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Abstract

In scientific practice, variables are rarely measured at random: they are chosen be-
cause experts expect them to be causally relevant and part of the same underlying
causal system. This implies that realistic causal graphs should be sparse, reflecting
simple mechanisms, yet also connected, since no variable is truly isolated. Exist-
ing continuous optimisation methods for learning directed acyclic graphs (DAGs)
enforce sparsity and acyclicity but often produce fragmented structures, contra-
dicting this basic property of scientific data. We address this gap by introduc-
ing a spectral regulariser based on algebraic connectivity, the Fiedler eigenvalue
of the graph Laplacian. The penalty is differentiable, inexpensive to compute,
and model-agnostic, and can be added to any learner that outputs a weighted ad-
jacency. We demonstrate its effectiveness in two representative frameworks—
GOLEM (likelihood-based, linear Gaussian) and a graph autoencoder (nonlinear
encoder–decoder)—without altering their optimisation routines. Across synthetic
benchmarks of sparse weakly connected DAGs and Erdős–Rényi DAGs with up
to 200 nodes, the regulariser consistently improves global graph structure, yield-
ing larger components and fewer isolated nodes, while preserving or improving
edge-level recovery (higher F1, lower SHD and SID). These results establish al-
gebraic connectivity as a principled and practical tool for causal discovery, align-
ing learned graphs with the way scientific data are collected and offering a simple
drop-in enhancement to existing methods.

1 Introduction

In many areas of science such as biology, chemistry, or medicine, data collection is rarely carried out
in a neutral way. As a process of measurement is often expensive and time-consuming, researchers
typically decide in advance which variables are worth collecting. This decision is not arbitrary: vari-
ables are chosen because experts believe they are likely to be causally relevant. As a result, scientific
datasets usually reflect a strong bias towards relevance: the measured variables are expected to par-
ticipate in the same underlying process rather than being unrelated or isolated. We refer to this as a
principle of modularity1. At the same time, the mechanisms behind these processes are often sparse,
with only a limited number of direct interactions. Taken together, these considerations suggest that
realistic causal graphs for scientific data should be both sparse and connected.

This poses a difficulty for current causal discovery methods. Modern continuous optimisation ap-
proaches to learning directed acyclic graphs (DAGs) (e.g. Zheng et al. [2018], Ng et al. [2020]) are
designed to enforce sparsity, which is desirable for interpretation and often necessary for identifia-
bility. However, strong sparsity penalties tend to fragment the learned graphs, leading to multiple
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1Here we use “modularity” to mean that variables are curated to belong to a single causal system; this is

distinct from the notion of modularity in network science, which refers to the presence of community structure.
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disconnected components or even isolated nodes. While mathematically valid, such graphs conflict
with the way scientific data is collected: if variables were hand-picked by experts for their impor-
tance, we do not expect any of them to be completely unrelated to the rest.

The aim of this paper is to address this gap. We postulate that causal discovery methods should allow
for sparse structures, yet simultaneously reflect the expectation that all measured variables belong
to a single weakly connected system. To achieve this, we draw on ideas from spectral graph theory,
and in particular the notion of algebraic connectivity given by the Fiedler eigenvalue of the graph
Laplacian [Fiedler, 1975]. We incorporate a connectivity penalty based on the Fiedler eigenvalue
into continuous DAG learning objectives. This addition biases the optimisation towards solutions
that are not only sparse, but also more likely to form a single connected component. Even when full
connectivity is not achieved, the penalty increases the size of components and reduces the occurrence
of isolated nodes.

To the best of our knowledge, this is the first attempt to combine algebraic connectivity with con-
tinuous optimisation-based causal discovery. The method is simple, computationally light, and easy
to integrate into existing frameworks. We view this as a step towards causal discovery that better
reflects the way scientific data is generated, making these methods more useful for applied domains
such as biology, chemistry, and medicine.

2 Related Work

Causal graph structure learning. We focus on the setting where all common causes of the mea-
sured variables are observed (causal sufficiency). The task is to recover a directed acyclic graph
(DAG) from observational data by optimising a score that balances data fit with structural con-
straints. These constraints must rule out cycles and typically include sparsity-inducing penalties to
avoid spurious edges. Classical score- and constraint-based approaches remain widely used, but they
rely on discrete search and often struggle to scale. A recent line of work has instead formulated DAG
learning as a smooth optimisation problem, making it possible to apply gradient-based methods.

Zheng et al. [2018] were the first to introduce this approach: they proposed a differentiable charac-
terisation of acyclicity and optimised a continuous objective that jointly enforces data fit, sparsity,
and acyclicity. This formulation removes the need for combinatorial search and opened the door to
scalable continuous methods for structure learning. Building on this idea, Ng et al. [2020] analysed
the role of sparsity and acyclicity specifically in the linear Gaussian case and proposed a likelihood-
based objective where both structural parameters and the adjacency matrix are estimated jointly.
Their method, GOLEM, is computationally simple and provides a strong baseline for score-based
continuous learning. In parallel, Ng et al. [2019] developed a graph autoencoder approach in which
dependencies between variables are parameterised by an encoder–decoder architecture. The model
is trained to reconstruct the data under sparsity and acyclicity regularisation, providing a flexible
framework that can naturally capture non-linear effects. In this paper, we adopt both the GOLEM
and graph autoencoder settings as representative baselines to demonstrate that our proposed connec-
tivity regularisation is broadly applicable and can be integrated without altering the overall learning
framework.

Spectral graph theory and algebraic connectivity. A separate line of work in spectral graph
theory connects graph properties to the eigenvalues of matrices such as the Laplacian. A central
concept is algebraic connectivity, introduced by Fiedler [1975], which is defined as the second
smallest eigenvalue of the Laplacian. This value quantifies how well a graph is connected: a posi-
tive eigenvalue indicates that the graph forms a single connected component, whereas a value of zero
implies disconnectedness. Since its introduction, algebraic connectivity has become a standard tool
for reasoning about graph robustness, bottlenecks, and connectedness. Several recent contributions
have applied this concept in machine learning. Tam and Dunson [2020] proposed Fiedler regular-
isation for training sparse neural networks. They represent the nonzero weights of a network as
edges in a graph and add a penalty based on the Fiedler eigenvalue, in addition to standard sparsity
penalties. This regularisation discourages pruning strategies that break the network into many iso-
lated subgraphs, and instead promotes architectures that remain structurally coherent. Their results
show that explicitly encouraging algebraic connectivity stabilises training and improves generalisa-
tion compared with sparsity alone. In a different domain, He et al. [2022] studied global ranking
from noisy pairwise comparisons. They modelled comparisons as a directed graph with items as
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nodes and edges as observed outcomes, and introduced GNNRank, a graph neural network designed
to exploit this structure. The method propagates information along directed edges and leverages
spectral principles to ensure that the learned embeddings preserve consistent global rankings. This
illustrates how graph-theoretic and spectral methods can be integrated into neural architectures even
outside traditional graph recovery tasks.

Positioning. Taken together, these strands of work highlight two complementary directions: con-
tinuous optimisation frameworks that enable scalable causal discovery, and the use of spectral con-
nectivity measures to regularise graph learning in machine learning. To our knowledge, these direc-
tions have not yet been combined to address a fundamental property of scientific datasets: variables
are deliberately chosen and therefore expected to belong to a single weakly connected system. Our
contribution is to bridge this gap by incorporating algebraic connectivity into continuous causal dis-
covery. This allows learned graphs to remain sparse, while reducing the likelihood of fragmentation
into disconnected components, thereby aligning causal discovery methods more closely with the
way scientific data are generated in practice.

3 Proposed Approach and Methodology

High-level goal. We assume data are generated from a linear Gaussian structural equation model
(SEM) with equal noise variances [Peters and Bühlmann, 2014]. Given n i.i.d. samples X ∈ Rn×d

of d observed variables, the task is to recover the weighted adjacency matrix B ∈ Rd×d, where
Bij ̸= 0 encodes a directed edge i→ j. Our target class is the set of weighted DAGs. In addition to
acyclicity, we favour solutions whose undirected skeleton is connected.

Notation. B ∈ Rd×d denotes the weighted directed adjacency (SEM coefficients), where Bij ̸= 0
encodes a directed edge i→ j. For a matrix M , ∥M∥1 is the entrywise ℓ1 norm, M ◦ N is the
Hadamard product, and exp(M) is the matrix exponential.

To measure connectivity, we construct an undirected smooth skeleton W from B:

Wij = σ
(

|Bij |
τ

)
∨ σ
(

|Bji|
τ

)
, σ(t) = 1

1+e−t ,

followed by symmetrisation W ← 1
2 (W +W⊤). Here τ > 0 controls the sharpness; as τ ↓ 0, W

approaches the binary skeleton 1{Bij ̸= 0 or Bji ̸= 0 }.
From W we form the degree matrix D = diag(W1) and the graph Laplacian L = D −W . Let
0 = λ1(L) ≤ · · · ≤ λd(L) be its eigenvalues; the second-smallest eigenvalue λ2(L), the Fiedler
value, is positive if and only if the skeleton is connected.

3.1 Soft vs. hard acyclicity: formulation choice

There are two main strategies for enforcing acyclicity. Hard formulations impose hDAG(B) = 0 as
an equality constraint and solve a constrained optimisation problem, typically with an augmented
Lagrangian, as in NOTEARS [Zheng et al., 2018]. Soft formulations incorporate acyclicity as a
penalty with finite weight, yielding an unconstrained problem that can be solved with gradient-based
methods; this is the approach in GOLEM [Ng et al., 2020].

We adopt the soft route for three reasons: (i) it avoids maintaining dual variables and tuning feasibil-
ity schedules; (ii) it allows additional penalties such as connectivity to be added naturally; and (iii)
under the linear Gaussian SEM with equal variances, the soft formulation is consistent and recovers
the correct DAG asymptotically [Peters and Bühlmann, 2014, Ng et al., 2020]. A hard variant is
possible but not required for our aims.

3.2 Likelihood-based score and acyclicity surrogate

Our score function is the likelihood for the linear Gaussian SEM with equal error variances:

LEV(B;X) =
d

2
log

(
d∑

j=1

n∑
k=1

(
x
(k)
j −B⊤

:jx
(k)
)2) − log

∣∣det(I −B)
∣∣, (1)
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where B:j is column j. The log-determinant term couples the regressions across variables and
prevents solutions that trivially assign each variable as parent of the others (i.e. two-cycles).

To ensure acyclicity, we use the smooth surrogate from Zheng et al. [2018]:

hDAG(B) = tr
(
exp(B ◦B)

)
− d, (2)

which satisfies hDAG(B) ≥ 0 with equality iff B encodes a DAG.

Remark 1 (Properties). (i) If B is strictly upper–triangular under some permutation, then
log |det(I − B)| = 0 and hDAG(B) = 0. (ii) The gradient of hDAG is everywhere defined and
efficiently computable by automatic differentiation.

3.3 Connectedness via algebraic connectivity

We measure connectivity using the Fiedler value λ2(L) of the Laplacian L = D −W , where W
is the smooth skeleton defined above. By classical spectral graph theory, λ2(L) > 0 if and only if
the skeleton is connected. Equivalently, the directed graph defined by B is weakly connected. To
encourage connectivity, we penalise shortfalls below a fixed target ϵ > 0:

penconn(B; ϵ) = ϕ
(
ϵ− λ2(L)

)
, ϕ(t) = log(1 + et) (softplus). (3)

Remark 2 (Differentiability). Because W is a smooth function of B (via the logistic approximation),
the mapping B 7→ λ2(L) is differentiable almost everywhere. If u is the Fiedler eigenvector of L
corresponding to λ2(L), then

∂λ2

∂Wij
= −(ui − uj)

2,

and gradients propagate back to B through the smooth skeleton construction. This makes the con-
nectivity penalty fully compatible with modern autodiff frameworks.

3.4 Full objective and optimisation

Our final training objective is the unconstrained optimisation problem

min
B∈Rd×d

J (B) = LEV(B;X)︸ ︷︷ ︸
likelihood

+ λ1∥B∥1 + λ2 hDAG(B) + λ3 penconn(B; ϵ). (4)

We optimise (4) directly with first–order methods (Adam) and automatic differentiation. Unlike con-
strained approaches, our method does not require projecting iterates onto the set of DAGs; acyclicity
is enforced softly through hDAG(B), and connectivity through λ2(L).

Per iteration, the main computational costs are: (i) evaluating the log-determinant and the matrix
exponential (both O(d3) but GPU-friendly), and (ii) computing λ2(L) and its eigenvector for the
smooth skeleton W .

Contrast with hard constraints. If the acyclicity condition is imposed exactly as hDAG(B) =
0, as in NOTEARS [Zheng et al., 2018], the problem becomes a constrained optimisation task
solved with an augmented Lagrangian. This requires a dual ascent schedule and, in practice, large
penalty parameters that can cause ill-conditioning. Our approach avoids this by treating acyclicity
and connectivity as soft penalties within a single smooth scalar objective. The inclusion of the log-
determinant term in the likelihood ensures that the optimisation does not favour mutual regressions
that form two-cycles: if both Bij and Bji are large, then | det(I −B)| shrinks, raising the objective
and discouraging such cyclic structures.

3.5 Practical details

Post–processing. After optimisation, we apply a threshold ω > 0 to |Bij | to remove edges with
very small weights. If cycles remain after thresholding, we iteratively prune the lowest-weight
cycle–inducing edges until a DAG is obtained. Because the acyclicity penalty already discourages
cycles, such edges typically have negligible magnitude.
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(a) Random—undirected: Fiedler eigenvalue
vs. graph size d (mean ± std over 5 seeds).
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Graph  Undirected Fiedler eigen-value vs. edge-ratio
(mean ± std across 5 seeds)
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(b) Graph—undirected: Fiedler eigenvalue vs.
edge–to–node ratio r (mean ± std over 5 seeds).

Figure 1: Algebraic connectivity (λ2) in undirected graphs: (a) scaling with number of nodes d; (b)
dependence on edge–to–node ratio r. Shaded regions show ±1 std across 5 random seeds.

When a hard constraint may be preferable. If an exactly acyclic solution is strictly required (e.g.
feasibility to numerical precision), one can enforce hDAG(B) = 0 using an augmented Lagrangian
[Zheng et al., 2018]. This, however, introduces extra hyperparameters and often leads to numerical
instability near feasibility, whereas our soft formulation avoids these issues while still converging to
acyclic solutions in practice.

Regularisation Parameters. Because our experiments span graphs of different sizes and densi-
ties, we use the standard choices of (λ1, λ2) reported in the literature rather than dataset-specific
tuning. The weight λ3 is set by forward search, gradually increasing its value until the learned graph
shows a measurable deviation from the baseline without the connectivity term. The connectivity
threshold ϵ > 0 is chosen such that λ2(L) < ϵ for the initial skeleton, ensuring that the connectivity
penalty is active from the start of optimisation.

4 Experiments

Graph and dataset generation. We evaluate our methods on two synthetic graph families. (i)
Sparse, weakly connected DAGs: for each number of nodes d ∈ {20, 30, . . . , 200} we draw a
random topological order and first construct a recursive spanning tree to ensure weak connectiv-
ity. We then add additional forward edges (respecting the topological order) until a prescribed
edge–to–node ratio r is reached, with a minimum of d − 1 edges. The result is a binary adjacency
matrix B ∈ {0, 1}d×d that is acyclic and weakly connected. Each present edge is assigned a weight
Wij ∼ Unif[0.5, 2.0], independently across edges (optionally with random signs). To generate
data, we simulate n = 1000 samples from a linear Gaussian structural equation model (SEM) in
topological order:

X·j = X·pa(j)Wpa(j),j + ε·j , ε·j ∼ N (0, 1),

where pa(j) denotes the set of parents of node j.

(ii) Erdős–Rényi DAGs (ERk): for each d and k ∈ {1, 2, 4, 8} we generate a random topological
order and include each forward edge independently with probability chosen such that the expected
in-degree is k, i.e. the expected total number of edges is approximately kd. We use the same weight
assignment and SEM simulator as above.

To better understand the behaviour of algebraic connectivity in our synthetic datasets, we provide vi-
sualisations in Figure 1. Panel 1(a) shows that for a fixed edge–to–node ratio, the Fiedler eigenvalue
systematically decreases as the number of nodes d grows. This reflects the fact that larger sparse
graphs are easier to disconnect and thus have lower algebraic connectivity. Panel 1(b) shows the
complementary effect of varying the expected edge–ratio: as the ratio increases, the Fiedler eigen-
value increases, indicating that denser graphs are more robustly connected. Together, these plots
provide intuition for why sparse large-scale graphs tend to fragment under standard learning objec-
tives, and why explicitly regularising algebraic connectivity is necessary to counteract this effect.
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Figure 2: Scalability with increasing d on sparse DAGs (edge–to–node ratio ≈ 1). Orange lines:
vanilla baselines (GOLEM or GAE). Blue lines: our Fiedler-regularised variants.

Further visualisations provided in the Supplementary Material illustrate the relationship between
algebraic connectivity and the edge–to–node ratio, and how this behaviour varies with the number
of nodes.

Evaluation metrics. We evaluate the learned graphs using both standard structure-recovery and
connectivity-aware metrics. Specifically, we report Structural Hamming Distance (SHD), Structural
Intervention Distance (SID), and F1 score on edges as well as the average component size. These
metrics capture not only the accuracy of causal discovery but also whether the recovered graph
satisfies the scientific prior that observed variables belong to a single or a few connected systems.

Experimental Results for Causal Graph Structure Learning with Fiedler Eigenvalue Penalty
Figure 2 compares vanilla GOLEM and GAE (orange) with their Fiedler-regularised counterparts
(blue) on sparse DAGs with approximately d edges. Each panel reports one of four evaluation
measures as a function of the number of nodes d: F1 score, Structural Hamming Distance (SHD),
Structural Intervention Distance (SID), and the average size of weakly connected components in the
learned graph. For a fair comparison, both variants are trained under identical hyper-parameters and
optimisation settings, with the sole difference being the inclusion of the Fiedler penalty.

Two consistent patterns emerge. First, the addition of the Fiedler penalty improves the weak con-
nectivity of the learned graphs, whereas the vanilla methods frequently yield estimates that fragment
into multiple small components, the regularised variants return graphs with substantially larger com-
ponents, often close to full weak connectivity. Second, recovery performance is not only preserved
but frequently improved: F1 scores are higher and SHD/SID values lower for the Fiedler variants,
with the performance gap widening as d increases.

These findings confirm that our regularisation is both effective and model-agnostic. It can be inte-
grated into different continuous frameworks (here, a likelihood-based method and an autoencoder-
based method) without changing their optimisation behaviour, while consistently enhancing both
the structural accuracy and the global connectivity of the learned causal graphs.

5 Conclusion

We introduced a spectral regularisation for continuous causal discovery that encourages weak con-
nectivity through the Fiedler eigenvalue of the Laplacian. This addresses a basic but often over-
looked property of real scientific datasets: variables are rarely isolated, and by design reflect a bias
towards relevance, a principle of modularity whereby measured variables are expected to belong to
the same causal system. Our approach is model-agnostic, integrates seamlessly into existing optimi-
sation frameworks, and improves global graph structure without compromising edge-level accuracy.
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These results highlight the importance of connectivity-aware constraints for making causal discovery
methods more realistic and reliable in scientific applications. Looking ahead, we view the principle
of modularity as a foundation for developing causal discovery methods that better align statistical
optimisation with the structural properties of real-world scientific data.
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A Additional Visualisations on Graph Properties
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Figure 3: Relationship between Fiedler Eigenvalue and Graph Sparsity.

Table 1: Synthetic Graph Statistics
d Edges Edge-to-d Ratio

30 30 1.00
40 40 1.00
50 54 1.08
60 67 1.12
70 82 1.17
80 101 1.26
90 111 1.23

100 130 1.30
110 142 1.29
120 161 1.34
130 174 1.34
140 188 1.34
150 195 1.30
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