0.3

= 0.5

= 0.8
= 1.0

M = 5
M = 4
M = 3
M = 2
M = 1
REINFORCE

(a) LITI of LERP of M weights.

0 50 100 150 200 250
KL

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

Re
wa

rd

= 0.0

= 0.1

= 0.3

= 0.5
= 0.8

= 1.0= 1.1= 1.3
= 1.5

= 1.8

= 2.0

SLERP M = 5
LERP M = 5
SLERP M = 4
LERP M = 4
SLERP M = 3
LERP M = 3
SLERP M = 2
LERP M = 2
M = 1
REINFORCE

(b) Extrapolation with 0 ≤ η ≤ 2.

0 20 40 60 80 100 120 140
KL

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

0.35

Re
wa

rd

= 0.0

= 0.1

= 0.3

= 0.5

= 0.8 = 1.0

SLERP w/ task vectors
LERP
SLERP w/ weights
REINFORCE

(c) SLERP w/o task vectors.

Figure 10: SLERP vs. LERP when sliding the interpolating coefficient η of LITI. Figure 10(a)
merges M policies with LERP and λ = 1

M (the endpoints on the top right of the solid lines), and
then interpolates towards their SFT init, where light-colored areas show standard deviations across 5
experiments, and with 0 ≤ η ≤ 1. In contrast, in Figure 10(b) we investigate extrapolation (Zheng
et al., 2024), using 0 ≤ η ≤ 2 enabling to compare the full fronts of solutions with LERP and SLERP.
Finally, Figure 10(c) confirms that applying SLERP on the full weights θ rather than on the task
vectors δ perform very similarly to LERP.

C.2 EMPIRICAL INSIGHTS ON THE ROLE OF TASK VECTORS

We now explore the effectiveness of applying SLERP on task vectors δ vs. full weights θ, as illustrated
in Figure 6. To this end, in Figure 11 we draw inspiration from Jang et al. (2024) and plot the angles
Ω and ω and norms of δ and θ.

Angles of task vectors Ω ≈ 90◦. Figure 11(a) shows that the task vectors are typically orthogonal
(Ω ≈ 90◦), highlighting the diverse trajectories of the different RL fine-tunings. This is in contrast
with (Jang et al., 2024) for supervised fine-tunings, where Ω typically range between 40◦ and 80◦.
We suspect that this is related to the underlying differences between reinforcement and supervised
learning; in RL the policies are trained on their own generations, creating more orthogonal task
vectors, whereas in supervised learning the LLM try to imitate the groundtruth labels, leading to
more similar task vectors. The orthogonality of our task vectors prevents the use of the update rule
η → 2 cosΩ

1+cosΩ suggested from Eq. 2 in Jang et al. (2024), as it would lead to η ≈ 0, deleting any
potential update.

Angles of full weights ω ≈ 0◦. In contrast, Figure 11(b) show that full weights remain collinear
(ω ≈ 0◦). This explains the empirical results from Figure 10(c), where applying SLERP directly to
full weights results in behaviors similar to LERP. Indeed, as the angles ω ≈ 0◦, spherical interpolation
effect is minimal because sin(x) ≈ x+O(x3), and thus sin[λω]

sinω ≈
λω
ω ≈ λ.

Norms consistency. Figure 11(c) confirms the consistency in the norms of different task vectors,
supporting our Assumption 1. This uniformity is aligned with previous research (Jang et al., 2024).
As a side note, this consistency extends to full weights θ, confirming that fine-tuning typically results
in minimal changes to the overall weight (Neyshabur et al., 2020).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Cosines of task vectors

0

100

200

300

400

500

600

700

De
ns

ity

(a) δ1·δ2
∥δ1∥∥δ2∥ .

0.9994 0.9995 0.9996 0.9997 0.9998 0.9999 1.0000
Cosines of weights

0

100

200

300

400

500

600

700

De
ns

ity

(b) θ1·θ2
∥θ1∥∥θ2∥ .

0.90 0.95 1.00 1.05 1.10 1.15
Ratio of task vectors' norms

0

100

200

300

400

500

600

De
ns

ity

(c) ∥δ1∥
∥δ2∥ .

0.999 1.000 1.001
Ratio of weights' norms

0

100

200

300

400

500

600

700

De
ns

ity

(d) ∥θ1∥
∥θ2∥ .

Figure 11: Angles and norms of (full) weights θm and their task vectors δm = θm − θinit. The
histograms are across the 28 layers of the Gemma 7B architecture. Figure 11(a) plots the histograms
of task vector cosines. Figure 11(b) plots the histograms of weights cosines. Figure 11(c) plots the
histograms of task vector norms ratio. Figure 11(d) plots the histograms of weights norms ratio.

D EMPIRICAL INVESTIGATION OF SEVERAL DESIGN CHOICES

We include several experiments showcasing the robustness of WARP to different design choices, while
further demonstrating its superiority in terms of KL-reward trade-off. Specifically, Appendix D.1
analyzes the performances along training at different steps T ; Appendix D.2 provides results with
different values for the hyperparameters µ and β; Appendix D.3 shows the impact of the update rate
η to provide an improved initialization for the 2nd iteration of WARP; finally, Appendix D.4 shows
that in iterative WARP, interpolating towards the episode initialization or the SFT initialization both
perform similarly.

D.1 ANALYZING THE NUMBER OF TRAINING STEPS

0 2000 4000 6000 8000
steps

0.7

0.6

0.5

0.4

0.3

Re
wa

rd

5th iter: EMA anchor
4th iter: EMA anchor
3rd iter: EMA anchor
2nd iter: EMA anchor
1st iter: EMA anchor
1st iter: SFT anchor = 0.0
1st iter: SFT anchor = 0.0001
1st iter: SFT anchor = 0.001
1st iter: SFT anchor = 0.01
1st iter: SFT anchor = 0.1

(a) Reward along training.

0 2000 4000 6000 8000
steps

0

25

50

75

100

125

150

175

200

KL

5th iter: EMA anchor
4th iter: EMA anchor
3rd iter: EMA anchor
2nd iter: EMA anchor
1st iter: EMA anchor
1st iter: SFT anchor = 0.0
1st iter: SFT anchor = 0.0001
1st iter: SFT anchor = 0.001
1st iter: SFT anchor = 0.01
1st iter: SFT anchor = 0.1

(b) KL along training.

Figure 12: Rewards and KL at different number of training steps T . Figures 12(a) and 12(b)
complement Figure 3(b) and Figure 4(c), this time plotting rewards and KL separately as a function
of the number of training steps T . Regarding iterative WARP, we observe that each iteration has
higher rewards but also higher KL (by starting at training step 0 from a new initialization). Regarding
the baseline (REINFORCE with SFT anchor), we observe that low values of β lead to very fast
hacking of the reward, as visible by the KL exploding, while high values of β slow down the training.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100 120
KL

0.70

0.65

0.60

0.55

0.50

0.45

0.40

Re
wa

rd

= 0.0

= 0.1

= 0.3

= 0.5
= 0.8

= 1.0

MA
T = 9k
T = 7k
T = 5k
T = 3k
REINFORCE

Figure 13: LITI with M = 1 at different number of training steps T . The reward gain is
significantly reduced compared to Figure 4(a) where we first merged M = 2 policies before applying
LITI. We also try to perform moving average (MA) (Izmailov et al., 2018) before applying LITI,
averaging checkpoints collected along a single RL fine-tuning at steps {6k, 7k, 8k, 9k}; this does not
improve performances, suggesting the need to merge weights from independent fine-tunings to have
enough diversity (Ramé et al., 2022).

D.2 ANALYZING THE VALUES OF µ AND β

0 50 100 150 200
KL

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

Re
wa

rd EMA anchor
Policy: EMA anchor
EMA: = 0.0
Policy: = 0.0
EMA: = 0.001
Policy: = 0.001
EMA: = 0.01
Policy: = 0.01
EMA: = 0.1
Policy: = 0.1

(a) Reward vs. KL.

0 2000 4000 6000 8000
steps

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

Re
wa

rd EMA anchor
Policy: EMA anchor
EMA: = 0.0
Policy: = 0.0
EMA: = 0.001
Policy: = 0.001
EMA: = 0.01
Policy: = 0.01
EMA: = 0.1
Policy: = 0.1

(b) Reward vs. steps.

0 2000 4000 6000 8000
steps

0

50

100

150

200

KL

EMA anchor
Policy: EMA anchor
EMA: = 0.0
Policy: = 0.0
EMA: = 0.001
Policy: = 0.001
EMA: = 0.01
Policy: = 0.01
EMA: = 0.1
Policy: = 0.1

(c) KL vs. steps.

Figure 14: EMA vs. their base policies, extending Figures 3(a) and 3(b). Figure 14(a) shows that
the EMA of all variants (with SFT anchor) perform similarly or better than their base policies in
KL-reward. As a reminder, we perform evaluation every 100 steps, and train them for T = 9k
steps, though we stopped the trainings if the base policy ever reaches a KL of 200. This confirms
Observation 1; the benefits of our variant with EMA anchor is partly explained by distillation from an
improved mean teacher (Tarvainen & Valpola, 2017).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100 120
KL

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

Re
wa

rd

= 0.01 = 0.1
= 0.005 = 0.1
= 0.01 = 0.2
= 0.01 = 0.1 w/ LP

(a) Reward vs. KL.

0 2000 4000 6000 8000
steps

0.75

0.70

0.65

0.60

0.55

0.50

0.45

0.40

Re
wa

rd

= 0.01 = 0.1
= 0.005 = 0.1
= 0.01 = 0.2
= 0.01 = 0.1 w/ LP

(b) Reward vs. steps.

Figure 15: Experiments ablating the values for the EMA update rate µ and the KL regularization
strength β. So far we have systematically used µ = 0.01 and β = 0.1 for all EMA-based runs,
including in the iterative WARP. These hyperparameters were chosen at the project’s onset and
have remained unchanged. In Figures 15(a) and 15(b) we increase regularization with µ = 0.005
and β = 0.2. Our results indicate that reducing µ or increasing β behaves similarly, marginally
improving the KL-reward Pareto front but slowing down training. Additionally, we include the
training trajectory when using a length penalty (LP), as detailed in Appendix E.

D.3 ANALYZING THE VALUES OF η

20 40 60 80 100 120 140 160 180
KL

0.46

0.44

0.42

0.40

0.38

0.36

0.34

0.32

0.30

Re
wa

rd

2nd iter: LITI M = 4
2nd iter: LITI M = 2, {0.3, 0.5}
2nd iter: LITI M = 2, = 0.3
2nd iter: LITI M = 2, = 0.5
2nd iter: REINFORCE = 0.3
2nd iter: REINFORCE = 0.5
1st iter: LITI
1st iter: REINFORCE

Figure 16: Experiments ablating the LITI update rate η. As we initiate the 2nd iteration of WARP,
selecting an appropriate value for η is key, as it determines the starting point θη and functions similarly
to an outer learning rate (see Section 6). We usually set η = 0.3, but now provide results with an
increased η = 0.5, starting the 2nd iteration from a more “advanced” position on the previous Pareto
front. We run and average M = 2 fine-tunings from each of those two initializations for T = 7k
steps, before applying LITI. Our results indicate that a higher η (0.5) performs better in regions of
high KL, whereas a lower η (0.3) helps in regions with KL below 65. This suggests that the optimal
choice for η is compute-dependent; a lower η is appropriate if further iterations can explore high
KL regions, whereas a limited compute budget might benefit from a higher η. This resembles the
learning rate trade-off in optimization, where lower rates improve results but require more training
steps. As a final note, we can also use different η for the different fine-tunings; notably, we observe
that merging all those M = 4 RLs perform better (though it doubles the compute).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

D.4 INTERPOLATE TOWARDS THE INITIALIZATION? OR TOWARDS THE SFT?

20 40 60 80 100 120 140 160
KL

0.55

0.50

0.45

0.40

0.35

0.30

Re
wa

rd

= 0.0

= 0.1

= 0.3

= 0.5
= 0.8

= 1.0

5th iter: Interpolate 4th

5th iter: Interpolate SFT
4th iter: Interpolate 3rd

4th iter: Interpolate SFT
3rd iter: Interpolate 2nd

3rd iter: Interpolate SFT
2nd iter: Interpolate 1st

2nd iter: Interpolate SFT
1st iter: Interpolate SFT

Figure 17: Experiments ablating the initialization in LITI. We compare LITI either towards
the episode-specific initialization (the θη selected from previous iteration) or towards the SFT (the
initialization of the 1st episode). The two resulting fronts are similar. However, in our iterative
experiments we interpolate towards the episode-specific initialization as it allows maintaining a
constant η at each WARP iteration, enabling a smooth progression towards the high KL regions.

E ADDRESSING LENGTH BIAS IN WARP

0 20 40 60 80 100 120 140
KL

270

275

280

285

290

295

300

305

310

315

to

ke
ns

= 0.0

= 0.1
= 0.3

= 0.5
= 0.8 = 1.0

5th iter: LITI
5th iter: REINFORCE
4th iter: LITI
4th iter: REINFORCE
3rd iter: LITI
3rd iter: REINFORCE
2nd iter: LITI
2nd iter: REINFORCE
1st iter: LITI
1st iter: REINFORCE

(a) Length bias in iterative WARP.

0 20 40 60 80 100 120 140
KL

200

220

240

260

280

300

320

to

ke
ns

= 0.0

= 0.1 = 0.3 = 0.5

= 0.8
= 1.0

WARP of 1 w/o LP + 1 w/ LP
WARP of 2 w/o LP
REINFORCE w/ LP
1st REINFORCE w/o LP
2nd REINFORCE w/o LP

(b) Adding length penalty (LP).

0 20 40 60 80 100 120 140
KL

0.7

0.6

0.5

0.4

Re
wa

rd

= 0.0

= 0.1

= 0.3

= 0.5
= 0.8 = 1.0

WARP of 1 w/o LP + 1 w/ LP
WARP of 2 w/o LP
REINFORCE w/ LP
1st REINFORCE w/o LP
2nd REINFORCE w/o LP

(c) Benefits of diversity.

Figure 18: Addressing length bias in WARP. Figure 18(a) explores how length and KL change in
successive WARP iterations. Figure 18(b) demonstrates the effectiveness of length penalty (LP) in
reducing output length, and how such policies can merge with others trained without LP. Finally,
Figure 18(c) shows that merging policies trained with different objectives further improves the
KL-reward trade-off.

Problem: length bias. We investigate a potential length bias in WARP. LLMs after RLHF tend to
be unnecessarily verbose (Shen et al., 2023) because RMs often prefer longer generations to shorter
ones, leading to this form of reward hacking. We confirm such a phenomenon in Figure 18(a), where
the length of the generation increases with higher KL values. This trend is even more pronounced in
iterative WARP, where the 3rd iteration generates longer sentences than the 1st iteration at same KL.

Mitigation strategy: length penalty. To mitigate this length bias, we integrate a length penalty (LP)
into the reward: −0.0005× len(y), following Singhal et al. (2023). From SFT, we launch one RL
fine-tuning run with LP, highlighted with red stars in Figure 18(b). This LP leads to shorter outputs
as KL increases along training, in contrast to policies trained without LP.

SLERP with different configurations. Figure 18(b) displays the generation lengths from a SLERP
of two policies, one trained with the LP and the other without. Critically, merging policies from
diverse training configurations not only mitigates the length bias but also improves the Pareto front, as
illustrated in Figure 18(c). This improvement is likely due to the increased diversity across policies,
which appears beneficial for generalization, as shown in supervised learning (Ramé et al., 2022).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Conclusion. Those experiments highlight the possibility to fix the length bias, and also the benefits
of merging policies trained with diverse rewards.

F DIVERSITY IN PREDICTIONS

0 20 40 60 80 100 120 140
KL

0.46

0.48

0.50

0.52

0.54

0.56

Si
m

ila
rit

y
LITI of M = 2
REINFORCE

Figure 19: Confirming diversity loss in RLHF. The x-axis is the KL compared to the SFT
initialization; the y-axis is the similarity across two generations from a given policy when decoding
with temperature 0.9.

Finally, we investigate the loss in diversity across generations when aligning LLMs, as reported in
Kirk et al. (2024). This could have negative consequences for creative or exploratory tasks, or even
lead to policy collapse (Moalla et al., 2024; Hamilton, 2024). In Figure 19 we plot the BLEURT
similarity (Sellam et al., 2020) across generations, during REINFORCE, or in LITI (as we interpolate
back towards the SFT initialization). We observe that KL is strongly positively correlated with
similarity across generations, confirming that RLHF induces a loss of diversity across generations.
This experiment confirms that protecting the KL enables to trade-off between alignment and other
benefits from pre-training, such as diversity in generations.

G SXS AND BENCHMARK SCORES AT DIFFERENT KL

0 20 40 60 80 100 120 140
KL

0.0

0.1

0.2

0.3

0.4

Sx
S

Mistral 7B v1
Mistral 7B v2
Mixtral 8x7B

(a) SxS.

0 20 40 60 80 100 120 140
KL

45

50

55

60

65

Ac
cu

ra
cy

GSM8K
MMLU
MBPP

(b) Benchmark.

Figure 20: SxS and benchmark scores at different KL. The different checkpoints were ob-
tained by LITI between the SFT and the SLERP at the end of the 3rd iter, with coefficients
η ∈ {0, 0.1, 0.3, 0.5, 0.8, 1.0}. In particular, the one with η = 0.8 was highlighted in Tables 1
and 2. In terms of SxS, hacking appears around around 110 of KL. In terms of accuracies, the
alignment tax is benchmark dependent; while GSM8K seems to benefit from RLHF, scores on
MMLU significantly reduces while they are stable on MBPP.

30

	Introduction
	Context and notations
	WARP
	Stage 1: exponential moving average as a dynamic anchor in KL regularization
	Stage 2: spherical linear interpolation of independently rewarded policies
	Stage 3: linear interpolation towards initialization
	Iterative WARP

	Experiments: on the benefits of WARP
	Stage 1: exponential moving average as a dynamic anchor in KL regularization
	Stage 2: spherical linear interpolation of independently rewarded policies
	Stage 3: linear interpolation towards initialization
	Iterative WARP
	Comparisons and benchmarks

	Related work
	Discussion
	Conclusion
	Strategy illustration
	Theoretical insights on task vectors, SLERP, LERP and LITI
	Theoretical insights on the SLERP and LERP task vectors
	Theoretical insights on the KL
	Linear regime
	KL variations for LERP
	KL and reward variation for LITI

	Uniformly averaging M>2 weights with SLERP

	Empirical insights on task vectors, SLERP, LERP and LITI
	Empirical insights on the difference between SLERP and LERP
	Empirical insights on the role of task vectors

	Empirical investigation of several design choices
	Analyzing the number of training steps
	Analyzing the values of and
	Analyzing the values of
	Interpolate towards the initialization? or towards the SFT?

	Addressing length bias in WARP
	Diversity in predictions
	SxS and benchmark scores at different KL

