
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PERIODICAL MOVING AVERAGE ACCELERATES GRA-
DIENT ACCUMULATION FOR POST-TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

High gradient variance challenges training Large Language Models (LLMs) on
memory-limited devices. Existing practical approaches, such as small batch size or
using Gradient Accumulation (GA), face the dilemma between low convergence
rates due to high variance in parameter updates and long training times due to
the serial GA process. In this paper, we identify that the exponential nature of
the Exponential Moving Average (EMA) rapidly forgets historical gradients at an
exponential rate in momentum updates, making it difficult to utilize the historical
gradients to stabilize the update steps. To address this issue, we embed the idea of
GA into the momentum update and propose the Periodical Moving Average (PMA)
technique. PMA splits the training steps into periods and employs moving averages
instead of EMA in each period. We apply PMA to AdamW and Lion, resulting
in AdamW-PMA and Lion-PMA. Theoretical analysis demonstrates that AdamW-
PMA achieves a comparable convergence rate with Adam. Extensive experiments
showcase the superiority of PMA on post-training tasks, including Supervised
Fine-Tuning and Direct Preference Optimization, that the PMA-based methods
achieve approximately at least 2× speedup and higher scores on downstream tasks.

1 INTRODUCTION

Scaling up Large Language Models (LLMs) has been empirically evaluated as a necessary approach
to enhance their capabilities (Radford et al., 2019; Kaplan et al., 2020; Brown et al., 2020; Hoffmann
et al., 2022; Zhang et al., 2022; Touvron et al., 2023a;b; Achiam et al., 2023; Bi et al., 2024). Each
stage of the LLM post-training, including Supervised Fine-tuning (SFT), and reinforcement-learning-
based training, including Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al.,
2022) and beyond (OpenAI, 2024), demands high computation costs on GPU-sufficient clusters (Lee
& Sengupta, 2022). However, scaling up require larger GPU memories, posing a challenge for
implementation on GPU-memory-limited devices.

Alternative approaches to training LLMs on GPU-memory-limited devices share a common weakness
of prolonged training time consumption. The most straightforward method is to employ a small
batch size. However, the large gradient noise slows down the training process and makes the model
hard to converge. Another approach is to use Gradient Accumulation (GA), which involves multiple
backpropagations followed by gradient averaging before a parameter update step, achieving an
equivalent large batch size. This approach converts the utilization of abundant GPU resources in
parallel processing into a sequential process, also albeit at the expense of increased training time.

In this paper, we propose Periodical Moving Average (PMA), a momentum update method designed
to accelerate momentum-based optimizers in LLM training on GPU-memory-limited devices. The
technical challenge lies in achieving both low variance and low time cost simultaneously. On the one
hand, from the perspective of GA, it is difficult to take more parameter updates without interrupting
the GA process or requiring extra memory allocation. On the other hand, from the side of small-batch
training, stabilizing the parameters becomes challenging when gradients are sampled from a small
batch, leading to increased variance. However, we observe that post-training usually uses a lower
learning rate than pre-training, preventing the parameters after training from deviating significantly
from the pre-trained model. This suggests that the gradients over the last few steps tend to have
similar expectations. PMA divides the entire training process into multiple periods, each consisting
of K steps. During each period, the momentum is updated using a moving average instead of the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) AdamW v.s.
AdamW-PMA on SFT.

(b) Lion v.s. Lion-PMA
on SFT.

(c) AdamW v.s.
AdamW-PMA on DPO.

(d) Lion v.s. Lion-PMA
on DPO.

Figure 1: Optimizers with PMA achieves about 2× speedup compared with the optimizers with EMA.
(1a1b) Comparison of the number of steps needed to achieve the same validation loss with Phi-2 2.7B
model on SFT task and Alpaca dataset. (1c1d) Comparison of the number of steps needed to achieve
the same validation loss with Phi-2 2.7B model on DPO task and HH-RLHF dataset.

Exponential Moving Average (EMA) (Kingma & Ba, 2014; Loshchilov & Hutter, 2017; Chen et al.,
2023; Liu et al., 2023), effectively reducing momentum variance. Between periods, the vanilla EMA
is employed to leverage the high convergence rate of standard EMA-based optimizers.

The challenge of trajectory deviation arises when applying PMA to existing optimizers. Since the
same weight is applied to gradients within a period, the averaged gradients may lead to a parameter
update trajectory that deviates from the desired path. However, the optimizer cannot access the true
expectations of the stochastic gradients, making it difficult to detect or regulate any potential deviation.
To mitigate this trajectory deviation, we implement a linear decay of the learning rate within each
period, while resetting the learning rate to its initial value at the start of each new period. This strategy
ensures that the gradients do not deviate excessively from one another, thereby stabilizing the update
steps between periods and maintaining the desired trajectory.

By applying PMA, we modify AdamW (Loshchilov & Hutter, 2017) and Lion (Chen et al.,
2023), proposing AdamW-PMA and Lion-PMA. To verify the effectiveness of AdamW-PMA and
Lion-PMA, we conduct extensive experiments covering the post-training process of an LLM, includ-
ing Supervised Fine-training (SFT) and Direct Preference Optimization (DPO) (Rafailov et al., 2023)
on GPT-2 (Brown et al., 2020), Phi-2 (Javaheripi et al., 2023), Qwen1.5 (Team, 2024a), Qwen2 (Yang
et al., 2024) and Llama2 (Touvron et al., 2023b). Empirical evaluation shows that AdamW-PMA
and Lion-PMA achieve approximately 2× speedup in the post-training process and deliver better
performance on downstream tasks. Furthermore, we provide a theoretical analysis of AdamW-PMA on
the learning rate strategy and regret bound, demonstrating that the theoretical convergence properties
of AdamW-PMA are on par with those of Adam.

Our technical contributions are summarized as follows:

• We propose Periodical Moving Average (PMA), a momentum update method to accelerate
LLM fine-training on GPU-memory-limited devices. We adopt PMA to AdamW and Lion,
to propose AdamW-PMA and Lion-PMA. Both algorithms stabilize the training and cost
no more memory and computation overhead in each step, achieving the same level of loss
with less time and less data compared to the original algorithms.

• We conduct extensive experiments across model sizes (from 0.1B to 7B) and training
tasks (SFT and DPO) to evaluate the performance of AdamW-PMA and Lion-PMA. PMA-
modified methods achieve approximately 2× speedup in the training process and deliver
better performance on downstream tasks.

• We provide theoretical analyses of AdamW-PMA. The regret analysis on convex functions
shows that the theoretical convergence property of AdamW-PMA is at the same level as
Adam. The convergence analysis of the small update steps shows the correctness of our
designed learning rate strategy.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 PRELIMINARIES

2.1 BACKGROUND: FIRST ORDER OPTIMIZATION

Adam (Kingma & Ba, 2014; Reddi et al., 2019) and AdamW (Loshchilov & Hutter, 2017) amalgamate
adaptive and momentum-based methods, emerging as widely adopted optimizers for LLM training.
Adam’s update rule is as follows: Given an objective function f : Rd → R, at time t, after computing
the gradient gt = ∇f , the first and second momenta are updated as mt = β1mt−1 + (1− β1)gt and
vt = β2vt−1 + (1− β2)g

2
t + ϵ, respectively, where ϵ is a small constant. Each momentum is then

debiased by dividing by
√
1− βt

1 and
√

1− βt
2 to obtain m̂t and v̂t, respectively. Since the weight

of the historical gradients decays exponentially, this method is also known as the EMA. Finally, the
model parameter is updated by xt+1 ← xt − γ · m̂t√

v̂t
, where γ represents the learning rate, and all

operations are element-wise. Recent representative advances by Chen et al. (2023) is Lion, which
employs with the first momentum only, and uses EMA to update it.

However, Adam-based methods face significant challenges related to high gradient variance in
memory-limited environments. Language model training inherently presents a high-variance opti-
mization problem (McCandlish et al., 2018). To tackle this issue, high-performance clusters are often
employed to increase the batch size (Touvron et al., 2023a). Conversely, reducing the batch size
exacerbates stochastic gradient noise, impeding model convergence (Yuan et al., 2016; Bottou et al.,
2018; Kunstner et al., 2023; Fu et al., 2023).

2.2 THEORETICAL SOLUTION: VARIANCE REDUCTION IN SGD

In this subsection, we discuss the methods to reduce gradient variance in SGD (Bottou et al., 2018)
and their drawbacks. The gradient aggregation methods reduce variance by reusing previously
computed information. Specifically, at time step t, SVRG (Johnson & Zhang, 2013) maintains a
copy of the historical parameter θk where k < t. The iterate averaging method (Polyak, 1991)
stores the parameters after each SGD step and returns the average of the stored parameters. Recent
advances proposed methods with recursive gradient updates without storing past gradients, such as
SARAH (Nguyen et al., 2017) and STORM (Cutkosky & Orabona, 2019).

However, current variance reduction methods either require large memory space, which is not feasible
when tuning the LLMs, or have low sampling efficiency. SAGA needs to store a gradient for each
data sample, and the memory cost is proportional to the size of the dataset. The iterate averaging
method needs to store all the updated parameters, with memory proportional to the number of steps.
SVRG needs to sample a large batch in each step to reduce the gradient variance. Although SARAH
and STORM does not require storing past gradients, they need more than one more back-propagation
on the past parameters for one update, leading to a high computation overhead for training LLMs.

2.3 PRACTICAL SOLUTION: GRADIENT ACCUMULATION

To mitigate the high variance of stochastic gradients in memory-limited scenarios, a straightforward
alternative method is GA1. GA involves partitioning the large batch into K smaller batches and com-
puting the gradient on each small batch without overwhelming the available memory. Subsequently,
the gradients from these small batches are averaged to obtain the gradient of the large batch for
parameter update. Importantly, the accumulated gradient obtained through GA remains equivalent to
the gradient obtained directly from the large batch.

However, GA faces significant practical challenges, primarily related to computational time. This is
due to the fact that GA mitigates memory overhead by transforming parallel computations, typical in
large clusters, into serial computations on memory-limited devices. Specifically, GA requires per-
forming feed-forward and back-propagation K times before updating the parameters once, resulting
in lower computational efficiency. Pham et al. (2023) modified the GA process to reduce the memory
cost, but they did not touch the target of speeding up training on memory-limited devices.

1We acknowledge that applying memory-efficient optimizers, such as Shazeer & Stern (2018); Luo et al.
(2023); Zhao et al. (2024); Zhang et al. (2024), may also be a practical approach. However, we claim that
this approach is not as practical as GA in our scenario. Due to the page limit, the corresponding discussion is
presented in Appendix A.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.4 THE DILEMMA

Throughout the analysis in Section 2.2 and Section 2.3, we identified a dilemma between theoretical
solutions and practical approaches when performing high-variance optimization on GPU-memory-
limited devices. Theoretical variance-reduction solutions often entail high memory overhead, which
is impractical in our scenario. Existing practical approaches either suffer from slow convergence
rates due to high gradient variance or prolonged training times due to serial operations of GA. Since
the crux of this dilemma lies in the high variance of the gradients, it is imperative to design a
method to reduce the variance of parameter updates while maintaining a similar level of memory and
computational costs as the current approaches.

3 METHODOLOGY: PERIODICAL MOVING AVERAGE

To relieve the dilemma in Sec.2.4, we introduce PMA as an extension to EMA to reduce the variance
of the gradients. Section 3.1 specifies the high-level design idea of PMA and explains the connection
and difference and existing work, providing an intuitive explanation. Section 3.2 dives into the design
details by introducing the dynamics of β and the learning rate schedule. Section 3.3 provides two
cases, demonstrating how PMA can be applied to AdamW and Lion.

3.1 HIGH-LEVEL IDEA

GA reduces variance, let’s mimic it. At a high level, the PMA mimics the GA process in the
momentum update. Unlike the EMA method, which forgets the historical gradient with an exponential
rate, PMA retains the same weights for some recent gradients. This is realized by splitting the training
process into periods and performing the vanilla moving average for momentum updates in each
period. This approach mimics the GA process, thus ensuring that the momenta have approximately
low variance compared with those of EMA-based optimizers with GA (Sec. 3.2.1).

GA updates no parameters, let’s update them. The core concept of PMA revolves around taking
small steps forward during each GA round. Specifically, the main procedure of PMA alternates
between using large and small learning rates during GA. We refer to the step using a large learning
rate as the large update step, while the others are termed small update steps. Each large update
step, following K small update steps, mimics an update step in EMA-based optimizers with GA.
Conversely, each small update step, employing a small learning rate, aims to accelerate convergence
while avoiding excessive movement to disrupt the GA process (Sec. 3.2.2).

The superiority of PMA over EMA-based optimizers with GA mainly stems from the update steps
with the smaller learning rate. These small update steps, interspersed between two large update steps,
allow the parameters to be updated after each round of gradient computation, rather than waiting until
all K rounds of gradients are accumulated.

3.2 DETAILED DESIGN

In this subsection, we introduce the update method of the first momentum as an example.

3.2.1 MOMENTUM UPDATE: DYNAMICS OF BETAS

Instead of setting β to be a constant during the training process as EMA, the adaptation of PMA
employs dynamic β2 to achieve the vanilla moving average nature of PMA. Since the weights of
each historical gradient in a period is required to be the same, the β should decay through a period,
assigning a reducing β to the newer gradient. In the following, we introduce the dynamics of β in the
large and small update steps separately, and an illustration of the β is given in Fig. 2a.

At Large Update Steps: Small Gradient Weight for Low Variance. At the first small update step
after a large update step, i.e., τ = 0, the updates of the momentum is given by mt ← β1mt−1 + (1−
β1)gt/K. This update method bears resemblance to that of EMA, wherein historical gradients decay

2β is usually known as the weight of the momentum and 1− β is the weight of the gradient. In the following
text, we focus more on the weight of the gradient, while keep using the terminology of β for simplicity.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

with the factor β and the current gradient is multiplied by 1− β. However, a key distinction from
EMA lies in our approach of dividing the current gt,0 by K, and after the update, the first and second
momenta are scaled by K. This operation serves a dual purpose: firstly, to mitigate the variance
of the first and second momenta, and secondly, to ensure that after the subsequent K small steps,
the accumulated gradients gt,0, . . . , gt,K−1 are weighted equally in mt,K−1, thereby aligning the
momenta with those in GA.

At Small Update Steps: Moving Average with Dynamic Weights. When τ = 1, . . . ,K − 1,
the update of momentum are given by mt ← τ

τ+1mt−1 +
1−β1

τ+1 gt. Initially, the current gradient
is multiplied by 1 − β. Our update method for the small steps replaces the EMA method used
in RMSprop and Adam with the moving average method. This modification aims to emulate the
GA method, ensuring that the gradients of the small update steps have the same weight in mt,K−1,
thereby enabling the large update step to mimic an update step in EMA-based optimizers while
keeping a low variance. Notably, in mt,K−1, mt−1,K−1 has a weight of 1 − β1, while gt,τ has a
weight of 1−β1

K for all τ . These weights mirror those in GA.

Algorithm 1: AdamW-PMA
input: γ(lr), β1, β2(betas), θ0(params),

f(θ)(objective), ϵ(epsilon), λ(weight decay),
K(accumulate iterations)

Data: m0 ← 0, v0 ← 0

1 for t = 1→ . . . do
2 gt ← ∇θft(θt−1);
3 τ ← t%K;
4 if τ = 0 and t > 0 then

// For every K steps, there is a
large update step.

5 γt ← γ;
6 mt ← β1mt−1 + (1− β1)gt/K;

// Divide gradient by K for
stability.

7 vt ← β2vt−1 + (1− β2)g
2
t /K;

8 else
// For every K steps, there is

K − 1 small update steps.

9 γt ← γ/
√
K; // Shrink the

learning rate by 1/
√
K.

10 mt ← τ
τ+1mt +

1−β1
τ+1 gt; // Moving

average instead of EMA.

11 vt ← τ
τ+1 vt +

1−β2
τ+1 g2

t ;

12 m̂t ← mt/(1− β
t//K
1); // Debias. "//"

refers to division with remainder.

13
√
v̂t ←

√
vt/(1− β

t//K
2) + ϵ;

14 θ̂t ← (1− γtλ)θt−1; // Weight decay.

15 θt = θ̂t − γtm̂t/
√
v̂t; // Parameter

update.
16 if τ = 0 and t > 0 then
17 m̂t ← Km̂t; // Rescale the

momentum after large update
step.

18 v̂t ← Kv̂t;

19 return θt;

(a) Example of dynamic
β (K = 8, β = 0.9)

(b) Example of lr (K = 8,
γ = 1)

Figure 2: Illustrations of the dynamics of β
and learning rate.

Algorithm 2: Lion-PMA
1 for t = 1→ . . . do
2 gt ← ∇θft(θt−1);
3 τ ← t%K;
4 if τ = 0 and t > 0 then
5 γt ← γ;
6 ut ← β1mt−1 + (1− β1)gt/K;
7 ut ← sign(ut);

8 else
9 γt ← γ/K;

10 ut ← τ
τ+1mt +

1−β1
τ+1 gt;

11 ut ← sign(ut);

12 mt ← τ
τ+1 vt +

1−β2
τ+1 g2

t ;

13 θ̂t ← (1− γtλ)θt−1;
14 θt = θ̂t − γtut;
15 if τ = 0 and t > 0 then
16 m̂t ← Km̂t;

17 return θt;

3.2.2 THE LEARNING RATE SCHEDULE

To cope with the dynamics of the momentum update in Sec.3.2.1, we design a learning rate scheduler
that differentiates between small and large update steps in this subsection. This strategy employs a
decaying learning rate for small update steps instead of using a uniform learning rate for each step.
The necessity of such a design stems from mimicking GA to avoid excessive movement that could
disrupt the mimicked GA process. An example of the dynamic learning rate is illustrated in Fig. 2b.

The design intuition for the learning rate strategy aims to advance the K small update steps relatively
further to expedite convergence compared to Adam with GA while preventing these steps from

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

advancing too much and causing mt,K to deviate significantly from the momentum of EMA-based
optimizers with GA. With this intention, we scale the momentum by 1/K at the small update
steps after the momentum update. Considering the scaling of momenta in Lines 16-18 and the
momentum update method with varying weights, the actual learning rate at small update step τ is
η · KK ·

∏τ
i=1

i
i+1 = η/(τ + 1), decreasing at a linear rate.

3.3 CASE STUDY

3.3.1 FROM ADAMW TO ADAMW-PMA

We modify AdamW to AdamW-PMA by replacing the EMA with the PMA as introduced in Sec.3.2.
The pseudo-code of AdamW-PMA is provided in Alg. 1. We replace the EMA method for the first
and second momentum updates in AdamW with PMA, following Sec.3.2.1. Note that the update of
AdamW is computed by m/

√
v (ignoring weight decay), and both the first and second momentum are

scaled by K at large update steps. The learning rate is scaled by 1/K at small update steps, resulting
in a learning rate that is effectively scaled by

√
K/K = 1/

√
K. For the remaining components of

AdamW-PMA, we keep them unchanged from AdamW.

3.3.2 FROM LION TO LION-PMA

The modification to Lion follows a similar approach to AdamW. It is noteworthy that the learning rate
is decayed by 1/K at small update steps, instead of 1/

√
K in AdamW-PMA. The reason is that there

is no second momentum in Lion. Thus, we choose 1/K to align with the rescaling of momentum
after the large update step, ensuring that the actual learning rate linearly decays as discussed in
Sec.3.2.2. For the remaining components of Lion-PMA, we keep them unchanged from Lion. The
pseudo-code of Lion-PMA is illustrated in Alg. 2.

4 THEORETICAL ANALYSIS

4.1 CONVERGENCE ANALYSIS

In this section, we provide a theoretical analysis on the convergence property of AdamW-PMA.
Specifically, we focus on the convergence properties concerning the number of large update steps.
This focus is due to the time cost between two large steps being approximately equal to the time
between two updates of Adam with GA. During the analysis, we slightly modify the notations for
ease of analysis. Unlike Alg. 1, where the index of small update steps ranges from 0 to K − 1, in
the subsequent analysis, this index ranges from 1 to K. When τ = K, the update step from xt,K to
xt+1,1 is considered a large update step for all t. For the other τ ∈ [K − 1], the subsequent update
step is a small step.

We analyze the convergence property of AdamW-PMA following the same settings of Kingma & Ba
(2014). The metric of interest is the regret, defined as:

Rτ (T) =

T∑
t=1

f(xt,τ)− f(x∗), (1)

where τ is the index of the small update steps. We demonstrate that AdamW-PMA has an O(
√
T)

regret bound, comparable to Adam in the same setting. We use some definitions simplify our notation,
where gt,τ = ∇f(xt,τ) and gt,τ,i as the ith element.

Theorem 1. Assume that the optimization objective f is convex and has bounded gradients,
∥∇f(x)∥2 ≤ G, ∥∇f(x)∥∞ ≤ G∞, and the distance between any parameter generated by
AdamW-PMA is bounded, ∥xt1,τ1 − xt2,τ2∥2 ≤ D, ∥xt1,τ1 − xt2,τ2∥∞ ≤ D∞ for any t1, t2 ∈ [T]

and τ1, τ2 ∈ [K], and β1, β2 satisfy
√
1−β2

1−β1
≤ 1. AdamW-PMA achieves the following regret

guarantee, for all T ≥ 1.

RK(T) ≤
√
KD2

2γ(1− β1)

d∑
i=1

√
T v̂T,K,i +

(1 + γ)K
3
2G∞

2(1− β1)

d∑
i=1

∥g1:KT,i∥2 +
D2
∞G∞(K − 1)

2(1− β1)
. (2)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The proof of Theorem 1 is provided in the Appendix C. Theorem 1 implies that given a horizon
T , the cumulative regret decreases with the data sparsity, consistent with the theoretical analysis
of Adam. Additionally, it is observed that the regret increases with the number of small steps K.
The intuition behind this relationship is that choosing a larger K can help AdamW-PMA converge
faster to the optimal point. However, when K is too large, the trajectory of AdamW-PMA deviates
significantly from the trajectory of Adam, potentially resulting in a large regret.

4.2 RESOURCE OVERHEAD ANALYSIS

AdamW-PMA does not incur higher memory costs compared to Adam and AdamW with GA. The
memory usage of AdamW-PMA primarily consists of parameters, gradients, and first and second
momenta, which is identical to Adam. When AdamW-PMA and Adam with GA use the same small
batch size, their memory requirements are equivalent.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

Tasks. Our experiments evaluate AdamW-PMA and Lion-PMA through language modeling tasks,
covering SFT, and DPO (Rafailov et al., 2023) tasks3. For the SFT task, we use Phi-2 (Javaheripi
et al., 2023) with 2.7B pre-trained parameters and the Alpaca dataset (Taori et al., 2023) as the
instruction tuning dataset. For the DPO task, we fine-tune the pre-trained Phi-2 and Qwen1.5-0.5B
models on the HH-RLHF-harmless dataset (Bai et al., 2022).

Baselines. We mainly compare AdamW-PMA and Lion-PMA with AdamW and Lion, respectively.
For example, after setting a batch size B and a period length K for AdamW-PMA4, we compare it
with AdamW with K times of GA5, whose batch size is B, and the equivalent batch size is KB
achieved by GA. In each group of experiments, the hyperparameters are the same across all the
optimizers. For the AdamW-PMA group, we set lr = 2e− 6, 2e− 6 for the two tasks, respectively,
and the betas are set to (0.9, 0.95) for AdamW-PMA and the baselines in all the experiments. For
the Lion-PMA group, we set the same learning rate as the AdamW-PMA group and let betas be
(0.95, 0.98) in all the experiments as in Chen et al. (2023).

Implementation. All the following experiments are conducted on a server with 8× NVIDIA A40
GPUs with 8× 48G GPU memory and Intel(R) Xeon(R) Gold 6330 CPU and Ubuntu 20.04.2. The
implementation is based on the Swift framework (Team, 2024b) and PyTorch (Paszke et al., 2019).
We set K = 8, 16 for the SFT, and DPO tasks, respectively. For the batch size, we set B = 32, 16 for
each task, respectively.

Metrics. For the SFT task, we evaluate the validation loss on the validation dataset and the
performance of the trained model on MMLU (Hendrycks et al., 2020) benchmark. For the DPO task,
we evaluate the validation loss and the accuracy of classifying the accepted and rejected responses on
the validation dataset. Specifically, if the predicted probability of the accepted response is larger than
the rejected response, we regard it as a correct classification.

Methodology of Comparison. To compare the performance of AdamW-PMA and Lion-PMA
with their baselines, we consider two methodologies of comparing the evaluated metrics. The first
methodology is data efficiency. Specifically, we compare the amounts of training data fed into the
model when the metrics of the optimizers reach the same level. The intuition behind this comparison
methodology is that if an optimizer is faster, it should achieve a specific low loss with fewer training
steps. Since the (quasi-equivalent) batch sizes of the optimizers in each group are different, we
consider the amount of training data to be fairer to measure the data efficiency instead of the number
of steps. The second methodology is comparing the flops. Specifically, we compare the flops of

3Due to the page limit, some important experiments and results, including pre-training and the impact of
learning rate scheduler, are presented in Appendix E.

4We abbreviate this setting as AdamW-PMA-K. So is Lion-PMA-K.
5We abbreviate this setting as AdamW-K. So is Lion-K.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm Val Loss MMLU(Zero-Shot)
Hums. STEM Social Other Avg.

AdamW-4 0.9212 15.4 28.3 26.7 24.3 24.4
AdamW-8 0.9408 19.2 22.8 26.7 25.0 23.3
AdamW-PMA-4 0.9352 16.9 22.8 25.0 22.7 21.9
AdamW-PMA-8 0.9078 16.2 28.3 30.1 35.0 27.7
Lion-4 0.9227 13.1 23.3 24.2 25.7 21.8
Lion-8 0.9486 20.8 22.2 24.2 25.0 23.0
Lion-PMA-4 0.9136 13.1 23.3 24.2 25.7 21.8
Lion-PMA-8 0.9373 17.7 22.2 22.5 26.4 22.3

Table 1: Comparison of the validation loss and the performance on zero-shot MMLU for various
algorithms with lr = 2e−6, where validation loss is from the Alpaca dataset after one epoch training.
With limited space, we only choose four representative categories and the total average score.

the optimizers when the metrics reach the same level. This intuition is that the flops are the most
straightforward metric to measure the speed of an optimizer. If an optimizer is faster, it should achieve
a certain level of loss using less time in practice.

5.2 SUPERVISED FINE-TUNING (SFT)

Table 1 shows that for AdamW family and Lion family algorithm, our method PMA can improve the
performance of SFT explicitly. For the validation loss, the AdamW-PMA with K = 8 (which is what
AdamW-PMA-8 refers to. So are the other abbreviations.) is better than other AdamW algorithms,
and for Lion family algorithms, Lion-PMA with K = 4 is better.

In the MMLU-ZS (Zero-Shot) classification tasks, as shown in the table, algorithms incorporating
PMA technology achieve superior performance across all categories except for Humanities. Specifi-
cally, in the STEM, Social, and Other categories, PMA-enhanced algorithms, consistently outperform
their non-PMA counterparts. On average, PMA-enhanced algorithms demonstrate better performance,
as indicated by the overall scores (e.g., 27.7 for AdamW-PMA-8).

Interestingly, Table 1 also reveals that algorithms scoring high in Humanities tasks tend to perform
poorly in other categories. For instance, AdamW-8 achieves the highest score in Humanities (19.2)
within the AdamW group but has one of the lowest overall average scores (23.3). This phenomenon
is believed to be caused by the unbalanced SFT data, which lacks sufficient data in Humanities.
Conversely, Lion-PMA-4, while maintaining a competitive score in Humanities (17.7), excels in other
categories except for the averaged score. The low average score of Lion-PMA-4 is caused by the lack
of data in Humanities, lowering the average score despite high scores in many other categories.

5.3 DIRECT PREFERENCE OPTIMIZATION (DPO)

PMA achieves higher accuracy. We verified the effectiveness of the PMA-enhanced optimizers
on the DPO task. In Fig. 3a and 3b, we set K to 1 and 16, respectively, and compared the validation
accuracy curves of four optimizers from the perspective of total flops. Figure 3c3d use the number of
update steps and the number of samples as references, comparing the effects of the four optimizers
applied to the DPO task under K=8 and K=16 parameter settings. Among these four optimizers,
AdamW is the slowest and achieves the lowest accuracy. When the PMA method is applied to AdamW
with smaller values of K = 8, as illustrated in Fig. 3a3c, AdamW-PMA’s final convergence accuracy
is comparable to that of Lion, which serves as another baseline. Although its convergence speed
greatly surpasses that of AdamW, it remains slightly slower than Lion. However, with larger values
of K, as shown in Fig. 3b3d, AdamW-PMA not only matches Lion in terms of convergence accuracy
but also significantly outpaces both AdamW and Lion in terms of convergence speed. Among
them, Lion-PMA exhibits the best optimization performance. We observed that both AdamW-PMA
and Lion-PMA exhibit significant improvements in both convergence speed and ultimate accuracy
compared to AdamW and Lion.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Validation accuracy
on flops (K = 8)

(b) Validation accuracy
on flops (K = 16)

(c) Validation accuracy
on number of samples
(K=8)

(d) Validation accuracy
on number of samples
(K=16)

Figure 3: The accuracy of classifying the accepted and rejected responses on the validation dataset for
DPO task. Compared to AdamW and Lion, AdamW-PMA and Lion-PMA exhibit faster convergence
rates and higher accuracy.

Figure 4: Runtime to achieve the
same loss on DPO task. PMA
can reduce the training time cost
than EMA.

Figure 5: Validation loss of train-
ing more epochs on DPO task
and Qwen2-0.5B. Lower loss
of PMA-based methods demon-
strates PMA overfits less.

Figure 6: The speedup factor
of AdamW-PMA compared to
AdamW under different settings
of the hyperparameter K on Phi-
2 2.7B and Qwen1.5-0.5B.

PMA reduces runtime. We compare the runtime of PMA and EMA-based optimizers to achieve
the same validation loss, showing that DPO can reduce the training time. We use the same settings
as Fig. 3, and the runtime is illustrated in Fig. 4. On the one hand, results in Fig. 4 show that PMA
takes significantly less time to achieve the same validation loss than EMA. On the other hand, after
reaching the same loss as EMA, PMA can utilize the left data to achieve a higher accuracy, which
aligns with the result in Fig. 3.

PMA overfits less. We compare the validation loss of EMA and PMA after more epochs of DPO
training. The experiment setting is the same as Fig. 3 but the model is replaced with Qwen2-0.5B.
The result is shown in Fig. 5. PMA-based optimizers achieve lower validation losses than EMA-based
optimizers, especially after more training epochs. Specifically, the loss of AdamW-PMA achieves a
series of decreasing validation loss across the three epochs, compared with the increasing loss of
AdamW, showing that PMA can achieve a lower level of over-fitting than EMA.

5.4 HYPER-PARAMETER SENSITIVITY

PMA is sensitive to K. We conducted experiments using AdamW-PMA and AdamW, setting the
hyperparameter K at different values to assess its impact on the speedup factor of PMA. In Fig. 6,
we present the results for the DPO task utilizing the Phi-2 and Qwen1.5 model, with AdamW as the
baseline. When K = 1, AdamW-PMA bypasses the PMA stage and directly reverts to AdamW, thus
failing to leverage the variance reduction and acceleration benefits of the PMA method. Conversely,
when K is set too high, although the variance in momentum updates is reduced, the excessive
reduction in learning rate during the PMA stage leads to a diminished extent of acceleration. When
K = 16 for Phi-2 and K = 2 for Qwen, the reduction in the variance of the momentum updates and
the decrease in learning rate achieve a relatively optimal balance, therefore the application of the PMA
method achieved the highest observed speedup.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) Variance vs Training loss (b) Variance vs Time

Figure 7: Comparison of the magnitude in variance with respect to
the training loss and time for our algorithm versus AdamW. The
vertical coordinates all use log scale since our algorithm is orders
of magnitude different from other algorithms.

Figure 8: Validation loss of SFT
on Llama2-7B. AdamW-PMA
takes a similar time as AdamW,
but achieves a much lower loss.

5.5 OTHER PROPERTIES

PMA reduces variance. We demonstrate that PMA can achieve a lower variance of the update
direction than that of EMA. For our experiments, we employ the GPT-2 medium (Brown et al., 2020)
model with 350M parameters, and utilize the Alpaca dataset with all three algorithms configured
identically: lr = 5e− 6, and betas are set to (0.9, 0.95). The GA step and K value in Alg. 1 are both
set to 16. We use the last layer gradient to approximate the gradient of the whole model (Ash et al.,
2019; Mirzasoleiman et al., 2020; Killamsetty et al., 2021b;a).

Figure 7a shows that, at equivalent levels of training loss, our algorithm exhibits lower gradient update
variance. Furthermore, as depicted in Fig. 7b, the update variance of our algorithm consistently
remains substantially lower than that of the benchmark throughout the training duration.

PMA can scale up and be quantized. We evaluate the performance of AdamW-PMA on a 7B-level
BF16 model, to demonstrate that PMA can scale up on larger models. The experiment is conducted on
Llama2-7B-base quantized to BF16 and SFT on the DuReader_Robust dataset (Tang et al., 2020). The
model is trained for one epoch. The statistics of the validation loss are plotted in Fig. 8. AdamW-PMA
achieves lower validation loss than AdamW across the whole training process, demonstrating the
superiority of PMA than EMA.

PMA costs a little more time. As shown in Fig. 8, AdamW-PMA takes about 2% more time than
Adam when training a 7B model, indicating that although there are more update steps and more
communication overhead in AdamW-PMA, these small update steps do not take too much time.

6 DISCUSSION AND CONCLUSION

We address the problem of high-variance stochastic optimization on GPU-memory-limited devices for
training LLMs. We identified that the low convergence rate of current momentum-based optimizers
is primarily due to the EMA method, which forgets historical gradients too quickly, thus failing to
leverage them effectively for stabilizing updates. To tackle this, we propose PMA, a new momentum
update method that splits the training process into periods and applies a vanilla moving average within
each period. This approach assigns a higher weight to historical gradients, thereby stabilizing updates
when gradient variance is high. We modify AdamW and Lion using PMA, resulting in AdamW-PMA
and Lion-PMA, respectively. Empirical evaluations on SFT and DPO tasks using the Phi-2 and
Qwen model demonstrate that PMA achieves approximately 2× speedup in the training process and
delivers better performance on downstream tasks.

However, PMA modified methods could incur higher communication overhead in multi-GPU training
scenarios, especially when K is large. For example, Since AdamW-PMA employs extra steps of
parameter update during GA, more communication overhead is required when multiple GPUs are
employed for the training task. Specifically, since there are K more communication rounds in
AdamW-PMA than in Adam with GA, the communication cost of AdamW-PMA is K times higher
than that of Adam with GA.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

The code of the experiment is attached in the supplementary material as a zip file. Please refer to the
README_ICLR_submission.md for detailed usage. The proof is provided in the Appendix.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Jordan T Ash, Chicheng Zhang, Akshay Krishnamurthy, John Langford, and Alekh Agarwal. Deep
batch active learning by diverse, uncertain gradient lower bounds. arXiv preprint arXiv:1906.03671,
2019.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223–311, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. NeurIPS, 33:1877–1901, 2020.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi
Dong, Thang Luong, Cho-Jui Hsieh, et al. Symbolic discovery of optimization algorithms. arXiv
preprint arXiv:2302.06675, 2023.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex sgd.
NeurIPS, 32, 2019.

Aaron Defazio, Francis R. Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient
method with support for non-strongly convex composite objectives. In NIPS, pp. 1646–1654, 2014.

Timothy Dozat. Incorporating nesterov momentum into adam. ICLR Workshop, 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Jingwen Fu, Bohan Wang, Huishuai Zhang, Zhizheng Zhang, Wei Chen, and Nanning Zheng. When
and why momentum accelerates sgd: An empirical study. arXiv preprint arXiv:2306.09000, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning lecture
6a overview of mini-batch gradient descent. Cited on, 14(8):2, 2012.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Mojan Javaheripi, Sébastien Bubeck, et al. Phi-2: The surprising power of small language mod-
els. URL https://www. microsoft. com/en-us/research/blog/phi-2-the-surprising-power-of-small-
language-models, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In NIPS, pp. 315–323, 2013.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh Ramakrishnan, Abir De, and Rishabh Iyer.
Grad-match: Gradient matching based data subset selection for efficient deep model training. In
ICML, pp. 5464–5474, 2021a.

Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer. Glister:
Generalization based data subset selection for efficient and robust learning. In AAAI, volume 35,
pp. 8110–8118, 2021b.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Frederik Kunstner, Jacques Chen, Jonathan Wilder Lavington, and Mark Schmidt. Noise is not the
main factor behind the gap between sgd and adam on transformers, but sign descent might be.
arXiv preprint arXiv:2304.13960, 2023.

Kevin Lee and Shubho Sengupta. Introducing the ai research supercluster — meta’s cutting-edge ai
supercomputer for ai research, 2022. URL https://ai.meta.com/blog/ai-rsc/.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Yang Luo, Xiaozhe Ren, Zangwei Zheng, Zhuo Jiang, Xin Jiang, and Yang You. Came: Confidence-
guided adaptive memory efficient optimization. arXiv preprint arXiv:2307.02047, 2023.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. arXiv preprint arXiv:2306.09782,
2023.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
large-batch training. arXiv preprint arXiv:1812.06162, 2018.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In ICML, pp. 6950–6960, 2020.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. Sarah: A novel method for machine
learning problems using stochastic recursive gradient. In ICML, pp. 2613–2621, 2017.

OpenAI. Learning to reason with llms. https://openai.com/index/learning-to-reason-with-llms/, 2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. NeurIPS, 35:27730–27744, 2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. NeurIPS, 32, 2019.

Hieu Pham, Zihang Dai, Golnaz Ghiasi, Kenji Kawaguchi, Hanxiao Liu, Adams Wei Yu, Jiahui Yu,
Yi-Ting Chen, Minh-Thang Luong, Yonghui Wu, et al. Combined scaling for zero-shot transfer
learning. Neurocomputing, 555:126658, 2023.

12

https://ai.meta.com/blog/ai-rsc/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Boris Polyak. New method of stochastic approximation type. Autom. Remote Control, 7:937–946, 01
1991.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D Manning, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. arXiv
preprint arXiv:2305.18290, 2023.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In ICML, pp. 4596–4604, 2018.

Hongxuan Tang, Hongyu Li, Jing Liu, Yu Hong, Hua Wu, and Haifeng Wang. Dureader_robust: A chi-
nese dataset towards evaluating robustness and generalization of machine reading comprehension
in real-world applications. arXiv preprint arXiv:2004.11142, 2020.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Qwen Team. Introducing qwen1.5, February 2024a. URL https://qwenlm.github.io/
blog/qwen1.5/.

The ModelScope Team. Swift:scalable lightweight infrastructure for fine-tuning. https://
github.com/modelscope/swift, 2024b.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. NIPS, 30, 2017.

Xingyu Xie, Pan Zhou, Huan Li, Zhouchen Lin, and Shuicheng Yan. Adan: Adaptive nesterov
momentum algorithm for faster optimizing deep models. arXiv preprint arXiv:2208.06677, 2022.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

Kun Yuan, Bicheng Ying, and Ali H Sayed. On the influence of momentum acceleration on online
learning. Journal of Machine Learning Research, 17(192):1–66, 2016.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Yinyu Ye, Zhi-Quan Luo, and
Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv preprint arXiv:2406.16793,
2024.

13

https://github.com/tatsu-lab/stanford_alpaca
https://qwenlm.github.io/blog/qwen1.5/
https://qwenlm.github.io/blog/qwen1.5/
https://github.com/modelscope/swift
https://github.com/modelscope/swift

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jiawei Zhao, Zhenyu Zhang, Beidi Chen, Zhangyang Wang, Anima Anandkumar, and Yuandong
Tian. Galore: Memory-efficient llm training by gradient low-rank projection. arXiv preprint
arXiv:2403.03507, 2024.

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar C Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. NeurIPS, 33:18795–18806, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendix

Table of Contents
1 Introduction 1

2 Preliminaries 3
2.1 Background: First Order Optimization . 3
2.2 Theoretical Solution: Variance Reduction in SGD 3
2.3 Practical Solution: Gradient Accumulation . 3
2.4 The Dilemma . 4

3 Methodology: Periodical Moving Average 4
3.1 High-Level Idea . 4
3.2 Detailed Design . 4
3.3 Case Study . 6

4 Theoretical Analysis 6
4.1 Convergence Analysis . 6
4.2 Resource Overhead Analysis . 7

5 Evaluation 7
5.1 Experimental Setup . 7
5.2 Supervised Fine-Tuning (SFT) . 8
5.3 Direct Preference Optimization (DPO) . 8
5.4 Hyper-Parameter Sensitivity . 9
5.5 Other Properties . 10

6 Discussion and Conclusion 10

Appendix 14

A RELATED WORK

First-Order Adaptive Methods. The basic idea behind designing adaptive first-order optimizers
is to adapt the direction and learning rate for each parameter individually. AdaGrad (Duchi et al.,
2011) achieves this by adjusting the learning rate of features based on estimated geometry and
assigning larger learning rates to infrequent features. RMSProp (Hinton et al., 2012) enhances
AdaGrad by introducing a running average of the second-order momentum, i.e., the square of the
gradients. Adam (Kingma & Ba, 2014) further improves RMSProp by introducing a running average
of gradients. Alongside its enhanced version with weight decay, AdamW (Loshchilov & Hutter,
2017), Adam has emerged as the predominant approach for solving optimization problems in deep
learning, particularly in training Transformers (Vaswani et al., 2017). Numerous subsequent works
can be viewed as variants of first-order adaptive methods (Dozat, 2016; Shazeer & Stern, 2018; Reddi
et al., 2019; Zhuang et al., 2020; You et al., 2019; Xie et al., 2022; Chen et al., 2023). The main
drawback of Adam-like methods is its memory cost. The optimizers maintains the first and second
momentum along with the current gradient, leading to a heavy load for memory-constrained devices.

Memory-Efficient Optimizers. Adafactor (Shazeer & Stern, 2018) reduces the memory by only
maintaing the row and column sum of the second order momentum and estimate the second moments
based on these sums. LOMO (Lv et al., 2023) fuses the gradient computation and the parameter

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

update in one step to reduce memory usage. CAME (Luo et al., 2023) supports adaptive confidence-
based updating guided by the residual between predicted update and generated update. GaLore (Zhao
et al., 2024) uses a low-rank projected gradient to save memory and full parameter update to achieve
a good performance. Adam-mini (Zhang et al., 2024) reduces memory by cutting down the learning
rate resources in Adam. However, it is hardly practical to deploy the above mentioned methods to
memory-constrained devices. The reason includes two folds. On the one hand, all these methods,
except Adam-mini, suffer from lower convergence rates than Adam, meaning that they are saving
memory in the cost of speed. On the other hand, their saved memory is not enough for memory-
constrained devices, especially when training LLMs. For example, CAME can save 12.1% of Adam’s
memory cost (according to Table 1 of Luo et al. (2023)), which is far from enough if one is going to
use a large batch size and a scaled-up model. Considering the impracticality of these memory-efficient
optimizers, we shall state the importance of applying GA and the necessity of accelerating GA.

Variance Reduction. The variance reduction techniques in SGD (Bottou et al., 2018) include
dynamic sampling, gradient aggregation, and iterate averaging. As for optimizer design, we focus on
the last two techniques. The gradient aggregation methods reduce variance by reusing previously
computed information. Specifically, at time step t, SVRG (Johnson & Zhang, 2013) maintains a copy
of the historical parameter θk where k < t. It computes a batched gradient Gθk = 1

n

∑n
i=1∇fθk(xi)

and derives an unbiased estimator of the current gradient by E[∇Rθt] = ∇fθt(xt)− (∇fθk(xt)−
Gθk), where xt is a sample from the input space. SAGA (Defazio et al., 2014) stores the historical
gradient for each data sample and estimates the current gradient using the average of the historical
gradients. The iterate averaging method (Polyak, 1991) stores the parameters after each SGD step
and returns the average of the stored parameters. Nesterov (2013) employs gradient aggregation and
yield O(1/t) rate of convergence for the averaged iterate sequence.

B ADDITIONAL THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis on the convergence property of AdamW-PMA.
Specifically, we focus on the convergence properties concerning the number of large update steps.
This focus is due to the time cost between two large steps being approximately equal to the time
between two updates of Adam with GA. During the analysis, we slightly modify the notations for
ease of analysis. Unlike Algorithm 1, where the index of small update steps ranges from 0 to K − 1,
in the subsequent analysis, this index ranges from 1 to K. Specifically, when τ = K, the update
step from xt,K to xt+1,1 is considered a large update step for all t. For the other τ ∈ [K − 1], the
subsequent update step is a small step.

Firstly, we can show the average regret of AdamW-PMA converges based on Theorem 1,
Corollary 1. Assume that the optimization objective f is convex and has bounded gradients,
∥∇f(x)∥2 ≤ G, ∥∇f(x)∥∞ ≤ G∞, and the distance between any parameter generated by
AdamW-PMA is bounded, ∥xt1,τ1 − xt2,τ2∥2 ≤ D, ∥xt1,τ1 − xt2,τ2∥∞ ≤ D∞ for any t1, t2 ∈ [T]

and τ1, τ2 ∈ [K], and β1, β2 satisfy
√
1−β2

1−β1
≤ 1. AdamW-PMA achieves the following regret

guarantee, for all T ≥ 1.
RK(T)

T
= O

(
1√
T

)
.

Then, we provide the update size between two large update steps in general non-convex settings.
Theorem 2. Assume that the objective function f is L-smooth, the step size between two large update
steps is bounded by

∥xt+1,1 − xt,1∥2 ≤
2

L

(
1 +

γ2L√
K

(1− β1)
2

1− β2
(K + 1)

)
· ζ̄(2a)2t−2, (3)

where ζ̄ and a are constants, and ζ̄(2a)2t−2 ≥ ζ(2a)2t−2 + c
1−4a2 +K2, and a = β1(1−β1)√

β2(1−β2)
· 1√

K
.

Theorem 2 indicates that the distance between two large update steps is bounded and converges to
0. Despite having K small updates with varying momentum averaging weights, the step sizes still
converge rapidly , suggesting the validity of setting the learning rate of the small steps to be γ/

√
K.

Furthermore, the exponential term decreases with K, aligning with the intuition that more small
update steps lead to faster convergence.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C PROOF OF THEOREM 2

Before the analysis, we slightly modify the notations to simplify the analysis. The large step update
takes the xt,K as input and outputs xt+1,1. Then, AdamW-PMAuses small step update to obtain
xt+1,2, . . . , xt+1,K . It is noteworthy that the indexes of small step updates in Algorithm 1 range from
0 to K − 1, while in the following analysis, they will range from 1 to K.

Before the analysis, we start with some important lemmas. Firstly, we consider the size of small step
updates between two large step updates. To start with, we bound the size of every small step update
using Lemma 1.

Lemma 1. When τ ≥ 2,∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥ ≤ 1− β1√
1− β2

· 1√
τ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥+ τ − 1

)
. (4)

Proof.∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥ =

∥∥∥∥∥∥
τ−1
τ mt,τ−1 +

1−β1

τ gt,τ−1√
τ−1
τ vt,τ−1 +

1−β2

τ g2t,τ−1

∥∥∥∥∥∥
≤ 1− β1√

1− β2

· 1√
τ
·

∥∥∥∥∥∥ mt,1 +
∑τ

σ=2 gt,σ√
vt,1 +

∑τ
σ=2 g

2
t,σ

∥∥∥∥∥∥
≤ 1− β1√

1− β2

· 1√
τ

 τ∑
σ=2

∥∥∥∥∥∥ gt,σ√
vt,1 +

∑τ
ρ=2 g

2
t,ρ

∥∥∥∥∥∥+
∥∥∥∥∥∥ mt,1√

vt,1 +
∑τ

σ=2 g
2
t,σ

∥∥∥∥∥∥


≤ 1− β1√
1− β2

· 1√
τ

∥∥∥∥ mt,1√
vt,1

∥∥∥∥+ τ∑
σ=2

∥∥∥∥∥∥ gt,σ√
g2t,σ

∥∥∥∥∥∥


=
1− β1√
1− β2

· 1√
τ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥+ τ − 1

)

Then, we bound the squared size of the small step update.

Corollary 2. ∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥2 ≤ (1− β1)
2

1− β2
· 2
τ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + τ2

)
. (5)

Proof. Since (a+ b)2 = a2 + b2 + 2ab ≤ 2(a2 + b2),∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥ ≤ 1− β1√
1− β2

· 1√
τ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥+ τ − 1

)
≤ (1− β1)

2

1− β2
· 2
τ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + τ2

)
.

Then, we bound the sum of the squared size of small step updates between two large step updates.

Corollary 3.
τ−1∑
σ=1

∥∥∥∥ mt,σ√
vt,σ

∥∥∥∥2 ≤ (1− β1)
2

1− β2

τ−2∑
σ=1

2

σ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + σ2

)
+

∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 . (6)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Proof.
τ−1∑
σ=1

∥∥∥∥ mt,σ√
vt,σ

∥∥∥∥2 =

τ−2∑
σ=1

∥∥∥∥ mt,σ√
vt,σ

∥∥∥∥2 + ∥∥∥∥ mt,τ−1√
vt,τ−1

∥∥∥∥2

Corollary 2
≤

τ−2∑
σ=1

∥∥∥∥ mt,σ√
vt,σ

∥∥∥∥2 + (1− β1)
2

1− β2
· 2

τ − 1
·

(∥∥∥∥ mt1√
vt,1

∥∥∥∥2 + (τ − 1)2

)

≤ (1− β1)
2

1− β2

τ−2∑
σ=1

2

σ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + σ2

)
+

∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 .

After bounding the small steps between two large update steps, we consider the size of a large update
step and K following small steps. To start with, we assume that the update size of the first large step
is bounded.

Assumption 1. Let a = β1(1−β1)√
β2(1−β2)

· 1√
K

and b = 1−β1√
1−β2

· 1√
K
·
(
1 + β1K√

β2

)
.∥∥∥∥ m1,1√

v1,1

∥∥∥∥ ≤ b

1− a
+ α. (7)

Then, we make some assumptions on the weight of the momentum.
Assumption 2. For all t, √

1− βt
2

1− βt
1

≤ 1.

If we take β1 = 0.9, β2 = 0.99 as the default configuration of Adam, this assumption holds.

Then, we bound the size of a large update step.
Lemma 2. By tuning the hyper-parameters β1 and β2, let a ≤ 1/2. Then∥∥∥∥ mt,1√

vt,1

∥∥∥∥ ≤ ᾱ · at−1, (8)

where ᾱ > α is a constant to make ᾱ · at−1 ≥ α · at−1 + b
1−a +K.

Proof.∥∥∥∥ mt,1√
vt,1

∥∥∥∥ =

∥∥∥∥∥∥ β1mt−1,K + 1−β1

K gt,1√
β2vt−1,K + 1−β2

K g2t,1

∥∥∥∥∥∥
≤

∥∥∥∥∥ β1mt−1,K√
β2vt−1,K

∥∥∥∥∥+ 1− β1√
1− β2

· 1√
K
·

∥∥∥∥∥∥ gt,1√
g2t,1

∥∥∥∥∥∥
=

∥∥∥∥∥ β1mt−1,K√
β2vt−1,K

∥∥∥∥∥+ 1− β1√
1− β2

· 1√
K

Lem. 1
≤

1− β1√
1− β2

· 1√
K

+
β1√
β2

· 1− β1√
1− β2

· 1√
K
·
(∥∥∥∥ mt−1,1√

vt−1,1

∥∥∥∥+K − 1

)
≤ β1(1− β1)√

β2(1− β2)
· 1√

K︸ ︷︷ ︸
:=a

·
∥∥∥∥ mt−1,1√

vt−1,1

∥∥∥∥+ 1− β1√
1− β2

· 1√
K
·
(
1 +

β1K√
β2

)
︸ ︷︷ ︸

:=b

Let xt =
∥∥∥ mt,1√

vt,1

∥∥∥, then

xt ≤ at−1
(
x1 −

b

1− a

)
+

b

1− a

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Then, by Assumption 1 ∥∥∥∥ mt,1√
vt,τ

∥∥∥∥ ≤ α · at−1 + b

1− a
≤ ᾱ · at−1.

Similar to the above approach, we assume the bounded squared first large step and prove the bounded
squared large steps.

Assumption 3. Let c = (1−β1)
2

1−β2
· 2
K

(
1 +

2β2
1K

2

β2
2

)
∥∥∥∥ m1,1√

vt,1

∥∥∥∥2 ≤ c

1− 4a2
+ ζ (9)

Corollary 4. ∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 ≤ ζ̄(2a)2t−2, (10)

where ζ̄ > ζ is a constant to make ζ̄(2a)2t−2 ≥ ζ(2a)2t−2 + c
1−4a2 +K2.

Proof.

∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 ≤ 2

∥∥∥∥∥ β1mt−1,K√
β2vt−1,K

∥∥∥∥∥
2

+
(1− β1)

2

1− β2
· 2
K

≤ (1− β1)
2

1− β2
· 2
K

+
4

K
· (1− β1)

2β2
1

(1− β2)β2
·

(∥∥∥∥ mt−1,1√
vt−1,1

∥∥∥∥2 +K2

)

= 4a2
∥∥∥∥ mt−1,1√

vt−1,1

∥∥∥∥2 + c.

Then, ∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 ≤ (2a)2t−2

(∥∥∥∥ m1,1√
v1,1

∥∥∥∥2 − c

1− 4a2

)
+

c

1− 4a2

≤ ζ(2a)2t−2 +
c

1− 4a2

≤ ζ̄(2a)2t−2.

Before proving Theorem 2, we need more assumptions on the objective function and the initial point.
First, we assume that f has Lipschitz continuous gradient.

Assumption 4 (L-smoothness). A function f : Rd → R is differentiable and for any x1, x2 ∈ Rd,

∥∇f(x1)−∇f(x2)∥ ≤ L∥x1 − x2∥,

where L is a constant.

Now, by putting everything together, we are ready to prove Theorem 2.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proof of Theorem 2. Let T = L
2 ∥xt+1,1 − xt∥2. At the beginning, we assume that the

AdamW-PMA does not employ the bias correction shown in Line 12-13 in Algorithm 1.

T =
L

2
∥xt+1,1 − xt.1∥2

≤ L

2

K−1∑
τ=1

∥xt,τ+1 − xt,τ∥2 +
L

2
∥xt+1,1 − xt,K∥2

=
L

2

K−1∑
τ=1

∥∥∥∥∥ γ√
K

m̂t,τ√
v̂t,τ

∥∥∥∥∥
2

+
L

2

∥∥∥∥∥γ · m̂t,K√
v̂t,K

∥∥∥∥∥
2

=
γ2L

2
√
K

K−1∑
τ=1

∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥2 + γ2L
√
K

2

∥∥∥∥ mt,K√
vt,K

∥∥∥∥2 .
T ≤ γ2L

2
√
K

K−1∑
τ=1

∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥2 + γ2L
√
K

2

∥∥∥∥ mt,K√
vt,K

∥∥∥∥2

Corollary 2
≤

γ2L

2
√
K

K−1∑
τ=1

∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥2 + γ2L

2

(1− β1)
2

1− β2
· 2√

K

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 +K2

)

=
γ2L

2
√
K

K−1∑
τ=1

∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥2 + γ2L√
K
· (1− β1)

2

1− β2
·

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 +K2

)

Corollary 3
≤

γ2L

2
√
K

(1− β1)
2

1− β2

K−2∑
σ=1

2

σ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + σ2

)
+

∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + γ2L√
K
· (1− β1)

2

1− β2
·

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 +K2

)

≤ γ2L√
K

(1− β1)
2

1− β2

(
K ·

∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 +K2

)
+

(
1 +

γ2L√
K

(1− β1)
2

1− β2

)∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + γ2LK
3
2
(1− β1)

2

1− β2

=

(
1 +

γ2L√
K

(1− β1)
2

1− β2
(K + 1)

)
·
∥∥∥∥ mt,1√

vt,1

∥∥∥∥2 + 2γ2LK
3
2
(1− β1)

2

1− β2

Corollary 4
≤

(
1 +

γ2L√
K

(1− β1)
2

1− β2
(K + 1)

)
· ζ̄(2a)2t−2 + 2γ2LK

3
2
(1− β1)

2

1− β2

Larger ζ̄
≤

(
1 +

γ2L√
K

(1− β1)
2

1− β2
(K + 1)

)
· ζ̄(2a)2t−2.

Thus,

∥xt+1,1 − xt,1∥2 ≤
2

L

(
1 +

γ2L√
K

(1− β1)
2

1− β2
(K + 1)

)
· ζ̄(2a)2t−2.

Then, we consider the bias correction shown in Linw 12-13 in Algorithm 1. By the bias correction,

the learning rate at time step t can be viewed as γt =
√

1−βt
2

1−β1
γ ≤ γ by Assumption 2. Then, with the

bias correction operation, this bound still holds.

D PROOF OF THEOREM 1

Before the analysis, we assume that the variable is bounded, as assumed in Kingma & Ba (2014).
Assumption 5. We assume that the distance between the variable and the optimal point is bounded
during the optimization process, such that ∥xt,τ − x∗∥2 ≤ D, ∥xi,j − xk,l∥∞ ≤ D∞.

Proof of Theorem 1. Since the objective function f is convex,

f(xt,K)− f(x∗) ≤ ⟨∇f(xt,K), xt,K − θ∗⟩ =
d∑

i=1

gt,K,i(xt,K,i − x∗i).

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Using the update method defined in Algorithm 1, we can get

xt+1,1,i = xt,K,i − γ
m̂t,K,i√
v̂t,K,i

= xt,K,i −
γ

1− βt
1

(
K − 1√
K
√
vt,K,i

mt,K−1,i +
1− β1√
K
√
vt,K,i

gt,K,i

)
.

(xt+1,1,i − x∗)2 = (xt,K,i − x∗i)
2 − 2γ

1− βt
1

(xt,K,i − x∗i)

(
K − 1√
K
√
vt,K,i

mt,K−1,i +
1− β1√
K
√
vt,K,i

gt,K,i

)

+ γ2K

(
mt,K,i√
vt,K,i

)2

.

Rearrange the equation above,

gt,K,i(xt,K,i − x∗i) =
(1− βt

1)
√
K
√
vt,K,i

2γ(1− β1)

(
(xt+1,K,i − x∗i)

2 − (xt,K,i − x∗i)
2
)

+
K − 1

1− β1
mt,K−1,i(xt,K,i − x∗i) +

(1− βt
1)γK

3
2
√
vt,K,i

2(1− β1)

(
mt,K,i√
vt,K,i

)2

≤
√
K
√
vt,K,i

2γ(1− β1)

(
(xt+1,K,i − x∗i)

2 − (xt,K,i − x∗i)
2
)

+
K − 1

1− β1
(xt,K,i − x∗i)

√
vt,K−1

(
mt,K−1,i√
vt,K−1,i

)
+

γK
3
2

2(1− β1)

m2
t,K,i√
vt,K,i

≤
√
K
√
vt,K,i

2γ(1− β1)

(
(xt+1,K,i − x∗i)

2 − (xt,K,i − x∗i)
2
)

+
K − 1

2(1− β1)
(xt,K,i − x∗)2 · √vt,K,i +

K − 1

2(1− β1)

m2
t,K−1,i√
vt,K−1,i

+
γK

3
2

2(1− β1)

m2
t,K,i√
vt,K,i

.

RK(T) ≤
T∑

t=1

d∑
i=1

gt,K,i(xt,K,i − x∗i)

≤
d∑

i=1

T∑
t=1

√
K
√
vt,K,i

2γ(1− β1)
(xt+1,K,i − x∗i)

2 −
√
K
√
vt,K,i

2γ(1− β1)
(xt,K,i − x∗i)

2

+
K − 1

2(1− β1)
(xt,K,i − x∗)2 · √vt,K,i +

K − 1

2(1− β1)

m2
t,K−1,i√
vt,K−1,i

+
γK

3
2

2(1− β1)

m2
t,K,i√
vt,K,i

Lemma 2
≤

√
KD2

2γ(1− β1)

d∑
i=1

√
T v̂T,K,i +

D2
∞(K − 1)

2(1− β1)
·

d∑
i=1

T∑
t=1

√
vT,K,i

+
(1 + γ)K

3
2G∞

2(1− β1)

d∑
i=1

∥g1:KT,i∥2

≤
√
KD2

2γ(1− β1)

d∑
i=1

√
T v̂T,K,i +

(1 + γ)K
3
2G∞

2(1− β1)

d∑
i=1

∥g1:KT,i∥2 +
D2
∞G∞(K − 1)

2(1− β1)
.

E ADDITIONAL EXPERIMENTS

E.1 PRE-TRAINING

Although PMA is designed for post-training, we also evaluate its performance on pre-training task.
Specifically, we train a randomly-initialized nanoGPT model on WikiPedia dataset. Figure 9 shows

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 9: Runtime to achieve the same loss
on DPO task. PMA can reduce the training
time cost than EMA.

Figure 10: Validation loss of AdamW without
learning rate scheduler and AdamW with a
PMA-like lr scheduler.

(a) AdamW-PMA v.s.
AdamW on flops

(b) AdamW-PMA v.s.
AdamW on number of
samples

(c) Lion-PMA v.s. Lion
on flops

(d) Lion-PMA v.s. Lion
on number of samples

Figure 11: From the perspectives of total flops and number of steps, AdamW-PMA and Lion-PMA
achieved speedups of 1.8x and 1.4x respectively, compared to AdamW and Lion when K = 1.

the validation loss of AdamW-PMA and AdamW. EMA-based AdamW achieves a lower validation
loss than AdamW-PMA. This is because PMA, especially the small update step, is designed for post-
training tasks where the distance between the original and trained parameters is small. Large distance
of updates, such as pre-training, can make the update direction deviate too much from the direction
of AdamW, leading to a slow training.

E.2 ABLATION ON LEARNING RATE SCHEDULER

To evaluate how the learning rate scheduler introduced in Sec. 3.2.2, we conduct an experiment on
Qwen2-0.5B, comparing AdamW without a scheduler and with a PMA-like scheduler. The other
settings are the same as the experiment in Fig. 5. We evaluate the tuned model every 120 steps, and
the statistics are shown in Fig. 10. The PMA-like scheduler slows down the training process if the
other components of PMA are not applied. This result indicates the necessity of the joint design of
each component in AdamW-PMA.

E.3 SFT

The improvement in validation loss brought by PMA can be translated into a reduction of the number
of steps or total compute. In Figure 11, we evaluate the optimizers by comparing the number of steps
or total flops needed to achieve the same validation loss level, setting K to 4. As can be observed in
Figure 12, AdamW-PMA and Lion-PMA achieve a 12x and 2x speedup compared with AdamW and
Lion.

E.4 DPO

Figure 13 and Figure 14 illustrate the validation loss of the DPO task on Phi-2 and HH-RLHF-
harmless dataset, using four different optimizers. We compare the total flops and number of samples
needed to achieve the same validation loss across vanilla AdamW and AdamW-PMA, Lion and

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) AdamW-PMA v.s.
AdamW on Flops

(b) AdamW-PMA v.s.
AdamW on Number of
Samples

(c) Lion-PMA v.s. Lion
on Flops

(d) Lion-PMA v.s. Lion
on Number of Samples

Figure 12: We evaluate the optimizers by comparing the total flops and number of samples needed to
achieve the same validation loss level. AdamW-PMA and Lion-PMA achieved approximately 12x
and 2x speedup, respectively, relative to AdamW and Lion.

(a) AdamW-PMA v.s.
AdamW on flops

(b) AdamW-PMA v.s.
AdamW on number of
samples

(c) Lion-PMA v.s. Lion
on flops

(d) Lion-PMA v.s. Lion
on number of samples

Figure 13: Validation loss of the DPO task on Phi-2 and HH-RLHF-harmless dataset.

Lion-PMA. The corresponding accuracy graph for this experiment can be found in Figure 3 of Section
5.3 in the main text.

E.5 HYPER-PARAMETER SENSITIVITY

We do experiments on DPO task with the Phi-2-2.7B model and Qwen1half-0.5B-chat model to
explore the sensitivity of the PMA method’s speedup factor with hyper-parameter K on AdamW.
In experiment of Phi-2 model, we set K to be 8, 16, 32, 64 to explore the optimal K value. For
Qwen1.5-0.5B model, the K is set to be 4, 8, 16, 32, which are relatively smaller since the model
is smaller. The results of experiments can be seen in Figure 15 and 16. This part is the supplement
results of Section 5.4 in the main text.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

(a) AdamW-PMA v.s.
AdamW on flops

(b) AdamW-PMA v.s.
AdamW on number of
samples

(c) Lion-PMA v.s. Lion
on flops

(d) Lion-PMA v.s. Lion
on number of samples

Figure 14: We evaluate the optimizers by comparing the total flops and number of samples needed to
achieve the same DPO validation loss level, with K setting to be 16. AdamW-PMA and Lion-PMA
achieved approximately 4x and 5x speedup, respectively, relative to AdamW and Lion.

(a) (b) (c) (d)

Figure 15: The sensitivity of PMA’s speedup factor with hyper-parameter K on Phi-2 model using
AdamW

(a) (b) (c)

Figure 16: The sensitivity of PMA’s speedup factor with hyper-parameter K on Qwenhalf1-0.5B
model using AdamW

24

	Introduction
	Preliminaries
	Background: First Order Optimization
	Theoretical Solution: Variance Reduction in SGD
	Practical Solution: Gradient Accumulation
	The Dilemma

	Methodology: Periodical Moving Average
	High-Level Idea
	Detailed Design
	Momentum Update: Dynamics of Betas
	The Learning Rate Schedule

	Case Study
	From AdamW to AdamW-PMA
	From Lion to Lion-PMA

	Theoretical Analysis
	Convergence Analysis
	Resource Overhead Analysis

	Evaluation
	Experimental Setup
	Supervised Fine-Tuning (SFT)
	Direct Preference Optimization (DPO)
	Hyper-Parameter Sensitivity
	Other Properties

	Discussion and Conclusion
	Appendix
	 Appendix
	Related Work
	Additional Theoretical Analysis
	Proof of Theorem 2
	Proof of Theorem 1
	Additional Experiments
	Pre-Training
	Ablation on Learning Rate Scheduler
	SFT
	DPO
	Hyper-Parameter Sensitivity

