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ABSTRACT

We propose RelitLRM, a Large Reconstruction Model (LRM) for generating high-
quality Gaussian splatting representations of 3D objects under novel illuminations
from sparse (4-8) posed images captured under unknown static lighting. Un-
like prior inverse rendering methods requiring dense captures and slow optimiza-
tion, often causing artifacts like incorrect highlights or shadow baking, RelitLRM
adopts a feed-forward transformer-based model with a novel combination of a ge-
ometry reconstructor and a relightable appearance generator based on diffusion.
The model is trained end-to-end on synthetic multi-view renderings of objects
under varying known illuminations. This architecture design enables to effec-
tively decompose geometry and appearance, resolve the ambiguity between ma-
terial and lighting, and capture the multi-modal distribution of shadows and spec-
ularity in the relit appearance. We show our sparse-view feed-forward RelitLRM
offers competitive relighting results to state-of-the-art dense-view optimization-
based baselines while being significantly faster. Our project page is available at:
https://relitlrm.github.io/.

1 INTRODUCTION

Reconstructing high-quality, relightable 3D objects from sparse images is a longstanding challenge
in computer vision, with vital applications in gaming, digital content creation, and AR/VR. This
problem is typically resolved by inverse rendering systems. However, most existing inverse render-
ing approaches suffer from limitations ranging from requiring dense captures under controlled light-
ing, slow per-scene optimization, using analytical BRDF hence not capable of modeling complex
light transport, lacking data prior hence failure to resolve the ambiguity between shading and light-
ing in the case of static unknown lighting (Ramamoorthi & Hanrahan, 2001; Zhang et al., 2021b;a;
2022a; Jin et al., 2023; Kuang et al., 2024).

To overcome these limitations, we present RelitLRM, a generative Large Reconstruction Model
(LRM) (Zhang et al., 2024a) that efficiently reconstructs high-quality, relightable 3D objects from
as few as 4–8 posed images captured under unknown lighting conditions. Unlike traditional inverse
rendering techniques that explicitly decompose appearance and shading, RelitLRM introduces an
end-to-end relighting model directly controlled by environment maps. RelitLRM employs a feed-
forward transformer-based architecture integrated with a denoising diffusion probabilistic model
trained on a large-scale relighting dataset. This architecture models a multi-modal distribution of
possible illumination decompositions, enabling deterministic reconstruction of object geometry and
probabilistic relighting. In the case of glossy objects and challenging high-frequency novel lighting,
the relit object appearance is inherently multi-modal with possibly many small specular regions; our
relit appearance generator can well capture such high-frequency appearance, while regression-based
approaches tend to be dominated by large smooth non-specular or weakly specular areas, and hence
ignore the small strong specular highlights (see Fig. 5).

As shown in Fig. 1, our method can accurately reconstruct and relight the object’s appearance under
diverse lighting conditions and viewpoints, demonstrating its capability for photorealistic rendering
even with limited input views. By processing tokenized input images and target lighting conditions
through transformer blocks, RelitLRM decodes 3D Gaussian (Kerbl et al., 2023) primitive parame-
ters within approximately one second on a single A100 GPU. This approach disentangles geometry,
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Figure 1: Demonstration of RelitLRM’s relighting capabilities. (a) Sparse posed images captured
under unknown lighting conditions serve as the input for our method. (b) RelitLRM accurately
reconstructs and relight the 3D object in the form of 3DGS under novel target lightings (either
outdoor or indoor), with renderings closely matching the ground truth. (c) Object insertion into
a virtual 3D scene. The red arrows indicate the objects relighted by RelitLRM using the scene
illumination, demonstrating its ability to capture surrounding illumination and seamlessly harmonize
with the scene background. (d) Objects relighting results showcase the robustness of our method
under challenging lighting conditions, such as strong directional lighting. Our method faithfully
models complex lighting effects, including removing shadow and highlights in input images and
also casting strong shadows and glossy specular highlights under target lighting.

appearance, and illumination, resolving material-lighting ambiguities more effectively than prior
models and enabling photorealistic rendering from novel viewpoints under novel lightings.

We conduct extensive experiments on synthetic and real-world datasets to evaluate RelitLRM. The
results demonstrate that our method matches state-of-the-art inverse rendering approaches while us-
ing significantly fewer input images and requiring much less processing time (seconds v.s. hours).
Additionally, RelitLRM does not rely on fixed analytic reflectance models, allowing greater flexi-
bility in handling diverse material properties. Its scalability and efficiency make it well-suited for
real-world applications where flexibility in lighting conditions and rapid processing are essential.

In summary, our key contributions to the field of relightable 3D reconstruction are:

• Novel transformer-based generative relighting architecture. We propose to use a
regression-based geometry reconstructor followed by a diffusion-based appearance syn-
thesizer (both modeled by transformers and trained end-to-end), to disentangle geometry
from appearance, allowing better modeling of the uncertainty in relighting.

• State-of-the-art performance with practical efficiency. Trained on a large-scale 3D ob-
ject dataset, RelitLRM matches or surpasses the performance of leading inverse rendering
methods while using significantly fewer input images and less processing time, demon-
strating superior generalization and practicality for real-world applications.

2 RELATED WORK

2.1 INVERSE RENDERING

Inverse rendering aims to recover intrinsic scene properties — geometry, material reflectance, and
lighting — from images, enabling tasks like relighting and novel view synthesis. Traditional meth-
ods optimize through physically-based rendering equations (Kajiya, 1986) using dense image cap-
tures (typically 100–200 views) under controlled lighting (Debevec et al., 2000; Ramamoorthi &
Hanrahan, 2001; Marschner, 1998). Propelled by the recent advances in Neural Radiance Fields
(NeRF) (Mildenhall et al., 2020) and 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023), recent
learning-based inverse rendering methods have emerged to decompose the scene properties with
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these neural representations (Bi et al., 2020b;a; Zhang et al., 2021a;b; Boss et al., 2021a;b; Luan
et al., 2021; Srinivasan et al., 2021), by leveraging the differentiable rendering for their optimiza-
tion and training (Boss et al., 2022; Zhang et al., 2022a;b; Kuang et al., 2022a;b; Jin et al., 2023;
Shi et al., 2023; Yang et al., 2023; Zhang et al., 2023b; Gao et al., 2023; Liang et al., 2024; Jiang
et al., 2024). However, these methods typically require dense inputs and computationally intensive
optimization, limiting scalability and struggling with complex lighting and materials.

Our method addresses these challenges by efficiently reconstructing relightable 3D objects from
sparse images (4–8 views) without per-scene optimization. Utilizing a transformer-based diffusion
model integrated with the 3DGS (Kerbl et al., 2023), our method bypasses explicit appearance de-
composition and shading, directly generates relighted radiance, enabling high-quality relighting and
rendering under unknown lighting conditions with sparse views, and offering advantages in scala-
bility and practicality

2.2 LARGE RECONSTRUCTION MODEL

Advancements in 3D reconstruction have been driven by neural implicit representations like
NeRF (Mildenhall et al., 2020) and 3DGS (Kerbl et al., 2023), enabling high-quality novel view
synthesis. Built upon it, the Large Reconstruction Model (LRM) series has further enhanced 3D
reconstruction using transformer-based architectures for feed-forward processing. Notable mod-
els such as Single-view LRM (Hong et al.), Instant3D (Li et al., 2023), DMV3D (Xu et al.), PF-
LRM (Wang et al., 2023), and GS-LRM (Zhang et al., 2024a), along with others (Wei et al., 2024;
Xie et al., 2024; Anciukevičius et al., 2023; Szymanowicz et al., 2023), have introduced scalable
methods for multi-view data, enabling detailed reconstructions even from sparse inputs.

Despite these improvements, integrating relighting capabilities remains challenging. Our ap-
proach, RelitLRM, extends the LRM series by incorporating relightable reconstruction, combin-
ing transformer-based architecture with neural implicit radiance representations within the 3DGS
framework. This enables robust 3D reconstruction with relighting capabilities from sparse inputs,
overcoming scalability and practicality issues of previous methods.

2.3 IMAGE-BASED RELIGHTING AND DIFFUSION MODELS

Diffusion models have become prominent in visual content generation, excelling in tasks like text-
to-image synthesis and image editing (Ho et al., 2020; Nichol & Dhariwal, 2021). Models such
as Stable Diffusion (Rombach et al., 2022) and ControlNet (Zhang et al., 2023a) adapt diffusion
frameworks for controlled image synthesis. While primarily 2D, recent works like Zero-1-to-3 (Liu
et al., 2023) demonstrate diffusion models’ latent understanding of 3D structures, relevant for view
synthesis and relighting.

Single-image relighting is challenging due to the limited view of input data. Early neural network-
based approaches (Ren et al., 2015; Xu et al., 2018) laid the groundwork, with recent portrait-
focused methods (Sun et al., 2019; Zhou et al., 2019; Pandey et al., 2021; Mei et al., 2024; Ren
et al., 2024) enhancing realism and lighting control. However, these methods are often domain-
specific or rely on explicit scene decomposition, limiting adaptability. Recent methods like Neural
Gaffer (Jin et al., 2024), DiLightNet (Zeng et al., 2024), and IC-Light (Zhang et al., 2024b) leverage
diffusion models for precise lighting control, achieving high-quality relighting. However, All theses
works are constrained to single-view inputs.

Our approach integrates generative relighting and 3D reconstruction into an end-to-end transformer-
based architecture. It produce high-quality renderings of objects from novel viewpoints and under
arbitrary lighting, given sparse input images.

3 METHOD

Our RelitLRM is built on top of the prior GS-LRM (Zhang et al., 2024a) model, but differs in
crucial aspects: 1) we aim for relightability of the output assets; 2) to achieve this, we propose a
novel generative relighting radiance component to replace GS-LRM’s deterministic appearance part.
In this section, we first briefly review the model architecture of GS-LRM, then describe in detail our
relit 3D appearance generation algorithm based on relit-view diffusion.
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Figure 2: Overview of RelitLRM for sparse-view relightable 3D reconstruction. Our pipeline
consists of a geometry regressor and a relit appearance generator, both implemented as transformer
blocks and trained jointly end-to-end. We implicitly bake the relit appearance generation in relit-
view diffusion process. During inference, we first extract geometry tokens from sparse input images
and regress geometry parameters for per-pixel 3D Gaussians (3DGS). Conditioning on novel target
lighting and extracted geometry features, we denoise the relit views by first predicting a 3DGS
appearance, then render it (along with 3DGS geometry that stays fixed in the diffusion denoising
loop) into the denoising viewpoints. This iterative process produces the relit 3DGS radiance as a
byproduct while denoising the relit views. The generative appearance and deterministic geometry
blocks are trained end-to-end, ensuring scalability.

3.1 REVIEW OF GS-LRM MODEL

GS-LRM (Zhang et al., 2024a) uses a transformer model for predicting 3DGS parameters from
sparse posed images. They demonstrated instant photo-realistic 3D reconstruction results. We pro-
vide an overview of their method below.

Given a set of N images Ii ∈ RH×W×3, i = 1, 2, ..., N and corresponding camera Plücker rays
Pi, GS-LRM concatenates Ii,Pi channel-wise first, then converts the concatenated feature map into
tokens using patch size p. The multi-view tokens are then processed by a sequence of L1 transformer
blocks for predicting 3DGS parameters Gij : one 3DGS at each input view pixel location.

{Tij}j=1,2,...,HW/p2 = Linear
(
Patchifyp

(
Concat(Ii,Pi)

))
, (1)

{Tij}0 = {Tij}, (2)

{Tij}l = TransformerBlockl({Tij}l−1), l = 1, 2, ..., L1, (3)

{Gij} = Linear({Tij}L1). (4)

The whole model is trained end-to-end using novel-view rendering loss on multi-view posed images.

3.2 GENERATING RELIT 3DGS APPEARANCE VIA RELIT VIEW DIFFUSION

The relighting procedure involves the removal of source lighting from input images, and relighting
the objects under target lighting, which are inherently ambiguous in the case of sparse view observa-
tions and unknown lighting conditions, especially in regions of shadows and specularity. Moreover,
when relighting glossy objects using high-frequency novel illuminations, the relit object appearance
is inherently multi-modal with possibly many small specular regions; regression-based approaches
tend to be dominated by large diffuse or weakly specular areas, ignoring the small strong specu-
lar highlights. Hence, to boost relighting quality, we need a generative model to better handle the
uncertainty in relighting and multi-modality in relit radiance.

We design a new approach to generate relit 3DGS appearance under a novel lighting. Related to prior
work (Xu et al.; Szymanowicz et al., 2023; Anciukevičius et al., 2023), we perform diffusion, in
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which we force a 3D representation as a bottleneck. However, the key algorithmic innovation is that
our appearance predictor is a relighting diffusion model, conditioned on the novel target illumination
and the predicted geometry features. The relit-view denoiser uses x0 prediction objective (Ramesh
et al., 2022); at each denoising step, it outputs the denoised relit views by predicting and then
rendering the relit 3D Gaussian representation.

Formally, we first predict 3DGS geometry parameters {Ggeom
ij } using the same approach (see

Eq. 1,2,3,4) as in GS-LRM (Zhang et al., 2024a); we also obtain the last transformer block’s out-
put {T geom

ij } of this geometry network to use as input to our relit-view denoiser. To produce the
relit 3DGS apperance under a target lighting, we then concatenate the noisy relit view tokens, tar-
get lighting tokens, denoising timestep token, and predicted 3DGS geometry tokens, passing them
through a second transformer stack with L2 layers. The process is described as follows:

{T all
i }0 =

{
{T noised-relit-views

ij }L1 ⊕ {T light
ij } ⊕ {T geom

ij } ⊕ {T timestep}
}
, (5)

{T all
i }l = TransformerBlockL1+l({T all

i }l−1), l = 1, 2, . . . , L2. (6)
The output tokens {T geom

ij }L2 are used to decode the appearance parameters of the 3D Gaussians,
while the other tokens, e.g., {T noised-relit-views

ij }L2 are discarded on the output end. In detail, we
predict the 3DGS spherical harmonics (SH) coefficients via a linear layer:

{Gcolor
ij } = Linear

(
{T geom

ij }L2
)
, (7)

where Gcolor
ij ∈ R75p2

represents the 4-th order SH coefficients for the predicted per-pixel 3DGS in
a pxp patch.

At each denoising step, we output the denoised relit views (using x0 prediction objective) by ren-
dering the predicted 3DGS representation:

{Idenoised-relit-views
i } = Render

(
{Ggeom

ij }, {Gcolor
ij }

)
. (8)

The interleaving of 3DGS appearance prediction and rendering in the relit-view denoising process
allow us to generate a relit 3DGS appearance as a side product during inference time. We output the
3DGS at final denoising step as our model’s final output: a 3DGS relit by target lighting.

Tokenizing HDR environment maps. To make it easier for networks to ingest HDR environ-
ment maps E ∈ RHe×We×3, we convert each E into two feature maps through two different tone-
mappers: one E1 emphasizing dark regions and one E2 for bright regions. We then concatenate
E1, E2 with the ray direction D, creating a 9-channel feature for each environment map pixel. Then
we patchify it into light tokens, {T light

ij }j=1,2,...,HeWe/p2
e
, with a MLP. See Appendix 9 for details.

3.3 TRAINING SUPERVISION

In each training iteration, we sample a sparse set of input images for an object under a random
lighting and another set of images of the same object under different lighting (along with its ground-
truth environment map). The input posed images are first passed through the geometry transformer
to extract object geometry features. As described in Sec. 3.2, we then perform relighting diffusion
with the x0 prediction objective; our denoiser is a transformer network translating predicted 3DGS
geometry features into 3DGS appearance features, conditioning on the sampled novel lighting and
noised multi-view images under this novel lighting (along with diffusion timestep).

We apply ℓ2 and perceptual loss (Chen & Koltun, 2017) to the renderings at both the diffusion
viewpoints and another two novel viewpoints in the same novel lighting. The deterministic geometry
predictor and probabilistic relit view denoiser are trained jointly end-to-end from scratch.

3.4 SAMPLING RELIT RADIANCE

At inference time, we first reconstruct 3DGS geometry from the user-provided sparse images. Then
we sample a relit radiance in the form of 3DGS spherical harmonics given a target illumination. Our
relit radiance is implictly generated by sampling the relit-view diffusion model. We use the DDIM
sampler (Song et al., 2020) and classifier-free guidance technique (Ho & Salimans, 2022). Since
the denoised relit views are rendered from the 3DGS geometry and predicted relit radiance at each
denosing step, the relit-view denoising process also results in a chain of generated relit radiances.
We only keep the relit radiance at last denoising step as our final predicted 3DGS appearance.
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4 DATASET AND IMPLEMENTATION

Training dataset. Our training dataset is constructed from a combination of 800K objects sourced
from Objaverse (Deitke et al., 2023) and 210K synthetic objects from Zeroverse (Xie et al., 2024).
The inclusion of Zeroverse data, which features a higher proportion of concave objects, assists in
training the model to handle complex shadowing effects. Additionally, We also modify the metallic
properties and roughness of some Zeroverse objects to introduce more specular surfaces, adding
variety and challenge to the dataset.

For lighting diversity, we gathered over 8,000 HDR environment maps from multiple sources, in-
cluding Polyhaven1, Laval Indoor (Gardner et al., 2017), Laval Outdoor (Hold-Geoffroy et al.,
2019), internal datasets, and a selection of randomly generated Gaussian blobs. We augmented
these maps with random horizontal rotations and flips, increasing their number 16-fold. Each object
is rendered from 10 to 32 randomly selected viewpoints under 2 to 12 different lighting conditions.

Model details. Our model comprises 24 layers of transformer blocks for the geometry reconstruc-
tion stage and an additional 8 layers for the appearance diffusion (denoising) stage, with a hidden
dimension of 1024 for the transformers and 4096 for the MLPs, totaling approximately 0.4 billion
trainable parameters. We employ Pre-Layer Normalization (Xiong et al., 2020) and GeLU activa-
tions (Hendrycks & Gimpel, 2016).

Input images and environment maps are tokenized using an 8× 8 patch size, while denoising views
are tokenized with a 16× 16 patch size to optimize computational efficiency. Tokenization involves
a simple reshape operation followed by a linear layer, with separate weights for the input and target
image tokenizers. The diffusion timestep embedding is processed via an MLP similar to Peebles &
Xie (2023), is appended to the input token set to the diffusion transformer.

Training details. The initial training phase employs four input views, four target denoising views
(under target lighting, used for computing the diffusion loss), and two additional supervision views
(under target lighting), all at a resolution of 256× 256, with the environment map set to 128× 256.
The model is trained with a batch size of 512 for 80K iterations, introducing the perceptual loss after
the first 5K iterations to enhance training stability. Following this pretraining at the 256-resolution,
we fine-tune the model for a larger context by increasing to six input views and six denosing target
views at a higher resolution of 512 × 512. This fine-tuning expands the context window to up to
31K tokens. For diffusion training, we discretize the noise into 1,000 timesteps, adhering to the
method described in Ho et al. (2020), with a variance schedule that linearly increases from 0.00085
to 0.0120. To enable classifier-free guidance, environment map tokens are randomly masked to zero
with a probability of 0.1 during training. For more details, please refer to Appendix.

Sampling details. We performed an ablation study on the key hyperparameters, specifically the
number of denoising steps and the classifier-free guidance (CFG) weight, as detailed in Table 6. We
found our model can produce realistic and diverse results with five sampling steps, and CFG of 3.0
gives the best result for our res-256 model.

5 EXPERIMENTS

We refer the readers to our project page for video results and interactive visualizations.

5.1 COMPARISON WITH OPTIMIZATION-BASED METHODS

Current optimization-based inverse rendering algorithms achieve state-of-the-art 3D relighting re-
sults, but typically require dense view captures (over 40 views) and long optimization times, often
taking several hours, using traditional rendering techniques like rasterization, path tracing, or neural
rendering.

We evaluate our method against these approaches on three publicly available datasets: STANFORD-
ORB (Kuang et al., 2024), OBJECTS-WITH-LIGHTING (Ummenhofer et al., 2024), and TENSOIR-

1https://polyhaven.com/hdris
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Figure 3: Comparison with optimization-based inverse rendering baselines on STANFORD-
ORB (Kuang et al., 2024), OBJECTS-WITH-LIGHTING (Ummenhofer et al., 2024), and TENSOIR-
SYNTHETIC (Jin et al., 2023) datasets. (a) On STANFORD-ORB, our method captures realistic
specular highlights and geometric details, outperforming NVDiffRec-MC(Hasselgren et al., 2022)
and InvRender (Zhang et al., 2022b). (b) On OBJECTS-WITH-LIGHTING, our results closely match
the ground truth, while baselines show over-specularity or artifacts. (c) For TENSOIR-SYNTHETIC,
our method achieves comparable relighting with significantly fewer views. Notably, our method
requires only 6 to 8 views and completes relighting in 2-3 seconds, while baselines need over 50
views and hours of processing.

SYNTHETIC (Jin et al., 2023). The STANFORD-ORB dataset comprises 14 objects captured under
three lighting conditions, with around 60 training views and 10 test views per lighting setup per
object. The OBJECTS-WITH-LIGHTING dataset contains 7 objects with dense views captured under
one training lighting condition and 3 views for two additional lighting conditions for testing. The
TENSOIR-SYNTHETIC dataset consists of 4 objects with 100 training views under one lighting
condition and 200 test views for each of five lighting conditions.

Our method requires only six input views for STANFORD-ORB and OBJECTS-WITH-LIGHTING
and eight input views for TENSOIR-SYNTHETIC, completing the entire reconstruction and relight-
ing process in just 2 to 3 seconds. In contrast, state-of-the-art optimization-based methods typically
rely on all available training views (around 60 views per object for STANFORD-ORB, 42-67 views
per object for OBJECTS-WITH-LIGHTING, and 100 views per object for TENSOIR-SYNTHETIC)
and take several hours to optimize. Despite using significantly fewer input views and processing
time, our method achieves comparable reconstruction and relighting results, as demonstrated in Ta-
ble 1 and Table 2, showcasing its remarkable efficiency. Qualitative comparisons in Figure 3 further
highlight our method’s superior performance across various scenarios. Optimization-based methods
struggle with high uncertainties when decomposing object appearances under input lighting and re-
lighting, leading to baked highlights (Column-6 in Figure 3) and poor specular reflections (Columns
1 and 3). In contrast, our generative approach handles these challenges effectively.

5.2 COMPARISON WITH DATA-DRIVEN BASED RELIGHTING METHODS

We also compare our method with state-of-the-art image relighting approaches (Jin et al., 2024;
Zeng et al., 2024), which fine-tune text-to-image diffusion models for single-image relighting. These
methods, however, only support relighting from the input views and do not handle novel view re-
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Table 1: Real world experiments. We compare our method with state-of-the-art optimization-based
approaches on the STANFORD-ORB (Kuang et al., 2024) and OBJECTS-WITH-LIGHTING (Um-
menhofer et al., 2024) datasets. Our method offers competitive relighting results, but uses only six
input views and runs within seconds on a single A100 GPU, whereas other methods require 60 views
for STANFORD-ORB and 42 to 67 views for Objects-With-Lighting, taking hours to complete.

Method STANFORD-ORB OBJECTS-WITH-LIGHTING
PSNR-H ↑ PSNR-L ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ # Input views Runtime

Ours 24.67 31.52 0.969 0.032 23.08 0.79 0.284 6 ∼2 seconds
Neural-PBIR 26.01 33.26 0.979 0.023 N/A N/A N/A 42-67 hours
Mitsuba+Neus N/A N/A N/A N/A 26.24 0.84 0.227 42-67 hours
IllumiNeRF 25.56 32.74 0.976 0.027 N/A N/A N/A 42-67 hours
NVDIFFREC-MC 24.43 31.60 0.972 0.036 20.24 0.73 0.393 42-67 hours
InvRender 23.76 30.83 0.970 0.046 23.45 0.77 0.374 42-67 hours
TensoIR N/A N/A N/A N/A 24.15 0.77 0.378 42-67 hours
NeRFactor 23.54 30.38 0.969 0.048 20.62 0.72 0.486 42-67 hours
NVDIFFREC 22.91 29.72 0.963 0.039 22.60 0.72 0.406 42-67 hours
PhySG 21.81 28.11 0.960 0.055 22.77 0.82 0.375 42-67 hours

Table 2: Comparison with dense-view optimization-based methods on TensoIR-Synthetic. This
dataset from (Jin et al., 2023) includes 4 scenes, each having 100 training views and 5 lighting
conditions with 200 test views. We report per-scene and average metrics. Baselines use 100 input
views; our method uses only eight. ∗ indicates rescaling in pixel space instead of albedo.

Method Armadillo Ficus Hotdog Lego Average
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM LPIPS # Input views Runtime

Ours∗ 33.25 0.966 26.18 0.952 29.32 0.938 27.44 0.886 29.05 0.936 0.082 8 ∼3 second
FlashCache 34.81 0.959 26.29 0.960 29.24 0.941 28.56 0.917 29.72 0.944 0.080 100 hours
IllumiNeRF∗ N/A N/A N/A N/A N/A N/A N/A N/A 29.71 0.947 0.072 100 hours
TensoIR∗ 34.75 0.974 25.66 0.950 28.78 0.932 29.37 0.932 29.64 0.947 0.068 100 hours
TensoIR 34.50 0.975 24.30 0.947 27.93 0.933 27.60 0.922 28.58 0.944 0.081 100 hours
InvRender 27.81 0.949 20.33 0.895 27.63 0.928 20.12 0.832 23.97 0.901 0.101 100 hours
NeRFactor 26.89 0.944 20.68 0.907 22.71 0.914 23.25 0.865 23.38 0.908 0.131 100 hours

lighting. Real-world benchmarks like STANFORD-ORB and OBJECTS-WITH-LIGHTING focus on
novel view relighting, making these methods unsuitable for direct evaluation on those datasets.

To ensure a fair comparison, we construct a held-out set from filtered Objaverse (unseen during
training), comprising 7 highly specular objects and 6 concave objects with shadows. Each object is
rendered under five environment maps with four viewpoints, resulting in a total of 260 images for
evaluation. We compute PSNR, SSIM, and LPIPS metrics, after applying per-channel RGB scaling
to align predictions with the ground truth, following (Jin et al., 2024). Our method outperforms the
baselines, showing better image quality metrics as in Table 3.

Input OursGround Truth Neural Gaffer Taget Lighting

Figure 4: Comparison with image-based relighting baseline on our held-out evaluation set shows
that our model produces better visual quality, with improved shadow removal and highlight. Our
model processes four input images jointly, while the baseline relights each image independently.

5.3 OBJECT SCENE INSERTION

RelitLRM’s capability to accurately reconstruct and relight 3D objects makes it particularly effec-
tive for object scene insertion tasks, where the goal is to seamlessly integrate objects into existing
environments, as demonstrated in Fig. 1(c) and Fig. 1(d). In Fig. 1(c), we demonstrate the in-
sertion of two objects into an indoor living-room scene, where they harmonize naturally with the
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Ground TruthInput images Ours-Probabilistic Ours-Deterministic Target lighting

Figure 5: Our probabilistic design yields significantly better results on specular highlights com-
pared to the deterministic counterpart. The radiance function of specular objects under challeng-
ing lighting is highly multi-modal with long tails. Our denoising diffusion approach models this
distribution more effectively, while the deterministic design fails to mode such complex distribution
and produce overly smooth specular highlights.

Table 3: Comparison with image-based re-
lighting models on held-out validation set.
The prediction is scaled per-channel to align
with the target following (Jin et al., 2024). The
PSNR is only computed in masked foreground
regions. Our method takes four input views, and
baseline methods take each view independently.

PSNR ↑ SSIM ↑ LPIPS ↓ NFE Parameters

Ours 28.50 0.93 0.058 5 0.4B
NeuralGaffer 24.51 0.90 0.072 50 0.9B

DiLightNet 20.02 0.85 0.132 20 0.9B

Table 4: Ablation on probabilistic design. We
design a deterministic counterpart by remov-
ing the noisy image tokens and keeping the
model architecture and training configuration
the same. We compare our probabilistic design
with the deterministic counterpart on held-out
evaluation set. See Figure 5 for visual results.

Input Views PSNR ↑ SSIM ↑ LPIPS ↓

Ours-Probabilistic 4 27.63 0.922 0.064

Ours-Deterministic 4 27.10 0.912 0.076

surrounding lighting and shadows. In Fig. 1(d), we present that eight objects are relit under strong
directional sunlight with our method, showcasing their ability to cast realistic shadows and exhibit
accurate specular highlights, demonstrating RelitLRM’s effectiveness in handling diverse lighting
conditions.

5.4 ABLATION STUDY

Deterministic vs. probabilistic relighting. Decomposing object’s appearance from input light-
ing and relighting is inherently ambiguous. Moreover, the radiance function of object under high-
frequency lighting is extremely complex and highly multi-modal, e.g. containing multiple small
sharp highlights. To address this, our model reconstructs geometry deterministically while relight-
ing the object’s radiance probabilistically using a diffusion approach. To evaluate this design, we
introduce a deterministic baseline that relights objects directly, without the diffusion step, using
the same architecture, amount of parameters, and training iterations. We assess both models on our
hold-out validation set, with metrics presented in Table 4 and visual comparisons in Fig. 5. Although
the quantitative results are similar, the probabilistic approach significantly improves visual quality
for specular objects. This supports the idea that our probabilistic design captures the complex multi-
modal radiance function more effectively than the deterministic counterpart, which tends to produce
over-smooth results.

Effects of more input views. We evaluate our model with gradually increased number of input
images up to 16 (70K input tokens) on our held-out set and TensoIR-Synthetic as shown in Table 5.
We observe a positive correlation between our relighting quality and the number of input images.
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Table 5: Impact of more input views: We evaluate the Res-512 model by incrementally adding
more input views and compare its performance on our hold-out evaluation set and TENSOIR-
SYNTHETIC. The Res-512 model is fine-tuned from the Res-256 model using six input views and
six denoising views, and fixed through this evaluation.

HOLDOUT VALIDATION SET TENSOIR-SYNTHETIC
Input Views PSNR ↑ SSIM ↑ LPIPS ↓ Input Views PSNR ↑ SSIM ↑ LPIPS ↓

2 23.58 0.896 0.113 4 27.83 0.926 0.091
4 26.14 0.915 0.086 8 29.04 0.936 0.082
6 27.71 0.926 0.072 12 29.27 0.938 0.081
8 28.08 0.929 0.070 16 29.31 0.938 0.080

Table 6: Ablation on the parameter space of diffusion with four input views at 256× 256 resolu-
tion in our holdout evaluation set. Default setting is marked as gray .

(a) Number of denoising views.

views PSNR ↑ SSIM ↑ LPIPS ↓
1 27.05 0.913 0.075
2 26.87 0.913 0.0745
4 27.63 0.922 0.064

(b) Classifier-free guidance.

CFG PSNR ↑ SSIM ↑ LPIPS ↓
1.0 27.00 0.915 0.072
3.0 27.63 0.922 0.064
6.0 23.64 0.891 0.0974

(c) Number of denoising steps.

steps PSNR ↑ SSIM ↑ LPIPS ↓
2 23.81 0.884 0.096
5 27.63 0.922 0.064

10 27.00 0.915 0.073

Hyper-parameters in diffusion. In our model, the number of denoising views is independent of
the number of input views. After all denoising steps, the virtual denoising views are discard, leaving
only the 3D Gaussians for relighting at arbitrary views. A key question is how the denoising views
affect the results. Additionally, two other parameters significantly impact relighting performance:
the classifier free guidance weight and number of denoising steps. We present qualitative ablation
results in Table 6. For classifier-free guidance, we visualize its effect in Fig. 6, where the uncondi-
tional predictions looks like relighting under average lighting in our dataset, and higher CFG weights
making the object appear more specular.

GT CFG=0 CFG=1 CFG=3 CFG=6 GT CFG=0 CFG=1 CFG=3 CFG=6
Target 
lighting

Target 
lighting

Figure 6: Effect of classifier-free-guidance (CFG). We show two novel-view relighting results with
different CFG weight. Zero weight denotes unconditional relighting, which resembles relighting
with average dataset lighting. Higher CFG weight makes the object more specular.

5.5 LIMITATIONS

Despite our model reconstructs and relights objects from sparse-view images, it requires camera
parameters for the input views, which can be impractical in some cases. Also our model does not
support material editing applications, due to lack of explicit appearance decompositions. Although
the model improves output quality with more input images, performance saturates around 16 views
(as shown in Table 5). Improving scalability with additional input views and higher resolutions
remains an area for future exploration. Additionally, our model uses environment maps as the target
lighting representation, which cannot accurately represent near-field lighting.

6 CONCLUSION

we presented RelitLRM, a generative Large Reconstruction Model for reconstructing high-quality,
relightable 3D objects from sparse input images using a diffusion transformer. Unlike traditional
methods, our approach bypasses explicit appearance decomposition and shading, instead generating
relighted radiance directly through a deterministic geometry reconstructor followed by a proba-
bilistic appearance generator based on relit-view diffusion. Trained on extensive relighting datasets,
RelitLRM captures complex lighting effects such as shadows and specularity, often surpassing state-
of-the-art baselines while requiring significantly fewer input images. Moreover, it achieves this in
just 2–3 seconds, compared to the hours needed by per-scene optimization methods, demonstrating
its remarkable efficiency and potential for real-world applications in relightable 3D reconstruction.
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Ethics Statement. This work proposes a large reconstruction model with a generative relightable
radiance component, which can be used to reconstruct relightable 3D assets from sparse images.
The proposed model tries best to preserve the identity of objects in the captured images in the
reconstruction process; hence it might be used for reconstructing 3D from images with humans or
commerical IPs.

Reproducibility Statement. We have included enough details in this main paper (Sec. 4) and
appendix (Sec. A.1) to ensure reproducibility, which includes our training and testing data, model
architecture, training setup, etc. We are also happy to address any questions regarding the imple-
mentation details of our paper, if any.
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A APPENDIX

A.1 PSEUDO CODE

Algorithm 1 RelitLRM pseudo code.
# one training iter of RelitLRM
# Input list:
# x_inp: [b, n, h, w, 3], n is number of views; h and w are the height and width;
# x_inp_ray_o, x_inp_ray_d: both [b, n, h, w, 3]. per-pixel ray direction and ray

origins for input images.
# target_relit_image: [b, n1, h, w, 3], n1 is the number of denosing views.
# extra_train_image: [b, n2, h, w], extra ground truth relighted image for

supervision.
# envmap: [b, 3, h_e, w_e]. target lighting environment map
# Output: training loss

# Step-1: geometry token extraction from input images
x_inp = concat([x_inp, x_inp.ray_plucker], dim=1) # [b, n, h, w, 9]
x_inp = conv1(x_inp, out=d, kernel=8, stride=8) # patchfy: [b, n, h/8, w/8, d]
x_inp = x_inp.reshape(b, -1, d) # [b, n_inp_tokens, d]
x_inp_geo = transformer1(LN(x_inp))

# step-2: tokenize envmap
e_darker = log(envmap) / max(log(envmap))
e_brighter = HLG(envmap) # hybrid log-gamma transfer function
x_light = concat([e_darker, e_brighter, envmap.ray_d], dim=-1) # [b, h_e, w_e, 9]
x_light = conv2(x_light, out=d, kernel=8, stride=8)
x_light = x_light.reshape(b, -1, d) # [b, n_light_token, d]
x_light = linear(GeLU(x_light), out=d) # [b, n_light_token, d]

# step-3: add noise to target_relit_image
t = randint(0, 1000, (x_inp.shape[0], )) # [b,]
alpha_cumprod = ddpm_scheduler(t)
noise = randn_like(target_relit_image)
x_t_relight = target_relit_image * sqrt(alpha_cumprod) + noise * sqrt(1 -

alpha_cumprod)
t_token = TimeStepEmbedder(t) # [b, 1, d]

# step-4: tokenize noisy relit images
# concate with plucker ray of denosing views to [b, n’, h, w, 9]
x_t_relight = concate([x_t_relight, target_relit_image.ray_plucker])
x_t_relight = conv3(x_t_relight, out=d, kernel=16, stride=16)
x_t_relight = x_t_relight.reshape(b, -1, d) # [b, n_relight_token, d]

# step-5: feed every tokens to the denosing transformer
# everything as tokens
x_all = concat([x_inp_geo, x_light, x_t_relight, t_token], dim=1)
# [b, n_inp_tokens + n_light_tokens + n_relight_tokens + 1, d]
x_all = transformer2(LN(x_all))
x_inp_radiance, _ = x_all.split(x_inp_geo.shape[1], dim=1) # [b, n_inp_token, d]

# step-6: decode pixel-algined 3D Gaussian parameters
# geometry parameters
x_geo = x_inp_geo.reshape(b, n, h//8, w//8, d)
x_geo = deconv(LN(x_geo), out=9, kernel=8, stride=8) # unpatchify to pixel-aligned GS

output: [b, n, h, w, 9]
x_geo = x_geo.reshape(b, -1, 9) # all geometry params [b, n * h * w, 9]
# apperance_parameters, spherical-harmonics up to order of 4
x_inp_radiance = x_inp_radiance.reshape(b, n, h//8, w//8, d)
sh_weight = deconv(LN(x_inp_radiance), out=75, kernel=8, stride=8) # 75-dim sh

# GS parameterization
distance, scaling, rotation, opacity = x_geo.split([1, 3, 4, 1], dim=-1)
w = sigmoid(distance)
xyz = x_inp_ray_o + x_inp_ray_d * (near * (1 - w) + far * w)
scaling = min(exp(scaling - 2.3), 0.3)
rotation = rotation / rotation.norm(dim=-1, keepdim=True)
opacity = sigmoid(opacity - 2.0)

# step-7: compute training loss
3dgs = (xyz, rgb, scaling, sh_weight, rotation, opacity)

pred_x0, pred_extra_view = Render(3dgs, [target_relit_image.camera, extra_train_image
.camera])

l2_loss = L2([pred_x0, pred_extra_view], [target_relit_image, extra_train_image])
lpips_loss = LPIPS([pred_x0, pred_extra_view], [target_relit_image, extra_train_image

])
loss = l2_loss + 0.5 * lpips_loss
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A.2 MODEL DETAILS

Tokenizing HDR environment maps. To make it easier for networks to ingest HDR environ-
ment maps E ∈ RHe×We×3, we convert each E into two feature maps through two different tone-
mappers: one E1 emphasizing dark regions and one E2 for bright regions.

E1 =
log10(E)

max(log10(E))
, E2 = HLG(E), (9)

where HLG(·) represents the hybrid log-gamma transfer function. We then concatenate E1, E2 with
the ray direction D, creating a 9-channel feature for each environment map pixel. Then we patchify
it and apply a two layer MLP with to turn it into light tokens, {T light

ij }j=1,2,...,HeWe/p2
e
.

A.3 IMAGE AND LIGHTING PREPROCESSING

To address scale ambiguity in relighting, we normalize both the rendered images and the environ-
ment map lighting in the dataset. For a rectangular target environment map, we compute its total
energy, weighted by the sine of each pixel’s elevation angle. We then normalize the environment
map to ensure the weighted total energy matches a predefined constant. The same scaling factor is
applied to the HDR rendered images. The detailed process is outlined in pseudo code 2.

Algorithm 2 Normalize environment map and rendered images .
# normalize the rendered images and environment maps
# Input list:
# x: [n, h, w, 3], n is number of views rendered for this scene under this lighting.

h is image widht and w is image height.
# envmap: [h_e, w_e, 3]. environment map used to render this scene.
# constant_energy: pre-defined total energy. precomputed as dataset median number
# output list: x_normalized, envmap_normalized

# Step-1: compute weighted total energy of the environment map
H, W = envmap.shape[:2]
theta = linspace(0.5, H - 0.5, H) / H * np.pi
sin_theta = sin(theta)
envmap_weighted = envmap * sin_theta[:, None, None]
weighted_energy = sum(envmap_weighted)

# step-2: compute scaling factor
scale = constant_energy / weighted_energy

# step-3: normalize envmap
envmap = envmap * scale

# step-4: normalize and tonemap rendered images
x = x * scale # [n, h, w, 3]
x_flatten = x.reshape(-1, 3) # [n_total_pixel, 3]
x_min, x_max = percentile(x_flatten, [1, 99])
x = (x - x_min) / (x_max - x_min)
x = x.clip(0, 1)
# tonemapping
x = x ** (1.0 / 2.2)

return x, envmap

A.4 TRAINING HYPERPARAMETERS

We begin by training the model from scratch with four input views, four denoising views, and two
additional supervision views under target lighting, at a resolution of 256×256. The model is trained
for 80K iterations with a batch size of 512, using the AdamW optimizer with a peak learning rate
of 4e − 4 and a weight decay of 0.05. The β1, β2 are set to 0.9 and 0.95 respectively. We use 2000
iterations of warmup and start to introduce perceptual loss after 5000 iterations for training stability.
We then finetune the model at a resolution of 512 × 512 with six input views, six denoising views,
and two supervision views, increasing the number of input tokens to 31K. This finetuning runs for
20K iterations with a batch size of 128, using the AdamW optimizer with a reduced peak learning
rate of 4e − 5 and 1000 warmup steps. Throughout training, we apply gradient clipping at 1.0 and
skip steps where the gradient norm exceeds 20.0.
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Figure 7: Results after rescaling for “Pepsi”. We present the original results from the first column
of Figure 3 (first column) alongside rescaled versions for better visualization. Rescaling is applied
channel-wise, using a factor computed from the median values of the ground truth and the corre-
sponding relighting results.

Figure 8: Input images of our method for the “Hotdog”. While baseline methods require 100
dense-view input images, our approach uses only these eight views. These input images shows
shadows at the bottom part of the hotdog, which the baseline methods shown in Figure 3 fail to
remove effectively.

A.5 TRAINING COMPUTE

We train the Res-256 model with four input views on 32 A100 GPUs(40GB VRAM) for four days.
Then we finetune it at resolution of 512× 512 with 6 input views, which takes another 2 days.

A.6 ADDITIONAL RESULTS FOR FIGURE 3
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Input Images

Ground Truth Results with
4 input views

Results with
8 input views

Results with
12 input views

Relighting Results

Figure 9: Results with more input views. The top part of the figure displays 8 input images, with
the first row corresponding to the 4-view setup. The bottom part shows results with progressively
more input views (4, 8, and 12 views). In the region highlighted by the red rectangle, the 12-view
result demonstrates significant improvement over the 4-view result due to better coverage of the
scene from input images.
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