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ABSTRACT

When limited by their own morphologies, humans and some species of animals
have the remarkable ability to use objects from the environment towards accom-
plishing otherwise impossible tasks. Embodied agents might similarly unlock a
range of additional capabilities through tool use. Recent techniques for jointly
optimizing morphology and control via deep learning output effective solutions
for tasks such as designing locomotion agents. But while designing a single-goal
morphology makes sense for locomotion, manipulation involves a wide variety
of strategies depending on the task goals at hand. An agent must be capable of
rapidly prototyping specialized tools for different goals. Therefore, we propose
the idea of learning a designer policy, rather than a single design. A designer pol-
icy is conditioned on task goals, and outputs a design for a tool that helps solve
the task. A design-agnostic controller policy can then perform manipulation us-
ing these tools. In this work, we introduce a reinforcement learning framework
for learning these policies. Through simulated manipulation tasks, we show that
this framework is more sample efficient than black-box optimization methods in
multi-goal settings. It can also perform zero-shot interpolation or finetuning to
tackle previously unseen goals. Finally, we demonstrate that our framework al-
lows tradeoffs between the complexity of design and control policies when re-
quired by practical constraints. Additional task visualizations can be found at this
link: https://tool-design-iclr-2023.github.io/.

1 INTRODUCTION

Humans and animals are able to make use of tools to solve manipulation tasks when they are con-
strained by their own morphologies. For example, when an item has been lost below the sofa, one
might quickly deduce that a long stick will help them retrieve it. Chimpanzees have been observed
using tools to access termites as food and hold water (Goodall, 1964), and cockatoos are able to
create stick-like tools by cutting shapes from wood (Auersperg et al., 2016). To flexibly and re-
sourcefully accomplish a range of tasks comparable to humans, embodied agents should also be
able to leverage tools. However, while any object in a human or robot’s environment is a potential
tool, these objects often need to be correctly selected or combined to form a useful aid for the task
goal at hand. For this reason, we investigate not only how agents can perform control using tools,
but also how they can design appropriate tools when presented with a particular task goal, such as a
target position or object location.

For an embodied agent to design and use tools in realistic environments with minimal supervision, it
must be able to efficiently learn design and control policies with reward signals specified based only
on task completion. Furthermore, it should form specialized tools based on the task goal at hand, as
shown in Figure 1. Finally, it should be able to work with the materials it has available, rather than
attempting to create potentially unrealizable designs.

Without detailed supervision, how can an agent acquire effective policies for both tool design and
control? The combined space of potential designs and control policies grows exponentially even
for simple tasks, and the majority of candidate tools and trajectory executions may not make any
progress towards task completion. As a result, zeroth-order optimization techniques like evolution-
ary strategies and naive reinforcement learning approaches require many samples from the environ-
ment to find solutions. Prior works have studied joint learning of agent morphologies and control
policies for locomotion tasks (Pathak et al., 2019; Luck et al., 2019; Hejna et al., 2021; Gupta et al.,
2021), and methods leveraging graph neural networks (GNN)s have shown promising performance
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improvements using just task rewards as supervision (Yuan et al., 2022). However, these approaches
optimize designs for a generic goal, such as maintaining balance or forward speed. Designing a
single-goal morphology is suited for locomotion, but manipulation requires a range of strategies
depending on the given task. An agent must be capable of rapidly prototyping specialized tools for
different manipulation goals.

 

Figure 1: An agent may need to design
and use different tools to fetch a high-up
book (orange) or push it into the bookshelf
(green). Therefore, it should rapidly proto-
type tools for the tasks at hand.

In this work, we tackle the challenges of learning design
and control solely from task progress rewards by lever-
aging recent work in joint morphology and control opti-
mization for locomotion agents, which performs RL us-
ing a multi-stage Markov decision process (MDP) com-
bined with graph neural network (GNN) policies and
value functions to achieve improved sample efficiency
and performance in the joint learning setting. This, com-
bined with a simple chain-link tool design parameteriza-
tion, allows us to perform efficient learning of designer
and controller policies together in a high-dimensional
combined space. We train these policies on multiple goal
settings for each task so that they can produce designs
best suited to each goal and manipulate tools with varying
geometries. Lastly, we investigate how tunable parame-
ters can control the trade-offs between the complexity of
design and manipulation under resource constraints.

Our main contribution is a learning framework for embodied agents to design and use rigid tools for
manipulation tasks. We leverage a multi-stage reinforcement learning pipeline to learn goal-specific
tools in addition to manipulation policies that can perform control with a range of tools. We demon-
strate that this approach can jointly learn these policies in a sample-efficient manner in a variety of
sparse reward manipulation tasks, outperforming zeroth-order stochastic optimization approaches.
By introducing a tradeoff parameter between the complexity of design and control components, our
approach allows us to adjust the learned components to fit resource and environmental constraints,
such as available materials or energy costs. To the best of our knowledge, this work is the first that
studies learning goal-dependent tool design and control without any prior knowledge about the task.

2 RELATED WORK

Computational approaches to agent design. Many works have studied the problem of optimiz-
ing the design of robotic agents and end-effectors via model-based optimization (Kawaharazuka
et al., 2020; Allen et al., 2022), generative modeling (Wu et al., 2019; Ha et al., 2020), evolution-
ary strategies (Hejna et al., 2021), stochastic optimization (Exarchos et al., 2022), or reinforcement
learning (Li et al., 2021). These methods provide feedback to the design procedure by having the
agent execute predefined trajectories or perform motion planning. In contrast, we aim to jointly
learn control policies along with designing tool structures. In settings where the desired design is
known but must be assembled from subcomponents, geometry (Nair et al., 2020) and reinforcement
learning (Ghasemipour et al., 2022) have been used to compose objects into tools.

Learning robotic tool use. Several approaches have been proposed for empowering robots to learn
to use tools. Affordance learning is one common paradigm (Fang et al., 2018; Brawer et al., 2020;
Xu et al., 2021). Noguchi et al. (2021) integrate tool and gripper action spaces in a Transporter-style
framework. Learned or simulated dynamics models (Allen et al., 2019; Xie et al., 2019; Girdhar
et al., 2020; Lin et al., 2022) have also been used for model-based optimization of tool-aided control.
These methods assume that a helpful tool is already present in the scene, whereas we focus on
optimizing tool design in conjunction with learning manipulation, which is a more likely scenario
for a generalist robot operating for example in a household.

Joint optimization of morphology and control. One approach for jointly solving tool design and
manipulation problems is formulating and solving nonlinear programs, which have been shown to
be especially effective at longer horizon sequential manipulation tasks (Toussaint et al., 2018; 2021).
In this work, we aim to apply our framework to arbitrary environments, and so we select a purely
learning-based approach at the cost of increasing the complexity of the search space.
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Figure 2: Solving a task using learned designer and controller policies. During the design phase, the designer
policy outputs the parameters for a tool that will help solve the given task. In the control phase, the controller
policy then outputs motor commands given the tool structure and task specification.

Reinforcement-learning based approaches have also been applied to jointly learning morphology
and control. These include policy gradient methods with either separate (Schaff et al., 2019) or
weight-sharing (Ha, 2018) design and control policies, or considering the agent design as a compu-
tational graph (Chen et al., 2020). Evolutionary or Bayesian optimization algorithms have also been
combined with control policies learned through RL to solve a variety of locomotion and manipula-
tion tasks (Bhatia et al., 2021). Luck et al. (2019) use an actor-critic RL formulation with a graph
neural network (GNN) value function for improved sample efficiency. Pathak et al. (2019) learn
to design modular agents by adding morphology-modifying actions to a MDP. Yuan et al. (2022)
provide a generalized formulation with a multi-stage MDP and GNN policy and value networks.
These methods have demonstrated promising performance on locomotion tasks. In this work, we
focus on manipulation, which often involves sparser rewards and where adding additional actuated
joints to designs is infeasible. Furthermore, rather than optimizing for a single task objective, our
work addresses the challenge of goal-conditioned design and control.

3 OUR FRAMEWORK

In this section, we introduce our problem formulation and describe one instantiation of our frame-
work that we study in the remainder of this paper.

3.1 PROBLEM SETTING

Our framework tackles learning tool design and use for agents to solve manipulation problems,
without any supervision about the quality of designs except for task progress. Because we would
like flexibility in the formulation of the design space in an arbitrary control state space, we represent
the agent’s environment as a two-phase Markov decision process (MDP), including a design phase
and an control phase. Then, by jointly learning policies for the two phases, we can use the collected
environment interactions for training both policies.

At the start of every episode, the environment begins in the design phase, visualized in the top of
Figure 2. During the design phase, the action a ∈ AD specifies the parameterization of the tool that
will be used for the rest of the episode. In this phase, each state s ∈ SD consists of a vector of task
observations, for example positions and velocities of objects in the scene. Because the utility of a
given tool varies depending on the task at hand, no rewards are provided during this phase.
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After a single transition, the MDP switches to the control phase, illustrated in the lower half of
Figure 2. During the execution phase, the actions a ∈ AE represent motor commands applied to the
previously designed tool, and the agent receives rewards based on task progress (e.g., the distance
of an object being manipulated to the target position). The control phase state space SD includes
the task observations just like in the design phase, but also the tool parameterization from the design
phase. The execution phase continues until the task is solved or a time limit is reached, and the
episode then ends.

Given this two-phase MDP, the goal is to learn optimal design and control policies, π⋆
D(a|s) and

π⋆
E(a|s) respectively, that maximize the expected discounted return over the entire episode. This is

a challenging problem setting because the agent only receives signal about the quality of the tool
designs through the final task performance.

In this work, we design this formulation for jointly learning design and control for manipulation. A
similar formulation has been explored in prior work for locomotion (Yuan et al., 2022); however,
manipulation and locomotion problems have a key difference: while in locomotion, a morphology
can be optimized for a single objective like forward velocity and eventually constructed in the real
world, tool use for manipulation requires varied design and control strategies based on the task at
hand. Therefore, rather than finding a single tool design, we would like to learn a designer policy
that can create tools depending on the given task, as well as a controller policy that can perform
manipulation using different tools. We formulate this as conditioning on a supplied goal g from a
goal space G, such as the desired final location of an object to be manipulated. The objective is
then to find the optimal goal-conditioned designer and controller policies π⋆

D(a|s, g), π⋆
E(a|s, g)

that maximize the expected discounted return of a goal-dependent reward function R(s, a, g).

3.2 INSTANTIATING OUR FRAMEWORK

Next, we provide a concrete implementation of our framework catered towards solving a series of
2D manipulation tasks. Specifically, we select a tool design space, policy learning procedure, and
auxiliary reward function.

Tool design space. The design space can significantly impact the difficulty of the joint design
and control optimization problem. When the set of possible designs is large but many of them are
unhelpful for any task, the reward signal for optimization is sparse. Thus, we would like to select
a design parameterization that is low-dimensional, but can also enable many manipulation tasks.
Furthermore, we prefer designs that are easy to deploy in the real world.

For this implementation, we parameterize the tool using a 3-link rigid chain, but we note that our
framework is not limited to this choice of design space. We find that while this parameterization is
simple, it is sufficient to help solve a variety of 2D manipulation tasks. Because of its topology, it
can also be easily deployed in the real world for example on soft robots (Exarchos et al., 2022) or
through rapid fabrication techniques like 3D printing. Specifically, each tool is parameterized by a
vector [l1, l2, l3, θ1, θ2] ∈ R5, where l represents each link length and θ represents the relative angle
between the links. The width of each link is fixed.

Policy learning. We follow a similar procedure as Yuan et al. (2022) to learn the designer and
controller policies. Specifically, we interactively collect experience in the environment using the
design and control policies, where each trajectory spans the design and execution phase. We then
train the policies jointly using proximal policy optimization (PPO) (Schulman et al., 2017), a popular
off-the-shelf policy gradient method. As prior work (Yuan et al., 2022) has shown that graph neural
network (GNN) architectures can be helpful for accelerating learning when an input morphology
can be converted to a graph representation, we use GNNs as part of our policy architectures for
the design, control, and value function networks. The input graph structure consists of a node for
each joint in the tool design and an edge for each pair of connected joints. For our chain link
parameterization, this is always the three-node path graph P3. Each input node feature includes
the environment observation, and additionally for the control policy and value function, the design
parameters (e.g. relative angle and length) of the corresponding node in the tool design. As in
prior work, we use GraphConv (Morris et al., 2019) to perform graph convolution, before flattening
features from all nodes into a single vector and passing this through a multi-layer perceptron (MLP).
Additional architectural and training details are provided in Appendix A.
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(a) Pushing task. (b) Ball catching task. (c) Scooping task.

Figure 3: Visualizations of the 2D simulated manipulation environments for testing our framework.

During training, in order for the designer and controller to learn to achieve a variety of goals, we sup-
ply the policies with randomized goals sampled from the environment for each interaction episode.
The training objective is to maximize the expected return across sampled goals.

Auxiliary reward. When developing embodied agents that can flexibly create and use tools in the
real world, resource constraints are an additional consideration. Most co-optimization procedures
assume that material such as actuated joints or body links can be arbitrarily added to the agent
morphology. However, as an example, when an agent solves manipulation tasks in a household
environment, it may not have access to additional motors or large quantities of building materials.
One possible solution is for the agent to instead design a tool that requires less material to create,
and execute a more complex manipulation trajectory instead. On the other hand, when constraints
allow, constructing a larger tool can reduce the amount of energy that the agent consumes through
motor control, especially if a task must be completed many times.

We enable our framework to accommodate preferences in this trade-off between design material cost
and control energy consumption using a parameter α that adjusts an auxiliary reward that is added
to the task reward at each environment step:

rtradeoff = K

[
1−

(
α · dused

dmax
+

(1− α) · cused

cmax

)]
. (1)

where K is a scaling hyperparameter that we set to 0.7 for all experiments, α ∈ [0, 1] controls the
balance of emphasis on either the control or design component, dused and dmax represent the used
and maximum possible combined length of the three links in the design respectively, and cused and
cmax represent the control velocity at the current step and the maximum single-step control velocity
allowed by the environment. By adjusting the parameter α, we can encourage the policy to favor
using less material for tool construction when α is large, and less energy for the control policy when
α is small.

4 EXPERIMENTS

We conduct experiments using three environments created in the Box2D simulator (Catto): pushing,
ball catching, and scooping. We select these manipulation tasks to showcase the advantages of
using different tools to achieve different goals, when there does not exist a single optimal tool for
all goals. The three multi-goal tasks are shown in Figure 3. For each task, we initialize the designed
tool by matching a fixed point on the tool to a fixed starting position regardless of the goal. During
the control phase, we emulate a scenario in which the tool has been grasped by a robot and is
manipulated using velocity control in Cartesian space. A short description of each task is as follows:

• Pushing: Push a round puck using the tool such that it stops at the specified goal location.
The goal space is a subset of 2D final puck locations G ⊂ R2, and the control action space
A ∈ R2 specifies the x and y tool velocities. The reward at each step is the change in ℓ2
distance between the puck and the goal position after taking that step, plus a bonus of 3.0
for reaching the goal with a velocity below 1.0.
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(a) Pushing. (b) Ball catching. (c) Scooping.

Figure 4: Learning curves for our framework and black-box optimizer baselines on multi-goal and single-goal
settings. As baselines, we present the single-goal performance of CEM, CMA-ES, and PGPE, as well as the
multi-goal training performance of PGPE. We can see that across all studied tasks, our framework achieves
substantially improved performance, as well as competitive sample efficiency. Shaded areas indicate standard
error across multiple seeds (5 seeds on multi-goal methods and 10 seeds on single-goal methods).

• Catching: Use the tool to catch three balls that fall from the sky. The agent’s goal is to
catch all three balls, which start from varying locations on the x-y plane. We use a 1-
dimensional control action space that specifies the x velocity of the tool at each step. The
reward function is 3.0 for each ball caught, plus a bonus of 3.0 upon capturing all 3 balls.

• Scooping: Use the tool to scoop balls out of a reservoir containing 40 total balls. Here we
specify goals of either scooping a single ball, or as many as possible. The control action
space A ∈ R3 specifies the velocity of the rigid tool in x and y directions, along with its
angular velocity. The reward function is a bonus of 6.0 for successfully completing the
single ball goal, or a bonus of 3n

40 for scooping n balls in the multi-ball goal.

In our experiments, we evaluate whether the instantiation of our framework on these 2D manip-
ulation tasks has the following three properties that we argue are desirable for embodied agents
performing manipulation for tool use:

• Can our framework jointly learn design and control in a sample-efficient manner, using just
rewards based on task progress?

• Do our learned designer and controller policies generalize or enable finetuning to solve
goals previously unseen during training?

• Can our adjustable parameter α enable agents to specify preferences in the tradeoff between
design and control?

4.1 EVALUATING SAMPLE EFFICIENCY

First, we investigate whether our framework demonstrates improved sample efficiency for manip-
ulation problems compared to black-box optimization procedures. We compare to the following
baseline methods:

• CEM (single): We evaluate the cross-entropy method (Rubinstein, 1999; de Boer et al.,
2005), a zero-order optimization method that leverages importance sampling to guide the
sampling distribution towards higher-scoring values. We evaluate this method in a single-
goal setting, optimizing a separate set of parameters for each goal. We formulate the search
space as a single vector containing the design parameterization concatenated with control
actions for all steps in an episode.

• CMA-ES (single): We evaluate the covariance matrix adaptation evolution strategy (CMA-
ES) (Hansen & Ostermeier, 1996), a popular evolutionary strategy that maintains a popu-
lation of sampled candidates and models the covariances between each feature of sampled
vectors. We also evaluate this method in a single-goal setting, optimizing over the same
search space as CEM.

• PGPE (single): We evaluate policy gradient parameter exploration (PGPE) (Sehnke
et al., 2008) in a single goal setting. PGPE is a policy-gradient RL method that uses the
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Figure 5: Visualizations of tool designs outputted by a single learned designer policy for the pushing task as
the goal position, indicated in green, varies. We can see that the designer outputs a range of tool designs that
enable it to more easily push the ball in the desired direction.

natural gradient. We directly optimize the parameters of a neural network that takes as
input a single goal observation and the environment state and outputs both the design and
control actions. The appropriate action is selected based on the current phase when rolling
out the policy in the environment.

• PGPE (multi): We additionally compare against PGPE in a multi-goal setting with a simi-
lar setup as in the single goal setting but instead train a goal-conditioned neural network to
output design and control parameters.

We implement each baseline method using the EvoTorch library (Toklu et al., 2022). Additional
hyperparameters and tuning details for our comparisons can be found in Appendix A.1.

In Figure 4, we compare the learning curves of our method and the baselines for all three tasks. The
learning curves show the total reward versus the number of environment steps taken for each method.
Compared to the single-goal baselines, we see that training using our framework exhibits better
final performance and competitive sample efficiency. However, we emphasize that the single-goal
baselines optimize one model for each goal, while our method learns one model for all goals. When
compared to PGPE (multi), which learns one model for multiple goals, our method outperforms this
baseline in both sample efficiency and final performance.

We present qualitative examples of tool designs output for different goals on the pushing task in
Figure 5. We find that our designer policy outputs a diverse range of tools depending on the specified
goal location, and the controller policy is able to perform manipulation conditioned on the tool
design and goal to solve the task.

4.2 GENERALIZATION TO UNSEEN GOALS

Rather than learning a single design and a policy to control it, our framework seeks to enable rapid
tool prototyping for manipulation by learning goal-conditioned designer and controller policies. In
simulation, these policies can experience millions of trials for a range of goals. However, when
deployed to the real world, designer and controller policies cannot be pre-trained on all possible
future manipulation goals. The agent may instead leverage what it has learned about tools that
can be useful for an unseen task from the goals it has seen. In this section, we test the ability of
our policies to generalize to goals unseen during training. Because it has a goal space that can be
manipulated in a semantically meaningful way, we focus on the pushing task for these experiments.
We train policies using our framework on a subset of goals from the entire goal space by removing a
region of the space, which we call the “cutout” region. (see Figure 6a). For the pushing task, because
the goal space is the rectangular region defined by x ∈ [8.0, 32.0] and y ∈ [18.0, 34.0] specifying
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(a) Visualization of the goal space
and zero-shot performance with a
0.25 cutout ratio.

(b) Cumulative episode reward
versus cutout size for policies
trained with progressively larger
cutout regions.

(c) Fine-tuning performance
compared to learning from
scratch across 3 target goals.

Figure 6: Interpolation results on the pushing task. In (a), we plot the success (light blue) and failure (dark
blue) goal regions. Areas within the dotted yellow borders denote unseen cutout regions (interpolation). The
region within the teal border (but outside cutout regions) shows the training region. The area outside the teal
border is unseen during training (extrapolation). (b) and (c) show reward curves (averaged over 3 runs). Shaded
regions denote standard error. In (b), we observe that the performance for policies trained with small cutouts is
close to that of the setting trained on all goals. In (c) we show evaluation performance of policies finetuned for
a specific unseen goal compared to learning curves for single-task policies with those goals.

desired final ball location, the cutout region corresponds to two disconnected rectangular patches
in the goal space with x1 ∈ [11.0, 17.0], y1 ∈ [22.0, 30.0] and x2 ∈ [23.0, 29.0], y2 ∈ [22.0, 30.0]
respectively. Then, we evaluate the generalization performance of learned policies on the goals from
the cutout region and outside the training region in two separate scenarios.

Zero-shot performance. In the first scenario, we test the ability of the designer and controller
policy to tackle a previously unseen goal directly. Using a policy trained on the goal space with
a cutout region removed as described above, we evaluate the zero-shot performance by randomly
sampling unseen goals. In Figure 6a, we visualize the zero-shot performance of our design and
control policies on goals across the entire environment plane, finding that our policies are able to
solve even goals outside the training region boundaries.

Next, we analyze how decreasing the number of possible training goals affects generalization per-
formance. We train six policies using our framework where the cutout region removes a fraction of
the total training area equal to 0.16, 0.25, 0.36, 0.49, 0.64, and 0.81 respectively. We then plot the
performance of these learned policies on goals seen and unseen during training.

In Figure 6b, we show the returns as the size of the cutout region for training goals varies. As
a reference, we additionally visualize the performance of policies trained with our framework to
solve a single randomly selected task. When the cutout region is very small, the performance of our
learned policies on seen and unseen goals is similar. As the area of the cutout goal region increases,
the performance on unseen goals drops, but is still much better than the single goal baseline and is
able to solve a significant portion of unseen tasks.

Finetuning performance. Sometimes, new goals cannot be solved by directly applying our pre-
trained designer and controller policies. In this section, we test whether our policies can still serve
as good instantiations for achieving these goals. We hypothesize that even when our policies do
not solve the task directly, the designer policy may still be able to propose a reasonable tool that is
helpful for solving the task, while the controller policy will be able to generalize to manipulate new
tools. We test this by starting with policies pre-trained with our framework on the entire training goal
region and finetuning them to solve goals outside that region. Specifically, we select three goals for
finetuning: {(2, 13), (37, 28), (37, 13)}. For comparison, we also train three separate policies using
our framework to solve the single-goal pushing task towards each of these goals.

In Figure 6c, we show the results of the finetuning experiment. We find that even for goals that
are far away from the initial training region, our policies are able to learn to solve the task within a
handful of gradient steps. Because the pre-trained policies are able to find reasonable control and
especially tool initializations, the joint space of designs and control policies to explore is signifi-
cantly narrowed. In comparison, learning a single-goal policy from scratch is challenging because
achieving these distant goals requires many consecutive near-optimal decisions.
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(a) Control/Design ratio with different α.

α = 0.3

α = 0.7α = 1.0

α = 0.0

(b) Tools produced by designer policies at dif-
ferent levels of α.

Figure 7: Qualitative examples of tools generated by setting our tradeoff parameter α to different values. We
can see that as α increases, the tools created by the designer policy have shorter links at the left and right sides
to decrease material usage. With low α values, large tools prevent the control policy from having to move the
tool far.

4.3 TRADING OFF DESIGN AND CONTROL COMPLEXITY

In this section, we aim to determine whether our introduced tradeoff parameter α is effective at ac-
tualizing preferences in the tradeoff between design material cost and control energy consumption.
For this experiment, we focus on the catching task, because the tradeoff has an intuitive interpreta-
tion in this setting: a larger tool can allow the agent to catch the objects with minimal movement,
while a smaller tool can save on material cost but requires a longer trajectory that has additional
energy costs. We train four agents independently on the catching task, setting the value of α, the
tradeoff reward parameter defined in Equation 1, to 0, 0.3, 0.7, and 1.0 respectively.

In Figure 7a, we track the relative amounts of energy expended for control and material used for
design across these agents. Specifically, we plot the ratio dused/dmax

cused/cmax
, where d represents the combined

length of all tool links and c is the per-step control velocity. dmax and cmax indicate the maximum
tool size and control velocity allowed by the environment. We find that this ratio indeed correlates
with α, which indicates that agents that are directed to prefer saving either material or energy are
doing so, at the cost of the other. We also visualize the outputted tool designs in Figure 7b. We see
that for progressively larger values of α, the agent shortens the tool length on the side of the catcher
to conserve material, and instead navigates the tools further across the plane to catch the balls.

5 CONCLUSION

We have introduced a framework for agents to jointly learn design and control policies with the
purpose of solving manipulation tasks. Because the best type of tool and control strategy can vary
widely depending on the manipulation goal, we propose to learn designer and controller policies to
generate useful tools based on the task at hand and perform manipulation with them. By leveraging
reinforcement learning methods that use GNNs to compute features, we demonstrate using simu-
lated 2D manipulation tasks that our framework can be instantiated to learn designer and controller
policies for a variety of commanded goals. We find that when training on only a subset of possi-
ble goals, the learned policies can perform zero-shot generalization or rapid finetuning using many
fewer samples compared to learning from scratch. We finally demonstrate that, through the addi-
tion of a tunable tradeoff parameter, the learning procedure can be adjusted to better suit practical
requirements such as resource constraints.

Reproducibility. We described our method and experimental setup in detail in Sections 3 and 4.
The code will be released upon publication to facilitate future research.
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A TRAINING HYPERPARAMETERS & ARCHITECTURE DETAILS

A.1 OUR FRAMEWORK

Here we provide detailed hyperparameters for our framework. Unless otherwise specified, we use
the neural network architectures for the design policy, control policy, and value function from Yuan
et al. (2022).

Hyperparameters Values
Tool Position Init. (20, 10)

Control Steps Per Action 1
Max Episode Steps 150

Slack Reward -0.001
Tool Length Ratio (-0.5, 0.5)
Tool Length Init. (2.0, 2.0, 2.0)
Tool Angle Init. (0.0, 0.0, 0.0)

Tool Angle Ratio (-1.0, 1.0)
Tool Angle Scale 90.0
Control Log Std. -1.0
Design Log Std. -2.3

Fix Design & Control Std. True
Policy Learning Rate 2e-5

Entropy β 0.01
Value Learning Rate 1e-4

KL Divergence Threshold 0.005
Batch Size 50000

Minibatch Size 2000
PPO Steps Per Batch 10

Table 1: Hyperparameters used for our framework on the pushing task.

Hyperparameters Values
Tool Position Init. (20, 10)

Control Steps Per Action 1
Max Episode Steps 150

Slack Reward -0.001
Tool Length Ratio (-0.5, 2.0)
Tool Length Init. (2.0, 1.0, 1.0)
Tool Angle Init. (0.0, 0.0, 0.0)

Tool Angle Ratio (-1.0, 1.0)
Tool Angle Scale 60.0
Control Log Std. 0.0
Design Log Std. 0.0

Fix Design & Control Std. True
Policy Learning Rate 2e-5

Entropy β 0.01
Value Learning Rate 1e-4

KL Divergence Threshold 0.002
Batch Size 50000

Minibatch Size 2000
PPO Steps Per Batch 10

Table 2: Hyperparameters used for our framework on the ball catching task.

A.2 BASELINES

For each baseline, we perform hyperparameter sweeps for a fair comparison with our framework.
The tested hyperparameter configurations for each baseline are listed in Table 4.
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Hyperparameters Values
Tool Position Init. (15, 10)

Control Steps Per Action 5
Max Episode Steps 30

Slack Reward -0.001
Tool Length Ratio (-0.7, 0.2)
Tool Length Init. (6.0, 3.0, 3.0)
Tool Angle Init. (0.0, 0.0, 0.0)

Tool Angle Ratio (-0.1, 0.7)
Tool Angle Scale 90.0
Control Log Std. 0.0
Design Log Std. 0.0

Fix Design & Control Std. True
Policy Learning Rate 2e-5

Entropy β 0.01
Value Learning Rate 3e-4

KL Divergence Threshold 0.1
Batch Size 10000

Minibatch Size 400
PPO Steps Per Batch 10

Table 3: Hyperparameters used for our framework on the scooping task.

Method Hyperparameters Values

CMA-ES

Population Size 10, 24, 100, 1000
Initial Stdev 0.1, 1.0, 10.0

Center Learning Rate 0.01, 0.1, 1.0
Covariance Learning Rate 0.01, 0.1, 1.0

Rank µ Learning Rate 0.01, 0.1, 1.0
Rank One Learning Rate 0.01, 0.1, 1.0

CEM
Population Size 10, 24, 100, 1000

Initial Stdev 0.1, 1.0, 10.0
Parenthood Ratio 0.01, 0.1, 0.4, 0.8

PGPE

Population Size 10, 24, 100, 300
Center Learning Rate 0.001, 0.01, 0.1, 1.0
Stdev Learning Rate 0.001, 0.01, 0.1, 1.0

Initial Radius 0.01, 0.1, 1.0, 2.0, 5.0

Table 4: We tune over these values for hyperparameters of baseline methods. Bolded values indicate
the best performing settings, which we use in our comparisons.
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