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Abstract
As synthetic data becomes higher quality and pro-
liferates on the internet, machine learning mod-
els are increasingly trained on a mix of human-
and machine-generated data. Despite the suc-
cessful stories of using synthetic data for repre-
sentation learning, using synthetic data for gen-
erative model training creates “self-consuming
loops” which may lead to training instability or
even collapse, unless certain conditions are met.
Our paper aims to stabilize self-consuming gen-
erative model training. Our theoretical results
demonstrate that by introducing an idealized cor-
rection function, which maps a data point to be
more likely under the true data distribution, self-
consuming loops can be made exponentially more
stable. We then propose self-correction functions,
which rely on expert knowledge (e.g. the laws of
physics programmed in a simulator), and aim to
approximate the idealized corrector automatically
and at scale. We empirically validate the effective-
ness of self-correcting self-consuming loops on
the challenging human motion synthesis task, and
observe that it successfully avoids model collapse,
even when the ratio of synthetic data to real data
is as high as 100%.

1. Introduction
Generative models have been used to synthesize training
data for various learning tasks, to varying degrees of suc-
cess. For example, for the tasks of image classification and
contrastive representation learning, recent work (Azizi et al.,
2023; Tian et al., 2023) finds that using data synthesized
from generative models rivals using real data. Unfortunately,
there is a gloomier outlook when attempting to generalize
this framework to generative model training.
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Figure 1. What happens after iteratively training a text-conditioned
generative model for human motion synthesis for 50 generations?
We simulate a self-consuming loop by creating synthetic data with
the latest generative model, and mixing them with the original data
to continue training the next generative model. We observe that
by self-correcting the synthetic data with a physics simulator, the
model can successfully avoid collapse and generate high-quality
human motion. Faded poses represent poses from further back in
time. Our paper provides theoretical and empirical justification for
the self-correcting self-consuming loop.

On one hand, there is evidence to suggest that training a
generative model with its own outputs in a self-consuming
manner will lead to collapse (Alemohammad et al., 2024).
For example, after 50 iterations of self-consuming training, a
human motion diffusion model (Tevet et al., 2023) collapses
and fails to follow the text prompts or the laws of physics
(see the two examples on the left of Figure 1).

On the other hand, evidence suggests that such a framework
could avoid collapse, but only when a “moderate” amount
of synthetic data is used (Bertrand et al., 2024). Worse
still, this self-consuming scenario might happen without us
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knowing, and without us being able to quantify how much
synthetic data is being used during training, due to the wide
spread of AI generated content on the internet.

Intuitively, model collapse might be delayed or avoided by
incorporating higher quality human generated data (Alemo-
hammad et al., 2024), or by manually fixing the “mistakes”
in machine created data. Considering the size of datasets
used in practice (Schuhmann et al., 2022), neither of these
options is a scalable solution.

In this paper, we aim to provide a theoretical analysis of how
certain operations would avoid collapse in self-consuming
loops, without any assumptions on the “moderateness” of
synthetic data corruption. We introduce the mathematical
abstraction of a self-correction operation. This operation
maps synthesized data that are sampled from the generative
model to data that are better representatives from the tar-
get probability distribution that the model is attempting to
approximate. Instead of training on a combination of real
data and synthesized data, we propose training on a combi-
nation of real data and synthesized and then self-corrected
data. Note that injecting fresh human generated data can be
viewed as a special case of this operation.

Our main theoretical findings (Theorem 4.3):
(1) The self-consuming model with self-correction is ex-

ponentially more stable than the self-consuming model
without any self-correction.

(2) The self-correction procedure guarantees less unwanted
variance during self-consuming model training.

In our theoretical study, we assume that correction is ideal in
order to obtain rigorous performance guarantees. In our em-
pirical study, we evaluate whether the same conclusions hold
for noisy self-correction functions. We propose to automate
this “self-correction” process by relying on programmed ex-
pert knowledge rather than a human-in-the-loop, such that
the function can be applied at scale. We focus on the human
motion synthesis task (Guo et al., 2022), and implement
the self-correction function with a physics simulator-based
imitation model (Luo et al., 2021). Our empirical results
confirm that our theoretical findings hold in practice:
(1) As illustrated in Figure 1, the self-correcting self-

consuming model generates higher-quality human mo-
tion than the one without any self-correction.

(2) The self-correction function allows self-consuming
loops to avoid collapse even at a high synthetic data
to real data ratio (e.g. 100%).

Our theory and experiments suggest that self-correction
should stabilize self-consuming model training for any gen-
erative modeling task for which there exists a high quality
“self-correction” function. We have released all the code
associated with this paper.1

1Project page: https://nategillman.com/sc-sc.html

2. Related Work
2.1. Learning Representations with Synthetic Data

Real curated datasets are costly to obtain, so there has been
much interest in generating synthetic data as training data
for various vision tasks. Azizi et al. (2023) demonstrates
that text-to-image diffusion models such as Imagen (Saharia
et al., 2022) can generate synthetic examples that augment
the ImageNet dataset for better image classification. He et al.
(2023) studies how synthetic data from text-to-image mod-
els, when used exclusively, can be used as training data for
image recognition tasks. Similarly, Tian et al. (2023) finds
that using synthetic outputs from a text-to-image model re-
sults in contrastive models whose downstream performance
rivals that of CLIP (Radford et al., 2021) on visual recogni-
tion tasks, including dense prediction. And the work in Ja-
hanian et al. (2022) explored methods for multi-view repre-
sentation learning by using the latent space of the generative
models to generate multiple “views” of the synthetic data.
The above works collectively provide evidence that some
representation learning tasks, when trained on synthetic data
from some given generative models, yield excellent results.

2.2. Training Generative Models on Synthetic Data

Another line of reseach investigates the use of synthetic data
for training generative models. Shumailov et al. (2023) and
Martı́nez et al. (2024) show that the use of model gener-
ated content in generative model training results in model
degradation, likely because self-consuming loops remove
low-density areas from the estimated probability manifold.
Alemohammad et al. (2024) formalize three different kinds
of self-consuming generative models: the fully synthetic
loop, the synthetic augmentation loop, and the fresh data
loop. In all of these loops, they iteratively re-train the model
from scratch for every new generation. They empirically
find that only the fresh data loop avoids model degradation.

Another recent work (Bertrand et al., 2024) considers the
problem of iteratively fine-tuning in the context of synthetic
augmentation loops. They find that self-consuming aug-
mentation loops do not necessarily collapse, so long as the
synthetic augmentation percentage is sufficiently low. The
authors use techniques from the field of performative sta-
bility (Perdomo et al., 2020) to prove the existence of a
convergence phenomenon in the space of model parameters.
Our paper differs from prior work as we conduct analysis
on self-consuming generative model training when the syn-
thetic data can be optionally corrected. The correction can
be performed with a human-in-the-loop, or by incorporat-
ing learned or programmed expert knowledge, as explored
for natural language (Saunders et al., 2022; Welleck et al.,
2023; Wu et al., 2023) and human motion (Yuan et al., 2023;
Xu et al., 2023). We validate our theory with a practical
self-correcting operations designed for image generation
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and human motion synthesis tasks.

3. Overall Training Procedure
We describe our proposed procedure in concise language
in Algorithm 1, and we explain it in more detail here. We
train the zero’th generation from scratch on the ground
truth dataset Dreal := {xi}ni=1, and we stop training when
the model is close to convergence. For all the following
generations, we fine-tune the previous generation’s latest
checkpoint on a combination of the ground truth dataset
Dreal, as well as ⌊λ · n⌋ synthetic data points which are
generated from the previous generation’s latest checkpoint,
and then passed through the correction function πγ .

The correction function πγ is parameterized by the correc-
tion strength γ ∈ R≥0, which controls how much influence
the correction function has on the input data points towards
increasing a given point’s likelihood with respect to the tar-
get distribution. The other main hyperparameter λ ∈ R≥0 is
the synthetic augmentation percent, and it controls the ratio
of synthetic data to real data in each iteration of fine-tuning.
When γ = 0, we recover iterative re-training with synthetic
augmentation considered in (Bertrand et al., 2024). And if
we choose the synthetic augmentation percent to be λ = 0,
then each generation simply corresponds to fine-tuning the
model on the same dataset that it was trained on initially.

We now use iterative fine-tuning interchangeably with the
more general term self-consuming loop. We also consider
the idealized correction function for our theoretical analysis,
and a broader family of practical correction functions for
different data types.

4. Theoretical Analysis
4.1. Preliminaries

We mostly follow the notation from (Bertrand et al., 2024),
except for introducing the correction function πγ . Let us
denote by pdata the ground truth probability distribution that
we want to train a generative model to estimate. Suppose
we have some dataset Dreal = {xi}ni=1 sampled from pdata.
We write p̂data = (1/n)

∑n
i=1 δxi

. More generally, we use
a hat to denote the empirical distribution over finitely many
samples from the corresponding distribution.

Suppose that we have a class of generative models parame-
terized by Θ ⊂ Rd. We denote by pθ a probability distribu-
tion in this class with model parameters θ ∈ Θ. We define
the optimal model parameters within this class to be

θ⋆ = argmax
θ′∈Θ

Ex∼pdata
[log pθ′(x)], (1)

where we break ties by minimizing ∥θ⋆∥. Typically, such
optimal parameters yield a model pθ⋆ which closely approx-

imates the oracle ground truth distribution pdata, but doesn’t
equal it exactly; accordingly, we define the Wasserstein-2
distance between the distributions to be

ε := dW (pθ⋆ , pdata). (2)

The model weights for the first generation are naturally
defined according to the optimization

θn0 := argmax
θ′∈Θ

[Ex∼p̂data
[log pθ′(x)]]. (3)

This corresponds to training on the finite subset Dreal. Next,
let us suppose that the model weights from generation t are
denoted θnt . We will formalize a procedure for updating
these weights for the next generation to obtain θnt+1. For
this, we need to define our correction function, and then we
will use it to define the weight update.

Definition 4.1. For any probability distribution, and for
any γ ∈ R≥0, we define the correction of strength γ of
distribution pθ to be the distribution

πγpθ(x) :=
pθ(x) + γpθ⋆(x)

1 + γ
, (4)

where pθ⋆ is defined in (1). For any augmentation percent-
age λ ≥ 0, we define the weight update mapping to be

πγGnλ (θ) := local argmax
θ′∈Θ

Ĥ(θ, θ′) (5)

:= local argmax
θ′∈Θ

[
Ex∼p̂data

[log pθ′(x)]]

+ λEx∼π̂γpθ
[log pθ′(x)]

]
,

where p̂data and π̂γpθ are empirical distributions of size n
and ⌊λ · n⌋ respectively.

To continue our discussion from before, our iterative weight
update is defined as θnt+1 := πγGnλ (θnt ).

Note that we use an global maximization in (3) when defin-
ing the initial parameters θn0 , but we use a local maximiza-
tion when computing our parameter update in (5). This dif-
ference is analogous to the differences between how model
weights update during initial training, where parameter up-
dates are more global, and during fine-tuning, where param-
eter updates are more local.

4.1.1. UNDERSTANDING THE CORRECTION πγpθ(x)

For γ = 0, the correction mapping in (4) simplifies to
π0pθ = pθ, which is just the original distribution; this
corresponds to no correction at all. For γ = 1, it is π1pθ =
(pθ + pθ⋆)/2. And for γ = ∞, it is π∞pθ = pθ⋆ , which
corresponds to the optimal distribution. So as γ increases
from 0 to∞, the distribution πγpθ has a likelihood profile
that matches pθ less, and pθ⋆ more. As pθ⋆ is the optimal
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Algorithm 1 Iterative Fine-tuning of a Generative Model With Correction
Input: Dreal := {xi}ni=1, A, Aft, πγ // ground truth data, learning procedure, fine-tuning procedure, correction function
Parameters: T , λ, γ // number of retraining iterations, proportion of generated data, correction strength
pθ0 ← A(Dreal) // learn generative model from scratch on true data
for t = 1 to T do
Dsynth ← {πγ(x̃i)}⌊λ·n⌋i=1 , with x̃i ∼ pθt−1 // sample ⌊λ · n⌋ synthetic data points, pass through correction function
pθt ← Aft(Dreal ∪ Dsynth; pθt−1 ) // fine-tune previous generation using augmented dataset

end for
Return [pθ0 , pθ1 , pθ2 , . . . , pθT ]

model in our generative model class, this means that as
γ increases from 0 to ∞, we have that πγpθ(x) is a PDF
which better represents the target likelihood that we want to
estimate through training the generative model.

In our theoretical formulation, we consider correction func-
tions that correct the probability distribution pθ, rather than
the more intuitive (and practical) case of a correction func-
tion that corrects individual points that the distribution is de-
fined over. In Appendix C, we specify sufficient conditions
under which a pointwise correction function is guaranteed
to correspond to a distribution-wise correction function of
the same form as those which we consider in our theoret-
ical study and therefore can enjoy the theoretical stability
guarantees we prove. We also provide a concrete exam-
ple of a projection function, in the Gaussian case, which
provably satisfies those conditions. We conduct a series of
experiments on this toy example in Section 5.

4.1.2. UNDERSTANDING THE WEIGHT UPDATE πγGnλ (θ)

The weight update πγG
n
λ(θ) in (5) is a formalization of

the intended output of fine-tuning pθ on Dreal ∪ Dsynth,
where Dreal = {xi}ni=1 is the ground truth dataset of size
n, and Dsynth = {x̃i : x̃i ∼ π̂γpθ}⌊λ·n⌋i=1 is the synthesized-
and-corrected dataset of size ⌊λ · n⌋. In other words, in
an ideal run of stochastic gradient descent fine-tuning, the
model weights θ should update to πγGnλ (θ), as defined in
(5), when trained on Dreal ∪ Dsynth.

Intuitively, the weight update θ 7→ πγGnλ (θ) avoids the loss
of variance in the generated data by ensuring that at each
step, the model is trained on synthetic data which is likelier
to have been sampled from the diverse target distribution.
This positive phenomenon is more pronounced when the
correction strength γ is larger.

4.2. Assumptions

In order to prove our main result, we need some regular-
ity assumptions about the learning procedure. Informally
speaking, we will assume that the class of generative models
that we consider is smoothly parameterized by its model
weights; the loss landscape is concave near the ideal model

weights; and the class of generative models does an increas-
ingly good job approximating the target data distribution as
the dataset size increases. We formally quantify and state
these hypotheses in Assumption 4.2.
Assumption 4.2. The following are true.

1. There exists some L > 0 such that, for all θ suffi-
ciently close to θ⋆, the mapping x 7→ ∇2

θ log pθ(x) is
L-Lipschitz.

2. The mapping θ 7→ Ex∼pdata
[log pθ(x)] is continuously

twice differentiable locally around θ⋆, and there exists
some α > 0 such that Ex∼pdata

[
∇2

θ log pθ(x)
]
|θ⋆ ⪯

−αId ≺ 0.

3. There exist a, b, εOPT ≥ 0 and a neighborhood U of θ⋆

such that, for any δ ∈ (0, 1), with probability 1 − δ
over the samplings, we have2

∥πγGnλ (θ)− πγG∞λ (θ)∥ ≤ εOPT +
a√
n

√
log

b

δ
. (6)

for all θ ∈ U and n ∈ N. Denote this bound by τn(δ).

In Assumption 4.2 (2), the notation “⪯” corresponds to the
Loewner order on symmetric matrices: we write that A ⪯ B
if B − A is positive semi-definite, and A ≺ B if B − A
is positive definite. In particular, Assumption 4.2 (2) im-
plies that the matrix Ex∼pdata

[
∇2

θ log pθ(x)
]
|θ⋆ is negative

definite, and its largest eigenvalue is at most −α. And As-
sumption 4.2 (3) mirrors the main assumption in (Bertrand
et al., 2024); it is motivated by generalization bounds in
deep learning, see e.g. (Jakubovitz et al., 2019; Ji et al.,
2021). The interested reader can consult Appendix B for
more details on this assumption.

4.3. Iterative Fine-Tuning with Correction

We now have the language to state our main result, which
essentially says that if the initial parameters θ0 are suffi-

2The map πγG
∞
λ is defined similarly to πγG

n
λ in (5), but with

p̂data replaced with pdata, and with π̂γpθ replaced with πγpθ .
See Appendix A for more details. This estimate is identical to
the analogous Assumption 3 used in (Bertrand et al., 2024), with
the only difference being it is applied to our iterative fine-tuning
update function. See Appendix B for further discussion.
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ciently close to the optimal model parameters θ⋆, and if
the augmentation percentage λ is sufficiently small, then
under iterative fine-tuning with correction, we can expect
our subsequent model parameters to stay close to θ⋆.

Theorem 4.3 (Stability of Iterative Fine-Tuning with Cor-
rection). Fix an augmentation percentage λ ∈ R>0 and a
correction strength γ ∈ R≥0. Suppose we have an iterative
fine-tuning procedure defined by the rule θnt+1 = πγGnλ (θnt ),
and suppose that Assumption 4.2 holds. Define the constant

ρ(λ) := ρ(λ;α, ε, L) :=
λ(α+ εL)

α− λ(α+ εL)

and fix any δ ∈ (0, 1). If θ0 is sufficiently close to θ⋆, and if
λ
(
1 + εL

α

)
< 1+γ

2+γ , then ρ(λ)/(1 + γ) < 1, and it follows
that the stability estimate holds with probability 1− δ:

∥θnt − θ⋆∥ (7)

≤ τn(δ/t)

t∑
i=0

(
ρ(λ)

1 + γ

)i

+

(
ρ(λ)

1 + γ

)t

∥θn0 − θ⋆∥

for all t > 0.

We prove Theorem 4.3 in Appendix A.
Remark 4.4. If we apply Theorem 4.3 with correction
strength γ = 0, then the iterative fine-tuning procedure
trains successively on a combination of raw synthetic data
that has not been corrected using a correction function and
ground truth data. This is exactly the case considered in
(Bertrand et al., 2024). Accordingly, the bound in (7), ap-
plied with γ = 0, exactly recovers their result.

Corollary 4.5. Under the assumptions from Theorem 4.3,
iterative fine-tuning with any amount of correction outper-
forms iterative fine-tuning without correction–in the sense
that it is exponentially more stable, and it results in better
model weights.

Proof of Corollary 4.5. We apply Theorem 4.3 with γ = 0,
which corresponds to no correction, as well as with γ > 0,
which corresponds to any amount of correction. For any
γ > 0, we notice that the RHS of (7) is strictly smaller than
when γ = 0. This guarantees better stability as t→∞, as
well as model weights θnt closer to θ⋆.

Example 4.6. If we apply Theorem 4.3 with correction
strength γ →∞, then the bound (7) in Theorem 4.3 limits
to τn(δ/t). This implies that the practical iterate θnt ap-
proaches the ideal model paramaters, and is at worst some
constant away, that depends on error from the optimization
procedure, as well as statistical error from using finitely
many ground truth data samples n.

Note that Theorem 4.3 relies on the assumption that the
initial model parameters θ0 are sufficiently close to the ideal

model parameters θ⋆, and also that the augmentation per-
centage λ is sufficiently small. We hypothesize that these
assumptions can be relaxed in the case where a correction
function participates in the iterative fine-tuning procedure–
intuitively, the correction function should compensate for
errors that arise from θn0 being worse, as well as errors that
arise from incorporating more synthetic data. We frame this
in the following conjecture.
Conjecture 4.7. In the case of iterative fine-tuning with
correction, we may relax how close the initial model param-
eters θn0 need to be to the optimal model parameters θ⋆, as
well as choose a larger synthetic augmentation percentage
λ, while still retaining the improved stability estimate (7).

We provide empirical evidence for Conjecture 4.7 in Sec-
tion 7 on the human motion synthesis task. In fact, Theo-
rem 4.3 represents partial progress towards this conjecture.
Namely, according to Theorem 4.3, for large correction
strength γ, we can effectively choose a synthetic augmenta-
tion percentage that is twice as large as we would be able to
without any correction, and still be able to meet the assump-
tions of the theorem. This is because limγ→∞

1+γ
2+γ = 1,

which is twice as large as the bound when γ = 0.

5. Toy Example: Gaussian
We first assume oracle knowledge of the ground truth distri-
bution, and use a toy example to directly demonstrate the
impact of the correction strength γ on model performance
and stability as stated in Theorem 4.3 and Corollary 4.5.
Our ground truth distribution is a 2-dimensional isotropic
Gaussian centered at the origin, i.e., θ⋆ = ((0, 0), I2), and
our correction is “distribution-wise” in this idealized sce-
nario. We consider the more practical setting, where we
don’t have oracle knowledge of the target distribution a pri-
ori, and where the data correction is “point-wise”, in the
empirical studies in the following two sections. Further,
in Appendix C, we show that, in theory, sufficiently well-
behaved pointwise correction functions indeed correspond
to distribution-wise correction functions.

Concretely, our ground truth dataset contains 50 points sam-
pled from the target distribution, which are used to estimate
θ500 = (µ0,Σ0) ∈ R6. We fix our synthetic augmentation
percentage to be λ = 0.5, and inductively synthesize a new
dataset Dsynth = {yi ∼ N (µt,Σt)}25i=1. We implement
a correction function to map Dsynth, which was sampled
from pθ50

t
, to a dataset Dcorrected, which is likelier to have

been sampled from the target density pθ⋆ . We do this by
sampling Dcorrected from the middle density corresponding
to a given correction strength γ:

πγ p̂θ50
t
(x) :=

p̂θ50
t
(x) + γpθ⋆(x)

1 + γ
, (8)

where p̂θ50
t

is the empirical PDF obtained from Dsynth.
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Figure 2. Empirical results from our Gaussian toy example. The
graph demonstrates that increasing the correction strength γ, with
a fixed augmentation ratio of λ = 0.5, improves performance and
stability after self-consuming iterations.

We logarithmically accrue synthetic data points to simu-
late the case of fine-tuning. We obtain the updated model
parameters θ50t+1 by computing the sample mean and covari-
ance on this augmented dataset. In Figure 2, we present the
Wasserstein distance between the origin-centered isotropic
Gaussian target distribution and the distribution defined by
the parameters θ50t at each iteration t. Our results illustrate
how increasing the correction strength γ adds stability and
results in convergence near better Wasserstein scores in later
generations, in accordance with Theorem 4.3. The experi-
ments also demonstrate how even a very small increase in γ
can improve performance over the baseline, in accordance
with our claim of exponential improvement in Corollary 4.5.

6. Toy Example: MNIST
Our proof uses the optimal target PDF pθ⋆ to define the
correction function πγ . This is empirically validated by
the Gaussian toy experiment, which assumes knowing the
true target distribution. In practice, the correction function
only depends on the ability to map synthesized data to data
which is likelier to have been sampled from the ground
truth distribution. Crucially, this can be achieved without
having a complete description of the target distribution.
For example, with our human motion experiments, we will
demonstrate that point-wise correction based on the laws
of physics is one proxy approach to make a sample more
likely, without knowing the true target distribution.

One has the freedom to explore alternative approaches to
data correction for more general data types, such as images.
For example, one simple heuristic is to identify the “anchor”
or “exemplar” images, which are intuitively representative
and likely. The correction function can then be implemented
as mapping or morphing synthesized data towards its nearest
anchor, to make the synthesized data more representative
and likely. In this section, we implement this approach on
MNIST and study its performance.

Figure 3. Empirical results from our MNIST toy example. These
synthesized images demonstrate that after 50 self-consuming it-
erations at 150% augmentation percentage, the model which is
trained using iterative fine-tuning with self-correction is able
to generate higher quality samples than the model trained using
iterative fine-tuning without any self-correction.

For our MNIST (LeCun et al., 1998) experiments, we train
a diffusion model (Ho et al., 2020) for class-conditional
image generation, using a train split of size n = 12000. For
our iterative fine-tuning experiments, we train the model for
20 epochs, then synthesize λ · 12000/10 images for each
digit, and then augment the ground truth dataset with these
to train on for the next generation; every following genera-
tion follows the same procedure, but only trains for a single
epoch. We vary our experiments over augmentation percent-
ages λ ∈ {0.2, 0.5, 1.0, 1.5}. To define our self-correction
operation, we first compute K-means clusters over the train-
ing split for each digit. Our iterative fine-tuning with self-
correction experiments use the same setup described above,
except instead of training on the synthesized images, we
train on the synthesized and then corrected images, where
“correcting” an image means finding the nearest centroid in
the K centroids for that digit that we computed at the start
of training. We swept the values K ∈ {1, 2, 4, . . . , 1024},
and we found that any reasonably large K results in the
same general trend where self-correction improves the met-
rics and stability. We report our results for K = 16, which
performs the best.

We present images synthesized using our trained models
in Figure 3. These synthesized images demonstrate that
iterative fine-tuning eventually generates many low quality
and illegible digits, and this problem is solved by applying
our self-correction operation. Further experiment details,
including graphs of the FID metrics for each generation that
provide rigorous evidence for this trend across augmentation
percentages, can be found in Appendix D. Our empirical
results demonstrate that applying self-correction improves
performance during iterative fine-tuning for our MNIST im-
age generation task across self-consuming generations, and
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this relative performance is amplified when the augmenta-
tion percentage is larger. The behavior that we observe is
consistent with our theoretical results in Section 4, as well
as our human motion experiments in Section 7.

7. Human Motion Synthesis
Theorem 4.3 states that, in theory, iterative fine-tuning with
correction should be more stable than iterative fine-tuning
without correction. Crucially, the stability estimates that we
prove rely on the dataset size, the synthetic augmentation
percentage, how expressible the generative model class is,
and having an idealized correction function. To validate
how our theory works beyond toy examples, we conduct a
case study on human motion synthesis with diffusion mod-
els (Tevet et al., 2023). We believe this is a natural setting
to test our iterative fine-tuning with correction framework,
because synthesizing natural motions is a challenging prob-
lem, but there is a natural and intuitive way to automatically
correct them at scale–namely, using a physics simulator.

7.1. Generative Model

For our generative model, we use the Human Motion Diffu-
sion Model (MDM) (Tevet et al., 2023). This is a classifier-
free diffusion-based generative model for the text-to-motion
generation task, where the model receives as input a descrip-
tion of a motion sequence (e.g. “get down on all fours and
crawl across the floor”), and outputs a sequence of skeleton
poses which attempt to embody that prompt. Synthesiz-
ing human motion is challenging not only for the diverse
and compositional text prompts, but also due to failure of
physics obeying-ness (e.g. feet skating, floating, penetrat-
ing a surface), which is not explicitly enforced by deep
generative models.

7.2. Physics Simulator as Self-Correction Function

For our self-correction function, we use Universal Hu-
manoid Control (UHC) (Luo et al., 2021), which is an imi-
tation policy that operates inside the MuJoCo physics simu-
lator (Todorov et al., 2012). Given an input sequence of hu-
manoid skeleton poses, UHC attempts to imitate the motion
sequence, constrained by the laws of physics imposed by
the physics simulator, and it outputs a new motion sequence
that is the closest possible approximation it can replace it
with. For example, if an input motion sequence violates the
laws of physics by having a foot penetrate through the floor,
then the motion sequence output by UHC will attempt to
remove that physically impossible artifact while maintain-
ing the semantic integrity of the original input motion. We
use VPoser (Pavlakos et al., 2019) and SMPL (Loper et al.,
2015) to translate joint representations between the human
motion generator and the physics simulator.

The physics simulator allows us to self-correct a synthesized
motion automatically. Our underlying assumption is that
by enforcing the physics obeying-ness (via the simulator)
and closeness to the synthesized motion (via the imitation
objective), the self-correction function would act as similar
as an idealized corrector as possible.

7.3. Experimental setup

We preprocess the MoVi (Ghorbani et al., 2021) subset of
HumanML3D (Guo et al., 2022) using the official code
implementation of HumanML3D. We filter out movements
involving interactions with chairs, as UHC by default does
not handle human-object interactions. We take as our train
split the train split from HumanML3D, intersected with
our filtered subset of MoVi, and likewise for the test split.
This procedure yields a train set of size n = 2794 and a
test set of size 546. We further randomly select a smaller
training set of n ∈ {64, 128, 256} examples, to simulate
the more challenging scenario when the initial generative
model is sub-optimal (due to data scarcity). The smaller
data also enables us to explore larger synthetic augmentation
percentage due to compute constraints. From here, the
iterative re-training procedure follows Algorithm 1. We
spell it out in this concrete experimental setup.

We first train on the ground truth train split until the model
is nearly converged, using all the default hyperparame-
ters from MDM. We evaluate and save this last check-
point from generation 0. From here, for each generation
t ∈ {1, 2, . . . , 50}, we run three sets of experiments.
A. Baseline: fine-tune the latest checkpoint from generation

t− 1 for m batches on ground truth dataset Dreal.

B. Iterative fine-tuning: fine-tune the latest checkpoint
from generation t − 1 on Dreal ∪ Dsynth,t−1 for m
batches. Here, Dsynth,t−1 is a synthetic dataset of size
⌊λ · n⌋ generated from the checkpoint for generation
t − 1, using randomly chosen prompts from the train
split.

C. Iterative fine-tuning with self-correction: fine-tune
the latest checkpoint from generation t − 1 on
Dreal ∪ UHC(Dsynth,t−1) for m batches. Here,
UHC(Dsynth,t−1) denotes a synthetic dataset of size
⌊λ · n⌋ generated from the latest checkpoint for gener-
ation t − 1, using randomly chosen prompts from the
train split, which is then corrected by UHC.

We experiment with synthetic augmentation percentages
λ ∈ {0.05, 0.10, 0.15, 0.20, 0.25} on the larger dataset;
we set the number of batches seen during generation 0
to be 3125, and the number of batches seen for each
later generation to be m = 625. Separately, we ex-
periment with synthetic augmentation percentages λ ∈
{0.25, 0.50, 0.75, 1.00} on the smaller datasets; we set the
number of batches seen during generation 0 to be 78 ∗ k for
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Figure 4. Results from our human motion experiments on iterative fine-tuning with self-correction. These graphs show evaluation metrics
for the last checkpoint for every generation. This is the checkpoint used for sampling in the iterative fine-tuning experiments, and it is also
the checkpoint where training is resumed with this new partially synthesized dataset. We can see that with self-correction, the iterative
fine-tuning procedure more stably converges to a better FID score, and more quickly. When the dataset size is smaller (n = 64, above)
we can see that iterative fine-tuning with no self-correction has a flat Matching score, as well as diverging FID and Diversity scores,
indicating model collapse. And when the dataset size is larger (n = 2794, below), there is less collapse for iterative fine-tuning with
no self-correction, although the variance of the FID score is worse, as is the average FID across generations. In both cases, we see that
iterative fine-tuning with self-correction outperforms iterative fine-tuning with no self-correction, and is competitive with the baseline
after many generations.

dataset size 64 ∗ k, and the number of batches seen for each
later generation t > 0 to be m = 16. We choose to control
how many data points the model sees across each generation,
rather than controlling some other quantity like the num-
ber of epochs, as this allows each experiment to compare
against its baseline in a controlled way, which in turn allows
them to compare against each other in a controlled way.

We compute every evaluation one time for each checkpoint
using the evaluation script provided in the original MDM
codebase. Regardless of the train split size, we perform sam-
pling for evaluation using all 546 motion sequences from
the test split, since the FID score is sensitive to generated
dataset size. We use the same hyperparameters as those used
for MDM, including batch size 64, AdamW (Loshchilov
& Hutter, 2019) with learning rate 1e − 4, and classifier-
free guidance parameter 2.5. And for UHC we used the
uhc explicit model for imitation.
7.4. Quantitative Analysis of Results

For each of these experiments we report the metrics from
MDM, as used by (Guo et al., 2022): FID measures how
similar the distribution of generated motions is to the ground
truth distribution; Diversity measures the variance of the
generated motions; and Matching Score measure how well
the generated motions embody the given text prompt. In
Figure 4 we present results from experiments on our 64-size

dataset with 100% synthetic augmentation, as well as our
2794-size dataset with 25% synthetic augmentation.

Our experimental results confirm our theoretical results, that
iterative fine-tuning with self-correction outperforms iter-
ative fine-tuning without self-correction, in the sense that
the graphs are generally more stable across generations, and
approach better evaluation metric values. In particular, The-
orem 4.3 and Corollary 4.5 claim that any amount of ideal-
ized self-correction will improve the stability bound during
iterative fine-tuning. Our results in Figure 4 demonstrate
that the FID score is lower and more stable across genera-
tions when applying self-correction, and generally higher
and less stable than the baseline, where there is no self-
consuming training at all. We conduct experiments across
multiple seeds, and we find empirically that this general
phenomenon holds consistently, where the self-correction
technique consistently yields improved training dynamics
over iterative fine-tuning with no correction. Graphs from
these runs can be found in Appendix G.

Our experimental results also provide empirical evidence
for Conjecture 4.7. Observe that in the baseline experiments
in Figure 4, the FID score decreases across generations,
which indicates that the initial model parameters θn0 are not
that close to the optimal model parameters θ⋆; addition-
ally, the augmentation percentages considered in the graph
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Figure 5. How does the self-correction operation affect iterative fine-tuning, qualitatively? Here we present some visualizations. The
prompt which describes the ground truth motion, and which we use to generate the three other motions, is: “a person stands with feet wide,
stretches both hands up over his head and then swings down by the waist and hangs arms down before standing up”. We can see that the
iterative fine-tuning model produces a motion where the human moves closer to the camera than the others; this is evidence of model
collapse, as moving feet is irrelevant to the prompt. Additionally, this motion produces single frames that suddenly snap to a physically
impossible position–note the leg penetration through the ground plane. These negative artifacts do not exist in the motions synthesized
from the ground truth, baseline model, or iterative fine-tuning with self-correction model. Lastly, we note that the iterative fine-tuning
motion depicted here is semantically similar to crawling. We observe in our experiments with smaller dataset sizes that the iterative
fine-tuning model generates less diverse outputs than the baseline model and the iterative fine-tuning with self-correction model, and that
this crawling pattern appears more often in the latter. Each snapshot is taken at exactly frame 105 of their respective videos. The two
motions on the right come from models that were iteratively fine-tuned for 50 generations, with a train set of size n = 64, and a synthetic
augmentation percentage of 25%. For all pictures of the human, the camera is fixed at the same position, and for consistency the image is
not resized.

are 25% and 100%. Conjecture 4.7 claims that performing
self-correction during iterative fine-tuning improves perfor-
mance, even when the initial model weights are sub-optimal
and simultaneously the synthetic augmentation percentage
is large. This claim is confirmed by Figure 4. We direct the
curious reader to Appendix F, where we present graphs for
all of the above listed training set sizes and augmentation
percentages, providing additional empirical evidence for
Theorem 4.3, Corollary 4.5, and Conjecture 4.7.

7.5. Qualitative Analysis of Results

We visually inspect the generated human motion sequences
in order to analyze what concrete effect the self-correction
has on iterative fine-tuning. We find that the correctness and
diversity of synthesized motions are improved by the self-
correction procedure, in agreement with our quantitative
analysis in Subsection 7.4. We present snapshots of our syn-
thesized motions in Figure 5, and we analyze the motions
in the caption. In short, we find that physics-disobeying
artifacts such as floor penetration or floating become more
pronounced without the self-correction. We also find that in
the model without self-correction, the humanoid sometimes
performs movements completely unrelated to the prompt;
our model with self-correction fixes these negative phenom-

ena. We direct the curious reader to Appendix E, where
we present more examples from our qualitative analysis, as
well as our project webpage, where we provide side-by-side
video comparisons.

8. Conclusion
Our paper investigates the learning of generative models
when the training data includes machine-generated contents.
We investigate how self-correction functions, which auto-
matically correct synthesized data points to be more likely
under the true data distribution, can stabilize self-consuming
generative model training. Our theoretical results show that
self-correction leads to exponentially more stable model
training and smaller variance, which we illustrate with a
Gaussian toy example. We then demonstrate how physics
simulators can serve as a self-correction function for the
challenging human motion synthesis task, where models
trained with our self-correcting self-consuming loops gen-
erate higher quality motions, and manage to avoid collapse
even at a high synthetic data to real data ratio. Future work
includes exploring self-correcting functions for more diverse
applications, such as language modeling and text-to-image
generation, and investigating when self-consuming training
may lead to overall better generative models.
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A. Mathematical Theory: The Proof of Theorem 4.3
In this appendix, we provide a full account of the mathematical details of the theorems and their proofs appearing in the
main body of the paper. Our proof technique has the same framework as (Bertrand et al., 2024) because our theoretical
analysis generalizes theirs to the case where you have a self-correction function in the self-consuming loop.

A.1. Mathematical Setup and Notation

Definition A.1. Define the optimal model parameters to be

θ⋆ ∈ argmax
θ′∈Θ

Ex∼pdata
[log pθ′(x)], (9)

chosen so that ∥θ⋆∥ has minimal norm within this set. Let θ be any model parameters. Then the correction of strength γ of
distribution pθ towards pθ⋆ is a new distribution, denoted πγpθ, defined according to the rule

πγpθ(x) :=
pθ(x) + γpθ⋆(x)

1 + γ
.

This is illustrated in Figure 6. Let θt be the parameters of the model trained after t generations. We define the iterative
fine-tuning with correction update mapping to be

πγG∞λ (θ) := local argmax
θ′∈Θ

H(θ, θ′) := local argmax
θ′∈Θ

[Ex∼pdata
[log pθ′(x)]] + λEx∼πγpθ

[log pθ′(x)]] (10)

πγGnλ (θ) := local argmax
θ′∈Θ

Ĥ(θ, θ′) := local argmax
θ′∈Θ

[Ex∼p̂data
[log pθ′(x)]] + λEx∼π̂γpθ

[log pθ′(x)]]. (11)

Notice that in the finite case, we’re optimizing by taking samples from an empirical distribution. In contrast, in the infinite
case, there is zero statistical error, since the parameter update is done with access to an infinite sampling budget at each
generation t. The finite case is the more practical case, when we have some statistical error (so we only have access to finite
sampling at each generation). Since the parameter space of the generative model class might be limited, there might be
a small difference between the distribution corresponding to the optimal parameters and the target distribution pdata; we
capture this difference via the Wasserstein-2 distance and denote

ε := dW (pθ⋆ , pdata). (12)

Let

H1(θ
′) := Ex∼pdata

[log pθ′(x)], H2(θ, θ
′) := Ex∼πγpθ

[log pθ′(x)]. (13)

and note thatH(θ, θ′) = H1(θ
′) + λH2(θ, θ

′).

We first establish that the correction map is truly a mapping of probability distributions as well as some of its elementary
properties.

Lemma A.2. The correction map has the following properties.

1. πγpθ is a probability distribution.

2. Strengths 0, 1,∞ correspond to pθ, the average of pθ and pθ⋆ , and pθ⋆ , respectively.

3. For any x ∈ Rn, if γ > 1, then
∥πγpθ(x)− pθ⋆(x)∥ ≤ ∥πγpθ(x)− pθ(x)∥,

and if γ < 1, then the inequality is flipped. In other words, πγpθ is a better estimate of the ideal distribution pθ⋆ than
pθ is, precisely when the projection strength is more than 1.

Proof. For the first point, πγpθ is a probability distribution because it is a convex combination of probability distributions.
For example, we can compute that∫

Rd

πγpθdx =
1

1 + γ

∫
Rd

pθ(x)dx+
γ

1 + γ

∫
Rd

pθ⋆(x)dx =
1

1 + γ
· 1 + γ

1 + γ
· 1 = 1.
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The second point follows immediately from the definition of πγpθ. For the third point, we can estimate that

∥πγpθ(x)− pθ⋆(x)∥ =
∥∥∥∥pθ(x) + γpθ⋆(x)

1 + γ
− pθ⋆(x)(1 + γ)

1 + γ

∥∥∥∥
=

1

1 + γ
· ∥pθ(x)− pθ⋆(x)∥

≤ γ

1 + γ
· ∥pθ⋆(x)− pθ(x)∥

=

∥∥∥∥pθ(x) + γpθ⋆(x)

1 + γ
− pθ(x)(1 + γ)

1 + γ

∥∥∥∥
= ∥πγpθ(x)− pθ(x)∥

when γ > 1. The inequality flips when γ < 1.

Intuitively, it is clear that we cannot hope to prove general results about generative models without assuming something
about the mapping θ 7→ pθ. We now state the two assumptions we require in order to make our theoretical arguments; note
that they are precisely the same assumptions made in (Bertrand et al., 2024). The first assumption is a local Lipschitzness
property that we will exploit via the Kantorovich-Rubenstein duality:

Assumption A.3. For θ close enough to θ⋆, the mapping x 7→ ∇θ∇θ log pθ(x) is L-Lipschitz.

The second assumption is a local regularity and concavity condition:

Assumption A.4. The mapping θ 7→ Ex∼pdata
[log pθ(x)] is continuously twice differentiable locally around θ⋆ and

Ex∼pdata [∇θ∇θ log pθ(x)]θ⋆ ⪯ −αId ≺ 0.

We next show the existence and uniqueness of πγG∞λ (∞) locally around θ⋆.

Proposition A.5 (The Local Maximum Likelihood Solution is Unique). The following are true:

A. There exists an open neighborhood U ⊂ Rd containing θ⋆ and a continuous function g : U → Rd such that g(θ⋆) = θ⋆,
and

∇θ′H(θ, θ′)|θ,g(θ) = 0 (14)

for every θ ∈ U .

B. Given optimal model parameters θ⋆ as in (9) that follow Assumptions A.3 and A.4, we have that, if εL < α, then for all
λ > 0 and θ in a small enough neighborhood U around θ⋆, there exists a unique local maximizer πγG∞λ (θ) in U .

Proof. We first prove part A. It suffices to apply the Implicit Function Theorem to the map

R2d → Rd : (θ, θ′) 7→ ∇θ′H(θ, θ′)|θ,θ′ (15)

in an open neighborhood of (θ⋆, θ⋆). To do this, we need to show the following:

i) The map vanishes at (θ⋆, θ⋆), i.e.
∇θ′H(θ, θ′)|θ⋆,θ⋆ = 0. (16)

ii) The Jacobian matrix at (θ⋆, θ⋆) is invertible, i.e.,

∇θ′∇θ′H(θ, θ′)|θ⋆,θ⋆ is invertible. (17)

We first prove i). Recall from the definition (10) that πγG∞λ (θ) = argmaxθ′∈ΘH(θ, θ′). This means that for any θ,
πγG∞λ (θ) is the choice of θ′ which maximizesH(θ, θ′). In particular, for θ = θ⋆, we have that θ′ = πγG∞λ (θ⋆) is the choice
which maximizes H(θ⋆, θ′). But πγG∞λ (θ⋆) = θ⋆ by Proposition A.6. This implies that its derivative is zero at θ′ = θ⋆,
meaning ∇θ′H(θ, θ′)|θ⋆,θ⋆ = 0, as needed.
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Now we prove ii). In order to show that the matrix (17) is invertible, it suffices to show it is close to another matrix which is
invertible. A natural choice is the matrix

M = (1 + λ)∇θ′∇θ′Ex∼pdata [log pθ′(x)]|θ⋆ . (18)

First of all, note that this matrix indeed exists; by Assumption 2 A.4, we know the map θ′ 7→ Ex∼pdata [log pθ′(x)] is
continuously twice differentiable locally near θ⋆. We can estimate that the matrices (17) and (18) are indeed close as follows:

∥∇θ′∇θ′H(θ, θ′)|θ⋆,θ⋆ − (1 + λ)∇θ′∇θ′Ex∼pdata [log pθ′(x)]θ⋆∥
= ∥∇θ′∇θ′ [Ex∼pdata

log pθ′(x) + λEx∼πγpθ
pθ′(x)]|θ⋆,θ⋆ − (1 + λ)∇θ′∇θ′Ex∼pdata [log pθ′(x)]θ⋆∥

= λ∥[∇θ′∇θ′Ex∼πγpθ
log pθ′(x)]|θ⋆,θ⋆ −∇θ′∇θ′Ex∼pdata [log pθ′(x)]θ⋆∥

= λ∥[∇θ′∇θ′Ex∼pθ⋆
log pθ′(x)]θ⋆ − [∇θ′∇θ′Ex∼pdata log pθ′(x)]θ⋆∥

= λ∥[Ex∼pθ⋆
∇θ′∇θ′ log pθ′(x)]θ⋆ − [Ex∼pdata∇θ′∇θ′ log pθ′(x)]θ⋆∥

≤ LλE(x,x′)∼pθ⋆×pdata
∥[∇θ′∇θ′ log pθ′(x)]θ⋆ −∇θ′∇θ′ log pθ′(x)]θ⋆∥

≤ λεL

where the first equality follows from the definition ofH in (13); the second equality follows from some cancellation; the
third equality follows the fact that the derivatives are constant with respect to θ, and πγpθ⋆ = pθ⋆ by Lemma A.2; we
exchange the derivative and the expectation in equation 4 using the Dominated Convergence Theorem, since Assumption 1
A.3 says that x 7→ ∇θ∇θ log pθ(x) is L-Lipschitz; the fifth estimate follows from Kantorovich-Rubinstein Duality; and the
final estimate is the definition of Wasserstein distance (12).

Finally, we verify M is indeed invertible. Assumption 2 A.4 implies that the largest eigenvalue of M is at most −(1 + λ)α.
Therefore, since all eigenvalues of M are nonzero, M is invertible. We can now apply the implicit function theorem to (15),
and part A follows immediately.

Next, we prove part B. Let dU = supθ∈U dW (pθ⋆ , pθ). To verify that g(θ) is a local maximizer of (15), it suffices to show
that ∇θ′∇θ′H(θ, g(θ)) ≺ 0. By Assumption 2 A.4, we know ∇θ′∇θ′H1(θ

⋆) ≺ −αId and since θ′ 7→ ∇θ′∇θ′H1(θ
′) is

continuously twice differentiable locally near θ⋆, we also have ∇θ′∇θ′H1(g(θ)) ≺ −αId. Thus, we have

∇θ′∇θ′H(θ, g(θ)) = ∇θ′∇θ′H1(g(θ
′)) + λ∇θ′∇θ′H2(θ, g(θ))

= (1 + λ)∇θ′∇θ′H1(g(θ)) + λ(∇θ′∇θ′H2(θ, g(θ))−∇θ′∇θ′H1(g(θ)))

⪯ −α(1 + λ)Id + λL

(
1

1 + γ
dW (pθ, pθ⋆) + ε

)
Id,

where the last step follows from Kantorovich-Rubsenstein duality:

∥∇θ′∇θ′H2(θ, θ
′)−∇θ′∇θ′H1(θ

′)∥
≤ ∥∇θ′∇θ′H2(θ, θ

′)−∇θ′∇θ′H2(θ
⋆, θ′)∥+ ∥∇θ′∇θ′H2(θ

⋆, θ′)−∇θ′∇θ′H1(θ
′)∥

= ∥
∫
Rd

∇θ′∇θ′ log pθ′(x)
pθ(x) + γpθ⋆(x)

1 + γ
dx−

∫
Rd

∇θ′∇θ′ log pθ′(x)pθ⋆(x) dx∥

+ ∥Ex∼pdata [log pθ′(x)]− Ex∼pθ⋆
[log pθ′(x)]∥

≤ 1

1 + γ
∥
∫
Rd

∇θ′∇θ′ log pθ′(x) (pθ(x)− pθ⋆(x)) dx∥+ Lε

=
1

1 + γ
∥Ex∼pθ

[log pθ′(x)]− Ex∼pθ⋆
[log pθ′(x)]∥+ Lε

≤ L

1 + γ
dW (pθ, pθ⋆) + Lε

≤ L

1 + γ
dU + Lε

Thus, to have ∇θ′∇θ′H(θ, g(θ)) ≺ 0, it is sufficient that

−α(1 + λ) + λL

(
1

1 + γ
dU + ε

)
< 0,

14
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which is guaranteed for all λ > 0 by α > Lε and dU ≤ α(1+γ)
λ . This concludes the proof.

Further, as we would expect, θ⋆ is a fixed point of πγG∞λ :

Proposition A.6 (The optimal parametric generative model is a fixed point). For any given data distribution pdata, any θ⋆

as defined by (9), and for all λ > 0, we have πγG∞λ (θ⋆) = θ⋆.

Proof. Unpacking definition (10) shows that πγG∞λ (θ⋆) = G∞λ (θ⋆), and we know by Proposition 4 from (Bertrand et al.,
2024) that G∞λ (θ⋆) = θ⋆.

A.2. Convergence of Iterative Fine-tuning with Correction for Infinite Sampling

We now have the required setup to state and prove a convergence result for iterative fine-tuning assuming infinite access to
underlying probablity distributions. We need the following result, which is a technical lemma that provides a computation of
the Jacobian of πγG

∞
λ at θ⋆ as well as a spectral bound, both essential for the proof of Theorem A.8.

Lemma A.7. We define the matrices

A := (∇2
θ′,θ′H1(θ

′))|θ⋆ (19)

B := ∇2
θ,θ′Ex∼pθ

[log pθ′(x)]
∣∣
θ⋆,θ⋆ (20)

C := ∇2
θ′,θ′Ex∼pθ

[log pθ′(x)]
∣∣
θ∗,θ∗ (21)

Recall the definition of πγG∞λ (θ) from (10). Since γ and λ are fixed, denote πG(θ) = πγG∞λ (θ). Finally, let J (πG(θ)) :=
∇θπγG∞λ (θ)|θ denote the Jacobian of πγG∞λ (θ).

I. There exists an open neighborhood U ⊆ Θ containing θ⋆ such that for all θ ∈ U , we have

J (πG(θ)) = −
(
∇2

θ′,θ′H(θ, πG(θ))
)−1 · λ∇2

θ,θ′H2(θ, πG(θ)). (22)

II. We have that∇2
θ,θ′H2(θ

⋆, θ⋆) = B
1+γ , and B = −C, so the Jacobian of πG at θ⋆ is

J (πG(θ⋆)) = (I + λA−1C)−1 · λ

1 + γ
A−1C (23)

III. The spectral norm of A−1C can be bounded as

∥A−1C∥ ≤ 1 +
Lε

α
. (24)

Proof. We first prove I. We apply Proposition A.5. Part A of that proposition gives us a function g : U → Rd such that
∇θ′H(θ, θ′)θ,g(θ) = 0. But part B of that proposition says that there exists a unique local maximizer inside U , and this
local maximizer is πγG∞λ . This implies that∇θ′H(θ, θ′)θ,πγG∞

λ (θ) = 0. Next, we implicitly differentiate this equation with
respect to θ. Recall that when you have an equation of the form f(x, y) = 0, and implicitly differentiate it in the form

f(x, g(x)) = 0 with respect to x, you obtain ∂f
∂x + ∂f

∂y
∂g
∂x = 0, and solving for ∂g

∂x yields ∂g
∂x = −

(
∂f
∂y

)−1
∂f
∂x . We apply

this formula with

(x, f, g) = (θ, θ 7→ ∇θ′H(θ, θ′)θ,πγG∞
λ (θ), θ 7→ πγG∞λ (θ))

and obtain (22), as desired.

15
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Now we prove II. We can compute that

∇2
θ′,θH2(θ, θ

′) = ∇θ′∇θEx∼πγpθ
[log pθ′(x)] (25)

= ∇θ′∇θ

∫
x∈Rd

log pθ′(x)

(
pθ(x) + γpθ⋆(x)

1 + γ

)
dx (26)

=
1

1 + γ
∇θ′∇θ

∫
x∈Rd

log pθ′(x)pθ(x)dx (27)

=
1

1 + γ
∇2

θ′,θEx∼pθ
[log pθ′(x)] (28)

=
1

1 + γ
B (29)

where the third equality holds because the integral containing pθ⋆ is constant with respect to θ. Next, we can compute that

B =

∫
X

∇θ′ log pθ′(x)∇θpθ(x)dx
∣∣∣
θ∗,θ∗

(30)

=

∫
X

[∇θ log pθ(x)][∇θpθ(x)]dx
∣∣∣
θ∗,θ∗

(31)

=

∫
X

∇θ[pθ(x)∇θ log pθ(x)]dx
∣∣∣
θ∗,θ∗

−
∫
X

pθ(x)(∇θ∇θ log pθ(x))dx
∣∣∣
θ∗,θ∗

(32)

=

∫
X

∇θ

[
pθ(x)

∇θpθ(x)

pθ(x)

]
dx
∣∣∣
θ∗,θ∗

−∇2
θ′,θ′Ex∼pθ

[log pθ′(x)]
∣∣∣
θ∗,θ∗

(33)

= −C, (34)

where the third equality follows from the product rule for gradients,

∇θ[pθ(x)∇θ log pθ(x)] = pθ(x)(∇θ∇θ log pθ(x)) + [∇θpθ(x)][∇θ log pθ(x)]. (35)

Finally, we will prove the formula (23) by manipulating (22). We begin with the rightmost factor in (22). If we apply these
equalities that we just obtained, then we get

J (πG(θ⋆)) = −
(
∇2

θ′,θ′H(θ⋆, θ⋆)
)−1 · λ∇2

θ′,θH2(θ
⋆, θ⋆)

= −(A+ λC)−1 · λ

1 + γ
B

= −(I + λA−1C)−1 · λ

1 + γ
A−1B

= (I + λA−1C)−1 · λ

1 + γ
A−1C

where the first equality follows from (23) along with the fixed point Proposition A.6, and we are using that A is invertible by
Assumption 2 A.4, which implies all eigenvalues of A are nonzero; in the fourth step we used that B = −C. This proves
part II.

Now we prove III. We can bound the operator norm ∥A−1C∥ as follows:

∥A−1C∥ = ∥I +A−1(C −A)∥ ≤ ∥I∥+ ∥A−1∥ · ∥C −A∥ ≤ 1 + α−1∥C −A∥, (36)

where the first estimate comes from subadditivity and submultiplicativity, and the second comes from the fact that, since A
is symmetric, ∥A∥ = maxλ∈σ(A) |λ|, where σ(A) is the spectrum of A. Formally, we know by Assumption A.4 that A has
eigenvalues e1 < e2 < · · · < en ≤ −α < 0 and so |en| > α. Therefore, A−1 has eigenvalues 1/en < 1/en−1 < · · · <
1/e1 < 0 and thus 1/|en| > 1/|en−1| > · · · > 1/|e1|, which gives us the bound ∥A−1∥ = 1/|en| < 1/α on the matrix
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norm. Next, we can estimate that

||C −A|| = ∥∇2
θ′,θ′Ex∼pθ⋆

[log pθ′(x)]|θ⋆ −∇2
θ′,θ′Ex∼pdata [log pθ′(x)]|θ⋆∥

= ∥Ex∼pθ⋆
[∇2

θ′,θ′ log pθ⋆(x)]− Ex∼pdata [∇2
θ′,θ′ log pθ⋆(x)]∥

≤ LdW (pθ⋆ , pdata)

= Lε,

where in the second equality we exchange the derivative and the expectation in equation 4 using the Dominated Convergence
Theorem, since Assumption 1 A.3 says that x 7→ ∇θ∇θ log pθ(x) is L-Lipschitz; and in the last estimate, we used
Kantorovich-Rubenstein duality. This, combined with the estimate (36), yields the bound in (24).

We are finally ready to prove our theorem that guarantees convergence to the optimal parameters in the infinite sampling
case under certain assumptions, one being the that the initial model parameters θ0 are sufficiently close to θ⋆:

Theorem A.8 (Convergence of Iterative Fine-tuning, Infinite Sampling Case). Suppose we have an iterative fine-tuning
procedure defined by the rule θ∞t+1 = πγG∞λ (θ∞t ). Let θ⋆ be the parameter vector for the optimal generative model, as in
(9). We assume that θ⋆ follows Assumptions A.3 and A.4 from (Bertrand et al., 2024). Suppose also that λ

(
1 + εL

α

)
< 1+γ

2+γ .
Then, the Jacobian of πγG

∞
λ satisfies the following bound:

∥∇θπγG∞λ (θ⋆)∥2 ≤
1

1 + γ
· λ(α+ εL)

α− λ(α+ εL)
< 1. (37)

Consequently, there exists a δ > 0 such if θ0 ∈ Θ satisfies ∥θ0 − θ⋆∥ ≤ δ, then starting training at θ0 and having
θt+1 = πγG∞λ (θt), we have that limt→∞ θt → θ⋆. Furthermore, if we define

ρ(λ) =
λ(α+ εL)

α− λ(α+ εL)
, (38)

then we obtain the asymptotic stability estimate3

∥θt − θ⋆∥ ≤
(

ρ(λ)

1 + γ

)t

∥θ0 − θ⋆∥. (39)

Proof. We first prove the Jacobian bound (37). By hypothesis, we know λ(1 + Lε
α ) < 1, so by Lemma A.7(III), we have

λ||A−1C|| < 1. Thus, we can write

(I + λA−1C)−1 =

∞∑
k=0

(−λA−1C)k

and so

∥(I + λA−1C)−1∥ ≤
∞∑
k=0

λk||A−1C||k =
1

1− λ||A−1C||
.

Applying Lemma A.7(2), we get

||J (G(θ⋆))|| ≤ ||(I + λA−1C)−1|| · λ

1 + γ
||A−1C|| ≤ λ

1 + γ
· ||A−1C||
1− λ||A−1C||

.

Now, it is straightforward to see the RHS above is at most the bound in (37) if and only if α∥A−1C∥ < α+ εL. But this
bound holds because of Lemma A.7(III). This proves the Jacobian bound (37), but does not prove that the bound is less than
1. For this, we must show that

1

1 + γ
· λ(α+ εL)

α− λ(α+ εL)
< 1. (40)

3(Bertrand et al., 2024) could have presented their results in this stronger form, without the big O notation, with very little extra work.
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By clearing denominators and grouping like terms, we can see that this is equivalent to

λ

(
1 +

εL

α

)
<

1 + γ

2 + γ
, (41)

which is precisely guaranteed by our hypothesis.

We now apply the the Jacobian bound (37) to prove the asymptotic stability estimate (39). Assume λ is sufficiently
small so that ρ(λ)/(1 + γ) < 1. Then for every ρ′ ∈ (ρ(λ)/(1 + γ), 1), there exists δ > 0 sufficiently small so that every
θ0 ∈ Θ which satisfies ∥θ0 − θ⋆∥ < δ has the property that ∥∇θπγG

∞
λ (θ0)∥2 < ρ′. Because the map πγG

∞
λ has Jacobian

matrix norm less than 1 in the δ-ball around θ⋆, it is a contraction mapping in this neighborhood. Concretely, this means that

∥πγG∞λ (θ)− πγG∞λ (θ′)∥ ≤ ρ(λ)

1 + γ
∥θ − θ′∥, (42)

for every θ, θ′ in the δ-ball around θ⋆. In particular, for (θ, θ′) = (θt, θ
⋆) we obtain

∥θt+1 − θ⋆∥ = ∥πγθt − θ⋆∥ = ∥πγG∞λ (θt)− πγG∞λ (θ⋆)∥ ≤ ρ(λ)

1 + γ
· ∥θt − θ⋆∥.

By induction, the above estimate implies that if θ0 is in a δ-ball around θ⋆, then so is every successive θt. Therefore the
desired estimate (39) now follows by induction on t.

Remark A.9. Taking γ = 0 recovers exactly the result in (Bertrand et al., 2024). Importantly, the correction function πγ

provides leverage in determining how large the augmentation percentage λ can be: choosing a larger correction strength
γ allows us to choose a larger augmentation percentage λ while still retaining theoretical guarantees for convergence.
Additionally, for the same choice of augmentation percentage λ, a larger correction strength γ provides a guarantee for an
improved rate of convergence. See Conjecture 4.7.

A.3. Stability of Iterative Fine-tuning with Correction for Finite Sampling

Finally, we prove a stability result for iterative fine-tuning with correction in the presence of statistical error. To do this,
we require an assumption that essentially provides probabilistic guarantee that the chosen generative model learns the
underlying distribution increasingly better if it has access to more samples:

Assumption A.10. There exist a, b, εOPT ≥ 0 and a neighborhood U of θ⋆ such that, for any δ ∈ (0, 1), with probability
1− δ over the samplings, we have

(∀θ ∈ U)(∀n ∈ N) ∥πγGnλ (θ)− πγG∞λ (θ)∥ ≤ εOPT +
a√
n

√
log

b

δ
. (43)

See Appendix B for a discussion about this assumption; we investigated whether to assume a similar bound to the one they
assumed in (Bertrand et al., 2024), or prove our bound from theirs. In fact, we prove in Appendix B that you can in fact
deduce something nearly as strong as Assumption A.10 from Assumption 3 in their paper, so we made Assumption A.10 for
the sake of a cleaner, more parallel exposition.

Theorem A.11 (Iterative Fine-Tuning Stability Under Correction). Suppose we have an iterative fine-tuning procedure
defined by the rule θnt+1 = πγGnλ (θnt ). In words, this means that the augmentation percentage is λ ∈ (0,∞) and the
correction strength is γ ∈ [0,∞). Under the same assumptions of Theorem A.8 and Assumption A.10, there exist 0 < ρ < 1
and δ1 > 0 such that if ∥θn0 − θ⋆∥ ≤ δ1, then for any δ2 ∈ (0, 1), with probability 1− δ2, we have

∥θnt − θ⋆∥ ≤

(
εOPT +

a√
n

√
log

bt

δ

)
t∑

i=0

(
ρ(λ)

1 + γ

)i

+

(
ρ(λ)

1 + γ

)t

∥θn0 − θ⋆∥. (44)

Proof. By the triangle inequality, we can estimate that

∥θnt − θ⋆∥ ≤ ∥θnt − πγG∞λ (θnt−1))∥+ ∥πγG∞λ (θnt−1)− θ⋆∥
= ∥πγGnλ (θnt−1)− πγG∞λ (θnt−1)∥+ ∥πγG∞λ (θnt−1)− πγG∞λ (θ⋆)∥, (45)
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where we applied the fixed point Proposition A.6. By Assumption A.10, the left summand in (45) is at most εOPT+
a√
n

√
log b

δ ,
with probability 1− δ. Next, recall that in (42) in the proof of Theorem A.8, we proved that that πγG

∞
λ is a contraction

mapping of factor ρ(λ)/(1+γ) sufficiently close to U ; this implies that the right summand in (45) is at most ρ(λ)
1+γ ∥θ

n
t−1−θ⋆∥.

Together, these yield the recurrence estimate

P

(
∥θnt − θ⋆∥ ≤ εOPT +

a√
n

√
log

b

δ
+

ρ(λ)

1 + γ
∥θnt−1 − θ⋆∥

)
≥ 1− δ. (46)

Iterating this recurrence for successive time steps yields

P

(
∥θnt − θ⋆∥ ≤

(
εOPT +

a√
n

√
log

b

δ

)
t∑

i=0

(
ρ(λ)

1 + γ

)i

+

(
ρ(λ)

1 + γ

)t

∥θn0 − θ⋆∥

)
≥ (1− δ)t. (47)

Note that (47) holds for any δ ∈ (0, 1). In particular, we can apply (47) with δ := δ/t. In this case, the Bernoulli inequality
lets us estimate that (1− δ/t)t ≥ 1− δ. This completes the proof, with δ2 = δ.

Remark A.12. Theorem A.11 recovers the result from (Bertrand et al., 2024) in the case where the correction strength is
γ = 0. But for a fixed augmentation percentage λ, for any correction strength γ > 0, this gives stronger stability guarantees
than in (Bertrand et al., 2024).
Remark A.13. In a previous version of this manuscript, we claimed that there was an error in the statement of the
corresponding theorem in (Bertrand et al., 2024). In this version, we retract that claim; we have corresponded with those
authors, and they updated their manuscript with additional details to justify their statement.

A.4. Discussion: The Main Limitation

Our empirical results are for generative modeling tasks where we have access to some “self-correction” operation that is
easy to compute, as well as automatic; see Sections 6 and 7 for more details about these correction functions. Therefore, the
main limitation of our work is that one can only hope to use this self-correction procedure to stabilize training in scenarios
where there is some “self-correction” function. For our MNIST experiments, we built a self-correction function from scratch
using clustering statistics. And for our human motion experiments, we used an off-the-shelf human motion imitation model
that other researchers built.

B. Discussion about Assumption 4.2
In this section, we show how with a mild boundedness assumption on our generative model parameter update function, we
can deduce our Assumption A.10 (which is the same as Assumption 4.2, part 3) from the following assumption used in
(Bertrand et al., 2024).
Assumption B.1. There exist a, b, εOPT ≥ 0 and a neighborhood U of θ⋆ such that, for any δ ∈ (0, 1), with probability
1− δ over the samplings, we have

(∀θ ∈ U)(∀n ∈ N) ∥Gnλ (θ)− G∞λ (θ)∥ ≤ εOPT +
a√
n

√
log

b

δ
. (48)

Now, if we make the additional assumption that our generative model parameter update function is locally bounded near θ⋆

then we obtain the following.
Proposition B.2. Suppose Assumption B.1 holds. Suppose also that there exists B < ∞ such that for all n > 0 and θ
sufficiently close to θ⋆,

∥Gnλ (θ)− Gnλ (θ⋆)∥ < B∥θ − θ⋆∥.

Then there exist a, b, c, εOPT ≥ 0 and a neighborhood U of θ⋆ such that, for any δ ∈ (0, 1), with probability 1− δ over the
samplings, we have

(∀θ ∈ U)(∀n ∈ N) ∥πγGnλ (θ)− πγG∞λ (θ)∥ ≤ c · dU + εOPT +
a√
n

√
log

b

δ
, (49)

where dU = supθ∈U ∥θ − θ⋆∥.
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Proof. By the triangle inequality, we have

∥πγGnλ (θ)− πγG∞λ (θ)∥ ≤ ∥πγGnλ (θ)− Gnλ (θ)∥+ ∥Gnλ (θ)− G∞λ (θ)∥+ ∥G∞λ (θ)− πγG∞λ (θ)∥. (50)

We bound each term in the RHS: firstly, note the middle term is bounded by Assumption B.1.The first term is bounded as
follows:

∥Gnλ (θ)− πγGnλ (θ)∥ ≤ ∥Gnλ (θ)− Gnλ (θ⋆)∥+ ∥πγGnλ (θ⋆)− πγGnλ (θ)∥
≤ B∥θ − θ⋆∥+B∥θ − θ⋆∥
≤ 2BdU ,

where in the first step we used that G∞λ (θ⋆) = πγG∞λ (θ⋆). Similarly, the last term is bounded as follows:

∥G∞λ (θ)− πγG∞λ (θ)∥ ≤ ∥G∞λ (θ)− G∞λ (θ⋆)∥+ ∥πγG∞λ (θ⋆)− πγG∞λ (θ)∥

≤ ρ(λ)∥θ − θ⋆∥+ ρ(λ)

1 + γ
∥θ − θ⋆∥

= ρ(λ)
2 + γ

1 + γ
∥θ − θ⋆∥

≤ ρ(λ)
2 + γ

1 + γ
dU ,

where in the second step we applied (42). Using these bounds in (50) and taking c = 2B + ρ(λ) 2+γ
1+γ completes the

proof.

Note that the constant c · dU < c (for U sufficiently small) can really be viewed as a part of the optimization constant εOPT
since it is controlled by the choice of generative model class.

C. Point-wise correction corresponds to distribution-wise correction
In this section we provide a sufficient condition under which you can associate a distribution-wise correction mapping (like
the one we consider in the paper, πγ) to a point-wise correction mapping (which is the one you are more likely to find in the
wild).
Definition C.1. Let X = {x1, . . . , xn} ⊂ Rm and define the empirical cumulative distribution function ΦX by

ΦX(v) := ΦX(v; {x1, . . . , xn}) :=
1

n

n∑
i=1

χv(xi),

where for v ∈ Rm, χv : Rm → {0, 1} is the indicator function for the set
∏n

i=1(−∞, vi]. For a continuous distribution, the
cumulative distribution function is defined in the usual way.
Definition C.2. Suppose that we have a model pθ and an arbitrary function Π : Rm → Rm. Then we say that Π is a valid
point-wise correction function for pθ if there exists a γ ∈ [0,∞] such that

lim
n→∞

(
EXn∼pn

θ
sup
v∈Rm

∥ΦΠ(Xn)(v)− Φπγpθ
(v)∥

)
→ 0, (51)

almost surely, where the expectation is over all samplings Xn = {x1, . . . , xn} of size n from pθ.
Intuition C.3. This is saying that the CDFs for πγpθ and Π(X ∼ pnθ ) are equal in expectation, for large enough n. This is
one way of saying that πγpθ and Π(X ∼ pnθ ), for large enough n, are nearly identical probability distributions.
Definition C.4. If the limit in (51) exists, then we define the distribution-wise projection function corresponding to Π to be

πγpθ =
1

1 + γ
pθ +

γ

1 + γ
pθ⋆ , (52)

and we define the projection strength of the point-wise correction function Π to be γ. Recall that πγpθ = 1
1+γ pθ +

γ
1+γ pθ⋆ .

So intuitively, (51) implies that the projection function Π maps samples from pθ to a different space such that they look like
they come from a combination of the original distribution pθ and pθ⋆ , at least at the level of CDFs.
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Remark C.5. Such a γ, if it exists, is unique. Furthermore, if pθ = pθ⋆ , then γ =∞.

The limit condition in Definition C.2 is abstract, and can be hard to swallow. We present an example of a simple point-wise
correction for the Gaussian toy example that we consider in Section 5, whose corresponding distribution-wise correction
is exactly one would expect it to be–the weighted average of the corresponding Gaussians. Recall that we demonstrated
empirically in Figure 2 that Theorem 4.3 holds for that example. The projection function is depicted in Figure 6.
Example C.6. Let G1(x) be the pdf of N (0, σ2

1Id) (initial distribution, corresponds to θ) and G2(x) the pdf of N (0, σ2
2Id)

(target distribution, corresponds to θ⋆). Given x1, . . . , xn ∼ G1, we define Πγ as follows: Fix any γ ∈ R≥0, and let
y1, . . . , yn ∼ (Ĝ

(n)
1 (x) + γG2(x))/(1 + γ), where Ĝ

(n)
1 is the PDF of the empirical distribution defined by {x1, . . . , xn};

in practice we implement Ĝ(n)
1 as a histogram. Then choose a random σ ∈ Sn (Sn = group of permutations on n symbols).

Finally, we define Πγ(xi) := yσ(i) for 1 ≤ i ≤ n.

Next, we define the projection set ΠX(n) := {Πγ(xi)}1≤i≤n, and define the PDF πγĜ
(n)
1 (x) := 1

1+γ Ĝ
(n)
1 (x)+ γ

1+γG2(x),

and let Φ
πγĜ

(n)
1

represent the cumulative distribution function of the Gaussian πγĜ
(n)
1 . Then, since Πγ(xi) ∼ πγĜ

(n)
1 , we

have by the uniform law of large numbers that

lim
n→∞

(
E{xi∼G1}n

i=1
supv∈Rm

∥∥ΦΠX(n)(v)− ΦπγG1
(v)
∥∥)→ 0 (53)

almost surely. Therefore Πγ is a valid point-wise correction function, and its corresponding distribution-wise projection
function is πγ .
Remark C.7. In the example we considered in Section 5, we could have included a total distance traveled minimization
condition, but here for this proof we don’t even need to use that hypothesis. (In the proof, this would have corresponded
to the additional assumption that we’ve chosen a σ ∈ Sn such that

∑n
i=1 ∥xi − yσ(i)∥ is minimized.) This implies that

different point-wise correction functions can correspond to the same distribution-wise correction function.

Figure 6. Illustration of the distribution-wise projection function, like in our Gaussian toy example. Correcting one Gaussian in the
direction of another, like we consider in Section 5, corresponds to finding the “(weighted) average Gaussian” that lives between the two.

D. More MNIST Experiment Details
We train a Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020) on the 20% of the MNIST dataset (LeCun
et al., 1998). We use classifier-free guidance (Ho & Salimans, 2021) with guidance parameter 0.5, and 400 diffusion steps.
We used a batch size of 256. We train generation 0 for 20 epochs, with a linear decay learning rate schedule starting at
1e − 4 and ending at (1e − 4)/20. We train each following generations for a single epoch, with a fixed learning rate of
(1e− 4)/202.

To compute our metrics, we first train a LeNet model (LeCun et al., 1998) on MNIST, and then we sample an equal number of
digits from each class using the checkpoint that we’re trying to evaluate. To compute the FID score, we extract embeddings
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Figure 7. For every digit, we perform K-means clustering with K=16. We show here the cluster centroids, which intuitively are anchor
images within the manifold of all possible images.

from the last fully connected LeNet layer for the synthesized examples, as well as for the held out test examples, and
compute FID score as normal, by computing the Wasserstein distance between the Gaussians. Note that we use embeddings
for LeNet trained on MNIST, rather than the Inception network trained on ImageNet, because MNIST isn’t comprised of
natural images. This is consistent with the convention in (Alemohammad et al., 2024).

For the self-correction operation, we compute the K-means clusters, with K = 16, once at the start of training. And we
“correct” a synthesized motion by mapping it to the nearest cluster mean corresponding to its digit. In Figure 7 we present
the clusters, and we present graphs of our FID scores across augmentation percentages in Figure 8.

E. Additional Human Motion Generation Qualitative Results
In Figures 9, 10, and 11, we present additional qualitative observations and analysis of our synthesized motions. We
present more evidence that iterative fine-tuning with self-correction yields physically plausible motions comparable to the
baseline, whereas iterative fine-tuning without self-correction yields motions that are incorrect for various reasons. See the
captions of the referenced figures for analysis of some characteristic failure modes of the iterative fine-tuning loop without
self-correction.

A technical note: for all figures, we render the motions from the same environment and camera position. We consolidate
each render into the same image without resizing it. This means that if a figure appears larger relative to the others, the
human moved closer to the camera. Some motions will have transparent frames of past positions; the more transparent the
image, the farther back in the past it was in the motion sequence. Finally, in each figure, the text prompt for all generated
motions was the same –the prompt being the one associated with the ground truth motion in the HumanML3D (Guo et al.,
2022) training data, which we also visualize. Note that the coloring in the humanoid figures corresponds to the coloring in
the graphs.

F. Additional Human Motion Generation Quantitative Results
See Figures 12, 13, 14 for results when the dataset size is n ∈ {64, 128, 256} and the synthetic augmentation percentage
is λ ∈ {0.25, 0.50, 0.75, 1.00}. And see Figures 15 and 16 for additional results on our iterative fine-tuning experiments
when the dataset size is n = 2794 and the synthetic augmentation percentage is λ ∈ {0.05, 0.10, 0.15, 0.20, 0.25}. The
graphs provide evidence across 17 experiment settings that our iterative fine-tuning procedure with self-correction yields
better training performance than iterative fine-tuning with no self-correction for the motion synthesis task, in accordance
with Theorem 4.3.
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Figure 8. Results from MNIST experiments with iterative fine-tuning with and without self-correction. These graphs show the FID score
on the last checkpoint for every generation; this is the checkpoint used for sampling in the self-consuming loop experiments, and it is also
the checkpoint where training is resumed with this new partially synthesized dataset. These results demonstrate that iterative fine-tuning
with self-correction generally outperforms iterative fine-tuning.

G. Consistency Across Seeds: Additional Human Motion Generation Quantitative Results
In Figures 17, 18, 19, and 20, we present experimental results from runs across three more seeds for our human motion
experiments when the dataset size is n = 64. We find that the self-correction technique consistently yields improved training
dynamics over iterative fine-tuning without correction.
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Figure 9. Here we see the negative floating phenomenon exacerbated by iterative fine-tuning, whereas iterative fine-tuning with
self-correction generates a motion with floor contact integrity comparable to the ground truth and baseline. The floatic metric is
formally defined in (Yuan et al., 2023) as the distance between the lowest vertex on the human mesh and the floor plane. All three
sequences were generated using the same prompt: person got down and is crawling across the floor. Each snapshot was taken at exactly
frame 87. The green figure appears larger than the other two only because it is closer to the camera. The two motions on the right were
synthesized after 50 generations training with 25% synthetic augmentation, trained on n = 64 data points.

Figure 10. All four of the above motions correspond to the prompt: a person raises right hand to face looks around and puts hand down
back to side.. The model which is trained with iterative fine-tuning outputs spurious motion that slides the figure to the right. And in the
video for this example, the human rotates their forearm unnaturally and forcefully. In contrast, the baseline and iterative fine-tuning with
self-correction models’ motions both accurately embody the prompt. Each generated snapshot is taken at exactly frame 142 while the
ground truth’s image is frame 70 in its sequence. The two motions on the right were synthesized after 42 generations with 10% synthetic
augmentation, where the ground truth dataset has size n = 2794.
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Figure 11. Here we observe that iterative fine-tuning fails to produce any meaningful motion sequence, but the iterative fine-tuning with
self-correction and baseline models generate results consistent with their prompt: walks side ways but back and forth. Each snapshot for
the generated motions was taken at exactly frame 120 while the ground truth image is a snapshot from frame 69. These images were
synthesized after 50 generation of the model that was trained on n = 64 data points at 25% synthetic augmentation.
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Figure 12. Results from our human motion experiments with iterative fine-tuning with and without self-correction, where the training set
has size 64. These are graphs for evaluation metrics on the last checkpoint for every generation; this is the checkpoint used for sampling
in the self-consuming loop experiments, and it is also the checkpoint where training is resumed with this new partially synthesized dataset.
These results demonstrate that iterative fine-tuning with self-correction generally outperforms iterative fine-tuning, and is sometimes
even competitive with baseline performance.
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Figure 13. Results from our human motion experiments with iterative fine-tuning with and without self-correction, where the training set
has size 128. These are graphs for evaluation metrics on the last checkpoint for every generation; this is the checkpoint used for sampling
in the self-consuming loop experiments, and it is also the checkpoint where training is resumed with this new partially synthesized dataset.
These results demonstrate that iterative fine-tuning with self-correction generally outperforms iterative fine-tuning, and is sometimes
even competitive with baseline performance. Notably, the performance gain of iterative fine-tuning with self-correction over iterative
fine-tuning is less pronounced than when the dataset size is n = 64.
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Figure 14. Results from our human motion experiments with iterative fine-tuning with and without self-correction, where the training set
has size 256. These are graphs for evaluation metrics on the last checkpoint for every generation; this is the checkpoint used for sampling
in the self-consuming loop experiments, and it is also the checkpoint where training is resumed with this new partially synthesized dataset.
These results demonstrate that iterative fine-tuning with self-correction generally outperforms iterative fine-tuning, and is sometimes
even competitive with baseline performance.
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Figure 15. Results from our human motion experiments on iterative fine-tuning with dataset size n = 2794. These are graphs for
evaluation metrics on the last checkpoint for every generation; this is the checkpoint used for sampling in the augmentation loop
experiments, and it is also the checkpoint where training is resumed with this new synthesized dataset. In these results, it appears as
though iterative fine-tuning with self-correction has less variance during training than iterative fine-tuning with with no self-correction,
and generally has better FID scores later in training. Notably, the these two curves are closer together than they were in the cases
n ∈ {64, 128, 256}.
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Figure 16. Results from our human motion experiments on iterative fine-tuning with dataset size n = 2794. These are graphs of the
average evaluation metrics for every generation. Graphing the average evaluation metrics makes the training dynamics trend over time
more clear. With this additional smoothing, it is more clear that iterative fine-tuning with self-correction outperforms iterative fine-tuning
with no self-correction, and is competitive with the baseline after many generations; in fact, it appears to converge to the baseline (on
average) for every synthetic augmentation percentage that we considered.
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Figure 17. Results from our human motion experiments on iterative fine-tuning, with dataset size n = 64 and 25% augmentation
percentage. Each row corresponds to a different random seed. We can see that iterative fine-tuning with self-correction consistently
outperforms iterative fine-tuning with no self-correction, and the FID score appears to converge to the baseline after many generations.

Figure 18. Results from our human motion experiments on iterative fine-tuning, with dataset size n = 64 and 50% augmentation
percentage. Each row corresponds to a different random seed. We can see that iterative fine-tuning with self-correction consistently
outperforms iterative fine-tuning with no self-correction, and the FID score appears to converge to the baseline after many generations.
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Figure 19. Results from our human motion experiments on iterative fine-tuning, with dataset size n = 64 and 75% augmentation
percentage. Each row corresponds to a different random seed. We can see that iterative fine-tuning with self-correction consistently
outperforms iterative fine-tuning with no self-correction, and the FID score appears to converge near the baseline after many generations.

Figure 20. Results from our human motion experiments on iterative fine-tuning, with dataset size n = 64 and 100% augmentation
percentage. Each row corresponds to a different random seed. We can see that iterative fine-tuning with self-correction consistently
outperforms iterative fine-tuning with no self-correction. However, we see less stability than in the runs with a lower augmentation
percentage. This is in accordance with Theorem 4.3.
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