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ABSTRACT

High gradient variance challenges training Large Language Models (LLMs) on
memory-limited devices. Existing practical approaches, such as small batch size or
using Gradient Accumulation (GA), face the dilemma between low convergence
rates due to high variance in parameter updates and long training times due to
the serial GA process. In this paper, we identify that the exponential nature of
the Exponential Moving Average (EMA) rapidly forgets historical gradients at an
exponential rate in momentum updates, making it difficult to utilize the historical
gradients to stabilize the update steps. To address this issue, we embed the idea of
GA into the momentum update and propose the Periodical Moving Average (PMA)
technique. PMA splits the training steps into periods and employs moving averages
instead of EMA in each period. We apply PMA to AdamW and Lion, resulting
in AdamW-PMA and Lion-PMA. Theoretical analysis demonstrates that AdamW-
PMA achieves a comparable convergence rate with Adam. Extensive experiments
showcase the superiority of PMA on post-training tasks, including Supervised
Fine-Tuning and Direct Preference Optimization, that the PMA-based methods
achieve approximately at least 2× speedup and higher scores on downstream tasks.

1 INTRODUCTION

Scaling up Large Language Models (LLMs) has been empirically evaluated as a necessary approach
to enhance their capabilities (Radford et al., 2019; Kaplan et al., 2020; Brown et al., 2020; Hoffmann
et al., 2022; Zhang et al., 2022; Touvron et al., 2023a;b; Achiam et al., 2023; Bi et al., 2024). Each
stage of the LLM post-training, including Supervised Fine-tuning (SFT), and reinforcement-learning-
based training, including Reinforcement Learning from Human Feedback (RLHF) (Ouyang et al.,
2022) and beyond (OpenAI, 2024), demands high computation costs on GPU-sufficient clusters (Lee
& Sengupta, 2022). However, scaling up require larger GPU memories, posing a challenge for
implementation on GPU-memory-limited devices.

Alternative approaches to training LLMs on GPU-memory-limited devices share a common weakness
of prolonged training time consumption. The most straightforward method is to employ a small
batch size. However, the large gradient noise slows down the training process and makes the model
hard to converge. Another approach is to use Gradient Accumulation (GA), which involves multiple
backpropagations followed by gradient averaging before a parameter update step, achieving an
equivalent large batch size. This approach converts the utilization of abundant GPU resources in
parallel processing into a sequential process, also albeit at the expense of increased training time.

In this paper, we propose Periodical Moving Average (PMA), a momentum update method designed
to accelerate momentum-based optimizers in LLM training on GPU-memory-limited devices. The
technical challenge lies in achieving both low variance and low time cost simultaneously. On the one
hand, from the perspective of GA, it is difficult to take more parameter updates without interrupting
the GA process or requiring extra memory allocation. On the other hand, from the side of small-batch
training, stabilizing the parameters becomes challenging when gradients are sampled from a small
batch, leading to increased variance. However, we observe that post-training usually uses a lower
learning rate than pre-training, preventing the parameters after training from deviating significantly
from the pre-trained model. This suggests that the gradients over the last few steps tend to have
similar expectations. PMA divides the entire training process into multiple periods, each consisting
of K steps. During each period, the momentum is updated using a moving average instead of the
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(a) AdamW v.s.
AdamW-PMA on SFT.

(b) Lion v.s. Lion-PMA
on SFT.

(c) AdamW v.s.
AdamW-PMA on DPO.

(d) Lion v.s. Lion-PMA
on DPO.

Figure 1: Optimizers with PMA achieves about 2× speedup compared with the optimizers with EMA.
(1a1b) Comparison of the number of steps needed to achieve the same validation loss with Phi-2 2.7B
model on SFT task and Alpaca dataset. (1c1d) Comparison of the number of steps needed to achieve
the same validation loss with Phi-2 2.7B model on DPO task and HH-RLHF dataset.

Exponential Moving Average (EMA) (Kingma & Ba, 2014; Loshchilov & Hutter, 2017; Chen et al.,
2023; Liu et al., 2023), effectively reducing momentum variance. Between periods, the vanilla EMA
is employed to leverage the high convergence rate of standard EMA-based optimizers.

The challenge of trajectory deviation arises when applying PMA to existing optimizers. Since the
same weight is applied to gradients within a period, the averaged gradients may lead to a parameter
update trajectory that deviates from the desired path. However, the optimizer cannot access the true
expectations of the stochastic gradients, making it difficult to detect or regulate any potential deviation.
To mitigate this trajectory deviation, we implement a linear decay of the learning rate within each
period, while resetting the learning rate to its initial value at the start of each new period. This strategy
ensures that the gradients do not deviate excessively from one another, thereby stabilizing the update
steps between periods and maintaining the desired trajectory.

By applying PMA, we modify AdamW (Loshchilov & Hutter, 2017) and Lion (Chen et al.,
2023), proposing AdamW-PMA and Lion-PMA. To verify the effectiveness of AdamW-PMA and
Lion-PMA, we conduct extensive experiments covering the post-training process of an LLM, includ-
ing Supervised Fine-training (SFT) and Direct Preference Optimization (DPO) (Rafailov et al., 2023)
on GPT-2 (Brown et al., 2020), Phi-2 (Javaheripi et al., 2023), Qwen1.5 (Team, 2024a), Qwen2 (Yang
et al., 2024) and Llama2 (Touvron et al., 2023b). Empirical evaluation shows that AdamW-PMA
and Lion-PMA achieve approximately 2× speedup in the post-training process and deliver better
performance on downstream tasks. Furthermore, we provide a theoretical analysis of AdamW-PMA on
the learning rate strategy and regret bound, demonstrating that the theoretical convergence properties
of AdamW-PMA are on par with those of Adam.

Our technical contributions are summarized as follows:

• We propose Periodical Moving Average (PMA), a momentum update method to accelerate
LLM fine-training on GPU-memory-limited devices. We adopt PMA to AdamW and Lion,
to propose AdamW-PMA and Lion-PMA. Both algorithms stabilize the training and cost
no more memory and computation overhead in each step, achieving the same level of loss
with less time and less data compared to the original algorithms.

• We conduct extensive experiments across model sizes (from 0.1B to 7B) and training
tasks (SFT and DPO) to evaluate the performance of AdamW-PMA and Lion-PMA. PMA-
modified methods achieve approximately 2× speedup in the training process and deliver
better performance on downstream tasks.

• We provide theoretical analyses of AdamW-PMA. The regret analysis on convex functions
shows that the theoretical convergence property of AdamW-PMA is at the same level as
Adam. The convergence analysis of the small update steps shows the correctness of our
designed learning rate strategy.
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2 PRELIMINARIES

2.1 BACKGROUND: FIRST ORDER OPTIMIZATION

Adam (Kingma & Ba, 2014; Reddi et al., 2019) and AdamW (Loshchilov & Hutter, 2017) amalgamate
adaptive and momentum-based methods, emerging as widely adopted optimizers for LLM training.
Adam’s update rule is as follows: Given an objective function f : Rd → R, at time t, after computing
the gradient gt = ∇f , the first and second momenta are updated as mt = β1mt−1 + (1− β1)gt and
vt = β2vt−1 + (1− β2)g

2
t + ϵ, respectively, where ϵ is a small constant. Each momentum is then

debiased by dividing by
√
1− βt

1 and
√

1− βt
2 to obtain m̂t and v̂t, respectively. Since the weight

of the historical gradients decays exponentially, this method is also known as the EMA. Finally, the
model parameter is updated by xt+1 ← xt − γ · m̂t√

v̂t
, where γ represents the learning rate, and all

operations are element-wise. Recent representative advances by Chen et al. (2023) is Lion, which
employs with the first momentum only, and uses EMA to update it.

However, Adam-based methods face significant challenges related to high gradient variance in
memory-limited environments. Language model training inherently presents a high-variance opti-
mization problem (McCandlish et al., 2018). To tackle this issue, high-performance clusters are often
employed to increase the batch size (Touvron et al., 2023a). Conversely, reducing the batch size
exacerbates stochastic gradient noise, impeding model convergence (Yuan et al., 2016; Bottou et al.,
2018; Kunstner et al., 2023; Fu et al., 2023).

2.2 THEORETICAL SOLUTION: VARIANCE REDUCTION IN SGD

In this subsection, we discuss the methods to reduce gradient variance in SGD (Bottou et al., 2018)
and their drawbacks. The gradient aggregation methods reduce variance by reusing previously
computed information. Specifically, at time step t, SVRG (Johnson & Zhang, 2013) maintains a
copy of the historical parameter θk where k < t. The iterate averaging method (Polyak, 1991)
stores the parameters after each SGD step and returns the average of the stored parameters. Recent
advances proposed methods with recursive gradient updates without storing past gradients, such as
SARAH (Nguyen et al., 2017) and STORM (Cutkosky & Orabona, 2019).

However, current variance reduction methods either require large memory space, which is not feasible
when tuning the LLMs, or have low sampling efficiency. SAGA needs to store a gradient for each
data sample, and the memory cost is proportional to the size of the dataset. The iterate averaging
method needs to store all the updated parameters, with memory proportional to the number of steps.
SVRG needs to sample a large batch in each step to reduce the gradient variance. Although SARAH
and STORM does not require storing past gradients, they need more than one more back-propagation
on the past parameters for one update, leading to a high computation overhead for training LLMs.

2.3 PRACTICAL SOLUTION: GRADIENT ACCUMULATION

To mitigate the high variance of stochastic gradients in memory-limited scenarios, a straightforward
alternative method is GA1. GA involves partitioning the large batch into K smaller batches and com-
puting the gradient on each small batch without overwhelming the available memory. Subsequently,
the gradients from these small batches are averaged to obtain the gradient of the large batch for
parameter update. Importantly, the accumulated gradient obtained through GA remains equivalent to
the gradient obtained directly from the large batch.

However, GA faces significant practical challenges, primarily related to computational time. This is
due to the fact that GA mitigates memory overhead by transforming parallel computations, typical in
large clusters, into serial computations on memory-limited devices. Specifically, GA requires per-
forming feed-forward and back-propagation K times before updating the parameters once, resulting
in lower computational efficiency. Pham et al. (2023) modified the GA process to reduce the memory
cost, but they did not touch the target of speeding up training on memory-limited devices.

1We acknowledge that applying memory-efficient optimizers, such as Shazeer & Stern (2018); Luo et al.
(2023); Zhao et al. (2024); Zhang et al. (2024), may also be a practical approach. However, we claim that
this approach is not as practical as GA in our scenario. Due to the page limit, the corresponding discussion is
presented in Appendix A.
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2.4 THE DILEMMA

Throughout the analysis in Section 2.2 and Section 2.3, we identified a dilemma between theoretical
solutions and practical approaches when performing high-variance optimization on GPU-memory-
limited devices. Theoretical variance-reduction solutions often entail high memory overhead, which
is impractical in our scenario. Existing practical approaches either suffer from slow convergence
rates due to high gradient variance or prolonged training times due to serial operations of GA. Since
the crux of this dilemma lies in the high variance of the gradients, it is imperative to design a
method to reduce the variance of parameter updates while maintaining a similar level of memory and
computational costs as the current approaches.

3 METHODOLOGY: PERIODICAL MOVING AVERAGE

To relieve the dilemma in Sec.2.4, we introduce PMA as an extension to EMA to reduce the variance
of the gradients. Section 3.1 specifies the high-level design idea of PMA and explains the connection
and difference and existing work, providing an intuitive explanation. Section 3.2 dives into the design
details by introducing the dynamics of β and the learning rate schedule. Section 3.3 provides two
cases, demonstrating how PMA can be applied to AdamW and Lion.

3.1 HIGH-LEVEL IDEA

GA reduces variance, let’s mimic it. At a high level, the PMA mimics the GA process in the
momentum update. Unlike the EMA method, which forgets the historical gradient with an exponential
rate, PMA retains the same weights for some recent gradients. This is realized by splitting the training
process into periods and performing the vanilla moving average for momentum updates in each
period. This approach mimics the GA process, thus ensuring that the momenta have approximately
low variance compared with those of EMA-based optimizers with GA (Sec. 3.2.1).

GA updates no parameters, let’s update them. The core concept of PMA revolves around taking
small steps forward during each GA round. Specifically, the main procedure of PMA alternates
between using large and small learning rates during GA. We refer to the step using a large learning
rate as the large update step, while the others are termed small update steps. Each large update
step, following K small update steps, mimics an update step in EMA-based optimizers with GA.
Conversely, each small update step, employing a small learning rate, aims to accelerate convergence
while avoiding excessive movement to disrupt the GA process (Sec. 3.2.2).

The superiority of PMA over EMA-based optimizers with GA mainly stems from the update steps
with the smaller learning rate. These small update steps, interspersed between two large update steps,
allow the parameters to be updated after each round of gradient computation, rather than waiting until
all K rounds of gradients are accumulated.

3.2 DETAILED DESIGN

In this subsection, we introduce the update method of the first momentum as an example.

3.2.1 MOMENTUM UPDATE: DYNAMICS OF BETAS

Instead of setting β to be a constant during the training process as EMA, the adaptation of PMA
employs dynamic β2 to achieve the vanilla moving average nature of PMA. Since the weights of
each historical gradient in a period is required to be the same, the β should decay through a period,
assigning a reducing β to the newer gradient. In the following, we introduce the dynamics of β in the
large and small update steps separately, and an illustration of the β is given in Fig. 2a.

At Large Update Steps: Small Gradient Weight for Low Variance. At the first small update step
after a large update step, i.e., τ = 0, the updates of the momentum is given by mt ← β1mt−1 + (1−
β1)gt/K. This update method bears resemblance to that of EMA, wherein historical gradients decay

2β is usually known as the weight of the momentum and 1− β is the weight of the gradient. In the following
text, we focus more on the weight of the gradient, while keep using the terminology of β for simplicity.
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with the factor β and the current gradient is multiplied by 1− β. However, a key distinction from
EMA lies in our approach of dividing the current gt,0 by K, and after the update, the first and second
momenta are scaled by K. This operation serves a dual purpose: firstly, to mitigate the variance
of the first and second momenta, and secondly, to ensure that after the subsequent K small steps,
the accumulated gradients gt,0, . . . , gt,K−1 are weighted equally in mt,K−1, thereby aligning the
momenta with those in GA.

At Small Update Steps: Moving Average with Dynamic Weights. When τ = 1, . . . ,K − 1,
the update of momentum are given by mt ← τ

τ+1mt−1 +
1−β1

τ+1 gt. Initially, the current gradient
is multiplied by 1 − β. Our update method for the small steps replaces the EMA method used
in RMSprop and Adam with the moving average method. This modification aims to emulate the
GA method, ensuring that the gradients of the small update steps have the same weight in mt,K−1,
thereby enabling the large update step to mimic an update step in EMA-based optimizers while
keeping a low variance. Notably, in mt,K−1, mt−1,K−1 has a weight of 1 − β1, while gt,τ has a
weight of 1−β1

K for all τ . These weights mirror those in GA.

Algorithm 1: AdamW-PMA
input: γ(lr), β1, β2(betas), θ0(params),

f(θ)(objective), ϵ(epsilon), λ(weight decay),
K(accumulate iterations)

Data: m0 ← 0, v0 ← 0

1 for t = 1→ . . . do
2 gt ← ∇θft(θt−1);
3 τ ← t%K;
4 if τ = 0 and t > 0 then

// For every K steps, there is a
large update step.

5 γt ← γ;
6 mt ← β1mt−1 + (1− β1)gt/K;

// Divide gradient by K for
stability.

7 vt ← β2vt−1 + (1− β2)g
2
t /K;

8 else
// For every K steps, there is

K − 1 small update steps.

9 γt ← γ/
√
K; // Shrink the

learning rate by 1/
√
K.

10 mt ← τ
τ+1mt +

1−β1
τ+1 gt; // Moving

average instead of EMA.

11 vt ← τ
τ+1 vt +

1−β2
τ+1 g2

t ;

12 m̂t ← mt/(1− β
t//K
1 ); // Debias. "//"

refers to division with remainder.

13
√
v̂t ←

√
vt/(1− β

t//K
2 ) + ϵ;

14 θ̂t ← (1− γtλ)θt−1; // Weight decay.

15 θt = θ̂t − γtm̂t/
√
v̂t; // Parameter

update.
16 if τ = 0 and t > 0 then
17 m̂t ← Km̂t; // Rescale the

momentum after large update
step.

18 v̂t ← Kv̂t;

19 return θt;

(a) Example of dynamic
β (K = 8, β = 0.9)

(b) Example of lr (K = 8,
γ = 1)

Figure 2: Illustrations of the dynamics of β
and learning rate.

Algorithm 2: Lion-PMA
1 for t = 1→ . . . do
2 gt ← ∇θft(θt−1);
3 τ ← t%K;
4 if τ = 0 and t > 0 then
5 γt ← γ;
6 ut ← β1mt−1 + (1− β1)gt/K;
7 ut ← sign(ut);

8 else
9 γt ← γ/K;

10 ut ← τ
τ+1mt +

1−β1
τ+1 gt;

11 ut ← sign(ut);

12 mt ← τ
τ+1 vt +

1−β2
τ+1 g2

t ;

13 θ̂t ← (1− γtλ)θt−1;
14 θt = θ̂t − γtut;
15 if τ = 0 and t > 0 then
16 m̂t ← Km̂t;

17 return θt;

3.2.2 THE LEARNING RATE SCHEDULE

To cope with the dynamics of the momentum update in Sec.3.2.1, we design a learning rate scheduler
that differentiates between small and large update steps in this subsection. This strategy employs a
decaying learning rate for small update steps instead of using a uniform learning rate for each step.
The necessity of such a design stems from mimicking GA to avoid excessive movement that could
disrupt the mimicked GA process. An example of the dynamic learning rate is illustrated in Fig. 2b.

The design intuition for the learning rate strategy aims to advance the K small update steps relatively
further to expedite convergence compared to Adam with GA while preventing these steps from
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advancing too much and causing mt,K to deviate significantly from the momentum of EMA-based
optimizers with GA. With this intention, we scale the momentum by 1/K at the small update
steps after the momentum update. Considering the scaling of momenta in Lines 16-18 and the
momentum update method with varying weights, the actual learning rate at small update step τ is
η · KK ·

∏τ
i=1

i
i+1 = η/(τ + 1), decreasing at a linear rate.

3.3 CASE STUDY

3.3.1 FROM ADAMW TO ADAMW-PMA

We modify AdamW to AdamW-PMA by replacing the EMA with the PMA as introduced in Sec.3.2.
The pseudo-code of AdamW-PMA is provided in Alg. 1. We replace the EMA method for the first
and second momentum updates in AdamW with PMA, following Sec.3.2.1. Note that the update of
AdamW is computed by m/

√
v (ignoring weight decay), and both the first and second momentum are

scaled by K at large update steps. The learning rate is scaled by 1/K at small update steps, resulting
in a learning rate that is effectively scaled by

√
K/K = 1/

√
K. For the remaining components of

AdamW-PMA, we keep them unchanged from AdamW.

3.3.2 FROM LION TO LION-PMA

The modification to Lion follows a similar approach to AdamW. It is noteworthy that the learning rate
is decayed by 1/K at small update steps, instead of 1/

√
K in AdamW-PMA. The reason is that there

is no second momentum in Lion. Thus, we choose 1/K to align with the rescaling of momentum
after the large update step, ensuring that the actual learning rate linearly decays as discussed in
Sec.3.2.2. For the remaining components of Lion-PMA, we keep them unchanged from Lion. The
pseudo-code of Lion-PMA is illustrated in Alg. 2.

4 THEORETICAL ANALYSIS

4.1 CONVERGENCE ANALYSIS

In this section, we provide a theoretical analysis on the convergence property of AdamW-PMA.
Specifically, we focus on the convergence properties concerning the number of large update steps.
This focus is due to the time cost between two large steps being approximately equal to the time
between two updates of Adam with GA. During the analysis, we slightly modify the notations for
ease of analysis. Unlike Alg. 1, where the index of small update steps ranges from 0 to K − 1, in
the subsequent analysis, this index ranges from 1 to K. When τ = K, the update step from xt,K to
xt+1,1 is considered a large update step for all t. For the other τ ∈ [K − 1], the subsequent update
step is a small step.

We analyze the convergence property of AdamW-PMA following the same settings of Kingma & Ba
(2014). The metric of interest is the regret, defined as:

Rτ (T ) =

T∑
t=1

f(xt,τ )− f(x∗), (1)

where τ is the index of the small update steps. We demonstrate that AdamW-PMA has an O(
√
T )

regret bound, comparable to Adam in the same setting. We use some definitions simplify our notation,
where gt,τ = ∇f(xt,τ ) and gt,τ,i as the ith element.

Theorem 1. Assume that the optimization objective f is convex and has bounded gradients,
∥∇f(x)∥2 ≤ G, ∥∇f(x)∥∞ ≤ G∞, and the distance between any parameter generated by
AdamW-PMA is bounded, ∥xt1,τ1 − xt2,τ2∥2 ≤ D, ∥xt1,τ1 − xt2,τ2∥∞ ≤ D∞ for any t1, t2 ∈ [T ]

and τ1, τ2 ∈ [K], and β1, β2 satisfy
√
1−β2

1−β1
≤ 1. AdamW-PMA achieves the following regret

guarantee, for all T ≥ 1.

RK(T ) ≤
√
KD2

2γ(1− β1)

d∑
i=1

√
T v̂T,K,i +

(1 + γ)K
3
2G∞

2(1− β1)

d∑
i=1

∥g1:KT,i∥2 +
D2
∞G∞(K − 1)

2(1− β1)
. (2)

6
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The proof of Theorem 1 is provided in the Appendix C. Theorem 1 implies that given a horizon
T , the cumulative regret decreases with the data sparsity, consistent with the theoretical analysis
of Adam. Additionally, it is observed that the regret increases with the number of small steps K.
The intuition behind this relationship is that choosing a larger K can help AdamW-PMA converge
faster to the optimal point. However, when K is too large, the trajectory of AdamW-PMA deviates
significantly from the trajectory of Adam, potentially resulting in a large regret.

4.2 RESOURCE OVERHEAD ANALYSIS

AdamW-PMA does not incur higher memory costs compared to Adam and AdamW with GA. The
memory usage of AdamW-PMA primarily consists of parameters, gradients, and first and second
momenta, which is identical to Adam. When AdamW-PMA and Adam with GA use the same small
batch size, their memory requirements are equivalent.

5 EVALUATION

5.1 EXPERIMENTAL SETUP

Tasks. Our experiments evaluate AdamW-PMA and Lion-PMA through language modeling tasks,
covering SFT, and DPO (Rafailov et al., 2023) tasks3. For the SFT task, we use Phi-2 (Javaheripi
et al., 2023) with 2.7B pre-trained parameters and the Alpaca dataset (Taori et al., 2023) as the
instruction tuning dataset. For the DPO task, we fine-tune the pre-trained Phi-2 and Qwen1.5-0.5B
models on the HH-RLHF-harmless dataset (Bai et al., 2022).

Baselines. We mainly compare AdamW-PMA and Lion-PMA with AdamW and Lion, respectively.
For example, after setting a batch size B and a period length K for AdamW-PMA4, we compare it
with AdamW with K times of GA5, whose batch size is B, and the equivalent batch size is KB
achieved by GA. In each group of experiments, the hyperparameters are the same across all the
optimizers. For the AdamW-PMA group, we set lr = 2e− 6, 2e− 6 for the two tasks, respectively,
and the betas are set to (0.9, 0.95) for AdamW-PMA and the baselines in all the experiments. For
the Lion-PMA group, we set the same learning rate as the AdamW-PMA group and let betas be
(0.95, 0.98) in all the experiments as in Chen et al. (2023).

Implementation. All the following experiments are conducted on a server with 8× NVIDIA A40
GPUs with 8× 48G GPU memory and Intel(R) Xeon(R) Gold 6330 CPU and Ubuntu 20.04.2. The
implementation is based on the Swift framework (Team, 2024b) and PyTorch (Paszke et al., 2019).
We set K = 8, 16 for the SFT, and DPO tasks, respectively. For the batch size, we set B = 32, 16 for
each task, respectively.

Metrics. For the SFT task, we evaluate the validation loss on the validation dataset and the
performance of the trained model on MMLU (Hendrycks et al., 2020) benchmark. For the DPO task,
we evaluate the validation loss and the accuracy of classifying the accepted and rejected responses on
the validation dataset. Specifically, if the predicted probability of the accepted response is larger than
the rejected response, we regard it as a correct classification.

Methodology of Comparison. To compare the performance of AdamW-PMA and Lion-PMA
with their baselines, we consider two methodologies of comparing the evaluated metrics. The first
methodology is data efficiency. Specifically, we compare the amounts of training data fed into the
model when the metrics of the optimizers reach the same level. The intuition behind this comparison
methodology is that if an optimizer is faster, it should achieve a specific low loss with fewer training
steps. Since the (quasi-equivalent) batch sizes of the optimizers in each group are different, we
consider the amount of training data to be fairer to measure the data efficiency instead of the number
of steps. The second methodology is comparing the flops. Specifically, we compare the flops of

3Due to the page limit, some important experiments and results, including pre-training and the impact of
learning rate scheduler, are presented in Appendix E.

4We abbreviate this setting as AdamW-PMA-K. So is Lion-PMA-K.
5We abbreviate this setting as AdamW-K. So is Lion-K.
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Algorithm Val Loss MMLU(Zero-Shot)
Hums. STEM Social Other Avg.

AdamW-4 0.9212 15.4 28.3 26.7 24.3 24.4
AdamW-8 0.9408 19.2 22.8 26.7 25.0 23.3
AdamW-PMA-4 0.9352 16.9 22.8 25.0 22.7 21.9
AdamW-PMA-8 0.9078 16.2 28.3 30.1 35.0 27.7
Lion-4 0.9227 13.1 23.3 24.2 25.7 21.8
Lion-8 0.9486 20.8 22.2 24.2 25.0 23.0
Lion-PMA-4 0.9136 13.1 23.3 24.2 25.7 21.8
Lion-PMA-8 0.9373 17.7 22.2 22.5 26.4 22.3

Table 1: Comparison of the validation loss and the performance on zero-shot MMLU for various
algorithms with lr = 2e−6, where validation loss is from the Alpaca dataset after one epoch training.
With limited space, we only choose four representative categories and the total average score.

the optimizers when the metrics reach the same level. This intuition is that the flops are the most
straightforward metric to measure the speed of an optimizer. If an optimizer is faster, it should achieve
a certain level of loss using less time in practice.

5.2 SUPERVISED FINE-TUNING (SFT)

Table 1 shows that for AdamW family and Lion family algorithm, our method PMA can improve the
performance of SFT explicitly. For the validation loss, the AdamW-PMA with K = 8 (which is what
AdamW-PMA-8 refers to. So are the other abbreviations.) is better than other AdamW algorithms,
and for Lion family algorithms, Lion-PMA with K = 4 is better.

In the MMLU-ZS (Zero-Shot) classification tasks, as shown in the table, algorithms incorporating
PMA technology achieve superior performance across all categories except for Humanities. Specifi-
cally, in the STEM, Social, and Other categories, PMA-enhanced algorithms, consistently outperform
their non-PMA counterparts. On average, PMA-enhanced algorithms demonstrate better performance,
as indicated by the overall scores (e.g., 27.7 for AdamW-PMA-8).

Interestingly, Table 1 also reveals that algorithms scoring high in Humanities tasks tend to perform
poorly in other categories. For instance, AdamW-8 achieves the highest score in Humanities (19.2)
within the AdamW group but has one of the lowest overall average scores (23.3). This phenomenon
is believed to be caused by the unbalanced SFT data, which lacks sufficient data in Humanities.
Conversely, Lion-PMA-4, while maintaining a competitive score in Humanities (17.7), excels in other
categories except for the averaged score. The low average score of Lion-PMA-4 is caused by the lack
of data in Humanities, lowering the average score despite high scores in many other categories.

5.3 DIRECT PREFERENCE OPTIMIZATION (DPO)

PMA achieves higher accuracy. We verified the effectiveness of the PMA-enhanced optimizers
on the DPO task. In Fig. 3a and 3b, we set K to 1 and 16, respectively, and compared the validation
accuracy curves of four optimizers from the perspective of total flops. Figure 3c3d use the number of
update steps and the number of samples as references, comparing the effects of the four optimizers
applied to the DPO task under K=8 and K=16 parameter settings. Among these four optimizers,
AdamW is the slowest and achieves the lowest accuracy. When the PMA method is applied to AdamW
with smaller values of K = 8, as illustrated in Fig. 3a3c, AdamW-PMA’s final convergence accuracy
is comparable to that of Lion, which serves as another baseline. Although its convergence speed
greatly surpasses that of AdamW, it remains slightly slower than Lion. However, with larger values
of K, as shown in Fig. 3b3d, AdamW-PMA not only matches Lion in terms of convergence accuracy
but also significantly outpaces both AdamW and Lion in terms of convergence speed. Among
them, Lion-PMA exhibits the best optimization performance. We observed that both AdamW-PMA
and Lion-PMA exhibit significant improvements in both convergence speed and ultimate accuracy
compared to AdamW and Lion.
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(a) Validation accuracy
on flops (K = 8)

(b) Validation accuracy
on flops (K = 16)

(c) Validation accuracy
on number of samples
(K=8)

(d) Validation accuracy
on number of samples
(K=16)

Figure 3: The accuracy of classifying the accepted and rejected responses on the validation dataset for
DPO task. Compared to AdamW and Lion, AdamW-PMA and Lion-PMA exhibit faster convergence
rates and higher accuracy.

Figure 4: Runtime to achieve the
same loss on DPO task. PMA
can reduce the training time cost
than EMA.

Figure 5: Validation loss of train-
ing more epochs on DPO task
and Qwen2-0.5B. Lower loss
of PMA-based methods demon-
strates PMA overfits less.

Figure 6: The speedup factor
of AdamW-PMA compared to
AdamW under different settings
of the hyperparameter K on Phi-
2 2.7B and Qwen1.5-0.5B.

PMA reduces runtime. We compare the runtime of PMA and EMA-based optimizers to achieve
the same validation loss, showing that DPO can reduce the training time. We use the same settings
as Fig. 3, and the runtime is illustrated in Fig. 4. On the one hand, results in Fig. 4 show that PMA
takes significantly less time to achieve the same validation loss than EMA. On the other hand, after
reaching the same loss as EMA, PMA can utilize the left data to achieve a higher accuracy, which
aligns with the result in Fig. 3.

PMA overfits less. We compare the validation loss of EMA and PMA after more epochs of DPO
training. The experiment setting is the same as Fig. 3 but the model is replaced with Qwen2-0.5B.
The result is shown in Fig. 5. PMA-based optimizers achieve lower validation losses than EMA-based
optimizers, especially after more training epochs. Specifically, the loss of AdamW-PMA achieves a
series of decreasing validation loss across the three epochs, compared with the increasing loss of
AdamW, showing that PMA can achieve a lower level of over-fitting than EMA.

5.4 HYPER-PARAMETER SENSITIVITY

PMA is sensitive to K. We conducted experiments using AdamW-PMA and AdamW, setting the
hyperparameter K at different values to assess its impact on the speedup factor of PMA. In Fig. 6,
we present the results for the DPO task utilizing the Phi-2 and Qwen1.5 model, with AdamW as the
baseline. When K = 1, AdamW-PMA bypasses the PMA stage and directly reverts to AdamW, thus
failing to leverage the variance reduction and acceleration benefits of the PMA method. Conversely,
when K is set too high, although the variance in momentum updates is reduced, the excessive
reduction in learning rate during the PMA stage leads to a diminished extent of acceleration. When
K = 16 for Phi-2 and K = 2 for Qwen, the reduction in the variance of the momentum updates and
the decrease in learning rate achieve a relatively optimal balance, therefore the application of the PMA
method achieved the highest observed speedup.
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(a) Variance vs Training loss (b) Variance vs Time

Figure 7: Comparison of the magnitude in variance with respect to
the training loss and time for our algorithm versus AdamW. The
vertical coordinates all use log scale since our algorithm is orders
of magnitude different from other algorithms.

Figure 8: Validation loss of SFT
on Llama2-7B. AdamW-PMA
takes a similar time as AdamW,
but achieves a much lower loss.

5.5 OTHER PROPERTIES

PMA reduces variance. We demonstrate that PMA can achieve a lower variance of the update
direction than that of EMA. For our experiments, we employ the GPT-2 medium (Brown et al., 2020)
model with 350M parameters, and utilize the Alpaca dataset with all three algorithms configured
identically: lr = 5e− 6, and betas are set to (0.9, 0.95). The GA step and K value in Alg. 1 are both
set to 16. We use the last layer gradient to approximate the gradient of the whole model (Ash et al.,
2019; Mirzasoleiman et al., 2020; Killamsetty et al., 2021b;a).

Figure 7a shows that, at equivalent levels of training loss, our algorithm exhibits lower gradient update
variance. Furthermore, as depicted in Fig. 7b, the update variance of our algorithm consistently
remains substantially lower than that of the benchmark throughout the training duration.

PMA can scale up and be quantized. We evaluate the performance of AdamW-PMA on a 7B-level
BF16 model, to demonstrate that PMA can scale up on larger models. The experiment is conducted on
Llama2-7B-base quantized to BF16 and SFT on the DuReader_Robust dataset (Tang et al., 2020). The
model is trained for one epoch. The statistics of the validation loss are plotted in Fig. 8. AdamW-PMA
achieves lower validation loss than AdamW across the whole training process, demonstrating the
superiority of PMA than EMA.

PMA costs a little more time. As shown in Fig. 8, AdamW-PMA takes about 2% more time than
Adam when training a 7B model, indicating that although there are more update steps and more
communication overhead in AdamW-PMA, these small update steps do not take too much time.

6 DISCUSSION AND CONCLUSION

We address the problem of high-variance stochastic optimization on GPU-memory-limited devices for
training LLMs. We identified that the low convergence rate of current momentum-based optimizers
is primarily due to the EMA method, which forgets historical gradients too quickly, thus failing to
leverage them effectively for stabilizing updates. To tackle this, we propose PMA, a new momentum
update method that splits the training process into periods and applies a vanilla moving average within
each period. This approach assigns a higher weight to historical gradients, thereby stabilizing updates
when gradient variance is high. We modify AdamW and Lion using PMA, resulting in AdamW-PMA
and Lion-PMA, respectively. Empirical evaluations on SFT and DPO tasks using the Phi-2 and
Qwen model demonstrate that PMA achieves approximately 2× speedup in the training process and
delivers better performance on downstream tasks.

However, PMA modified methods could incur higher communication overhead in multi-GPU training
scenarios, especially when K is large. For example, Since AdamW-PMA employs extra steps of
parameter update during GA, more communication overhead is required when multiple GPUs are
employed for the training task. Specifically, since there are K more communication rounds in
AdamW-PMA than in Adam with GA, the communication cost of AdamW-PMA is K times higher
than that of Adam with GA.
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REPRODUCIBILITY STATEMENT

The code of the experiment is attached in the supplementary material as a zip file. Please refer to the
README_ICLR_submission.md for detailed usage. The proof is provided in the Appendix.
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A RELATED WORK

First-Order Adaptive Methods. The basic idea behind designing adaptive first-order optimizers
is to adapt the direction and learning rate for each parameter individually. AdaGrad (Duchi et al.,
2011) achieves this by adjusting the learning rate of features based on estimated geometry and
assigning larger learning rates to infrequent features. RMSProp (Hinton et al., 2012) enhances
AdaGrad by introducing a running average of the second-order momentum, i.e., the square of the
gradients. Adam (Kingma & Ba, 2014) further improves RMSProp by introducing a running average
of gradients. Alongside its enhanced version with weight decay, AdamW (Loshchilov & Hutter,
2017), Adam has emerged as the predominant approach for solving optimization problems in deep
learning, particularly in training Transformers (Vaswani et al., 2017). Numerous subsequent works
can be viewed as variants of first-order adaptive methods (Dozat, 2016; Shazeer & Stern, 2018; Reddi
et al., 2019; Zhuang et al., 2020; You et al., 2019; Xie et al., 2022; Chen et al., 2023). The main
drawback of Adam-like methods is its memory cost. The optimizers maintains the first and second
momentum along with the current gradient, leading to a heavy load for memory-constrained devices.

Memory-Efficient Optimizers. Adafactor (Shazeer & Stern, 2018) reduces the memory by only
maintaing the row and column sum of the second order momentum and estimate the second moments
based on these sums. LOMO (Lv et al., 2023) fuses the gradient computation and the parameter
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update in one step to reduce memory usage. CAME (Luo et al., 2023) supports adaptive confidence-
based updating guided by the residual between predicted update and generated update. GaLore (Zhao
et al., 2024) uses a low-rank projected gradient to save memory and full parameter update to achieve
a good performance. Adam-mini (Zhang et al., 2024) reduces memory by cutting down the learning
rate resources in Adam. However, it is hardly practical to deploy the above mentioned methods to
memory-constrained devices. The reason includes two folds. On the one hand, all these methods,
except Adam-mini, suffer from lower convergence rates than Adam, meaning that they are saving
memory in the cost of speed. On the other hand, their saved memory is not enough for memory-
constrained devices, especially when training LLMs. For example, CAME can save 12.1% of Adam’s
memory cost (according to Table 1 of Luo et al. (2023)), which is far from enough if one is going to
use a large batch size and a scaled-up model. Considering the impracticality of these memory-efficient
optimizers, we shall state the importance of applying GA and the necessity of accelerating GA.

Variance Reduction. The variance reduction techniques in SGD (Bottou et al., 2018) include
dynamic sampling, gradient aggregation, and iterate averaging. As for optimizer design, we focus on
the last two techniques. The gradient aggregation methods reduce variance by reusing previously
computed information. Specifically, at time step t, SVRG (Johnson & Zhang, 2013) maintains a copy
of the historical parameter θk where k < t. It computes a batched gradient Gθk = 1

n

∑n
i=1∇fθk(xi)

and derives an unbiased estimator of the current gradient by E[∇Rθt ] = ∇fθt(xt)− (∇fθk(xt)−
Gθk), where xt is a sample from the input space. SAGA (Defazio et al., 2014) stores the historical
gradient for each data sample and estimates the current gradient using the average of the historical
gradients. The iterate averaging method (Polyak, 1991) stores the parameters after each SGD step
and returns the average of the stored parameters. Nesterov (2013) employs gradient aggregation and
yield O(1/t) rate of convergence for the averaged iterate sequence.

B ADDITIONAL THEORETICAL ANALYSIS

In this section, we provide a theoretical analysis on the convergence property of AdamW-PMA.
Specifically, we focus on the convergence properties concerning the number of large update steps.
This focus is due to the time cost between two large steps being approximately equal to the time
between two updates of Adam with GA. During the analysis, we slightly modify the notations for
ease of analysis. Unlike Algorithm 1, where the index of small update steps ranges from 0 to K − 1,
in the subsequent analysis, this index ranges from 1 to K. Specifically, when τ = K, the update
step from xt,K to xt+1,1 is considered a large update step for all t. For the other τ ∈ [K − 1], the
subsequent update step is a small step.

Firstly, we can show the average regret of AdamW-PMA converges based on Theorem 1,
Corollary 1. Assume that the optimization objective f is convex and has bounded gradients,
∥∇f(x)∥2 ≤ G, ∥∇f(x)∥∞ ≤ G∞, and the distance between any parameter generated by
AdamW-PMA is bounded, ∥xt1,τ1 − xt2,τ2∥2 ≤ D, ∥xt1,τ1 − xt2,τ2∥∞ ≤ D∞ for any t1, t2 ∈ [T ]

and τ1, τ2 ∈ [K], and β1, β2 satisfy
√
1−β2

1−β1
≤ 1. AdamW-PMA achieves the following regret

guarantee, for all T ≥ 1.
RK(T )

T
= O

(
1√
T

)
.

Then, we provide the update size between two large update steps in general non-convex settings.
Theorem 2. Assume that the objective function f is L-smooth, the step size between two large update
steps is bounded by

∥xt+1,1 − xt,1∥2 ≤
2

L

(
1 +

γ2L√
K

(1− β1)
2

1− β2
(K + 1)

)
· ζ̄(2a)2t−2, (3)

where ζ̄ and a are constants, and ζ̄(2a)2t−2 ≥ ζ(2a)2t−2 + c
1−4a2 +K2, and a = β1(1−β1)√

β2(1−β2)
· 1√

K
.

Theorem 2 indicates that the distance between two large update steps is bounded and converges to
0. Despite having K small updates with varying momentum averaging weights, the step sizes still
converge rapidly , suggesting the validity of setting the learning rate of the small steps to be γ/

√
K.

Furthermore, the exponential term decreases with K, aligning with the intuition that more small
update steps lead to faster convergence.
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C PROOF OF THEOREM 2

Before the analysis, we slightly modify the notations to simplify the analysis. The large step update
takes the xt,K as input and outputs xt+1,1. Then, AdamW-PMAuses small step update to obtain
xt+1,2, . . . , xt+1,K . It is noteworthy that the indexes of small step updates in Algorithm 1 range from
0 to K − 1, while in the following analysis, they will range from 1 to K.

Before the analysis, we start with some important lemmas. Firstly, we consider the size of small step
updates between two large step updates. To start with, we bound the size of every small step update
using Lemma 1.

Lemma 1. When τ ≥ 2,∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥ ≤ 1− β1√
1− β2

· 1√
τ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥+ τ − 1

)
. (4)

Proof.∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥ =

∥∥∥∥∥∥
τ−1
τ mt,τ−1 +

1−β1

τ gt,τ−1√
τ−1
τ vt,τ−1 +

1−β2

τ g2t,τ−1

∥∥∥∥∥∥
≤ 1− β1√

1− β2

· 1√
τ
·

∥∥∥∥∥∥ mt,1 +
∑τ

σ=2 gt,σ√
vt,1 +

∑τ
σ=2 g

2
t,σ

∥∥∥∥∥∥
≤ 1− β1√

1− β2

· 1√
τ

 τ∑
σ=2

∥∥∥∥∥∥ gt,σ√
vt,1 +

∑τ
ρ=2 g

2
t,ρ

∥∥∥∥∥∥+
∥∥∥∥∥∥ mt,1√

vt,1 +
∑τ

σ=2 g
2
t,σ

∥∥∥∥∥∥


≤ 1− β1√
1− β2

· 1√
τ

∥∥∥∥ mt,1√
vt,1

∥∥∥∥+ τ∑
σ=2

∥∥∥∥∥∥ gt,σ√
g2t,σ

∥∥∥∥∥∥


=
1− β1√
1− β2

· 1√
τ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥+ τ − 1

)

Then, we bound the squared size of the small step update.

Corollary 2. ∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥2 ≤ (1− β1)
2

1− β2
· 2
τ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + τ2

)
. (5)

Proof. Since (a+ b)2 = a2 + b2 + 2ab ≤ 2(a2 + b2),∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥ ≤ 1− β1√
1− β2

· 1√
τ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥+ τ − 1

)
≤ (1− β1)

2

1− β2
· 2
τ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + τ2

)
.

Then, we bound the sum of the squared size of small step updates between two large step updates.

Corollary 3.
τ−1∑
σ=1

∥∥∥∥ mt,σ√
vt,σ

∥∥∥∥2 ≤ (1− β1)
2

1− β2

τ−2∑
σ=1

2

σ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + σ2

)
+

∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 . (6)
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Proof.
τ−1∑
σ=1

∥∥∥∥ mt,σ√
vt,σ

∥∥∥∥2 =

τ−2∑
σ=1

∥∥∥∥ mt,σ√
vt,σ

∥∥∥∥2 + ∥∥∥∥ mt,τ−1√
vt,τ−1

∥∥∥∥2

Corollary 2
≤

τ−2∑
σ=1

∥∥∥∥ mt,σ√
vt,σ

∥∥∥∥2 + (1− β1)
2

1− β2
· 2

τ − 1
·

(∥∥∥∥ mt1√
vt,1

∥∥∥∥2 + (τ − 1)2

)

≤ (1− β1)
2

1− β2

τ−2∑
σ=1

2

σ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + σ2

)
+

∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 .

After bounding the small steps between two large update steps, we consider the size of a large update
step and K following small steps. To start with, we assume that the update size of the first large step
is bounded.

Assumption 1. Let a = β1(1−β1)√
β2(1−β2)

· 1√
K

and b = 1−β1√
1−β2

· 1√
K
·
(
1 + β1K√

β2

)
.∥∥∥∥ m1,1√

v1,1

∥∥∥∥ ≤ b

1− a
+ α. (7)

Then, we make some assumptions on the weight of the momentum.
Assumption 2. For all t, √

1− βt
2

1− βt
1

≤ 1.

If we take β1 = 0.9, β2 = 0.99 as the default configuration of Adam, this assumption holds.

Then, we bound the size of a large update step.
Lemma 2. By tuning the hyper-parameters β1 and β2, let a ≤ 1/2. Then∥∥∥∥ mt,1√

vt,1

∥∥∥∥ ≤ ᾱ · at−1, (8)

where ᾱ > α is a constant to make ᾱ · at−1 ≥ α · at−1 + b
1−a +K.

Proof.∥∥∥∥ mt,1√
vt,1

∥∥∥∥ =

∥∥∥∥∥∥ β1mt−1,K + 1−β1

K gt,1√
β2vt−1,K + 1−β2

K g2t,1

∥∥∥∥∥∥
≤

∥∥∥∥∥ β1mt−1,K√
β2vt−1,K

∥∥∥∥∥+ 1− β1√
1− β2

· 1√
K
·

∥∥∥∥∥∥ gt,1√
g2t,1

∥∥∥∥∥∥
=

∥∥∥∥∥ β1mt−1,K√
β2vt−1,K

∥∥∥∥∥+ 1− β1√
1− β2

· 1√
K

Lem. 1
≤

1− β1√
1− β2

· 1√
K

+
β1√
β2

· 1− β1√
1− β2

· 1√
K
·
(∥∥∥∥ mt−1,1√

vt−1,1

∥∥∥∥+K − 1

)
≤ β1(1− β1)√

β2(1− β2)
· 1√

K︸ ︷︷ ︸
:=a

·
∥∥∥∥ mt−1,1√

vt−1,1

∥∥∥∥+ 1− β1√
1− β2

· 1√
K
·
(
1 +

β1K√
β2

)
︸ ︷︷ ︸

:=b

Let xt =
∥∥∥ mt,1√

vt,1

∥∥∥, then

xt ≤ at−1
(
x1 −

b

1− a

)
+

b

1− a
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Then, by Assumption 1 ∥∥∥∥ mt,1√
vt,τ

∥∥∥∥ ≤ α · at−1 + b

1− a
≤ ᾱ · at−1.

Similar to the above approach, we assume the bounded squared first large step and prove the bounded
squared large steps.

Assumption 3. Let c = (1−β1)
2

1−β2
· 2
K

(
1 +

2β2
1K

2

β2
2

)
∥∥∥∥ m1,1√

vt,1

∥∥∥∥2 ≤ c

1− 4a2
+ ζ (9)

Corollary 4. ∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 ≤ ζ̄(2a)2t−2, (10)

where ζ̄ > ζ is a constant to make ζ̄(2a)2t−2 ≥ ζ(2a)2t−2 + c
1−4a2 +K2.

Proof.

∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 ≤ 2

∥∥∥∥∥ β1mt−1,K√
β2vt−1,K

∥∥∥∥∥
2

+
(1− β1)

2

1− β2
· 2
K

≤ (1− β1)
2

1− β2
· 2
K

+
4

K
· (1− β1)

2β2
1

(1− β2)β2
·

(∥∥∥∥ mt−1,1√
vt−1,1

∥∥∥∥2 +K2

)

= 4a2
∥∥∥∥ mt−1,1√

vt−1,1

∥∥∥∥2 + c.

Then, ∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 ≤ (2a)2t−2

(∥∥∥∥ m1,1√
v1,1

∥∥∥∥2 − c

1− 4a2

)
+

c

1− 4a2

≤ ζ(2a)2t−2 +
c

1− 4a2

≤ ζ̄(2a)2t−2.

Before proving Theorem 2, we need more assumptions on the objective function and the initial point.
First, we assume that f has Lipschitz continuous gradient.

Assumption 4 (L-smoothness). A function f : Rd → R is differentiable and for any x1, x2 ∈ Rd,

∥∇f(x1)−∇f(x2)∥ ≤ L∥x1 − x2∥,

where L is a constant.

Now, by putting everything together, we are ready to prove Theorem 2.
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Proof of Theorem 2. Let T = L
2 ∥xt+1,1 − xt∥2. At the beginning, we assume that the

AdamW-PMA does not employ the bias correction shown in Line 12-13 in Algorithm 1.

T =
L

2
∥xt+1,1 − xt.1∥2

≤ L

2

K−1∑
τ=1

∥xt,τ+1 − xt,τ∥2 +
L

2
∥xt+1,1 − xt,K∥2

=
L

2

K−1∑
τ=1

∥∥∥∥∥ γ√
K

m̂t,τ√
v̂t,τ

∥∥∥∥∥
2

+
L

2

∥∥∥∥∥γ · m̂t,K√
v̂t,K

∥∥∥∥∥
2

=
γ2L

2
√
K

K−1∑
τ=1

∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥2 + γ2L
√
K

2

∥∥∥∥ mt,K√
vt,K

∥∥∥∥2 .
T ≤ γ2L

2
√
K

K−1∑
τ=1

∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥2 + γ2L
√
K

2

∥∥∥∥ mt,K√
vt,K

∥∥∥∥2

Corollary 2
≤

γ2L

2
√
K

K−1∑
τ=1

∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥2 + γ2L

2

(1− β1)
2

1− β2
· 2√

K

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 +K2

)

=
γ2L

2
√
K

K−1∑
τ=1

∥∥∥∥ mt,τ√
vt,τ

∥∥∥∥2 + γ2L√
K
· (1− β1)

2

1− β2
·

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 +K2

)

Corollary 3
≤

γ2L

2
√
K

(1− β1)
2

1− β2

K−2∑
σ=1

2

σ

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + σ2

)
+

∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + γ2L√
K
· (1− β1)

2

1− β2
·

(∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 +K2

)

≤ γ2L√
K

(1− β1)
2

1− β2

(
K ·

∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 +K2

)
+

(
1 +

γ2L√
K

(1− β1)
2

1− β2

)∥∥∥∥ mt,1√
vt,1

∥∥∥∥2 + γ2LK
3
2
(1− β1)

2

1− β2

=

(
1 +

γ2L√
K

(1− β1)
2

1− β2
(K + 1)

)
·
∥∥∥∥ mt,1√

vt,1

∥∥∥∥2 + 2γ2LK
3
2
(1− β1)

2

1− β2

Corollary 4
≤

(
1 +

γ2L√
K

(1− β1)
2

1− β2
(K + 1)

)
· ζ̄(2a)2t−2 + 2γ2LK

3
2
(1− β1)

2

1− β2

Larger ζ̄
≤

(
1 +

γ2L√
K

(1− β1)
2

1− β2
(K + 1)

)
· ζ̄(2a)2t−2.

Thus,

∥xt+1,1 − xt,1∥2 ≤
2

L

(
1 +

γ2L√
K

(1− β1)
2

1− β2
(K + 1)

)
· ζ̄(2a)2t−2.

Then, we consider the bias correction shown in Linw 12-13 in Algorithm 1. By the bias correction,

the learning rate at time step t can be viewed as γt =
√

1−βt
2

1−β1
γ ≤ γ by Assumption 2. Then, with the

bias correction operation, this bound still holds.

D PROOF OF THEOREM 1

Before the analysis, we assume that the variable is bounded, as assumed in Kingma & Ba (2014).
Assumption 5. We assume that the distance between the variable and the optimal point is bounded
during the optimization process, such that ∥xt,τ − x∗∥2 ≤ D, ∥xi,j − xk,l∥∞ ≤ D∞.

Proof of Theorem 1. Since the objective function f is convex,

f(xt,K)− f(x∗) ≤ ⟨∇f(xt,K), xt,K − θ∗⟩ =
d∑

i=1

gt,K,i(xt,K,i − x∗i ).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Using the update method defined in Algorithm 1, we can get

xt+1,1,i = xt,K,i − γ
m̂t,K,i√
v̂t,K,i

= xt,K,i −
γ

1− βt
1

(
K − 1√
K
√
vt,K,i

mt,K−1,i +
1− β1√
K
√
vt,K,i

gt,K,i

)
.

(xt+1,1,i − x∗)2 = (xt,K,i − x∗i )
2 − 2γ

1− βt
1

(xt,K,i − x∗i )

(
K − 1√
K
√
vt,K,i

mt,K−1,i +
1− β1√
K
√
vt,K,i

gt,K,i

)

+ γ2K

(
mt,K,i√
vt,K,i

)2

.

Rearrange the equation above,

gt,K,i(xt,K,i − x∗i ) =
(1− βt

1)
√
K
√
vt,K,i

2γ(1− β1)

(
(xt+1,K,i − x∗i )

2 − (xt,K,i − x∗i )
2
)

+
K − 1

1− β1
mt,K−1,i(xt,K,i − x∗i ) +

(1− βt
1)γK

3
2
√
vt,K,i

2(1− β1)

(
mt,K,i√
vt,K,i

)2

≤
√
K
√
vt,K,i
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+
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√
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≤

√
KD2
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d∑
i=1

√
T v̂T,K,i +

D2
∞(K − 1)
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·

d∑
i=1

T∑
t=1

√
vT,K,i

+
(1 + γ)K

3
2G∞

2(1− β1)

d∑
i=1

∥g1:KT,i∥2

≤
√
KD2

2γ(1− β1)

d∑
i=1

√
T v̂T,K,i +

(1 + γ)K
3
2G∞

2(1− β1)

d∑
i=1

∥g1:KT,i∥2 +
D2
∞G∞(K − 1)

2(1− β1)
.

E ADDITIONAL EXPERIMENTS

E.1 PRE-TRAINING

Although PMA is designed for post-training, we also evaluate its performance on pre-training task.
Specifically, we train a randomly-initialized nanoGPT model on WikiPedia dataset. Figure 9 shows
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Figure 9: Runtime to achieve the same loss
on DPO task. PMA can reduce the training
time cost than EMA.

Figure 10: Validation loss of AdamW without
learning rate scheduler and AdamW with a
PMA-like lr scheduler.

(a) AdamW-PMA v.s.
AdamW on flops

(b) AdamW-PMA v.s.
AdamW on number of
samples

(c) Lion-PMA v.s. Lion
on flops

(d) Lion-PMA v.s. Lion
on number of samples

Figure 11: From the perspectives of total flops and number of steps, AdamW-PMA and Lion-PMA
achieved speedups of 1.8x and 1.4x respectively, compared to AdamW and Lion when K = 1.

the validation loss of AdamW-PMA and AdamW. EMA-based AdamW achieves a lower validation
loss than AdamW-PMA. This is because PMA, especially the small update step, is designed for post-
training tasks where the distance between the original and trained parameters is small. Large distance
of updates, such as pre-training, can make the update direction deviate too much from the direction
of AdamW, leading to a slow training.

E.2 ABLATION ON LEARNING RATE SCHEDULER

To evaluate how the learning rate scheduler introduced in Sec. 3.2.2, we conduct an experiment on
Qwen2-0.5B, comparing AdamW without a scheduler and with a PMA-like scheduler. The other
settings are the same as the experiment in Fig. 5. We evaluate the tuned model every 120 steps, and
the statistics are shown in Fig. 10. The PMA-like scheduler slows down the training process if the
other components of PMA are not applied. This result indicates the necessity of the joint design of
each component in AdamW-PMA.

E.3 SFT

The improvement in validation loss brought by PMA can be translated into a reduction of the number
of steps or total compute. In Figure 11, we evaluate the optimizers by comparing the number of steps
or total flops needed to achieve the same validation loss level, setting K to 4. As can be observed in
Figure 12, AdamW-PMA and Lion-PMA achieve a 12x and 2x speedup compared with AdamW and
Lion.

E.4 DPO

Figure 13 and Figure 14 illustrate the validation loss of the DPO task on Phi-2 and HH-RLHF-
harmless dataset, using four different optimizers. We compare the total flops and number of samples
needed to achieve the same validation loss across vanilla AdamW and AdamW-PMA, Lion and
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(a) AdamW-PMA v.s.
AdamW on Flops

(b) AdamW-PMA v.s.
AdamW on Number of
Samples

(c) Lion-PMA v.s. Lion
on Flops

(d) Lion-PMA v.s. Lion
on Number of Samples

Figure 12: We evaluate the optimizers by comparing the total flops and number of samples needed to
achieve the same validation loss level. AdamW-PMA and Lion-PMA achieved approximately 12x
and 2x speedup, respectively, relative to AdamW and Lion.

(a) AdamW-PMA v.s.
AdamW on flops

(b) AdamW-PMA v.s.
AdamW on number of
samples

(c) Lion-PMA v.s. Lion
on flops

(d) Lion-PMA v.s. Lion
on number of samples

Figure 13: Validation loss of the DPO task on Phi-2 and HH-RLHF-harmless dataset.

Lion-PMA. The corresponding accuracy graph for this experiment can be found in Figure 3 of Section
5.3 in the main text.

E.5 HYPER-PARAMETER SENSITIVITY

We do experiments on DPO task with the Phi-2-2.7B model and Qwen1half-0.5B-chat model to
explore the sensitivity of the PMA method’s speedup factor with hyper-parameter K on AdamW.
In experiment of Phi-2 model, we set K to be 8, 16, 32, 64 to explore the optimal K value. For
Qwen1.5-0.5B model, the K is set to be 4, 8, 16, 32, which are relatively smaller since the model
is smaller. The results of experiments can be seen in Figure 15 and 16. This part is the supplement
results of Section 5.4 in the main text.
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(a) AdamW-PMA v.s.
AdamW on flops

(b) AdamW-PMA v.s.
AdamW on number of
samples

(c) Lion-PMA v.s. Lion
on flops

(d) Lion-PMA v.s. Lion
on number of samples

Figure 14: We evaluate the optimizers by comparing the total flops and number of samples needed to
achieve the same DPO validation loss level, with K setting to be 16. AdamW-PMA and Lion-PMA
achieved approximately 4x and 5x speedup, respectively, relative to AdamW and Lion.

(a) (b) (c) (d)

Figure 15: The sensitivity of PMA’s speedup factor with hyper-parameter K on Phi-2 model using
AdamW

(a) (b) (c)

Figure 16: The sensitivity of PMA’s speedup factor with hyper-parameter K on Qwenhalf1-0.5B
model using AdamW
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