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ABSTRACT

Class imbalance methods inherently assume that observed minority instances are
representative of their class and Missing At Random (MAR). However, in many
real-world settings, minority instances are Missing Not At Random (MNAR), with
observability shaped by both class and feature values. This leads to structurally bi-
ased samples, introducing a deeper challenge that goes beyond class-count imbal-
ance. We show that when MNAR affects high-impact features, popular imbalance
methods overfit the observed minority and fail to generalize. To address this, we
propose a simple yet effective cluster-balanced ensemble approach that constructs
diverse, near-balanced training sets by pairing all minority instances with different
clusters of the majority class. Extensive experiments identify MNAR conditions
under which our approach improves F1 scores over existing methods, and when it
does not. We also introduce an evaluation protocol using representative balanced
test sets, demonstrating that standard hold-out testing on MNAR data can mislead
performance assessments. Our findings underscore that the cause of imbalance is
as critical as the correction method.

1 INTRODUCTION

Class imbalance is a prevalent real-world problem and well-known to distort supervised learning
algorithms. When the distribution of classes is highly uneven, classification algorithms learn to
prioritize the majority class and become poor detectors of the minority class. As such, they are
susceptible to missing important patterns underlying rare instances. This is especially problematic
in applications where the minority class is the primary focus of inference, for example, in customer
churn, purchase conversion, fraud detection, and medical diagnosis.

Existing imbalance methods inherently assume observed minority instances provide an unbiased
representation of their class population, and are Missing At Random (MAR). Under MAR, imbal-
ance is mostly due to uneven number of instances, which can be effectively mitigated by re-balancing
the dataset via various techniques. But in practice, observability often depends on both class labels
and features, a condition known as Missing Not At Random (MNAR).

Under MNAR imbalance, certain regions of the minority class are disproportionately unobserved—
beyond what their natural frequency in the data-generating distribution would suggest. This miss-
ingness occurs precisely due to their class and features values. For instance, the bankrupt firms we
observe (minority) may not represent all bankruptcies, since small failed firms often vanish from
records. This is unlike small non-bankrupt firms which remain visible. Similarly, observed default-
ers (minority) may skew toward borrowers with fuller credit histories, excluding riskier profiles that
are filtered out pre-loan.

The rare nature of the minority class makes MNAR especially probable in imbalanced datasets.
Smaller samples of the population have inherently higher risk of underrepresenting or even exclud-
ing less common subpopulations, resulting in a biased representation of the minority population.
Figure 1 exemplifies how the observed distribution of minority instances can differ under MAR and
MNAR scenarios, imposing an additional challenge on the already difficult class imbalance prob-
lem. Our work exposes this overlooked bias and reframes imbalance correction through the lens of
MNAR.
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Negative Class Positive Class

(a) Balanced Dataset. (b) MAR Class Imbalance. (c) MNAR Class Imbalance.

Figure 1: A balanced dataset with corresponding MAR and MNAR imbalance scenarios. Both
imbalanced datasets have the same number of positive instances, but higher x-axis value instances
are more likely to be missing under MNAR, making observed positive instances less representative
of their class.

In the first step, we show that under higher MNAR imbalance (beyond 5:1 imbalance ratio), existing
techniques can reinforce the very biases they aim to correct. In particular, they tend to overfit the
observed instances in the minority class and generalizes poorly to the true population.

To address this, we next propose to exploit information from the majority class to uncover use-
ful structures for handling MNAR imbalance in the minority class. In particular, if MNAR arises
because certain feature regions are more likely to miss minority instances, then contrasting the mi-
nority group to diverse regions of the majority class (rather than to random samples) may provide
unexplored benefits.

We show this by introducing a simple cluster-balanced ensemble approach, where a base classifier is
trained on diverse, near-balance subsets of the input data. These subsets are constructed by clustering
the majority class to specifically create segments that are of similar size to the entire minority class.
Then, by pairing different segments with all minority instances, we expose the balanced ensemble
to diverse decision boundaries, and show that it can better generalize to the true underlying minority
distribution.

We compare our approach to state-of-the-art class imbalance techniques over several benchmark
datasets and base classifiers, and consistently achieve higher F1 scores. We identify conditions under
which the performance gap is most pronounced, and when it is not. For instance, we find that when
MNAR is generally driven by features that highly affect AUC performance (particularly ROC AUC,
but also PR AUC), have higher kurtosis, higher variance in the minority group, or most influence the
underlying probability distribution of the minority class, our approach performs significantly better
than existing methods. On the other hand, under MAR scenarios, or when MNAR is due to less
predictive features, existing methods remain the best choice.

Lastly, we introduce a validation protocol for imbalance methods. Our protocol uses datasets that
are originally near-balanced. Then, it simulates MAR imbalance by randomly deleting positive
instances, or MNAR imbalance by deleting positive instances based on specific feature values. Im-
balance methods are trained on the resulting damaged dataset, but validation is performed using
hold-out sets from the original representative and balanced data.

The benefit of this protocol is that it allows us to evaluate imbalance methods by how they generalize
to unobserved minority subgroups, which are potentially missing from MNAR imbalance data. As
we show, this gives an unbiased evaluation compared to the standard approach of sampling the test
set from the MNAR imbalanced data itself, which can lead to misleading assessments.

We note that our evaluation protocol relies on access to near-balanced datasets not typically available
in real-world class imbalance scenarios. While this limits direct evaluation on naturally imbalanced
datasets, our goal is not to propose a universally adoptable standard. Rather, we seek to highlight
the potential pitfalls of conventional evaluation practices when class imbalance arises from MNAR.

Our contributions can be summarized into four parts:

• We present a conceptual and empirical examination of existing imbalance methods, demon-
strating that while these methods perform well under MAR, they fail to generalize under
certain MNAR class imbalance settings.
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Figure 2: Overall cluster-balanced ensembling framework and evaluation protocol.

• We introduce a cluster-balanced ensembling framework built on already established com-
ponents, as a first step toward addressing MNAR class imbalance.

• We characterize conditions under which MNAR most severely degrades the performance
of existing techniques and most benefits from cluster-balanced ensembling.

• We introduce an evaluation protocol that uses near-balanced datasets (when available) for
an unbiased assessment of MNAR imbalance correction techniques.

2 RELATED WORK

Imbalance techniques can be broadly categorized into data-level, cost-sensitive, and hybrid strate-
gies (see Altalhan et al. (2025) for a recent review). Data-level methods include oversampling the
minority class, such as SMOTE (Chawla et al., 2002) and its variants (Pradipta et al., 2021), which
can mitigate imbalance but risk reinforcing minority class bias under MNAR. On the other hand,
undersampling methods like Cluster Centroids (Yen & Lee, 2009) may lose important structure that
can aid in mitigating MNAR. Cost-sensitive learning modify the weight of instances in the classi-
fication loss functions to emphasize the minority class during training (Lin et al., 2017a; Cui et al.,
2019), but face similar limitations to oversampling under MNAR.

Ensemble and hybrid methods combine multiple techniques to leverage their strengths, and have
gained popularity in recent years (see Khan et al. (2024) for a review). However, most ensembles
rely on random undersampling, are designed mainly to reduce variance, and do not explicitly address
MNAR imbalance. In contrast, our method specifically promotes diversity across the ensemble to
learn informative contrasts between majority segments and minority instances to mitigate MNAR
imbalance.

There also exist methods with rigorous guarantees for metrics relevant under class imbalance (e.g.,
F1, recall) (Diochnos & Trafalis, 2021; Narasimhan, 2018). These approaches optimize target met-
rics through principled reweighting, sampling, and constraint-based training (often with calibrated
thresholds). Our approach is complementary to these guarantee-driven methods, and can serve as a
basis by constructing near-balanced clusters under MNAR imbalance.

An important component of our proposed approach is clustering the majority class. Clustering has
been used in class imbalance to undersample the majority class into a single subset (Babar & Ade,
2016; Deng et al., 2020; Lin et al., 2017b; Rayhan et al., 2017; Tsai et al., 2019; Shahabadi et al.,
2021; Zhou & Sun, 2024; Hoyos-Osorio et al., 2021; Onan, 2019; Farshidvard et al., 2023; Sobhani
et al., 2014), combine a single representative cluster with minority points (Rahman & Davis, 2013),
or entirely replace majority points with cluster centroids (Lin et al., 2017b). Clustering has also been
used to aid oversampling or reweighting the minority class (Xu et al., 2021; Singh & Dhall, 2018;
Polat, 2018). However, none of these methods use clustering to segment the majority class into
diverse equal-size groups with the minority instances, and combine every segment with the entire
minority class to form balanced datasets to handle MNAR imbalance.

The method most similar to ours is the EKR framework by Duan et al. (2020), which uses silhouette-
based clustering to identify the most homogenized majority clusters, and applies under or oversam-
pling on the resulting clusters to generate balanced ensembles. While similar in overall methodol-
ogy, our paper studies an entirely different challenge in MNAR imbalance. In particular, our method
differs in key details that mitigate MNAR: we fix the number of clusters based on the imbalance
ratio rather than silhouette scores to specifically generate balanced clusters. For example, under a
20:1 imbalance ratio, our method enforces 20 majority clusters, while EKR may use two, if two
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clusters best homogenize the majority class (see Appendix A.3 for comparison). Furthermore, we
intentionally avoid any resampling to prevent overfitting to observed minority instances and promote
diversity. As we show in our experiments, these details lead to considerable gains in performance
over EKR under MNAR class imbalance.

Our paper adopts the MAR and MNAR concepts from the missing data literature. While the core
concept remains valid, methods in this literature typically aim to address missing feature values and
not entire instances, and also do not differentiate by binary class labels. As such, they are largely
inapplicable to class imbalance. The closest related work are “selection models” (e.g., based on
Heckman (1979)), which correct MNAR selection bias for continuous outcomes. However, this is
via strong parametric assumptions and access to external information (e.g., “exclusion variables”).
In contrast, our approach handles MNAR class imbalance non-parametrically and for binary labels,
without requiring a model of the selection process or access to exclusion variables.

3 PROPOSED METHODOLOGY

We formalize the MNAR class imbalance problem in §3.1, detail our proposed cluster-balanced
ensembling approach in §3.2, and describe our proposed evaluation protocol in §3.3.

3.1 PROBLEM FORMALIZATION

We consider a supervised binary classification task over an observed dataset S = {(Xi, yi)}Ni=1,
with features Xi =

[
x1
i , . . . , x

d
i

]
and binary labels Yi ∈ {0, 1}. The observed dataset con-

sists of n− = |Smaj| observation from the Y = 0 negative or majority class with Smaj ={
(Xi, yi) ∈ S train | yi = 0

}N

i=1
; and n+ = |Smin| observations from the Y = 1, positive or minor-

ity class with Smin =
{
(Xi, yi) ∈ S train | yi = 1

}N

i=1
. In many real-world applications, n+ ≪ n−

creating class imbalance.

The observed dataset can be considered a sample of its underlying distribution S ∼ D, which
is generally unknown. Let Ri ∈ {0, 1} be a binary indicator that denotes whether an instance
(Xi, yi) is observed from D with (Xi, yi) ∈ S . MAR class imbalance occurs when the observation
mechanism satisfies Ri ⊥⊥ Yi | Xi, or equivalently, P(Ri | Xi, Yi) = P(R | Xi). That is, under
MAR, observation of minority instances are conditionally independent from their class Y given the
observed features X . On the other hand, MNAR class imbalance occurs when Ri ̸⊥⊥ Yi | Xi, or
equivalently, P(Ri | Xi, Yi) ̸= P(Ri | Xi).

Under MNAR class imbalance, observations from some regions of the minority class are system-
atically underrepresented or even excluded from S with P(Ri | Xi, yi = 1) < P(Ri | Xi). The
observed dataset thus exhibits both a marginal imbalance in P(Yi = 1 | Ri = 1) and a distorted con-
ditional distribution P(Xi | Yi = 1, Ri = 1) that may differ substantially from the population-level
distribution P(Xi | Yi = 1). Note that this is different than the marginal distribution of features
P(Xi) governed by D. That is, an instance (Xi, yi) can be naturally less prevalent than other in-
stance in D, and MNAR occurs only when its probability of observation P(Ri) = P ((Xj , yj) ∈ S)
depends on its class Yi and features Xi.

Under MNAR, learning from S may not yield a model that generalizes well to the true distribution
D, presenting a fundamental challenge different to only class-count imbalance. This is particularly
problematic when the goal is to understand properties of the minority class and interpret the relation-
ship between Xi and outcomes yi = 1, often the very objective of class imbalance methodologies.

3.2 CLUSTER-BALANCED ENSEMBLING FOR MNAR CLASS IMBALANCE

Our approach to addressing MNAR class imbalance follows well-known hybrid methods of un-
dersampling the majority class to create ensembles with observed minority instances, but with key
refinements. Instead of randomly undersampling the minority instances, we use K-means cluster-
ing (with default euclidean distance) to segment the majority class Smaj into k distinct subgroups
C = {C1, . . . , Ck}. We set k = round

(
n−

n+

)
to increase the chance that each cluster Cp ∈ C

contains approximately n+ number of majority instances.
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Furthermore, we perform clustering on the original unscaled dataset, even if the final classifier is
trained on the normalized variant. This is to capture local structure defined by original regions of
the feature space, rather than the normalized subspace that may compress important structure. In
particular, normalizing before clustering often results in less diverse majority subgroups.

We next construct near-balanced datasets Sp = Cp ∪ Smin by combining a majority cluster Cp

with all instances of the minority set Smin. Although near-balance is not guaranteed for any of the
resulting datasets Sp, its imbalance 1 − n+

|Cp| is strictly lower than the imbalance 1 − n+

n− of the
original dataset S when k > 1.

For each dataset Sp, we train a base classifier f to create an ensemble E = {f1, . . . , fk}. The base
classifier can be any classification algorithm, but should remain consistent across the ensemble.
This is to emphasize learning across different regions of the data, rather than maximizing local
classification accuracy via different models.

Classifiers fp ∈ E are weighted by their PR AUC performance on the overall training dataset S train

(this metric provided the best generalization in our experiments, as shown in Appendix A.6), and
final predictions are made by aggregating all trained classifiers according to their weight. As each
classifier trains on a different conditional slice of the observed data distributionDobs, its aggregation
provides a unique benefit in reducing bias from underrepresented subgroups than any one cluster.
The overall procedure is depicted in Figure 2, with the pseudocode given in Appendix B.

3.3 BALANCED GOLD-STANDARD EVALUATION PROTOCOL

A central challenge in class imbalance under MNAR is that the evaluation approach itself may be
biased. That is, sampling test sets from imbalanced dataset that are potentially MNAR, can bias true
model performance. To highlight and address this potential bias, we propose to measure imbalance
performance using gold-standard datasets that are originally near-balanced. Given such a dataset
S, we first partition it into balanced training S train and test S test sets using stratified folds. We then
simulate MAR or MNAR on S train via controlled instance deletions (based on features X and class
Y = 1 for MNAR).

All methods are applied to the resulting imbalanced training set S train, but performance is evalu-
ated on the untouched gold-standard test set. This design ensures that comparisons across methods
reflect their ability to recover the predictive power lost due to MNAR imbalance, rather than their
performance on the biased distribution.

It is important to note that this protocol is not meant to replace current evaluation practices, but rather
to highlight the risks of benchmarking methods solely on test sets drawn from potentially MNAR
datasets. As we later show in our numerical evaluations, evaluating on such biased test sets can
artificially inflate or deflate performance, leading to misleading conclusions about the robustness of
different methods. Our gold-standard approach instead serves as a diagnostic tool: it clarifies the
extent to which algorithms can recover “true” predictive performance when imbalance is introduced.

4 NUMERICAL EVALUATION

Our experiments are designed to show three key findings: (1) which features trigger the most severe
MNAR imbalance and degrade performance the most; (2) how existing imbalance correction meth-
ods fare versus our approach under MNAR versus MAR conditions; and (3) how standard hold-out
evaluation can yield misleading results when applied to MNAR-imbalanced data.

4.1 DATASETS

We considered both real and synthetic benchmark datasets from the PMLB repository (Olson et al.,
2017) and chose ones that were near-balanced.1 In addition to these datasets, we chose the Women
Bank account dataset from Field et al. (2016) as an example of a real-world application specifically

1We note that the imbalance ratios reported in the PMLB repository were not entirely accurate; therefore,
we computed the correct ratios by downloading and evaluating each dataset directly.
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Dataset N d n+ n− Dataset N d n+ n−

WBank 8065 48 4040 4025 TwoNorm 7400 20 3697 3703
KR vs KP 3196 36 1669 1527 Ring 7400 20 3736 3664
Cancer 569 30 212 357 Chess 3196 36 1669 1527

Table 1: Balanced datasets, their number of instances, dimension of X , and number of instances in
the positive and negative class, and the feature used to simulate MNAR.

3 2 1 0 1 2 3 4
SHAP value (impact on model output)

Var|y=0

Avg|y=1

Avg|y=1 - Avg|y=0

Wasserstein|y=1

PR AUC

Kurtosis|y=1

F1

Var|y=1

Kurtosis

ROC AUC

Low

High

Fe
at

ur
e 

va
lu

e

Figure 3: SHAP values of feature properties linked to poor performance of existing methods and
high gains from cluster-balanced ensembling. Key factors include drop in ROC AUC, high kurtosis
and variance in the positive class, low F1 drop, high PR AUC drop, large Wasserstein distance under
MNAR, low mean in y = 1, and high mean in y = 0.

conducted to draw inference from the minority class. The datasets and their properties are given in
Table 1.

4.2 FEATURES THAT LEAD TO SEVERE MNAR IMBALANCE

The impact of MNAR imbalance on existing methods varies depending on which features govern
the missingness. Different features reflect different minority subpopulations, and consequently, dis-
parately affect model learning.

In practice, MNAR mechanisms are unknown, and distinguishing MAR from MNAR often requires
expert judgment. This section aims to assist experts by identifying feature types that lead to the most
severe MNAR effects. In particular, we examine which features xj ∈ X , when used to simulate
MNAR imbalance, cause the most degrade of performance to existing methods are best aided by
cluster-balanced ensembling.

To that end, we computed numerous properties for each feature xj , including mean, variance, range,
quartiles, number of potential outliers (above 0.75 quartile or below 0.25 quartile), skewness, kur-
tosis, number of unique values, zero fraction, average collinearity, logistic regression coefficient,
random forest feature importance, permutation importance, ANOVA F-statistic, Pearson/Spearman
correlation with y, mutual information across class, entropy, and single-variable F1. We also com-
puted the Wasserstein distance of xj , and the drop of performance in ROC AUC, PR AUC, and F1
scores between the balanced and MNAR-damaged datasets. Note that most of these metrics limit
the analysis to numerical features.

These metrics were aggregated across datasets (to enable a data-set agnostic analysis) to predict
which features induce MNAR that leads to poor performance by existing methods and benefit most
by cluster-balanced ensembling. Our initial experiments indicated that linear models performed
poorly (with at best a 65% F1 score), suggesting a complex relationship between feature properties
and MNAR effects. In the end, XGBoost (with default setting and a max depth of four) trained
on the ten feature properties shown in Figure 3, achieved the best predictive performance (87% F1,
94% precision, 82% recall, 90% balanced accuracy via 5-fold cross validation) .
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The SHAP values from the XGBoost model (Figure 3) show that the most important properties are:
drop in ROC AUC, high kurtosis and variance in the y = 1 class, low drop in F1, high drop in PR
AUC, high Wasserstein distance between damaged and original x, and distinct means by class.

Overall, MNAR is most severe when imbalance is due to missing high-value minority instances that
are critical for ranking instances, do not overly affect classification threshold learning, have diverse
populations, and thicker tails.

4.3 EVALUATION FRAMEWORK

For an unbiased evaluation of imbalance methods, we construct 10-fold cross validation hold-out
samples taken from the original near-balanced datasets. Then, on training data S train, we simu-
late 95% MAR or MNAR by deleting positive instances according to the procedure detail in Ap-
pendix B.6. The 95% threshold was used to simulate higher imbalance (we provide further results
over varied MNAR deletion in Appendix A.4). Deletions were performed on the top-5 features (dis-
closed in Appendix B.6) that gave the highest classification probability that lead to sever MNAR
according to our XGBoost model in §4.2.

We evaluate five classifiers: logistic regression (LR), support vector machines (SVM), random
forests (RF), a multi-layer perceptron (MLP), and XGBoost (XGB); covering linear, kernel-based,
ensemble, neural, and boosting models. Using six datasets, 10-fold cross validation, five MNAR
simulations, and five base models gives 1,500 experiments for our numerical results.

To benchmark performance, we considered popular imbalance methods from four categories. (1)
Cost-based: reweighting (RWGT), Focal Loss (FOC), and class-balanced loss (CLS); (2) Debias-
ing: Logit Adjustment (LA); (3) Ensemble-based: our proposed cluster-balanced ensemble (CBE),
random-balanced ensemble (RBE) which is identical to CBE but with the distinction that the ma-
jority class is undersampled randomly, EKR, Easy Ensemble (EE), and Balanced Bagging Classi-
fier (BB); (4) Undersampling: Cluster Centroids (CC) and Tomek Links; and (5) Oversampling:
SMOTE (SMT), Borderline SMOTE (B-SMT), and ADASYN (ADSN). Implementation and details
of each algorithm is given in Appendix B.1.

We also report two reference baselines. The gold standard (GLD) upper bound: performance on the
original balanced datasets, and the damaged baseline (DMG) lower bound: performance on imbal-
anced datasets without any imbalance correction technique. These bounds are used to contextualize
the gains achieved by different methods. Following prior work (Rezvani & Wang, 2023; Altalhan
et al., 2025), we report F1, balanced accuracy, precision, recall, PR AUC, and ROC AUC to capture
key trade-offs under MNAR class imbalance.

All algorithms are coded in Python (and given in the supplementary materials) and executed on a
PC with an Intel Xeon processor W-2255 and an Ubuntu 20.04.5 operating system.

4.4 F1 PERFORMANCE UNDER MNAR

Table 2 gives the F1 score under 95% MNAR imbalance. All classifiers experience notable per-
formance drops when trained on damaged data (DMG column), confirming the adverse effect of
MNAR. Our proposed CBE consistently outperforms all other methods, followed by EKR and CC,
which are also cluster-based techniques. CBE achieves an average 25.3% improvement in F1 across
all approaches, ranging from 9% (over EKR) to 52% (over LA), and narrowly surpassed in only
two settings—TwoNorm and Cancer datasets with MLP classifier, by margins of 0.8% and 2.9%,
respectively.

CBE yields especially large gains over RBE, with an average F1 increase of 17.25%. This highlights
that clustering the majority subpopulations is more effective in preserving decision boundaries under
MNAR imbalance than random sampling.

Ensemble-based methods perform best under MNAR, while cost-sensitive and oversampling tech-
niques perform worst. Despite their popularity, these approaches can reinforce existing minority
class bias under MNAR—so much so that, in some cases, models trained on reweighted or over-
sampled data underperform even the damaged LB. This underscores the risk of applying imbalance
correction without considering the missingness mechanism.
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f Dataset UB Cost-based Debias Ensemble-based Under-sample Over-sample LB
GLD RWGT FOC CLS LA RBE CBE EKR EE BB CC TMK SMT B-SMT ADSN DMG

LR

WBank 84.4 52.2 44.7 47.5 2.6 52.6 73.2 59.4 52.7 50.4 72.5 25.0 32.7 32.2 32.3 23.8
KR vs KP 96.0 62.0 67.6 54.9 11.8 53.9 74.8 71.5 54.1 53.0 58.3 45.1 59.5 55.6 61.0 45.2
Cancer 95.8 59.7 37.2 59.2 48.1 60.6 62.4 57.0 59.1 57.1 54.9 56.0 58.7 59.2 58.5 56.0
TwoNorm 97.8 91.4 6.0 93.3 59.5 95.6 96.4 95.7 95.7 95.7 96.4 85.8 89.7 90.3 90.4 85.5
Ring 77.0 42.8 66.5 36.0 0.0 48.0 76.2 68.1 47.9 47.0 52.1 0.3 40.5 13.2 44.6 0.2
Chess 96.4 64.1 67.4 55.6 12.1 54.5 74.1 73.0 54.6 53.1 60.8 45.7 61.4 58.3 63.0 45.6

Avg 91.2 62.0 48.2 57.8 22.3 60.9 76.2 70.8 60.7 59.4 65.8 43.0 57.1 51.5 58.3 42.7

SVM

WBank 83.7 19.6 0.4 18.8 6.7 37.4 67.2 52.1 37.3 34.7 42.2 23.9 20.1 21.2 19.4 22.5
KR vs KP 98.3 47.8 0.0 40.5 42.9 43.4 70.8 61.4 43.3 42.1 43.4 55.6 46.2 45.8 45.9 55.7
Cancer 96.1 60.0 8.0 56.0 26.3 77.4 86.4 78.6 77.9 73.5 76.5 60.6 60.9 60.3 58.5 60.6
TwoNorm 97.8 78.5 0.0 79.1 53.5 91.5 96.2 93.0 91.6 89.6 92.0 79.0 70.9 74.3 71.4 78.8
Ring 97.9 71.3 0.4 69.2 28.6 91.1 95.3 91.5 91.2 89.1 61.8 69.3 67.8 71.8 69.2 68.5
Chess 98.6 50.2 0.0 40.6 43.2 43.7 69.9 61.5 43.7 42.2 43.6 56.8 47.9 46.6 47.9 57.1

Avg 95.4 54.6 1.5 50.7 33.5 64.1 81.0 73.0 64.2 61.9 59.9 57.5 52.3 53.3 52.1 57.2

RF

WBank 80.3 15.4 11.5 15.3 0.2 30.8 73.8 38.8 31.0 29.4 63.6 17.0 19.6 18.9 19.3 15.7
KR vs KP 99.1 41.2 51.4 41.4 7.0 43.8 74.4 59.6 44.3 43.1 50.1 43.2 44.6 42.1 44.6 43.4
Cancer 93.8 50.3 61.2 49.8 11.5 74.2 83.5 76.4 73.4 72.0 75.7 55.6 54.6 53.1 52.4 55.6
TwoNorm 97.1 24.5 34.0 23.8 0.1 52.0 80.8 58.4 50.0 45.0 76.9 21.6 33.4 32.3 35.4 21.6
Ring 95.3 26.0 46.1 24.2 0.2 36.1 56.9 36.7 36.2 34.8 31.5 11.9 27.0 10.2 27.0 11.8
Chess 99.1 40.8 50.0 41.1 6.0 44.5 73.3 66.0 45.0 43.3 51.6 43.4 45.5 41.6 45.2 43.6

Avg 94.1 33.0 42.4 32.6 4.2 46.9 73.8 56.0 46.6 44.6 58.3 32.1 37.4 33.0 37.3 32.0

MLP

WBank 79.4 28.0 26.5 27.9 17.7 54.5 70.1 68.8 54.9 50.1 63.4 26.4 26.7 26.2 26.7 25.2
KR vs KP 99.4 52.9 52.0 52.8 33.3 56.1 70.9 66.8 59.0 56.4 56.3 44.4 51.9 51.3 52.1 44.3
Cancer 96.4 81.1 79.2 81.1 16.8 89.9 88.0 89.5 89.0 88.7 90.9 71.3 80.3 79.0 76.3 71.3
TwoNorm 96.9 87.6 85.6 87.7 67.6 95.4 95.8 95.6 96.5 96.4 96.1 85.0 87.1 87.2 87.0 84.7
Ring 93.2 54.5 53.9 55.0 30.7 76.7 78.2 77.4 73.1 69.7 59.2 49.7 53.8 52.1 53.4 49.5
Chess 99.4 54.2 54.1 54.2 34.5 56.7 71.4 66.4 59.7 56.8 57.5 45.9 53.1 51.7 53.5 46.0

Avg 94.1 59.7 58.5 59.8 33.4 71.5 79.1 77.4 72.0 69.7 70.6 53.8 58.8 57.9 58.1 53.5

XGB

WBank 81.2 20.3 0.0 25.9 11.2 36.3 72.8 41.8 36.5 31.5 52.8 21.2 23.3 23.2 23.4 20.3
KR vs KP 99.5 46.2 48.1 45.9 35.4 45.0 65.6 59.3 44.9 42.9 49.0 46.2 53.1 44.4 54.7 46.2
Cancer 95.1 44.5 53.0 40.7 0.0 54.8 55.7 50.5 53.1 54.6 54.5 44.5 40.5 40.9 43.2 44.5
TwoNorm 96.9 32.1 0.0 39.6 20.4 41.7 53.6 43.3 41.7 37.2 49.2 32.2 38.4 37.9 40.7 32.1
Ring 96.7 24.1 2.7 30.2 11.5 34.3 60.6 36.1 34.1 31.6 29.9 24.4 32.4 26.0 33.0 24.1
Chess 99.5 48.7 49.2 48.0 35.7 47.3 68.8 66.8 47.4 43.5 51.3 48.9 56.2 46.2 58.6 48.7

Avg 94.8 36.0 25.5 38.4 19.0 43.2 62.9 49.7 43.0 40.2 47.8 36.2 40.7 36.4 42.3 36.0

Overall Average 93.94 49.07 35.22 47.85 22.51 57.33 74.58 65.37 57.30 55.15 60.48 44.53 49.26 46.43 49.61 44.27

Table 2: F1 scores with MNAR imbalance. Our proposed CBE achieved highest average perfor-
mance.
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Figure 4: Average performance under MNAR imbalance, across classifiers and datasets for top-
performing F1 methods. The main advantage of CBE is higher recall but lower precision. The
higher precision and AUC performance of competing methods at lower recall shows overfitting to
observed minority instances, without generalizing to the entire minority population.

4.5 BALANCED ACCURACY, PRECISION, RECALL, PR AUC, AND ROC AUC
PERFORMANCE UNDER MNAR

Figure 4 gives the balanced accuracy, precision, recall, PR AUC, and ROC AUC of the most promis-
ing MNAR imbalance techniques, averaged over all datasets and classifiers. Results are reported
over the overall test set S test, but also subsets of S test that are likely to be MNAR according to the
deletion procedure applied to S train. This gives approximate results on how methods perform on test
instances similar to the ones observed in the training data, versus ones that are MNAR.

The major advantage of CBE is higher recall, with an increase of approximately 25% over the
next best approach. This indicates that CBE can better generalize and detect unobserved minority

8
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Figure 5: F1 scores from hold-out sets sampled from MNAR-damaged data, averaged across clas-
sifiers and datasets. Ignoring the imbalance source leads to misleading F1 scores that fail to reflect
true performance on the underlying minority distribution.

instances under MNAR, albeit at approximately 12% lower precision. Subgroup results confirm this,
with CBE significantly outperforming other methods in detection instances likely to be MNAR.

CBE also shows approximately 1.5–2% higher balanced accuracy and AUC measures over compet-
ing methods. However, evaluating MNAR imbalance performance using precision or AUC measures
alone gives misleading results. For instance, the damaged LB baseline deceptively outperforms all
methods in precision and both PR and ROC AUC, but at considerably lower recall. This indicates
strong overfitting to the few observed minority instances, and poor generalization to the unobserved
minority population. As such, evaluating MNAR imbalance using metrics that disproportionately re-
ward high precision at the cost of recall may misleadingly claim superiority over more generalizable
models.

4.6 BIASED EVALUATION BY SAMPLING MNAR DATA

Standard evaluation protocols often overstate model performance by sampling both training and test
sets from the same MNAR-damaged data. To reveal this flaw, we simulate 85% MNAR deletion (to
retain sufficient instances for subsequent hold-out samples), and evaluate models on hold-out sets
drawn solely from the damaged dataset (mimicking conventional practice) to end at 95% MNAR.
This setup mirrors real-world conditions where the test data shares the same structural bias as train-
ing, but it fails to reflect the true minority population.

The resulting average F1 scores across all datasets and classifiers are shown in Figure 5. Under
MNAR imbalance, evaluating on data drawn from the same biased distribution that models train
on can overstate performance and obscure generalization. In particular, this biased evaluation mis-
leadingly favors models that overfit to the observed minority subset while penalizing those that
generalize to the entire population. These results reinforce the importance of accounting for the
nature of imbalance when evaluating mitigation methods.

5 CONCLUSION

This paper studies MNAR class imbalance, where missingness depends jointly on class labels and
predictive features. Under MNAR, popular imbalance methods fail to generalize and instead amplify
biases in the observed data.

To address this, we construct an ensemble of cluster-balanced datasets that span diverse, distinct
regions of the majority class, and contrast them to minority points. Our method outperforms state-
of-the-art techniques under MNAR by an average increase of 25% in F1 score, when missingness
is driven by highly informative features. We also introduce an evaluation protocol that reveals how
standard validation practices can misrepresent performance under MNAR.

Our findings emphasize that understanding why imbalance occurs is as important as how much
imbalance exists. Hence, we shift the focus from imbalance in class counts to the missingness
mechanism in class imbalance.

9
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A ADDITIONAL EVALUATIONS

Section A.1 compared F1 performance of competing methods under MAR. We tune to F1 perfor-
mance in §A.2 to assess whether established methods can be adapted to identify MNAR instances by
adjusting the classification threshold. In §A.3 we report distinct statistics on the underlying cluster-
ing mechanisms used in CBE, RBE, and EKR. We perform sensitivity analyses and ablation studies,
by varying MNAR class imbalance in §A.4, varying the number of clusters in CBE in §A.5, using
alternative metrics for our CBE voting mechanism in §A.6.

A.1 F1 PERFORMANCE UNDER MAR
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Figure 6: F1 scores with MAR imbalance. Ensembling approaches perform best under MAR imbal-
ance.

Figure 6 gives the average performance of all methods under MAR imbalance. Since the minority
class retains sufficient representation under MAR, existing methods excel in mitigating imbalance.
In particular, ensemble methods like EE, RBE, and BB, and also CC undersampling perform best,
while, CBE, reweighting, and oversampling perform worse. This shows that CBE’s reliance on
majority clusters for balancing can inject irrelevant or redundant information when majority clusters
are not associated to missingness.

A.2 THRESHOLD TUNING FOR F1 PERFORMANCE
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Figure 7: Threshold tuning algorithms to maximize F1 score. Tuning leads to higher precision but
considerably lower recall, overfitting the algorithms to observed minority instances.

We next tuned the classification threshold of all algorithms to maximize F1 score on the training
set. As Figure 7 shows, this has a consistent negative effect, and leads to overfitting the observed
minority instances. All algorithms, and in particular CBE, show an increase in precision, but a large
drop in recall. As such, they are very accurate in predicting the observed minority instances, but
lose generalization to the entire minority class population.
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A.3 NUMBER OF CLUSTERS, PER-CLUSTER IMBALANCE, SILHOUETTE SCORE
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Figure 8: Number of clusters, average per-cluster imbalance, and silhouette distance of cluster-based
approaches.

All three approaches of RBE, CBE, and EKR involve clustering the majority class into k cluster
C = {C1, . . . , Ck}, and combining each cluster Cp ∈ C with the entire minority instances Smin

to create datasets {S1, . . . ,Sk}. While the goal of clustering in CBE and RBE is to create near-
balanced datasets Sp, the goal of EKR is to create the most homogenized majority clusters Cp.
Figure 8 demonstrates the difference of these approaches in the number of clusters created, the
average percentage of imbalance 1 − n+

|Cp| between clusters Cp and all n+ minority instances, and
the average Silhouette score measuring the homogeneity of each cluster Cp, over all datasets. We
show imbalance for EKR prior to its over-sampling step (where each cluster is oversampled to
address imbalance) to narrow the analysis on only the clustering step.

Both CBE and RBE generate almost 10 times the number of clusters compared to EKR. This leads to
almost zero imbalance in the resulting datasets Sp for both methods, while imbalance remains high
after EKR clustering. By design, the most homogenized clusters are produce by EKR, followed
by CBE. As expected RBE shows negative silhouette as subsets are chosen randomly. These re-
sults highlight the fundamental differences between the tree methods, despite simillarities in overall
approach.

A.4 VARYING MNAR CLASS IMBALANCE
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Figure 9: F1 score under varying MNAR degree, averaged over all classifiers and datasets. The
advantage of CBE grows with larger MNAR imbalance.

Figure 9 shows how F1 score changes with increasing MNAR imbalance for the top-performing
methods, averaged across datasets and classifiers. CBE performs best at higher MNAR levels (be-
yond 80%), with its advantage growing as imbalance increases. This is because lower imbalance
thresholds retain more of the underrepresented minority instances, and are closer to MAR imbalance
scenarios.
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A.5 VARYING NUMBER OF CLUSTERS
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Figure 10: F1 score under varying k, averaged over all classifiers and datasets. The highest perfor-
mance is achieved when k = round

(
n−

n+

)
.

Our CBE approach is designed to create k = round
(

n−

n+

)
clusters of majority points, with the goal

of achieving balanced datasets Sp. Figure 10 shows the effects of varying k on the F1 score. The best
performance is achieved with the original setting, with both increasing and decreasing k lowering
the F1 score.

A.6 ALTERNATIVE VOTING METRICS
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Figure 11: F1 score under different voting metrics for CBE, averaged over all classifiers and datasets.
The highest performance is achieved when the ensemble votes based on PR AUC.

Figure 11 gives the average F1 score under different voting metrics of the ensemble {f1, . . . , f2}.
The metrics include the original used PR AUC, F1 score, balanced accuracy, and uniform voting
(where each fi is given a constant 1 vote). Results remain relatively stable over different voting
metrics, with PR AUC providing small (less than 1%) advantage over the other metrics).

B ALGORITHMS

A brief introduction of competing methods and their hyperparameters is given in §B.1, followed by
our overall MAR and MNAR simulation procedure in §B.6. The pseudocodes of our proposed CBE,
and random undersampling ensemble counterpart RBE is given in §B.7.

B.1 COMPETING METHODS AND HYPERPARAMETERS

To benchmark performance, we considered popular class-imbalance methods spanning cost-based
reweighting, debiasing, ensemble learning, and data resampling. For fairness, we used standard
implementations (scikit-learn, imbalanced-learn, or PyTorch) and widely adopted default hyperpa-
rameters, tuning only where explicitly noted. The implementation code of all algorithms is provided
in the supplementary materials.

B.1.1 COST-BASED

Reweighting (RWGT): Each minority instance in Smin is weighted inversely to its frequency in the
training set. In particular, the minority class weight is set to N

2n− and the majority to N
2n+ .
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Focal Loss (FOC): Extends cross-entropy by down-weighting easy examples (Lin et al., 2017a).
The loss for a true class with predicted probability Pt = −(1− Pt)

γ log(Pt). We use the canonical
defaults α = 0.25 (minority class weight) and γ = 2 (focusing parameter).

Class-Balanced Loss (CLS): Reweights classes using their “effective number of samples” E(ny) =
(1 − βny )/(1 − β) (Cui et al., 2019). Class weight is proportional to 1

E(ny)
. Following Cui et al.

(2019), we set β = (n−1)
n , the standard default.

B.2 DEBIASING

Logit Adjustment (LA): Corrects for skewed class priors by adding τ log πy to each class logit before
cross-entropy, where πy is the empirical class prior (Menon et al., 2020). We use the standard setting
τ = 1.

B.3 ENSEMBLE-BASED METHODS

Random-Balanced Ensemble (RBE): Identical to CBE but replaces clustering with random under-
sampling of the majority to form balanced subsets. Further details are provided in §B.7.

EKR: Follows Duan et al. (2020), where the majority class is partitioned by K-means and one
representative per cluster is used with all minority instances in each base learner.

Easy Ensemble (EE): Constructs multiple balanced bootstrap samples of the dataset and trains Ad-
aBoost learners on each set (Liu et al., 2008). We use the EasyEnsembleClassifier Python
library from imbalanced-learn with default hyperparameters.

Balanced Bagging (BB): Implements bagging with balanced bootstrap samples. We use the
BalancedBaggingClassifier Python library from imbalanced-learn (LemaÃŽtre et al.,
2017) with default hyperparameters.

B.4 UNDERSAMPLING METHODS

Cluster Centroids (CC): Replaces the majority class with its k cluster centroids, reducing its size to
match the minority count (Yen & Lee, 2009). We use the ClusterCentroids Python library
from imbalanced-learn (LemaÃŽtre et al., 2017) with default hyperparameters.

Tomek Links: Undersamples the majority set by removing borderline instances that form Tomek
pairs (nearest neighbors of opposite class). We use the TomekLinks Python library from
imbalanced-learn (LemaÃŽtre et al., 2017) with default hyperparameters.

B.5 OVERSAMPLING METHODS

SMOTE (SMT): Generates synthetic minority samples by interpolating between each minority point
and its nearest neighbors (Chawla et al., 2002). We use the SMOTE Python library from imbalanced-
learn (LemaÃŽtre et al., 2017) with default hyperparameters.

Borderline SMOTE (B-SMT): A variant of SMOTE that oversamples only minority instances
near the decision boundary (with many majority neighbors) (Han et al., 2005). We use the
BorderlineSMOTE Python library from imbalanced-learn (LemaÃŽtre et al., 2017) with default
hyperparameters.

Adaptive synthetic oversampling (ADSN): Generates more synthetic points in regions where the
minority is sparsely represented relative to the majority (He et al., 2008). We use the ADASYN
Python library from imbalanced-learn (LemaÃŽtre et al., 2017) with default hyperparameters.

B.6 MAR AND MNAR SIMULATION

Algorithm 1 gives the pseudocode of our damaging process to simulate MAR or MNAR class im-
balance from a balanced dataset. The damaging procedure simulates MNAR imbalance via a soft
deletion mechanism that incrementally removes minority instances based on higher or lower values
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Dataset Features used to simulate MNAR

x1 x2 x3 x4 x5

WBank T1wFinlit T2wFinlit cont cl age female GPcont c ghost GPcont c sarpanch sc
KR vs KP reskr thrsk skach hdchk rimmx
Cancer area worst perimeter worst area se compactness worst radius se
TwoNorm A13 A18 A6 A1 A20
Ring A1 A13 A14 A5 A12
Chess A20 A30 A25 A14 A21

Table 3: Datasets and the top-5 features used to simulate MNAR.

in a target feature Xdmg. Features Xdmg are given in Table 3, and are chosen based on the top-5
results of the XGBoost model detailed in §4.2, indicating severe MNAR damage. The direction of
deletion (higher or lower values) is determined by the logistic regression coefficient β sign of Xdmg.
If β > 0, then we delete instances in ascending, and otherwise, in descending order of Xdmg.

Instead of deterministically deleting entire regions of the feature space, deletion likelihoods vary
smoothly with the ordering variable Xdmg, ensuring that some minority points remain observable
across all regions. This preserves partial support of the original distribution D while inducing sys-
tematic distortions in its tail regions. Such a design captures realistic MNAR settings, where miss-
ingness arises from bias that skews but does not fully censor subpopulations. By applying deletions
progressively at increasing thresholds (65%, 75%, 85%, 95%), we generate a controlled family of
datasets that enable robust and comparable evaluation of methods under varying MNAR severity.

Algorithm 1 MAR and MNAR Damaging Process

Require: Train dataset S train =
{
Smaj,Smin

}
, desired damage level πtar, damaging feature Xdmg,

damage type how ∈ {MAR,MNAR}
1: Initialize set of damaged indices Idam ← ∅
2: Copy dataset S̄ train ← S train,
3: for π ∈ {0.65, 0.75, 0.85, 0.95} do
4: Reset dataset S̄ train ← S train

5: Set ntar ← π ×
∣∣Smin

∣∣
6: if how = rnd then
7: Sample ntar points at random: Idam ← Idam ∪ Sample

(
{i ∈ S̄ train : yi = 1}, ntar

)
8: else
9: Sort S̄ train by feature Xdmg

10: while
∣∣Idam

∣∣ < ntar do

11: θ ← 0.9−
0.1×

∣∣Idam
∣∣

ntar

12: for i ∈ S̄ train do
13: if yi = 1 and Uniform(0, 1) ≤ θ then
14: Idam ← Idam ∪ {i}
15: θ ← θ − 0.1/ntar

16: end if
17: if

∣∣Idam
∣∣ = ntar then

18: break
19: end if
20: end for
21: end while
22: end if
23: if π = πtar then
24: break
25: end if
26: end for
27: return S train \ Idam
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B.7 CBE AND RBE PSEUDOCODES

Algorithm 2 gives the pseudocode for the RBE approach.

Algorithm 2 Cluster-Balanced Ensemble (CBE)

Require: Training dataset S train =
{
Smaj,Smin

}
, Base classifier f , Test dataset S test

1: k ← round
(
|Smaj|
|Smin|

)
2: Initialize sum of votes V ← 0
3: Initialize probability matrices: P train ← 0|ytrain|, P

test ← 0|ytest|
4: for r = 1→ k do
5: Apply K-means clustering on Smaj with k cluster centers and 10 random initializations
6: for p = 1→ k do
7: Sp ← Cp ∪ Smin

8: f̂ ← Fit f on Sp
9: Predict probabilities: P̂ train ← f̂(X train), P̂ test ← f̂(X test)

10: Compute vote v ← PR AUC
(
ytrain, P̂ train

)
11: Update V ← V + v, P train ← P train + P̂ train × v, P test ← P test + P̂ test × v
12: end for
13: end for
14: Normalize: P train ← P train

V , P test ← P test

V
15: return Ptrain, Ptest

Algorithm 3 gives the pseudocode for the RBE approach.

Algorithm 3 Random-Balanced Ensemble (RBE)

Require: Training dataset S train =
{
Smaj,Smin

}
, Base classifier f , Test dataset S test

1: k ← round
(
|Smaj|
|Smin|

)
2: Initialize sum of votes V ← 0
3: Initialize probability matrices: P train ← 0|ytrain|, P

test ← 0|ytest|

4: S̃maj = Smaj

5: for r = 1→ k do
6: S̄maj ← Randomly undersample min

{∣∣∣S̃maj
∣∣∣ , ∣∣Smin

∣∣} instances from S̃maj without replace-
ment

7: Update S̃maj ← S̃maj \ S̄maj

8: Sp ← S̄maj ∪ Smin

9: f̂ ← Fit f on Sp
10: Predict probabilities: P̂ train ← f̂(X train), P̂ test ← f̂(X test)

11: Update P train ← P train + P̂ train, P test ← P test + P̂ test

12: end for
13: Normalize: P train ← P train

k , P test ← P test

k
14: return Ptrain, Ptest

C THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) solely to polish the writing of this paper. All ideas, methods,
analyses, and results were developed by the authors, with LLM assistance limited to improving
clarity and readability of the text.
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