
Adaptive Resolving Methods for Reinforcement Learning with
Function Approximations

Jiashuo Jiang
Department of Industrial Engineering & Decision Analytics, HKUST

jsjiang@ust.hk

Yiming Zong
Department of Industrial Engineering & Decision Analytics, HKUST

yzongac@connect.ust.hk

Yinyu Ye
Department of Management Science & Engineering, Stanford University

yyye@stanford.edu

Abstract

Reinforcement learning (RL) problems are fundamental in online decision-making
and have been instrumental for finding an optimal policy for Markov decision
processes (MDPs). Function approximations are usually deployed to handle large
or infinite state-action space. In our work, we consider the RL problems with
function approximation and we develop a new algorithm to solve it efficiently.
Our algorithm is based on the linear programming (LP) reformulation and it
resolves the LP at each iteration improved with new data arrival. Such a resolving
scheme enables our algorithm to achieve an instance-dependent sample complexity
guarantee, more precisely, when we have N data, the output of our algorithm enjoys
an instance-dependent Õ(1/N) suboptimality gap. In comparison to the O(1/

√
N)

worst-case guarantee established in the previous literature, our instance-dependent
guarantee is tighter when the underlying instance is favorable, and the numerical
experiments also reveal the efficient empirical performances of our algorithms.

1 Introduction

Reinforcement learning (RL) plays a crucial role in navigating uncertain environments, aiming
to maximize rewards by iteratively interacting with and learning from the unknown surroundings.
Markov Decision Processes (MDPs) serve as a widely adopted framework for modeling environmental
dynamics. They have been pivotal in diverse fields like inventory management [3], video gaming [42],
robotics [32], recommender systems [54], and more. One of the key to the successful deployment of
RL is the use of function approximator, which can handle large or infinite state-action space of the
underlying MDPs.

In this paper, we focus on developing reinforcement learning (RL) algorithms with function approx-
imations that are provably efficient in handling large or infinite state-action spaces. One common
approach is to frame the problem as linear programming (LP) (e.g. [14]), which is closely tied
to approximate dynamic programming. Previous research (e.g. [46]) has established a worst-case
O(1/

√
N) suboptimality gap, which translates into O(1/ϵ2) sample complexity for this LP-based

method, representing the best possible guarantee achievable for the most difficult problems in this
problem class. However, these minimax bounds and worst-case analyses can often be overly cautious,

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: MLxOR: Mathematical
Foundations and Operational Integration of Machine Learning for Uncertainty-Aware Decision-Making.

leading to a gap between theoretical assurances and practical performance in specific instances. We
focus on a more tailored approach - one that guarantees outstanding performance for each unique
problem and offers problem-specific assurances. Our study progresses by introducing RL algorithms
that provide problem-specific guarantees.

2 Approximate Dynamic Programming and Linear Programming

We consider a MDP problem with the state space denoted by S and the action space denoted by A.
We denote by γ ∈ (0, 1) a discount factor. We also denote by P : S × A → D(S) the probability
transition kernel of the MDP, whereD(S) denotes a probability measure over the state space S . Then,
P (s′|s, a) denotes the probability of transiting from state s ∈ S to state s′ ∈ S when the action
a ∈ A is executed. The initial distribution over the states of the MDP is denoted by µ1. There is also
a cost function c : S ×A → D[0, 1].
One can directly compute the optimal policy π∗ by solving the dynamic programming according to
the Bellman equation. However, when the state space S or the action space A is very large or infinite,
solving the DP becomes computationally intractable. Various methods have been developed in the
literature to tackle this issue (e.g. [47, 34, 57]), and we consider the function approximations. To be
specific, we make the following assumption.

Assumption 2.1 (Linear Approximation). The value function V π∗
can be well approximated in the

following formulation:

V π∗
(s) ≈

d1∑
i=1

ϕi(s) · wi, ∀s ∈ S. (1)

where ϕ1, . . . , ϕd1 are some basis functions that are determined based on the particular problem
instances, and w = (w1, . . . , wd1

) ∈ Rd1 are the corresponding weights.

The approximate linear programming (ALP) has been developed in the previous literature (e.g.
[48]) to find the optimal weights w that well approximates the optimal value function. The ALP is
formulated as follows where the weights w are regarded as the decision variables.

V ALP = max
∑
s∈S

µ(s) ·
d1∑
i=1

ϕi(s)wi (2a)

s.t.

d1∑
i=1

ϕi(s)wi − γ ·
∑
s′∈S

P (s′|s, a) ·
d1∑
i=1

ϕi(s
′)wi ≤ c(s, a), ∀(s, a) ∈ S ×A

(2b)

w ∈ Rd1 . (2c)

where µ is a state-relevance weights with positive elements. The ALP has been widely studied in
the literature and numerous methods have been developed to solve it efficiently. In what follows, we
focus on solving the ALP (2) in a data-driven way, where we aim to obtain a near-optimal solution
with as few samples as possible. In Appendix B, we discuss the generative model assumption and the
RLP formulation (13) for large problems.

3 Variables and Constraints Reduction

In this section, we describe a procedure that can further reduce the required number of constraints to a
quantity d2 that is guaranteed to be no larger than the number of basis functions d1. For convenience,
we denote by the ALP (or RLP for large problems) in the following standard matrix form. We set K
to be the number of constraints in the LP, with K = |S × A| for ALP and K = |K| for RLP.

V LP = max r⊤x s.t. Ax+ s = c, x ∈ Rd1 , s ≥ 0. (3)

Here, we use r = µ⊤Φ and the matrix A ∈ Rd1×K denotes the constraint matrix. We set s ∈ RK

to be the slackness variables. We now show that when solving (3), instead of focusing on all the
constraints (the number of which may be large), we can focus on only a small set of constraints that
is no larger than the number of decision variables x.

2

3.1 Optimal Basis Identification

Following standard LP theory, when solving the LP (3), it is sufficient for us to focus only on the
corner points of the feasible set to obtain an optimal solution. Such a solution is also called basic
solutions. Therefore, we can simply focus on obtaining the optimal basic solution of LP (3). The
optimal basic solution of LP (3) enjoys the following further characterizations. Note that in LP theory,
the corner point can be represented by LP basis, which involves the set of basic variables that are
allowed to be non-zero, and the set of active constraints that are binding under the corresponding basic
solution. Then, we have the following result, where the formal proof is relegated to the appendix.
Lemma 3.1. There exists an index set I∗ ⊂ [d1] and an index set J ∗ ⊂ K such that |I∗| = |J ∗| =
d2, for some integer d2 ≤ d1. Also, for the given I∗ and J ∗, there exists an optimal solution x∗ to
LP (3) that satisfies

AJ ∗,I∗ · x∗
I∗ = cJ ∗ (4)

and x∗
I∗c = 0 where I∗c = [d1] \ I∗ denotes the complementary set of I∗.

Therefore, characterizing the optimal corner point is equivalent to identifying the optimal index sets
I∗ and J ∗. We now describe how to identify one optimal basis of LP (3). Note that this procedure
involves the exact formulation of A. However, since the transition kernel P is unknown, we can only
use the historical dataset, denoted byH, to construct an estimate of A, which we denote by Â(H).
We describe in the following paragraphs the exact procedure to construct estimate Â(H). With Â(H),
we can consider the following LP, which serves as an estimate of LP (3).

V̂ LP(H) = max r⊤x s.t. Â(H) · x+ s = c, x ∈ Rd1 , s ≥ 0. (5)

A key step in our approach is to identify one optimal basis of V̂ LP(H) and then show that it is a good
approximation of the optimal basis of V LP.

Note that identifying an optimal basis is a classical topic in the study of linear programming and
there has been multiple algorithms developed in the previous literature. One well-known algorithm
is the simplex method, which identifies one optimal basic solution, as well as the optimal basis.
Though the simplex method is developed more than half a century ago, it is still to date one of the
most efficient methods for solving large-scale linear programming (LP) problems, and has been
demonstrated to be computationally efficient for solving MDP problems with LP formulations. The
simplex algorithm to identify an optimal basis of V̂ LP(H) is formally presented in Appendix C.1.
In Appendix C.2, we also develop a new algorithm that can identify the optimal basis of V̂ LP(H),
which enjoys a polynomial-time worst-case computational complexity. We leave the discussion of
the high probability bound of optimality for the variables and constraint reduction in Appendix D.

4 Our Formal Algorithm

In the previous section, we described how to identify one optimal basis I∗ and J ∗. We now describe
how to approximate the optimal weights x∗ that corresponds to the optimal basis I∗ and J ∗. Note
that the optimal solution x∗ enjoys the following structure: x∗

I∗c = 0 and the basic elements x∗
I∗ can

be given as the solution to
AJ ∗,I∗ · xI∗ = cJ ∗ . (6)

However, in practice, we do not know the optimal basis I∗ and J ∗, as well as the matrix A,
beforehand. Therefore, on one hand, we use the simplex method to learn the optimal basis I∗ and J ∗.
On the other hand, we construct estimates of the matrix A and approximate x∗, using the historical
dataset. We denote by C an upper bound on 2 · ∥x∗∥. Our formal algorithm is given in Algorithm 1.

Note that in our algorithm, for each iteration n ∈ N , we need to query the generative modelM to
obtain an unbiased estimator of the matrix A to represent how the constraints are satisfied under the
current action xn. Such an estimator can be constructed in the following way. For any state-action
pair (s, a) ∈ J ∗, we query the generative modelM to obtain a state transition, where we denote
the new state by s′. Then, the element of An, at the row (s, a) ∈ J ∗ and column i ∈ [d2] can be
represented by γ · ϕi(s

′)− ϕi(s). It is clear to see that

Es′ [A
n
(s,a),i] = Es′ [γ · ϕi(s

′)− ϕi(s)] = γ ·
∑
s′∈S

P (s′|s, a) · ϕi(s
′)− ϕi(s) = A(s,a),i.

3

Algorithm 1 The Algorithm for Optimal Weights
1: Input: the number of samples N and basis I∗ and J ∗.
2: InitializeH1 = ∅ and c1 = N · c.
3: for n = 1, . . . , N do
4: Construct estimates Â(Hn) using the datasetHn.
5: Construct a solution x̃n such that x̃n

I∗c = 0 and x̃n
I∗ is the solution to

ÂJ ∗,I∗(Hn) · x̃n
I∗ =

cnJ ∗

N − n+ 1
. (7)

6: Project x̃n to the set {x : ∥x∥ ≤ C} to obtain xn.
7: For each (s, a) ∈ J ∗, query the generative modelM to obtain the new state transition s′(s, a).
8: UpdateHn+1 = Hn ∪ {s′(s, a),∀(s, a)}.
9: Construct a matrix An ∈ Rd2×d2 with the element of An, at the row (s, a) ∈ J ∗ and column

i ∈ [d2], is given by γ · ϕi(s
′(s, a))− ϕi(s).

10: Do the update:
cn+1
J ∗ = cnJ ∗ −An · xn

I∗ . (8)
11: end for
12: Define

x̄N =
1

N
·

N∑
n=1

xn. (9)

13: Output: x̄N .

Therefore, we know that for each iteration n, An is an unbiased estimator of AJ ∗,I∗ and the
distribution of An is also independent of the datasetHn.

Another crucial element in Algorithm 1 (step 10) is that we adaptively update the value of cn as in (8).
We then use the updated cn to obtain the value of x̃n

I∗ as in (7). Such a resolving algorithmic design
has been developed in [26] for constrained MDP under the tabular setting and we further develop here
for RL under the linear approximation setting. The resolving procedure has a natural interpretation
that cn will concentrate around c, with a gap bounded at the order of 1/(N − n + 1), which is
the key to achieving an instance-dependent guarantee. To be specific, if for one binding constraint
j ∈ J ∗, the constraint value under the action

∑n
n′=1 x

n′
/n is below the target cj , we know that

cnj /(N − n + 1) is greater than cj , which results in a greater constraint value for x̃n+1. In this
way, any gap between the real-time constraint value and the target will be self-corrected in the next
period as we adaptively obtain x̃n+1. Therefore, such an adaptive design can re-adjust the possible
constraint violation by itself, which results in a regret bound of a lower order at O(1/(N − n+ 1)).

Here we also present the final sample complexity bound of our algorithm and leave the detailed
analysis to the Appendix E. Note that we have a bound on the constraint violation for each (s, a) ∈ J ∗.
For the constraints not in the index set J ∗, we can also bound its violation using the non-singularity
of the matrix AJ ∗,I∗ . This is another benefit of identifying the optimal basis I∗ and J ∗.
Theorem 4.1. With a sample complexity bound of

O

(
K · log(K/ε)

∆2
+

d22(1 + ∥AJ ∗,I∗∥∞)

σ2
· log(1/ε)

ε

)
,

where K refers to the number of constraints in V LP, the parameters ∆ defined in (18), σ given in
(24), we obtain a solution x̄N from Algorithm 1 (defined in (9)) such that

V LP − r⊤x̄N ≤ ε and A · x̄N − c ≤ ε, ∀k ∈ [K].

5 Concluding Remarks

In this work, we develop a new algorithm for RL with function approximation. Our algorithm is
LP-based and enjoys an instance-dependent theoretical guarantee. The experimental results (detailed
in Appendix F) show the efficient performance of our algorithm. Our work considers a generative
model and we leave the extension to offline and online setting as future work to explore.

4

References
[1] S. Agrawal, Z. Wang, and Y. Ye. A dynamic near-optimal algorithm for online linear program-

ming. Operations Research, 62(4):876–890, 2014.

[2] A. Al-Marjani, A. Tirinzoni, and E. Kaufmann. Towards instance-optimality in online pac
reinforcement learning. arXiv preprint arXiv:2311.05638, 2023.

[3] M. Alvo, D. Russo, and Y. Kanoria. Neural inventory control in networks via hindsight
differentiable policy optimization. arXiv preprint arXiv:2306.11246, 2023.

[4] R. Ao, J. Jiang, and D. Simchi-Levi. Learning to price with resource constraints: From full
information to machine-learned prices. arXiv preprint arXiv:2501.14155, 2025.

[5] A. Arlotto and X. Xie. Logarithmic regret in the dynamic and stochastic knapsack problem with
equal rewards. Stochastic Systems, 10(2):170–191, 2020.

[6] K. P. Badrinath and D. Kalathil. Robust reinforcement learning using least squares policy
iteration with provable performance guarantees. In International Conference on Machine
Learning, pages 511–520. PMLR, 2021.

[7] S. Banerjee and D. Freund. Good prophets know when the end is near. Management Science,
2024.

[8] N. Buchbinder and J. Naor. Online primal-dual algorithms for covering and packing. Mathe-
matics of Operations Research, 34(2):270–286, 2009.

[9] P. Bumpensanti and H. Wang. A re-solving heuristic with uniformly bounded loss for network
revenue management. Management Science, 66(7):2993–3009, 2020.

[10] J. Chen and N. Jiang. Information-theoretic considerations in batch reinforcement learning. In
International Conference on Machine Learning, pages 1042–1051. PMLR, 2019.

[11] J. Chen and N. Jiang. Offline reinforcement learning under value and density-ratio realizability:
the power of gaps. In Uncertainty in Artificial Intelligence, pages 378–388. PMLR, 2022.

[12] C.-A. Cheng, T. Xie, N. Jiang, and A. Agarwal. Adversarially trained actor critic for offline
reinforcement learning. In International Conference on Machine Learning, pages 3852–3878.
PMLR, 2022.

[13] C. Dann, L. Li, W. Wei, and E. Brunskill. Policy certificates: Towards accountable reinforcement
learning. In International Conference on Machine Learning, pages 1507–1516. PMLR, 2019.

[14] D. P. De Farias and B. Van Roy. The linear programming approach to approximate dynamic
programming. Operations research, 51(6):850–865, 2003.

[15] D. P. De Farias and B. Van Roy. On constraint sampling in the linear programming approach
to approximate dynamic programming. Mathematics of operations research, 29(3):462–478,
2004.

[16] T. S. Ferguson. Who solved the secretary problem? Statistical science, 4(3):282–289, 1989.

[17] G. Gallego and G. Van Ryzin. A multiproduct dynamic pricing problem and its applications to
network yield management. Operations research, 45(1):24–41, 1997.

[18] Z. D. Guo, S. Doroudi, and E. Brunskill. A pac rl algorithm for episodic pomdps. In Artificial
Intelligence and Statistics, pages 510–518. PMLR, 2016.

[19] A. Gupta and M. Molinaro. How experts can solve lps online. In European Symposium on
Algorithms, pages 517–529. Springer, 2014.

[20] J. He, D. Zhou, and Q. Gu. Logarithmic regret for reinforcement learning with linear function
approximation. In International Conference on Machine Learning, pages 4171–4180. PMLR,
2021.

5

[21] J. He, H. Zhao, D. Zhou, and Q. Gu. Nearly minimax optimal reinforcement learning for
linear markov decision processes. In International Conference on Machine Learning, pages
12790–12822. PMLR, 2023.

[22] N. J. Higham. Accuracy and stability of numerical algorithms. SIAM, 2002.

[23] J. Huang, H. Zhong, L. Wang, and L. Yang. Tackling heavy-tailed rewards in reinforcement
learning with function approximation: Minimax optimal and instance-dependent regret bounds.
Advances in Neural Information Processing Systems, 36, 2024.

[24] S. Jasin. Reoptimization and self-adjusting price control for network revenue management.
Operations Research, 62(5):1168–1178, 2014.

[25] S. Jasin and S. Kumar. A re-solving heuristic with bounded revenue loss for network revenue
management with customer choice. Mathematics of Operations Research, 37(2):313–345, 2012.

[26] J. Jiang and Y. Ye. Achieving Õ(1/ϵ) sample complexity for constrained markov decision
process. Advances in Neural Information Processing Systems, 37:78679–78714, 2024.

[27] J. Jiang, W. Ma, and J. Zhang. Degeneracy is ok: Logarithmic regret for network revenue
management with indiscrete distributions. Operations Research, 2025.

[28] C. Jin, Z. Allen-Zhu, S. Bubeck, and M. I. Jordan. Is q-learning provably efficient? Advances
in neural information processing systems, 31, 2018.

[29] Y. Jin, Z. Yang, and Z. Wang. Is pessimism provably efficient for offline rl? In International
Conference on Machine Learning, pages 5084–5096. PMLR, 2021.

[30] T. Kesselheim, A. Tönnis, K. Radke, and B. Vöcking. Primal beats dual on online packing
lps in the random-order model. In Proceedings of the forty-sixth annual ACM symposium on
Theory of computing, pages 303–312, 2014.

[31] Y. Kim, I. Yang, and K.-S. Jun. Improved regret analysis for variance-adaptive linear bandits
and horizon-free linear mixture mdps. arXiv preprint arXiv:2111.03289, 2021.

[32] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

[33] G. Li, L. Shi, Y. Chen, Y. Chi, and Y. Wei. Settling the sample complexity of model-based
offline reinforcement learning. The Annals of Statistics, 52(1):233–260, 2024.

[34] L. Li, T. J. Walsh, and M. L. Littman. Towards a unified theory of state abstraction for mdps.
AI&M, 1(2):3, 2006.

[35] X. Li and Q. Sun. Variance-aware robust reinforcement learning with linear function approxi-
mation under heavy-tailed rewards. arXiv preprint arXiv:2303.05606, 2023.

[36] X. Li and Y. Ye. Online linear programming: Dual convergence, new algorithms, and regret
bounds. Operations Research, 70(5):2948–2966, 2022.

[37] X. Li, C. Sun, and Y. Ye. The symmetry between arms and knapsacks: A primal-dual approach
for bandits with knapsacks. In International Conference on Machine Learning, pages 6483–
6492. PMLR, 2021.

[38] Y. Liu, A. Swaminathan, A. Agarwal, and E. Brunskill. Provably good batch off-policy
reinforcement learning without great exploration. Advances in neural information processing
systems, 33:1264–1274, 2020.

[39] W. Ma, Y. Cao, D. H. Tsang, and D. Xia. Optimal regularized online convex allocation by
adaptive re-solving. arXiv preprint arXiv:2209.00399, 2022.

[40] A. Mehta, A. Saberi, U. Vazirani, and V. Vazirani. Adwords and generalized online matching.
Journal of the ACM (JACM), 54(5):22–es, 2007.

6

[41] P. Ménard, O. D. Domingues, A. Jonsson, E. Kaufmann, E. Leurent, and M. Valko. Fast active
learning for pure exploration in reinforcement learning. arXiv preprint arXiv:2007.13442, 2020.

[42] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[43] M. Molinaro and R. Ravi. The geometry of online packing linear programs. Mathematics of
Operations Research, 39(1):46–59, 2014.

[44] R. Munos. Error bounds for approximate policy iteration. In ICML, volume 3, pages 560–567.
Citeseer, 2003.

[45] R. Munos and C. Szepesvári. Finite-time bounds for fitted value iteration. Journal of Machine
Learning Research, 9(5), 2008.

[46] A. E. Ozdaglar, S. Pattathil, J. Zhang, and K. Zhang. Revisiting the linear-programming
framework for offline rl with general function approximation. In International Conference on
Machine Learning, pages 26769–26791. PMLR, 2023.

[47] W. B. Powell. Approximate Dynamic Programming: Solving the curses of dimensionality,
volume 703. John Wiley & Sons, 2007.

[48] M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 1994.

[49] P. Rashidinejad, B. Zhu, C. Ma, J. Jiao, and S. Russell. Bridging offline reinforcement learning
and imitation learning: A tale of pessimism. Advances in Neural Information Processing
Systems, 34:11702–11716, 2021.

[50] P. Rashidinejad, H. Zhu, K. Yang, S. Russell, and J. Jiao. Optimal conservative offline rl with
general function approximation via augmented lagrangian. arXiv preprint arXiv:2211.00716,
2022.

[51] R. Reemtsen. Semi-infinite programming: discretization methods. 2001.

[52] B. Scherrer. Performance bounds for λ policy iteration and application to the game of tetris.
Journal of Machine Learning Research, 14(4), 2013.

[53] B. Scherrer. Approximate policy iteration schemes: A comparison. In International Conference
on Machine Learning, pages 1314–1322. PMLR, 2014.

[54] G. Shani, D. Heckerman, R. I. Brafman, and C. Boutilier. An mdp-based recommender system.
Journal of Machine Learning Research, 6(9), 2005.

[55] R. Shariff and C. Szepesvári. Efficient planning in large mdps with weak linear function
approximation. Advances in Neural Information Processing Systems, 33:19163–19174, 2020.

[56] M. Simchowitz and K. G. Jamieson. Non-asymptotic gap-dependent regret bounds for tabular
mdps. Advances in Neural Information Processing Systems, 32, 2019.

[57] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2 edition,
2018. URL http://incompleteideas.net/book/the-book-2nd.html.

[58] A. Swietanowski. Simplex v. 2.17: an implementation of the simplex algorithm for large scale
linear problems. user’s guide. 1994.

[59] M. Uehara and W. Sun. Pessimistic model-based offline reinforcement learning under partial
coverage. arXiv preprint arXiv:2107.06226, 2021.

[60] S. A. Vavasis and Y. Ye. Identifying an optimal basis in linear programming. Annals of
Operations Research, 62(1):565–572, 1996.

[61] A. Vera and S. Banerjee. The bayesian prophet: A low-regret framework for online decision
making. Management Science, 67(3):1368–1391, 2021.

7

http://incompleteideas.net/book/the-book-2nd.html

[62] A. Wagenmaker and K. G. Jamieson. Instance-dependent near-optimal policy identification in
linear mdps via online experiment design. Advances in Neural Information Processing Systems,
35:5968–5981, 2022.

[63] A. J. Wagenmaker, Y. Chen, M. Simchowitz, S. Du, and K. Jamieson. First-order regret in
reinforcement learning with linear function approximation: A robust estimation approach. In
International Conference on Machine Learning, pages 22384–22429. PMLR, 2022.

[64] A. J. Wagenmaker, M. Simchowitz, and K. Jamieson. Beyond no regret: Instance-dependent
pac reinforcement learning. In Conference on Learning Theory, pages 358–418. PMLR, 2022.

[65] Y. Wei, J. Xu, and S. H. Yu. Constant regret primal-dual policy for multi-way dynamic
matching. In Abstract Proceedings of the 2023 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, pages 79–80, 2023.

[66] T. Xie and N. Jiang. Batch value-function approximation with only realizability. In International
Conference on Machine Learning, pages 11404–11413. PMLR, 2021.

[67] T. Xie, C.-A. Cheng, N. Jiang, P. Mineiro, and A. Agarwal. Bellman-consistent pessimism
for offline reinforcement learning. Advances in neural information processing systems, 34:
6683–6694, 2021.

[68] Y. Ye. The simplex and policy-iteration methods are strongly polynomial for the markov
decision problem with a fixed discount rate. Mathematics of Operations Research, 36(4):
593–603, 2011.

[69] A. Zanette, D. Brandfonbrener, E. Brunskill, M. Pirotta, and A. Lazaric. Frequentist regret
bounds for randomized least-squares value iteration. In International Conference on Artificial
Intelligence and Statistics, pages 1954–1964. PMLR, 2020.

[70] A. Zanette, M. J. Wainwright, and E. Brunskill. Provable benefits of actor-critic methods
for offline reinforcement learning. Advances in neural information processing systems, 34:
13626–13640, 2021.

[71] W. Zhan, B. Huang, A. Huang, N. Jiang, and J. Lee. Offline reinforcement learning with
realizability and single-policy concentrability. In Conference on Learning Theory, pages
2730–2775. PMLR, 2022.

[72] Z. Zhang, J. Yang, X. Ji, and S. S. Du. Improved variance-aware confidence sets for linear
bandits and linear mixture mdp. Advances in Neural Information Processing Systems, 34:
4342–4355, 2021.

[73] D. Zhou and Q. Gu. Computationally efficient horizon-free reinforcement learning for linear
mixture mdps. Advances in neural information processing systems, 35:36337–36349, 2022.

[74] D. Zhou, Q. Gu, and C. Szepesvari. Nearly minimax optimal reinforcement learning for linear
mixture markov decision processes. In Conference on Learning Theory, pages 4532–4576.
PMLR, 2021.

[75] H. Zhu, P. Rashidinejad, and J. Jiao. Importance weighted actor-critic for optimal conservative
offline reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

8

A More Detailed Literature Review

We now provide a more detailed discussion over the related work.

RL with function approximation. There are two main research lines in RL with function approxima-
tion. In the first research line, a lot of works focused on the theoretical basis and guarantee of offline
RL. Early works mainly discussed algorithms’ theoretical performance guarantee [45, 52, 53], but
neglected the analysis of their underlying assumptions. Chen and Jiang [10] concluded and proposed
two fundamental requirements of offline RL: Concentrability coefficient (also called ‘full-data cover-
age’ in some literature) and Bellman completeness. Later on, many works tried to develop offline RL
algorithms under weaker assumptions. Most of works focused on weakening the ‘Concentrability
coefficient’ assumption and utilized the pessimism principle to develop algorithms for tabular MDP
settings [49, 33] and linear MDP settings [29, 59] under the assumption of partial data coverage.
Besides, different from using the pessimism principle to discover good policy, Xie et al. [67] imple-
mented pessimism with Bellman consistence, while Zanette et al. [70] incorporated it to the offline
actor-critic algorithm. Other recent works under partial data coverage assumption are Shariff and
Szepesvári [55], Zhan et al. [71], Rashidinejad et al. [50], Ozdaglar et al. [46] with general function
approximation and Zhu et al. [75], Cheng et al. [12] with actor-critic algorithm.

The common assumption on function class is Bellman completeness [45, 10, 38, 67, 70]. Xie and
Jiang [66] successfully weakened this assumption to only realizability, but used a stronger assumption
than ‘concentrability coefficient’ [44]. Recently, many works have made progress by utilizing function
approximation for density ratio instead of value function [11, 71, 46].

In the second, a line of works proposed more practical and provable efficient algorithms. For linear
MDPs, ?] proposed the LSVI-UCB with Õ(

√
d3H3T) regret bound and He et al. [21] further

achieved the minimax optimality with Õ(d
√
H3T) regret bound, which was also the lower bound

Zhou et al. [74] provided. Zanette et al. [69] considered the undiscounted finite-horizon MDP and
proposed a Thompson sampling-based algorithm, which achieves an upper bound Õ(d2H2

√
T). All

of these algorithms are based on the LSVI, while Badrinath and Kalathil [6] proposed an algorithm
based on the LSPI. There are also many works on linear mixture MDPs [74, 72, 73]. From another
perspective, we consider using the LP framework for general MDP to build a provable and efficient
algorithm compared to Ozdaglar et al. [46].

Instance dependent bound for RL. There are emerging works of instance dependent bound for
RL under different conditions. Many recent work focused on the linear MDP and linear mixure
MDP settings [63, 20, 73, 72, 31]. He et al. [20] shown that standard optimistic algorithms can
achieve O(d3H5

∆min·log(T)) in the setting of linear MDP and O(d2H5

∆min·log3(T)) in the setting of linear
mixure MDP, and proved an Ω(dH

∆min
) lower bound in both settings, where ∆min is the minimum

value-function gap. Zhou and Gu [73] further proposed the first computationally efficient horizon-
free algorithm and achieved the optimal Õ(d

√
K + d2) regret. Li and Sun [35] and Huang et al.

[23] both discussed heavy-tail rewards and achieved a variance-aware regret bound and the first
computationally efficient instance-dependent K-episode regret bound separately. There is a lot of
work on PAC RL [18, 28, 13, 41], but very little about instant-dependent bounds. Wagenmaker
et al. [64] proposed an algorithm in tabular RL, whose instance-dependent sample complexity attains
significant improvements over worst-case bounds. Al-Marjani et al. [2] proposed the first instance-
dependent lower bound on the sample complexity and the PEDEL algorithm [62] is quite close to this
lower bound. Our algorithm differs from above literatures by developing new primal-dual algorithm
and achieving new instance-dependent sample complexity bound.

Near-optimal algorithms for online resource allocation. The online resource allocation problem
has been extensively studied and encompasses a wide range of applications, each characterized by
different formulations of the underlying LP. Examples include the secretary problem [16], online
knapsack problem [5], network revenue management [17], network routing problem [8], and matching
problem [40], among others [43, 1, 19]. Research on the online LP problem typically considers two
main models: (i) the stochastic input model, where each column of the constraint matrix and the
corresponding objective coefficient are independently drawn from an unknown distribution P , and
(ii) the random permutation model, where inputs arrive in a uniformly random order [43, 1, 30, 19].
Under an additional non-degeneracy assumption, logarithmic regret bounds have been established for
the quantity-based network revenue management problem [25, 24], the general online LP problem

9

[36], and more broadly for the convex allocation problem [39]. More recently, this non-degeneracy
assumption has been relaxed in several works [9, 61, 27, 65, 4, 7], leading to improved theoretical
guarantees under broader settings.

B Preliminaries

We consider a MDP problem with the state space denoted by S and the action space denoted by A.
We denote by γ ∈ (0, 1) a discount factor. We also denote by P : S × A → D(S) the probability
transition kernel of the MDP, whereD(S) denotes a probability measure over the state space S . Then,
P (s′|s, a) denotes the probability of transiting from state s ∈ S to state s′ ∈ S when the action
a ∈ A is executed. The initial distribution over the states of the MDP is denoted by µ1.

There is a cost function c : S × A → D[0, 1]. We focus on the Markovian policy, which takes the
action only based on the current state of the MDP. To be specific, any Markovian policy π can be
denoted as a function π : S → A. For any Markovian policy π, we denote by V π(µ1) the infinite
horizon discounted cost of the policy π, with the formulation of V π(µ1) given below:

V π(µ1) = E

[∞∑
t=1

γt−1 · c(st, at) | µ1

]
, (10)

where (st, at) is generated according to the policy π and the transition kernel P with the initial state
distribution µ1. To solve the MDP problem, we aim to find an optimal Markovian policy, denoted by
π∗, that minimizes the cost in (10). Importantly, we assume that the transition kernel P is unknown
to the decision maker. We obtain samples to learn the transition kernel. The sampling procedure can
be described as follows.
Assumption B.1 (Generative Model). For each state and action pair (s, a), we can query the model
M to obtain an observation of the new state s′ ∈ S, where the transition from s to s′ follows the
probability kernel P (s′|s, a) independently.

Querying the generative modelM can be costly, and it is desirable to approximate the optimal policy
π∗ well with as few samples as possible. Therefore, we measure the performance of a policy π by the
sample complexity bound. That is, for any ε, we compute a bound on the number of samples that we
need to construct a policy π such that

V π(µ1)− V π∗
(µ1) ≤ ε. (11)

The Bellman optimality equation can be written as

V π∗
(s) = min

a∈A
c(s, a) + γ ·

∑
s′∈S

P (s′|s, a) · V π∗
(s′). (12)

Note that (12) implies that the optimal policy π∗ is the greedy policy with respect to the optimal
value function V π∗

through the Bellman equation (12). Thus, in order to approximate the optimal
policy π∗, it is sufficient to approximate the value function V π∗

.

B.1 Reduced LP for Large or Infinite State Space

When the underlying state-action space S × A is large or infinite, the ALP (2) will have a large
number of or infinite constraints and thus intractable to solve. A common approach to deal with
this issue in the literature is through constraint sampling. To be specific, following [51, 15], we can
sample a finite subset K ⊂ S ×A, and we consider the reduced LP (RLP) given as follows,

V RLP = max
∑
s∈S

µ(s) ·
d1∑
i=1

ϕi(s)wi (13a)

s.t.

d1∑
i=1

ϕi(s)wi − γ ·
∑
s′∈S

P (s′|s, a) ·
d1∑
i=1

ϕi(s
′)wi ≤ c(s, a), ∀(s, a) ∈ K (13b)

w ∈ Rd1 . (13c)

We have the following result regarding the size of V RLP.

10

Theorem B.2 (Theorem 3.1 of [15]). Let the elements in the set K be sampled independently
from S × A. Then, for any ϵ, δ > 0, when |K| = O

(
log(1/ϵ)

ϵ · log(1/δ)
)

, it holds that

P
(
|V ALP − V RLP| ≤ ε

)
≥ 1− δ.

C Two algorithms for Basis Identification

C.1 The Simplex Method

In this section, we formally present the simplex method in Algorithm 2.

Algorithm 2 Simplex algorithm for optimal basis identification
1: Input: the historical sample setH.
2: Construct the V̂ LP(H) with the historical sample setH as in (5).
3: Initialize Basis:

• Initial basis: B ← indices of slack variables s.
• Non-basis: N ← indices of original variables x.
• Initial Basic Feasible Solutions: s = c, x = 0.

4: Convert to canonical form: Express s as identity matrix columns.
5: while there exists σj = rj − r⊤BÂ:,j(H) > 0 for j ∈ N do
6: Select xk ∈ N with σk = max{σj > 0}.
7: if Â:,k(H) ≤ 0 then
8: Problem unbounded. Terminate.
9: else

10: Compute θi =
ci

Âi,k(H)
for Âi,k(H) > 0.

11: Select leaving variable sr ∈ B with θr = min{θi} .
12: Update basis B ← (B \ {r}) ∪ {k} and non-basis N ← (N \ {k}) ∪ {r}.
13: Perform Gaussian elimination to make Â:,k(H) an identity column.
14: Recompute xB = c− Â:,N (H)xN and σj .
15: end if
16: end while
17: Set I∗ = B ∩ {indices of original variables x} and J ∗ = B ∩ {indices of slack variables s}.
18: Output: the sets of indices I∗ and J ∗.

Note that the computation complexity of the simplex method is equivalent to solving the LP V̂ LP(H)
by one time using the simplex method. The simplex method is well-known to be practically efficient,
especially for large-scale problems (see an early report [58] on simplex solver) and has been demon-
strated to enjoy a polynomial-time average-case complexity. Moreover, the simplex method has been
shown to be particularly efficient when solving the LPs that results from MDP problems (e.g. [68]).
Besides the simplex method, there has been other algorithms developed in the literature which can be
applied here to identify the optimal basis, see for example [60].

C.2 Additional algorithm for basis identification

Here we introduce an additional method to identify the basis of LP variables and constraints, which
is also based on the Lemma 3.1. This algorithm solves the LPs by K + d times and thus enjoys a
polynomial-time worst-case computational complexity.

Note that if a variable is not a basic variable, we can restrict its value to 0 without changing the LP
values. To detect whether we can restrict one variable to be 0 without changing the LP value, we can
add the constraint xi = 0 to LP (3) and compare its value to the original LP. If the objective value
has not changed, then we know that the i-th variable is not a basic variable and does not belong to the
basis I∗. We repeat the above procedure for each variable i. Note that during the repeating procedure,
if we can restrict one variable xi = 0 without changing the LP value, we will remain this restriction
when we test the remaining variables. In this way, we identify one optimal basis from possibly many.
To this end, for an index set I , we define the following LP with the variables not in I restricted to be

11

0, as well as its estimate,

V LP
I =max r⊤x V̂ LP

I (H) = max r⊤x

s.t. Ax ≤ c s.t. Â(H)x ≤ c

xIc = 0 xIc = 0

x ≥ 0, x ≥ 0.

(14)

Algorithm 3 Additional algorithm for optimal basis identification
1: Input: the historical sample setH with N transition data for each (s, a).
2: Compute the value of V̂ LP(H) as in (14).
3: Initialize I = [d1] to be the whole index set that contains every variable of LP (3) and J = K.
4: for i ∈ I do
5: Let I ′ = I\{i}.
6: Compute the value of V̂ LP

I′ (H) as in (14).
7: If |V̂ LP(H)− V̂ LP

I′ (H)| ≤
√

Rad(N, ε) with Rad(N, ε) given in (19), then we set I = I ′.
8: end for
9: for (s, a) ∈ J do

10: Let J ′ = J \{(s, a)}.
11: Compute the value of D̂LP

I,J ′(H) as in (15).
12: If |V̂ LP(H)− D̂LP

I,J ′(H)| ≤
√
Rad(N, ε), then we set J = J ′.

13: end for
14: Output: the sets of indices I and J .

We also need to detect whether a constraint is binding under the optimal basic solution corresponding
to the basis I∗. In order to tell whether a constraint is redundant and can be removed (not in the
index set J ∗), we can consider the dual of LP (3), with the additional constraints xI∗ = 0. If a dual
variable can be restricted to 0 without influencing the LP value, we know that the corresponding
constraint is redundant. Denote by J the index set of the dual variables that could be restricted to 0.
The dual LP with the restriction set J can be written as follows, as well as its empirical estimation.
Denote by J the index set of the constraints that could be binding. We consider the following LP
with the constraints not in J removed, as well as its estimate,

DLP
I,J =min c⊤y D̂LP

I,J (H) = min c⊤y

s.t. A⊤
:,Iy = rI s.t. Â⊤

:,I(H)y = rI

yJ c = 0 yJ c = 0

y ≥ 0, y ≥ 0.

(15)

As we can see, Algorithm 3 only requires us to compute the LP values by a finite number of time.
More specifically, we need to compute the LP values for K + d1 number of times. The size of the LP
is also polynomial in the dimension of the problem (the size is K × d1). Therefore, we know that
Algorithm 3 can be conducted in polynomial time.

D High Probability Bound of Optimality for Variables and Constraints
Reduction

We know that Algorithm 2 identifies an optimal basis of V̂ LP(H). In this section, we further show
that the output of Algorithm 2, denoted by I∗ and J ∗, forms an optimal basis to V LP with a high
probability, where the randomness comes from the randomness of the dataset H that we use to
construct estimate of A.

There are two key quantities that we need to specify in order to derive the high probability bound.
For an arbitrary basis I and J to V LP, satisfying |I| = |J |, a solution x(I,J) satisfying the
characterizations in Lemma 3.1 is called a basic solution if AJ ,I is a non-singular sub-matrix such
that the solution to linear equations (4) is uniquely determined. We now denote by F1 the collection

12

of all basis (I,J) such that x(I,J) is a basic solution. Note that not all basic solutions will be
feasible. Therefore, we define δ1 as the feasibility gap, specified below.

δ1 = min
(I,J)∈F1

{
max
k∈[K]

{
[Ak,: · x(I,J)− ck]

+
}
: max
k∈[K]

{
[Ak,: · x(I,J)− ck]

+
}
> 0

}
(16)

Note that if a basic solution x(I,J) is feasible, then maxk∈[K]

{
[Ak,: · x(I,J)− ck]

+
}
= 0. How-

ever, if x(I,J) is infeasible, then there must exists a k ∈ [K] such that [Ak,: · x(I,J)− ck]
+
> 0

becomes an infeasibility gap over the constraints. The parameter δ1 specifies the minimum of such
a gap. Since the number of basis is always finite, we know that it must hold δ1 > 0 (the situation
where all basic solutions are feasible is discussed later).

We also need a parameter that characterizes the suboptimality gap of feasible basic solutions. Denote
by F2 the collection of all feasible basis such that x(I,J) is feasible to V LP for all (I,J) ∈ F2.
Then, we define

δ2 = min
(I,J)∈F2

{
V LP − r⊤x(I,J) : V LP − r⊤x(I,J) > 0

}
. (17)

Briefly speaking, δ2 specifies the minimum suboptimality gap between the optimal solution and the
best sub-optimal basic feasible solution of V LP. We now define

∆ = min{δ1, δ2}. (18)

Note that for the situation when all basic solutions are feasible, we define ∆ = δ2. And when all
feasible basic solutions are optimal, we define ∆ = δ1. It won’t happen when all basic solutions
are feasible and optimal, otherwise, the LP would be trivial to solve. In general, the parameter ∆
specifies the distance between an optimal basis solution and other non-optimal or non-feasible basic
solutions.

One crucial part of our analysis is to show that when the dataset H is large enough such that the
estimation gap is smaller than ∆/2, the output of Algorithm 2 is an optimal basis to V LP. To bound
the estimation gap, we define the following quantity:

Rad(N, ε) =

√
log(2/ε)

2N
. (19)

Suppose that the datasetH contains N transition data of each state-action pair (s, a) ∈ K. Denote by
{s1, . . . , sN} the state transition. Then, the element of Â(H) at the row (s, a) and column i can be
represented by γ

N ·
∑N

n=1 ϕi(sn)− ϕi(s). Following the standard Hoeffding’s inequality, we know
that the gap between γ

N ·
∑N

n=1 ϕi(sn) − ϕi(s) and A(s,a),i is upper bounded by Rad(N, ε) with
probability at least 1 − ε. We now present the theorem showing that Algorithm 2 indeed helps us
identify one optimal basis with a high probability.

Theorem D.1. For any ε > 0, as long as N ≥ N0 with N0 satisfying the condition

Rad(N0, ε/K) ≤ O (∆) , (20)

the outputs I and J of Algorithm 2 satisfy the conditions described in Lemma 3.1 for the true LP
V LP in (3) with probability at least 1− ε.

The formal proof of Theorem D.1 has been relegated to the appendix. Note that Theorem D.1 shows
that in order to identify the optimal basis with a probability at least 1− ϵ, the total number of samples
we need can be bounded as

O

(
K · log(K/ϵ)

∆2

)
,

where K refers to the number of constraints in V LP. Since we have shown that the basis identified by
Algorithm 2 is an optimal basis to V LP with a high probability, from now on, we denote by I∗ and
J ∗ the output of Algorithm 2.

13

E Instance-dependent Sample Complexity

In this section, we analyze the sample complexity of our Algorithm 1. We aim to solve the LP (3),
with the constraint matrix A unknown and need to be estimated from the data. Our Algorithm 1
is developed to solve the LP near-optimally in a data-driven way. Note that after Algorithm 2, we
identify the optimal basis I∗ and J ∗. Our next lemma shows that in order to bound the gap of solving
the LP (3), it is sufficient to analyze the term cNJ ∗ , which is defined in (8).
Lemma E.1. Denote by I∗ and J ∗ the optimal basis identified by Algorithm 2. We also denote by
x∗ the corresponding optimal solution and y∗ the corresponding optimal dual solution. Then, it
holds that

N · V LP −
N∑

n=1

r⊤E[xn] ≤
∑

(s,a)∈J ∗

y∗(s,a) · E[c
N
(s,a)]. (21)

Therefore, it suffices to analyze how cnJ ∗ behave. We now define

c̃(s,a)(n) =
cn(s,a)

N − n
, ∀(s, a) ∈ J ∗. (22)

The key is to show that the stochastic process c̃(s,a)(n) possesses some concentration properties such
that they will stay within a small neighborhood of their initial value c(s, a) for a sufficiently long
time. We denote by τ the time that one of c̃(s,a)(n) for each (s, a) ∈ J ∗ escape this neighborhood.
Then, both the gap over the objective value and the gap over the constraint satisfaction can be upper
bounded by E[N − τ]. From the update rule (8), we know that

c̃(s,a)(n+ 1) = c̃(s,a)(n)−
An

(s,a),: · x
n
I∗ − c̃(s,a)(n)

N − n
, ∀(s, a) ∈ J ∗. (23)

Ideally, c̃(s,a)(n+1) will have the same expectation as c̃(s,a)(n) such that it becomes a martingale, for
each (s, a) ∈ J ∗. However, this is not true since we have estimation error over AJ ∗,I∗ , and we only
use their estimates to compute xn. Nevertheless, we can show that c̃(s,a)(n) for each (s, a) ∈ J ∗

behaves as a sub-martingale. Then, from the concentration property of the sub-martingale, we upper
bound E[cN(s,a)] for each (s, a) ∈ J ∗. The term |E[cN(s,a)]| for each k ∈ [K]\J ∗ can be upper
bounded as well.

There will be an additional important problem parameter showing up in our bound, which is related
to I∗ and J ∗, and can be described as follows. Denote by {σ1(AJ ∗,I∗), . . . , σd2

(AJ ∗,I∗)} the
eigenvalues of the matrix AJ ∗,I∗ . We define σ as

σ = min {|σ1(AJ ∗,I∗)|, . . . , |σd2
(AJ ∗,I∗)|} . (24)

From the optimality of I∗,J ∗ and thus the non-singularity of the matrix AJ ∗,I∗ , we know that σ > 0.
Our bounds are presented in the following theorem. The formal proof is relegated to Appendix J and
we provide a brief sketch of the proof for illustration.
Theorem E.2. Denote by π̄N the output policy of Algorithm 1 and denote by N the number of rounds.
Then, it holds that

N · V LP −
N∑

n=1

r⊤E[xn] ≤ O

(
d22(1 + ∥AJ ∗,I∗∥∞)

σ2
· log(N)

)
(25)

where the parameter σ defined in (24). Also, in terms of the constraint violation, for any (s, a) ∈ J ∗,
we have ∣∣∣∣∣N · c(s,a) −

N∑
n=1

A(s,a),:E [xn]

∣∣∣∣∣ ≤ O

(
d22(1 + ∥AJ ∗,I∗∥∞)

σ2
· log(N)

)
. (26)

The value of σ shows up in our final bounds as it characterizes how hard it is to learn the matrix
AJ ∗,I∗ and how sensitive the solution to the linear system (6) will be when some perturbation
is introduced by replacing AJ ∗,I∗ with its estimation and replacing cJ ∗ with cnJ ∗/(N − n + 1).
Also, σ gives a natural upper bound of the range of the optimal dual variable corresponding to the

14

optimal basis I∗ and J ∗. Note that in previous literature that establishes logarithmic regret for online
LP/resource allocation (e.g. [61, 37, 27]), the conditional number of the constraint matrix will also
show up in the final bounds. Therefore, we regard the existence of σ as the consequence of adopting
the resolving algorithms to solve the LP (3).

We present the final sample complexity bound of our algorithm. Note that we have a bound on
the constraint violation for each (s, a) ∈ J ∗. For the constraints not in the index set J ∗, we can
also bound its violation using the non-singularity of the matrix AJ ∗,I∗ . This is another benefit of
identifying the optimal basis I∗ and J ∗.

Theorem E.3. With a sample complexity bound of

O

(
K · log(K/ε)

∆2
+

d22(1 + ∥AJ ∗,I∗∥∞)

σ2
· log(1/ε)

ε

)
,

where K refers to the number of constraints in V LP, the parameters ∆ defined in (18), σ given in
(24), we obtain a solution x̄N from Algorithm 1 (defined in (9)) such that

V LP − r⊤x̄N ≤ ε and A · x̄N − c ≤ ε, ∀k ∈ [K].

When we are dealing with a RL problem with a large or infinite state-action space, we can consider
the Reduced LP (V LP refers to V RLP in (13)) and we can further apply the results from Theorem B.2
to bound the number K. Then, we have the following sample complexity bound.

Corollary E.4. For RL problems with large or infinite state-action pairs, we have the sample
complexity bound

O

((
d22(1 + ∥AJ ∗,I∗∥∞)

σ2
+

1

∆2

)
· log

2(1/ε)

ε

)
for our algorithm.

Note that the above bound is independent of the original state-action space. One crucial part of our
sample complexity bound is the dependency on a constant suboptimality gap ∆, where its definition
distinguishes our work from the previous work. Notably, a prevalent way to define the suboptimality
gap in previous works (see e.g. [56, 20]) is through the Q-value. To be specific, a parameter δ is
defined as

δ := min
(s,a)∈S×A

{V ∗(s)−Q∗(s, a) : V ∗(s)−Q∗(s, a) > 0} . (27)

Here, δ represents the minimal possible gap between the V -value and the Q-value for a sub-optimal
action, where the gap is minimized over all possible states. Note that when the state space S is
infinite, taking the minimum over S may result in δ = 0. Therefore, it is usually assumed that δ > 0
in previous literature to carry out their analysis. In contrast, the constant gap ∆ defined in (18) is
always greater than 0 and ∆ > 0 is automatically satisfied without having to assume it. In summary,
the constant gap ∆ in (18) represents the gap between the basic solutions of the LP formulation while
the gap δ in (27) represents the gap between the Q-values of the RL problem. In general, the gap ∆
defined in our paper takes a different perspective to measure the sub-optimality gap of the underlying
problem instance.

F Numerical Experiments

We conduct numerical experiments to test the practical performance of our algorithms. We test on the
“Mountain Car” problem, which is a well-known continuous control task, with additional random
noise to represent the sampling uncertainty in real-life scenarios. The detailed experimental setup is
reported below and the experimental results are also presented in the following sections.

F.1 Experimental Setup

We report the detailed experimental setup of our numerical experiments.

15

Mountain Car Problem The “Mountain Car” problem is a well-known continuous control task.
The car is located in the middle of the valley and we need to control the acceleration of the car so that
it can overcome its gravity and climb to the top of the mountain. It has a state space S ⊂ R2 and an
action space A ⊂ R, where the state s is made up of position p and velocity v. The domain of these
variables are:

p ∈ [−1.20, 0.60], v ∈ [−0.07, 0.07], a ∈ [−1, 1].

The car intends to follow the following transition dynamics:

vt+1 = vt + a ∗ 0.0015− 0.0025 ∗ cos(3 ∗ pt),
pt+1 = pt + vt+1.

However, instead of letting the car follow the transition dynamics in (28) deterministically, there are
some additional random noises in our simulator, which represents the sampling uncertainty in real-life
scenarios and makes our setting more challenging. To be specific, we add a random noise ϵ to the
simulator to simulate various unexpected situations in reality. Define the function K : S ×A→ S to
represent the intended state transition given state s = (p, v) and action a as described in (28). Then,
the probability of the next state s

′
given current state s and action a is:

P (s
′
|s, a) =

{
0.9 + 0.1 ∗ Prandom(s

′
), ifs

′
== K(s, a)

0.1 ∗ Prandom(s
′
), otherwise

(28)

Prandom(s
′
) is the probability that s

′
is uniformly distributed in the neighborhood of the real next

state K(s, a). The neighborhood can be described as an interval. Denote by iintend the index of
K(s, a), then the neighborhood is given by [iintend − rϵ, i

intend + rϵ], where rϵ is a pre-specified
range. The real transition procedure of our setting can be described as with probability 0.9, the
next state is K(s, a), and with probability 0.1, the next state is uniformly sampled from a small
neighborhood of K(s, a) with a radius rϵ.

Linear Function Approximation We approximate the V-function by defining base feature maps
for position p and velocity v separately. Specifically, we use radius basic functions, where pi and vi
are fifth equal parts of the domain of position p and velocity v:

ϕp(p) =

5∑
i=1

exp(−(p− pi
0.2

)2), ϕv(v) =

5∑
i=1

exp(−(v − vi
0.2

)2).

Then we can derive the overall feature map for the V-function by taking the outer product of ϕp and
ϕv:

ϕV (p, v) := vec{ϕp(p)⊗ ϕv(v)} ∈ R25. (29)

Given any position p, velocity v and weight w, we can get the V-function: fw(p, v) := ⟨w, ϕV (p, v)⟩.

Experiment Configuration Note that “Mountain Car” problem is a continuous control problem
with infinitely large state-action space, thus the ALP (3) is a semi-infinite LP with infinite number of
constraints. In order to solve the ALP (3) approximately, we adopt the idea of constraint sampling
described in Appendix B.1 to consider the reduced LP (RLP) as given in (13). The constraint
sampling procedure can be regarded as discretizing the state-action space. To be specific, our
constraint sampling procedure can be regarded as dividing position p, velocity v and action a into
40, 60 and 5 parts, respectively. Therefore, there are in total 12, 000 constraints in the reduced LP
(RLP) in (13). For our resolving algorithm, we apply Algorithm 2 and Algorithm 1 to the RLP (13) to
approximate the optimal weight. For the non-resolving algorithm, we use the same number of samples
to construct an estimation of the RLP (13) and directly solve this estimated RLP to approximate the
optimal weight.

We define that yreal refers to the optimal value of the benchmark RLP (13) and yresolve is the
objective value of the RLP under our solution, then the relative optimal value gap is:

|yreal − yresolve|
yreal

.

16

We define that xreal refers to the solution of the benchmark RLP (13) corresponding to the optimal
basis identified by Algorithm 2, and xresolve is our solution, then the relative solution gap is:

∥xreal − xresolve∥2
∥xreal∥2

.

After substituting our result xresolve into constraints, constraint violation refers to the maximum
constraint as they are expected to be equal or less than zero:

max
{
([A · xresolve − c]+)

}
.

When constructing the RLP (13) and the dataset Hn in Algorithm 1, for each (s, a) pair, we sample
L number of state transition s

′
from the simulator as its next state. Therefore, suppose ns′ represents

the sampling number of state s
′
, the probability of each state is:

P (s
′
|(s, a)) = ns′

L

The true RLP is the benchmark and the output of our algorithm should be close to the true RLP. We
evaluate this from three aspects: relative optimal value gap, constraints violations and the relative
solution gap, with the definitions given above. In the implementation of our algorithm (Algorithm 2
and Algorithm 1), we use the first 120, 000 number of samples (10 samples for each constraint) to
construct an estimation of the RLP and then carry out Algorithm 2 to identify the basis I∗ and J ∗.
We then use the rest of the samples to carry out the resolving steps in Algorithm 1. Note that the
samples used to carry out Algorithm 2 can also be used again to construct an initial estimate of
AI∗,J ∗ such that Algorithm 1 will have a warm start. In the implementation of the non-resolving
algorithm, we use the same amount of samples to construct an estimate of the RLP, and directly solve
this estimation to obtain a solution. Note that if a total 240, 000 samples are used in our algorithm
(120, 000 for Algorithm 2 and 120, 000 for Algorithm 1), we also use the same amount 240, 000
samples for the non-resovling algorithm, with 20 sample for each constraint as the original RLP has
12, 000 constraints.

F.2 Experiment Results.

We use T to denote the number of resolving steps in our algorithm. We study how our algorithm
converge with the number of resolving steps. At T = 0, our resolving algorithm has not started yet
and the estimated LP is still far from the real LP. Figure 1 (a) and (c) show that the solution without
resolving is still far from the benchmark, which reveals the necessity and importance of our resolving
algorithm. As T increases with more and more resolving steps, as shown in Figure 1 (a), the relative
optimal value gap converges to 0 as T increases, which means our resolving algorithm’s performance
is close to the benchmark. In Figure 1 (c), the relative error of our LP solution and the true LP
solution also converges to zero. These two figures together confirm that our resolving algorithm
obtains a result that is very close to the benchmark. Figure 1 (b) further tests whether our solution
satisfies the constraints, and the maximum constraint violation error converges to 0, indicating that
our solution can approximately satisfy all constraints. The exact definitions of the metrics in Figure 1
are presented in Appendix F.1.

Figure 2 studies the performances of our algorithm with respect to different noise radius rϵ and all
three figures share common trends. The setting with rϵ = 40 has the smallest range of the random
noise, while rϵ = 80 has the largest range. When rϵ decreases, convergence rates in all three figures
become faster. This is easy to interpret as that a smaller rϵ indicates a smaller range of random noise,
which makes it easier for our algorithm to converge to the real LP solution.

Moreover, we implement our policy on the real Mountain Car problem to see whether our policy can
succeed in real problems. Following classical settings, we restrict our policy to push the car to reach
the top of the mountain within 1000 steps. We repeat the experiments by 1000 times and we compute
the success rate, i.e., the percentage of times that our policy can push the car to reach the top of the
mountain within 1000 steps. We compare the performances of our resolving algorithm (Algorithm 2
and Algorithm 1) with the Deep Q-learning Network that has the same number of parameters as our
resolving algorithm and a non-resovling algorithm that directly uses the same amount of sample to
construct the estimation of the RLP (13) to approximate the LP solution. Figure 3 shows a significant

17

(a) (b)

(c)

Figure 1: Numerical performance of our resolving algorithm on the Mountain Car Problem. (a) The
relative optimal value gap between our algorithm 1 and the benchmark RLP (13). (b) The maximum
constraint violation after substituting our result into constraints. If the constraints are satisfied, then
the violation is 0. (c) The relative gap between our LP solution and the real LP solution.

(a)

(c)

(b)

Figure 2: Numerical performance comparison between different random noise radius rϵ. (a) The
relative optimal value gap between our algorithm 1 and the benchmark RLP (13). (b) The maximum
constraint violation after substituting our result into constraints. If the constraints are satisfied, then
the violation is 0. (c) The relative gap between our LP solution and the real LP solution.

18

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

170000 225000 245000 270000 320000 370000

Su
cc

es
s

ra
te

Sample size N

Success rate versus sample size

resolve without resolving DQN

Figure 3: Success rates of our algorithm on the real Mountain Car Problem. We compare the
performance of our algorithm with the Deep Q-learning Network and a non-resolving algorithm 1
and that directly solves the estimated LP, under the same sample size N .

in the success rate of our algorithm compared to the non-resolving algorithm. Figure 3 shows that
with the same amount of sample N , the performance of our algorithm is significantly improved. The
success rate of the non-resolving algorithm is about 50%, and the success rate is increased by about
40% with our algorithm. In addition, as the sample size increases, the success rate of our algorithm
can reach up to 92.5%, which reveals the great empirical performances of our algorithm for solving
real-life problems. Besides, Figure 3 also shows that the performance of our algorithm is comparable
to DQN, where the difference between the success rate is relatively small, and our algorithm even
outperforms DQN when the number of samples is relatively small (about 17000 samples). We believe
these results demonstrate the effectiveness of our algorithm.

Discussions on computation cost. Note that our Algorithm 2 can be conducted very efficiently
in practice, and the computational complexity is equivalent to solving the LP by one time, using
the simplex method. In our numerical experiment, we use Gurobi (as well as COPT) to solve the
reduced LP, which has 12,000 constraints, and it takes 0.3 second to finish running Algorithm 2.
We run our code on a computer with Apple M1 chip, 8 GB memory, and it only takes about one
hour to run the entire Algorithm 2 and Algorithm 1, which highlights the numerical efficiency of
our approach. Moreover, we can also adopt Algorithm 3 in Appendix C to identify the basis. Note
that Algorithm 3 only needs to solve an LP by a finite number of times and also can be carried out
very efficiently due to the power of modern LP solvers. Moreover, it has been demonstrated that
Algorithm 3 enjoys a polynomial-time computational complexity. In this way, we conclude that our
algorithms are numerically efficient.

G Proof of Lemma 3.1

Our proof follows from the standard LP theory regarding the optimality of basic solutions, with mild
modifications. Note that in the LP standard form

V LP = max r⊤x s.t. Ax+ s = c, x ∈ Rd1 , s ≥ 0, (30)

we can sort the decision variable as (x, s) ∈ Rd1+K and we let an index set I ′ ⊂ [d1 +K] be an
optimal basis set (there must exist an optimal basis set). Then, from the standard LP theory, the
following condition holds for the optimal basis set I ′. It holds |I ′| = K. Also, we can divide I ′
as I ′ = I ′1 ∪ I ′2 with I ′1 being an index set for the x variable and I ′2 being an index set for the s
variable. Then, we have that the solution (x∗, s∗) satisfying the conditions

x∗
I′c
1

= 0, s∗I′c
2

= 0 (31)

and
A:,I1 · x∗

I1
+ s∗ = c. (32)

is an optimal solution to V LP. Moreover, the linear system described in (31) and (32) is uniquely
determined. We now write the linear system in (31) and (32) into the matrix form. Since |I ′| = K =
|I ′1|+ |I ′2|, we define the matrix

Ā =

[
AI′c

2 , I1
, 0, . . . , 0

AI′
2, I1

, I|I′
2|

]

19

where I|I′
2| denotes an identify matrix with size |I ′2|. Then, the linear system described in (31) and

(32) can be written as
x∗
I′c
1

= 0, s∗I′c
2

= 0

and

Ā ·
(
x∗
I1

s∗I2

)
= c. (33)

Since the linear system described in (31) and (32) is uniquely determined, we know that the square
matrix Ā is non-singular.

The non-singularity of the matrix Ā would implies the non-singularity of the matrix AI′c
2 , I1

. To see

this, we first note that since s ∈ RK , we have |I ′2|+ |I
′c
2 | = K and we also have |I ′1|+ |I ′2| = K,

which implies that |I ′1| = |I
′c
2 | and thus the matrix AI′c

2 , I1
is a square matrix. Moreover, the

non-singularity of Ā must imply that the rows of the matrix AI′c
2 , I1

must be linearly independent
from each other. Thus, we know that the square matrix AI′c

2 , I1
is non-singular. Therefore, we know

that x∗
I1

can be uniquely determined as the unique solution to the linear system

AI′c
2 , I1

· x∗
I1

= c. (34)

We now set the index set
I = I ′1, and J = I

′c
2 .

Then, we know that
|I| = |J |

and a solution x∗ uniquely defined as
x∗
Ic = 0

and
AI′c

2 , I1
· x∗

I1
= c

is an optimal solution to V LP, where s is the slackness variables determined corresponding to x∗.
Our proof is thus completed.

H Proof of Theorem D.1

We now condition on the event that

E =

{∣∣∣∣∣ γN ·
N∑

n=1

ϕi(sn)− ϕi(s)−A(s,a),i

∣∣∣∣∣ ≤ Rad(N, ε), ∀(s, a) ∈ K, ∀i ∈ [d1]

}
. (35)

We know that this event E happens with probability at least 1− d1 · |K| · ε.

We first bound the gap between V LP and V̂ LP(H), for any set I. The result is formalized in the
following claim, where the proof is presented at the end of this proof.
Claim H.1. Conditional on the event E (35) happens, for any set I, it holds that∣∣∣V LP − V̂ LP(H)

∣∣∣ ≤ C1 · Rad(N, ε), (36)

where C1 is a constant that is independent of N and ε.

Note that Claim H.1 shows that an optimal solution to V̂ LP(H) would be at most O(Rad(N, ε))
distance away from the optimal solution to V LP. We now restrict to an optimal basic solution of
V̂ LP(H) and from Claim H.1, it is at most O(Rad(N, ε)) distance away from the optimal solution to
V LP. We denote by Î and Ĵ an optimal basis to V̂ LP(H), and denote by x̂ the corresponding optimal
basic solution to V̂ LP(H). We know that x̂ satisfies the condition

x̂Îc = 0 (37)

and
ÂĴ ,Î(H) · x̂Î = cĴ . (38)

20

We now consider the gap of the basis Î and Ĵ with respect to the optimal basis of V LP. Denote by
x′ the basic solution to V LP, corresponding to the basis Î and Ĵ . (Note that the non-singularity
of the square matrix ÂĴ ,Î(H) implies the non-singularity of the square matrix AJ ,I , as long as
Rad(N, ε) ≤ C1 for some constant C1). Then, x′ can be described as

x′
Îc = 0 and AĴ ,Î(H) · xI = cJ . (39)

Comparing the linear system (38) and (39), we can bound the distance between x̂ and x′, and thus
bound the feasibility gap and the sub-optimality gap of the solution x′ to V LP. For notation brevity,
we denote by

∆A = AĴ ,Î − ÂĴ ,Î .

Then, following standard perturbation analysis of linear equations [22], we have that

∥x̂n
Î − x′

Î∥1
∥x′

Î
∥1

≤
κ(AĴ ,Î)

1− κ(AĴ ,Î) ·
∥∆A∥1

∥AĴ ,Î∥1

· ∥∆A∥1
∥AĴ ,Î∥1

≤ 2 · κ(AĴ ,Î) ·
∥∆A∥1
∥AĴ ,Î∥1

≤ 2∥∆A∥1/σ,

(40)

where we denote by σ > 0 the smallest absolute value of the singular values of the square matrix
AĴ ,Î . Therefore, further noting that x̂Îc = x′

Îc
= 0 and ∥∆A∥1 ≤ C1 · Rad(N, ε) for a constant

C1, we know that
∥x̂− x′∥1 ≤ C2 · Rad(N, ε) (41)

for a constant C2. We now show that when N is sufficiently large, x′ becomes an optimal solution to
V LP. If not, we classify into the two possible situations:

Situation (i): the basic solution x′ is an infeasible solution to V LP. We now bound the infeasibility
gap of x′ to V LP. From the feasibility of x̂ to the LP V̂ LP(H), we know that

Â(H) · x̂ ≤ c.

Then, combining with (41), we know that

Â(H) · x′ ≤ Â(H) · x̂+ ∥Â(H)∥1 · ∥x̂− x′∥1 ≤ c+ C3 · Rad(N, ε)

for a constant C3. Therefore, we have shown that the infeasibility gap of the basic solution x′ to
V LP is C3 · Rad(N, ε). However, recalling the definition of the parameter δ1 in (16), we know that
in order for the basic solution x′ to become infeasible to V LP, it must hold that

δ1 ≤ C3 · Rad(N, ε).

In other words, when the sample size N is large enough such that the condition

Rad(N, ε) ≤ 1

C3
· δ1 (42)

holds, we know that the basic solution x′ must be a feasible solution to V LP.

Situation (ii): We now consider the situation where the basic solution x′ is a feasible solution to V LP

but not optimal. We now bound the suboptimality gap of x′ to V LP. Noting the bound in (41), we
have that

r⊤x′ ≥ r⊤x̂− ∥r∥1 · ∥x′ − x̂∥ ≥ r⊤x̂− C4 · Rad(N, ε)

for a constant C4. From the optimality of x̂ to the LP V̂ LP(H) and the gap between V̂ LP(H) and
V LP, as shown in Claim H.1, we know that

r⊤x′ ≥ V̂ LP(H)− C4 · Rad(N, ε) ≥ V LP − (C1 + C4) · Rad(N, ε).

However, recalling the definition of the parameter δ2 in (17), we know that in order for the feasible
basic solution x′ to become infeasible to V LP, it must hold that

δ2 ≤ (C1 + C4) · Rad(N, ε).

In other words, when the sample size N is large enough such that the condition

Rad(N, ε) ≤ 1

C1 + C4
· δ2

21

holds, we know that x′ must be an optimal solution to V LP.

From the arguments above, we summarize that when the conditions

Rad(N, ε) ≤ 1

C3
· δ1 and Rad(N, ε) ≤ 1

C1 + C4
· δ2

are satisfied, the basic solution x′, corresponding to Î and Ĵ , must be an optimal solution to V LP.
Therefore, we conclude that the basis Î and Ĵ must be an optimal basis to V LP, when the condition

Rad(N, ε) ≤ O(∆) = O(min{δ1, δ2})

is satisfied. Our proof is thus completed.

H.1 Proof of Claim H.1

Denote by x∗ an optimal solution to V LP. We now construct a feasible solution to V̂ LP(H) based on
x∗. Note that conditional on the event E happens, we have that

Â(H)x∗ ≤ Ax∗ + ∥x∗∥1 · Rad(N, ε) · e ≤ c+ ∥x∗∥1 · Rad(N, ε) · e, (43)

where e = (1, . . . , 1)⊤ ∈ RK is an all-one vector. The feasible solution, denoted by x̂, can be given
as x̂ = x∗ +∆x. As long as ∆x satisfies the condition

Â(H)∆x ≤ −∥x∗∥1 · Rad(N, ε) · e, (44)

we know that x̂ will be a feasible solution to V̂ LP(H). Further note that for any possible Â(H), the
LP

c(H) = max r⊤x s.t. Â(H)x ≤ −e, x ∈ Rd1 , (45)

describe the LP applying to a reinforcement learning instance with the transition kernel given by the
empirical estimate constructed using the datasetH and the cost vector given as −e. Since the cost
vector −e is uniform over all state-action pair, the V -value is always − 1

1−γ for any possible state,
and the objective value of LP (45) well approximates the aggregated V -value with initial distribution
µ1, which is exactly − 1

1−γ . In fact, from Theorem 2 of [14], we know that∣∣∣∣− 1

1− γ
− c(H)

∣∣∣∣ ≤ 2

1− γ
·min

x

∥∥∥∥− 1

1− γ
· e− Φx

∥∥∥∥
∞
≤ 2

(1− γ)2
.

Therefore, we know that

−c(H) ≤ 1

1− γ
+

2

(1− γ)2
. (46)

Denote by x′ one optimal solution to LP (45), we can in fact set

∆x = ∥x∗∥1 · Rad(N, ε) · x′. (47)

We know that x̂ = x∗ +∆x forms a feasible solution to V̂ LP(H), with the formulation of ∆x given
in (47). As a result, it holds that

V LP = r⊤x∗ ≤ r⊤x̂− r⊤∆x∗ = r⊤x̂− c(H)

≤ V̂ LP(H) +
(

1

1− γ
+

2

(1− γ)2

)
· ∥x∗∥1 · Rad(N, ε).

(48)

In a same way, we can show that

V̂ LP(H) ≤ V LP +

(
1

1− γ
+

2

(1− γ)2

)
· ∥x∗∥1 · Rad(N, ε), (49)

which completes our proof.

22

I Proof of Lemma E.1

From the update of Algorithm 1, we know that

N∑
n=1

(r)⊤E[xn] =

N∑
n=1

(rI∗)⊤E [xn
I∗]

Denote by x∗ and y∗ the optimal primal-dual variable corresponding to the optimal basis I∗ and J ∗.
From the complementary slackness condition and noting that x∗

I∗ > 0, we know that

A⊤
J ∗,I∗yJ ∗ = rI∗ . (50)

Further note that
E[An] = AJ ∗,I∗

and the distribution of An is independent of the distribution of xn. Then, it holds that

N∑
n=1

(rI∗)⊤E [xn
I∗] =

N∑
n=1

(
(A⊤

J ∗,I∗y∗
J ∗

)⊤ E[xn
I∗] = E

[
N∑

n=1

(
(An)⊤y∗

J ∗

)⊤
xn
I∗

]

= E

[
N∑

n=1

(y∗)⊤Anxn
I∗

] (51)

From the update rule (8), we have

N∑
n=1

Anxn
I∗ = c1J ∗ − cNJ ∗ . (52)

Plugging (52) back into (51), we get that

N∑
n=1

(rI∗)⊤E [xn
I∗] = (y∗

J ∗)⊤c1J ∗ − (y∗
J ∗)⊤E

[
cNJ ∗

]
.

Note that from the strong duality of V LP, we have

N · V LP = (y∗
J ∗)⊤c1J ∗ .

Then, we have that

N · V LP −
N∑

n=1

(r)⊤E[xn] ≤ (y∗
J ∗)⊤E

[
cNJ ∗

]
. (53)

Our proof is thus completed.

J Proof of Theorem E.2

We now condition on the event that Algorithm 2 has successfully identified the optimal basis I∗ and
J ∗, which happens with probability at least 1− ε from Theorem D.1. We consider the stochastic
process c̃(s,a)(n) defined in (22). For a fixed ν > 0 which we specify later, we define a set

C = {c′ ∈ R|J ∗| : c′(s,a) ∈ [c(s,a) − ν, c(s,a) + ν],∀(s, a) ∈ J ∗}. (54)

It is easy to see that initially, c̃J ∗(1) ∈ C. We show that c̃J ∗(n) behaves well as long as they stay in
the region C for a sufficiently long time. To this end, we define a stopping time

τ = min
n∈[N]

{c̃J ∗(n) /∈ C}. (55)

Note that in Algorithm 1, to prevent xn from behaving ill when n is small, we project it to a set
that guarantees ∥xn∥1 ≤ C. We now show in the following lemma that when n is large enough but
smaller than the stopping time τ , it is automatically satisfied that ∥xn∥1 ≤ C.

23

Lemma J.1. There exist two constants N ′
0 and ν0. When N ′

0 ≤ n ≤ τ , and ν ≤ ν0, it holds that
∥x̃n

I∗∥1 ≤ C, where x̃n
I∗ denotes the solution to the linear equations (7). Specifically, N ′

0 is given as
follows

N ′
0 =

8d22
σ2 · C2

· log(1/ε) (56)

Also, ν0 is given as follows

ν0 :=
σ · ∥cJ ∗∥1 · C
8d2 · ∥AJ ∗,I∗∥1

. (57)

We set ν to satisfy the condition ν ≤ ν0 with ν0 satisfies the condition in Lemma J.1. We bound
E[N − τ] in the following lemma.

Lemma J.2. Let the stopping time τ be defined in (55). It holds that

E[N − τ] ≤ N ′
0 + 2d2 · exp(−ν2/8)

where N ′
0 is given in (56), as long as

N ≥ N ′
0 and N ≥ 8

ν2
≥ 8

ν20
=

512 · d22 · ∥AJ ∗,I∗∥21
σ2 · ∥cJ ∗∥31 · C2

. (58)

Also, for any N ′ such that N ′
0 ≤ N ′ ≤ N , it holds that

P (τ ≤ N ′) ≤ d2 · ν2

4
· exp

(
−ν2 · (N −N ′ + 1)

8

)
. (59)

From the definition of the stopping time τ in (55), we know that for each (s, a) ∈ J ∗, it holds

cτ−1
(s,a) ∈ [(N − τ + 1) · (c(s,a) − ν), (N − τ + 1) · (c(s,a) + ν)]

Thus, we have that

|cN(s,a)| ≤ |c
τ−1
(s,a)|+

∣∣∣∣∣
N∑

n=τ

An
(s,a),: · x

n
I∗

∣∣∣∣∣ (60)

and thus∣∣∣E[cN(s,a)]∣∣∣ ≤ (∥cJ ∗∥∞ + ∥AJ ∗,I∗∥∞ · C) · E[N − τ]

≤ (∥cJ ∗∥∞ + ∥AJ ∗,I∗∥∞ · C) ·N ′
0 + 2(∥cJ ∗∥∞ + ∥AJ ∗,I∗∥∞ · C) · d2 · exp(−ν2/8).

(61)
Our proof is thus completed by plugging in the formulation of N ′

0 in (56).

J.1 Proof of Lemma J.1

Denote by x∗ the optimal solution corresponding to the optimal basis I∗ and J ∗. Then, it holds that

AJ ∗,I∗ · x∗
I∗ = cJ ∗ . (62)

We compare x̃n
I∗ with x∗

I∗ when n large enough. Note that when n ≥ N0, x̃n is the solution to the
following linear equations

ÂJ ∗,I∗(Hn) · x̃n
I∗ =

cnJ ∗

N − n+ 1
. (63)

When n ≤ τ , we know that ∣∣∣∣cJ ∗ −
cnJ ∗

N − n+ 1

∣∣∣∣ ≤ ν. (64)

Moreover, we know that the absolute value of each element of ÂJ ∗,I∗(Hn) − AJ ∗,I∗ is upper
bounded by Rad(n, ε), given that the following event

E =

{∣∣∣∣∣ γN ·
N∑

n=1

ϕi(sn)− ϕi(s)−A(s,a),i

∣∣∣∣∣ ≤ Rad(N, ε), ∀(s, a) ∈ J ∗, ∀i ∈ [d1]

}
. (65)

24

is assumed to be satisfied (it holds with probability at least 1−O(ε) following standard Chernoff
bound). We now bound the distance between the solutions to the linear equations (62) and (63). The
perturbation of the matrix is denoted as

∆A = AJ ∗,I∗ − ÂJ ∗,I∗(Hn).

Clearly, it holds that
∥∆A∥1 ≤ Rad(n, ε) · d2. (66)

Therefore, as long as

∥∆A∥1 ≤ Rad(n, ε) · d2 ≤
1

2∥(AJ ∗,I∗)−1∥1
≤ 1

2σ
, (67)

following standard perturbation analysis of linear equations [22], we have that

∥x̃n
I∗ − x∗

I∗∥1
∥x∗

I∗∥1
≤ κ(AJ ∗,I∗)

1− κ(AJ ∗,I∗) · ∥∆A∥1

∥AJ∗,I∗∥1

·
(
∥∆A∥1
∥AJ ∗,I∗∥1

+
d2 · ν
∥cJ ∗∥1

)

≤ 2 · κ(AJ ∗,I∗) ·
(
∥∆A∥1
∥AJ ∗,I∗∥1

+
d2 · ν
∥cJ ∗∥1

)
≤ 2 · κ(AJ ∗,I∗) ·

(
∥∆A∥1
∥AJ ∗,I∗∥1

+
d2 · ν
c3

)
,

(68)

where we set c3 = ∥cJ ∗∥1 and κ(AJ ∗,I∗) = ∥AJ ∗,I∗∥1 · ∥(AJ ∗,I∗)−1∥1 denotes the conditional
number of AJ ∗,I∗ . The last inequality follows from defining the constant c3 to be a lower bound of
∥cJ ∗∥1. Further, note that ∥x∗

I∗∥1 ≤ C
2 . Therefore, in order to satisfy the condition ∥x̃n

I∗∥1 ≤ C,
we only need the right hand side of (68) to be upper bounded by C

2 . Clearly, as long as n satisfies the
condition (67) and the following condition

2 · κ(AJ ∗,I∗) · ∥∆A∥1
∥AJ ∗,I∗∥1

≤ 2 · Rad(n, ε) · d2
σ

≤ C

4
, (69)

we only need to select a ν such that

2 · κ(AJ ∗,I∗) · d2 · ν
c3
≤ C

4
. (70)

Combining (67) and (69), we know that n needs to satisfy the following condition:

n ≥ N ′
0 := 8 · d22

σ2 · C2
· log(1/ε). (71)

Also, ν is selected to satisfy the following condiont

ν ≤ ν0 :=
σ · c3 · C

8d2 · ∥AJ ∗,I∗∥1
. (72)

Our proof is thus completed.

J.2 Proof of Lemma J.2

Now we fix a (s, a) ∈ J ∗. We specify a N̄0 = N ′
0 = 8 · d2

2

σ2·C2 · log(1/ε). For any N̄0 ≤ N ′ ≤ N , it
holds that

c̃(s,a)(N
′)− c̃(s,a)(N̄0) =

N ′−1∑
n=N̄0

(c̃(s,a)(n+ 1)− c̃(s,a)(n)).

We define ξ(s,a)(n) = c̃(s,a)(n+ 1)− c̃(s,a)(n). Then, we have

c̃(s,a)(N
′)− c̃(s,a)(N̄0) =

N ′−1∑
n=N̄0

(ξ(s,a)(n)− E[ξ(s,a)(n)|Hn]) +

N ′−1∑
n=N̄0

E[ξ(s,a)(n)|Hn].

25

whereHn denotes the filtration of information up to step n. Note that due to the update in (23), we
have

ξ(s,a)(n) =
c̃(s,a)(n)−An · xn

I∗

N − n− 1
.

Then, it holds that
|ξ(s,a)(n)− E[ξ(s,a)(n)|Hn]| ≤ c4

N − n+ 1
(73)

for some constant c4 > 0, where the inequality follows from the fact that the value of c̃k(n) is
deterministic given the filtrationHn which falls into the region C and ∥xn∥1 ≤ C for any n. Note
that

{ξ(s,a)(n)− E[ξ(s,a)(n)|Hn]}∀n=N̄0,...,N ′

forms a martingale difference sequence. Following Hoeffding’s inequality, for any N ′′ ≤ N ′ and any
b > 0, it holds that

P

∣∣∣∣∣∣
N ′′∑

n=N̄0

(ξ(s,a)(n)− E[ξ(s,a)(n)|Hn])

∣∣∣∣∣∣ ≥ b

 ≤ 2 exp

(
− b2

2 ·
∑N ′′

n=N̄0
1/(N − n+ 1)2

)

≤ 2 exp

(
−b2 · (N −N ′′ + 1)

2

)
.

Therefore, we have that

P

∣∣∣∣∣∣
N ′′∑

n=N̄0

(ξ(s,a)(n)− E[ξ(s,a)(n)|Hn])

∣∣∣∣∣∣ ≥ b for some N̄0 ≤ N ′′ ≤ N ′


≤

N ′∑
N ′′=N̄0

2 exp

(
−b2 · (N −N ′′ + 1)

2

)
≤ b2 · exp

(
−b2 · (N −N ′ + 1)

2

) (74)

holds for any b > 0.

We now bound the probability that τ > N ′ for one particular N ′ such that N̄0 ≤ N ′ ≤ N . Suppose
that N ′ ≤ τ , then, from Lemma J.1, for each n ≤ N ′, we know that ∥x̃n∥1 ≤ C and therefore
xn = x̃n as the solution to (7). We have

c̃(s,a)(n) = Â(s,a),I∗(Hn) · xn
I∗ .

It holds that∣∣E[ξ(s,a)(n)|Hn]
∣∣ ≤ 1

N − n+ 1
· ∥Â(s,a),I∗(Hn)−An

(s,a),:∥1 · ∥x
n
I∗∥ ≤

d2 · C · Rad(n, ε)
N − n+ 1

. (75)

Then, we know that∑N ′−1
n=N̄0

∣∣E[ξ(s,a)(n)|Hn]
∣∣

d2 · C
≤
√

log(2/ε)

2
·
N ′−1∑
n=N̄0

1√
n · (N − n)

≤
√

log(2/ε)

2
·
√
N ′ − 1 ·

N ′−1∑
n=N̄0

1

n · (N − n)

=

√
log(2/ε)

2
·
√
N ′ − 1

N
·
N ′−1∑
n=N̄0

(
1

n
+

1

N − n

)

≤
√

2 log(2/ε) ·
√
N ′ − 1

N
· log(N) ≤

√
2 log(2/ε)√

N
· log(N)

≤ ν

2

(76)

for a N large enough such that

N ≥ 8

ν2
≥ 8

ν20
=

512 · d22 · ∥AJ ∗,I∗∥21
σ2 · ∥cJ ∗∥31 · C2

(77)

26

Combining (76) and (74) with b = ν/2, and apply a union bound over all (s, a) ∈ J ∗, we know that

P (τ ≤ N ′) ≤ d2 · ν2

4
· exp

(
−ν2 · (N −N ′ + 1)

8

)
. (78)

Therefore, we know that

E[N − τ] =

N∑
N ′=1

P (τ ≤ N ′) ≤ N̄0 +

N∑
N ′=N̄0

P (τ ≤ N ′) ≤ N̄0 + 2d2 · exp(−ν2/8)

which completes our proof.

K Proof of Theorem E.3

We first consider the other constraints (s, a) ∈ J ∗c, where J ∗c denotes the complementary set of J
in K. Note that following the definition of cn, we have the following relationship

AJ ∗,I∗ ·

(
N∑

n=1

E[xn
I∗]

)
= c1J ∗ − E

[
cNJ ∗

]
. (79)

Also, from the bindingness of x∗ regarding the optimal basis I∗ and J ∗, we have

N ·AJ ∗,I∗ · x∗
I∗ = c1J ∗ . (80)

Therefore, it holds that
N∑

n=1

E [xn
I∗] = N · x∗

I∗ − (AJ ∗,I∗)
−1 · E

[
cNJ ∗

]
, (81)

and ∥∥∥∥∥
N∑

n=1

E [xn
I∗c]

∥∥∥∥∥
1

= 0 (82)

following the definition of xn. Finally, for any (s, a) ∈ J ∗c, we have

A(s,a),: ·

(
N∑

n=1

E [xn]

)
= A(s,a),: ·N · x∗ +A(s,a),: ·

(
N∑

n=1

(E [xn]− x∗)

)
= A(s,a),: ·N · x∗ −A(s,a),: ·

[
(AJ ∗,I∗)

−1 · E
[
cNJ ∗

]
;E [xn

I∗c − x∗
I∗c]
]

= N ·A(s,a),I∗ · x∗
I∗ −A(s,a),I∗ · (AJ ∗,I∗)

−1 · E
[
cNJ ∗

]
.

(83)
Further from the feasibility of x∗, we know that

N · c(s,a) ≥ N ·A(s,a),: · x∗ = N ·A(s,a),I∗ · x∗
I∗ .

Therefore, for any (s, a) ∈ J ∗c, it holds that∣∣∣∣∣N · c(s,a) −A(s,a),: ·

(
N∑

n=1

E [xn]

)∣∣∣∣∣
≤
∣∣∣A(s,a),I∗ · (AJ ∗,I∗)

−1 · E
[
cNJ ∗

]∣∣∣
≤c4

σ
· (∥cJ ∗∥∞ + ∥AJ ∗,I∗∥∞ · C) ·N ′

0 + 2(∥cJ ∗∥∞ + ∥AJ ∗,I∗∥∞ · C) · d2 · exp(−ν2/8),
(84)

where the final bound on
∣∣E[cNJ ∗]

∣∣ follows from (61).

We finally convert the regret bound established in (25), (26), and (84) into the sample complexity
bound. Let ε satisfy

ε = O

(
d22 · (1 + ∥AJ ∗,I∗∥∞)

σ2
· log(N)

N

)
.

27

We know that

N = O

(
d22 · (1 + ∥AJ ∗,I∗∥∞)

σ2
· log(1/ε)

ε

)
.

We further combine with the number of samples that are required for Algorithm 2. To be specific, in
Theorem D.1, we have shown that the number of samples needed for Algorithm 2 can be bounded as

O

(
K · log(K/ϵ)

∆2

)
,

where K refers to the number of constraints in LP (3). Therefore, we know that the total number of
required samples can be bounded as

O

(
K · log(K/ε)

∆2
+

d22(1 + ∥AJ ∗,I∗∥∞)

σ2
· log(1/ε)

ε

)
.

Our proof is thus completed.

28

	Introduction
	Approximate Dynamic Programming and Linear Programming
	Variables and Constraints Reduction
	Optimal Basis Identification

	Our Formal Algorithm
	Concluding Remarks
	More Detailed Literature Review
	Preliminaries
	Reduced LP for Large or Infinite State Space

	Two algorithms for Basis Identification
	The Simplex Method
	Additional algorithm for basis identification

	High Probability Bound of Optimality for Variables and Constraints Reduction
	Instance-dependent Sample Complexity
	Numerical Experiments
	Experimental Setup
	Experiment Results.

	Proof of lem:Basis
	Proof of thm:Infibasis2
	Proof of claim:Bound1

	Proof of Lemma E.1
	Proof of thm:BoundRe
	Proof of Lemma J.1
	Proof of Lemma J.2

	Proof of thm:sample

