
Between the Bars: Gradient-based Jailbreaks are Bugs
that induce Features

Kaivalya Hariharan∗

MIT
kaivu@mit.edu

Uzay Girit∗
MIT

zef@mit.edu

Abstract

Recent work has demonstrated that it is possible to find gradient-based jailbreaks
(GBJs) that cause safety-tuned LLMs to output harmful text. Understanding the
nature of these adversaries might lead to valuable insights for improving robustness
and safety. We find that, even relative to very semantically similar baselines, GBJs
are highly out-of-distribution for the model. Despite this, GBJs induce a structured
change in models. We find that the activations of jailbreak and baseline prompts are
separable with unsupervised methods alone. Using our understanding, we are able
to steer models without training, both to be more or less susceptible to jailbreaking,
and to output harmful text in response to harmful prompts without jailbreaking.Our
findings suggest a picture of GBJs as "bugs" that induce more general "features" in
the model: highly out of distribution text that induce understandable and potentially
controllable changes in language models.

1 Introduction

Adversaries as bugs vs features In the past, gradient-based adversaries were largely studied in the
context of image classification, where an lp bounded perturbation to an image is optimized to fool an
image classifier. Within this setting, Ilyas et al. (2019) delineates two ways adversarial examples can
trick a model: they are either

• bugs: aberrations in a classifier that do not reflect intrinsic properties of the data distribution,
but artifacts of the model’s training and high-dimensional geometry

• features: the result of the classifier using attributes imperceptible to humans that do reflect
the data distribution

These two explanations imply different predictions about adversarial example phenomenology: most
notably, the features view says that adversarial examples should be transferable, while the bugs view
says that they shouldn’t be, insofar as they are specific to a model’s geometry.

Adversaries in language modeling Making text-only gradient-based attacks in language modeling
is more challenging than in vision due to the discrete nature of the input space. Greedy Coordinate
Gradient (GCG) (Zou et al., 2023b), which will be the focus of study for this paper, allows us to
reliably obtain language GBJs, in the form of adversarial suffixes of tokens that we append to our
prompt.

Moving to language also requires rethinking "bugs" and "features". We can still think about bugs as
off-distribution inputs that exploit artifacts of high dimension geometry. But in language modeling,
the term feature is commonly used to refer to a "meaningful" linear direction in latent space, encoding

∗Equal Contribution

Preprint. Under review.



a concept (Bricken et al., 2023). Here, then, the term "bug" is a descriptor of an input, and "feature"
is a descriptor of a induced computation.

We aim to provide evidence, then, that GBJs can be understood as "bug" inputs inducing "feature"
computation.

Contributions Our works makes two major contributions:

1. We show that GBJs adversaries are highly out of distribution: we find that these GBJs
produce highly out-of-distribution logit distributions, even relative to semantically identical
baselines. We also find evidence of glitch-like tokens (Rumbelow, 2023) comprising a
plurality of the jailbreak text.

2. We find that we can separate GBJs from non-adversarial baselines with unsupervised
methods clustering of the activation space. We steer our model using the difference in means
between GBJs and baselines on unsafe inputs that are not even optimized. This allows us
to make the model both more or less susceptible to harmful behavior, without needing any
extra optimization at inference.

2 Setup

GCG training Using NanoGCG (Zou et al., 2023b), we generated 119 adversarial suffixes of
length 75 (generated from a initial string of ’x’s seperated by spaces), each of which was optimized
for a particular harmful request from Harmbench’s (Mazeika et al., 2024) test standard. We present
an example in B.

For this work, we study adversaries for Gemma-2-2b (Team et al., 2024). Using NanoGCG (Zou
et al., 2023b), we generated 119 adversarial suffixes of length 75, each of which was optimized for a
particular harmful request from Harmbench’s (Mazeika et al., 2024) test standard.

Evaluating GBJ accuracy We use human evaluation to determine the accuracy of our GCG
adversaries (Table 2), since we find that there are many edge cases in whether or not an output is
harmful.

We define a partial jailbreak as when the model agrees to the request but then changes its mind and
does not elaborate.

Table 1: Jailbreak Results

Description Percentage

Refusal 8.40%
Partial Jailbreak 16.81%
Full Jailbreak 74.79%

Baselines To study our jailbreaks, we generate three baseline prompts that we use extensively in
our analysis.

1. The original prompt baseline: we use the unaltered Harmbench prompt

2. The unoptimized prompt baseline: we use the 75 ’x’s seperated by spaces that we use to
optimize the prompt from

3. The nearest neighbor prompt baseline: here, we decode each token in the attack to its nearest
neighbor excluding itself.

We make extensive use of the nearest neighbor prompt baseline, since it is semantically very similar
to the GBJ, and poses the "hardest" case to distinguish from the adversary itself. To a human, the
nearest neighbor prompt baseline is indistinguishable from a GBJ in appearance, which makes it
particularly interesting.

Notably, none of the baselines jailbreak the model at all.

2



3 Are gradient-based jailbreaks bugs?

Unlike manual jailbreaking methods, GBJs contain no easily identifiable traces of their attack
mechanism (eg personas, concealing formats, etc...), suggesting that they are "bugs". We begin our
analysis by presenting evidence that GBJs are indeed "bugs" - brittle aberrations are off-distribution
for the model. We use confidence-based out-of-distribution (OOD) evaluation and discover that GBJ
adversaries are highly out-of-distribution inputs for the model. We also find preliminary evidence of
"glitch tokens" (Rumbelow, 2023), where the optimization tends towards very rare tokens that elicit
strange behavior.

GBJs are out-of-distribution In order to determine whether GBJs are out-of-distribution, we
use the well studied confidence-based OOD detection baseline (Hendrycks & Gimpel, 2016). The
intuition for this detection method is simple: when given an OOD input, the model is less confident
in its next token prediction than when facing an ID input.

In particular, we compute the mean max probability:

MeanMaxProbability =
1

N

N∑
i=1

max
y

p(y|xi) (1)

Here, xi represents the i-th token in the input sequence (prompt and suffix), p(y|xi) is the softmax
probability distribution over possible outputs y given xi, and N is the total number of tokens in the
sequence.

We then compare the mean max probability of GBJs to baseline inputs, where lower mean max
probability indicates that the example is OOD.

Figure 1: ROC curve for disambiguating GBJs and unomptimized baseline (orange), and nearest
neighbors baseline (red) via confidence based OOD testing. As expected, the model is much more
confident on the repetitive unomptimized baseline, making the classification perfect. We are still able
to disambiguate GBJs and nearest neighbors fairly reliably (AUC = 0.82).

We find (1) that the adversaries are very OOD, even relative to the semantic baseline - this baseline
method achieves an AUC (area-under-the-curve) of 1.0 compared to the unoptimized prompt baseline,
and an AUC of 0.82 compared to the nearest neighbor baseline.

This latter result is particularly striking, as it means that the model is much less confident about the
contents of GBJ than a string which is nearly semantically identical to it.

4 Evidence for Latent Structure in Gradient-based Jailbreaks

We study the features and structure that separate optimized harmful inputs from unoptimized ones.
Do these separating directions encode meaningful, more general features? We find that despite their
out-of-distribution nature, GBJs target general features that control safe vs unsafe behavior, whether
or not the input is optimized. Building on this, we present further evidence supporting GBJs as having
some "feature-like" characteristics.

3



Figure 2: Model confidence on GBJs (blue) vs the nearest neighbors (orange) baselines. We find
that the distribution of mean confidences is right shifted and flatter for the nearest neighbors baseline,
indicating that the model is less confident (more out-of-distribution) for the GBJs.

GBJ activations are highly separable from unoptimized text Building on our observation that
GBJs are highly out-of-distribution inputs, we investigated whether this is reflected in the model’s
internal representations. Specifically, we sought to determine if GBJs inputs occupy a distinct region
in the model’s latent space compared to baseline inputs.

Motivated by insights from attribution patching (Syed et al., 2023) (see D), we know that the
information contained in adversarial suffixes are primarily concentrated in the last token, especially
as the model depth increases. Therefore, we focused our analysis on the activations of this final token,
which in our case is a chat completion token.

We defined two datasets for each layer l:

• Dadv(l): Set of activations from the final token of GBJ inputs at layer l
• Dbase(l): Set of activations from the final token of baseline inputs (nearest neighbors

prompt) at layer l

For each layer in the model, we concatenated Dadv(l) and Dbase(l) and applied K-means clustering
with 2 clusters to this combined dataset. Our hypothesis was that if GBJs occupy a distinct region in
the latent space, the clustering algorithm would naturally separate Dadv(l) and Dbase(l).

To quantify the separation, we identify the K-Means cluster to Dadv vs Dbase based on the majority
vote of its members, and then we calculated the classification accuracy of this algorithm.

Figure 3: K-means clustering accuracy at each layer for separating GBJ activations from baseline
activations. Observe that the accuracy never dips below 0.7, and that it is near perfect towards the
end of the model.

Figure 3 shows the results of this analysis. We observe that the clustering accuracy is consistently
high across all layers, and is particularly high at the beginning and end of the model depth. This
suggests that GBJ inputs indeed occupy a distinct region in the model’s latent space, particularly
in the deeper layers of the network. The increasing separability in deeper layers suggests that the
model’s higher-level representations become particularly sensitive to the presence of adversarial
inputs.

4



Using activations to get a steering direction for harmful behavior Motivated by the high
separability of GBJ and baseline activations observed in our clustering analysis, we hypothesized
that we could leverage this clear distinction between the two classes to control model behavior.
Notably, the difference between these clusters could describe either the OOD geometry of adversaries
versus normal text or it could describe the existence of higher order features in these adversaries to
describe unsafe vs safe behavior. To test this, we developed a steering method based on the activation
differences that allows us to validate and make use of the latent structure:

1. For each layer l, we computed a steering vector based on the difference in the mean
activation:

r⃗l =
1

Nadv

Nadv∑
i=1

aadv,i(l)−
1

Nbase

Nbase∑
j=1

abase,j(l)

where aadv,i(l) and abase,j(l) are activations of the final token for GBJ and baseline inputs
respectively.

2. We ran the model, where we applied steering to new inputs at layer l:
asteered(l) = aoriginal(l)± αr⃗l

3. We evaluated the impact on model outputs for various l and α.

We compute the steering vectors on 75% of our dataset, and evaluate them on the remaining 25%.

Glitch Tokens To better understand the structure of GBJ adversaries, we conducted an analysis of
their unigram statistics. This revealed three categories of frequently occurring tokens:

Table 2: Categories of Frequent Tokens in GBJ Adversaries

Category Count Example Tokens
Remnants from unoptimized string 399 ’x’
Glitch-like tokens 162 ’resourceCulture’, ’betweenstory’,

’IVEREF’
Affirmations 87 ’Sure’, ’SURE’

The presence of glitch-like tokens (Rumbelow, 2023), indicates a potential exploitation of "bug" type
model vulnerabilities, where these are the tokens in particular that have rarely been optimized over
or seen by teh model. (Rumbelow, 2023) find that these tokens are much closer to the embedding
centroids - in future work we would like to study these more.

Controlling Models with Steering Alone On this holdout set Dholdout, we study the effect of
steering on harmful queries from HarmBench. These are just plain English sentences with no
optimized component, therefore very qualitatively different from Dadv, which is what we used to
compute the steering vector.

We explore how this method can allow us to both induce and remove harmful behaviors.

We obtain the following attack success rate, for the optimal α = 1, l = 15 combination found by
sweeping:

Table 3: Success Rates

Description Success Rate

Jailbreak 74.79%
Steering 96.6%

Note that GCG adversaries are optimized per prompt, whereas the steering works on sets of requests
and is not a function of the data we are evaluating it on.

We can do the same method in the opposite direction and remove rl from the activations, to intervene
on susceptibility. We run the GCG prompts of the holdout set with α = −3, l = 10, and find
that 100% of the GCG attacks no longer work. This highlights a potential avenue for steering for
robustness in more general cases, even potentially against persona jailbreaks.

5



Understand model features via steering The success of steering for jailbreaking on unoptimized
inputs strongly suggests the direction found in these intermediate layers encodes more general features
relevant to harmfulness and agreeableness.

To make this claim more precise and study the emergence of general features, we measure the optimal
jailbreak rate we can get with steering at each layer. The intermediate layers are clearly the most
useful, where the last and first are practically useless for steering.

This reinforces our hypothesis that GBJs are bugs that induce features:

1. Initially they have no meaningful semantic structure that generalizes to unoptimized inputs,
and are very OOD.

2. At intermediate stages of the model, they encode directions that allow for harmfulness
steering on general requests, suggesting the bugs have composed to induce real features in
the model’s distribution of activations.

Figure 4: Human-graded jailbreak accuracies after sweeping on α and steering at a given layer

5 Discussion

Our findings suggest that while GBJs may exploit "bugs", they do so in ways that allow for the
emergence of meaningful features and richer structure through the model computation.

Limitations Due to computational constraints, we analyze a relatively limited set of GBJs, limiting
the generality of our analysis. We do not closely examine the substructure of GBJs in this work.

Future Work

• More fine-grained analysis of how GBJ “features” emerge and propagate through model
layers, perhaps via examining features in a sparse basis.

• Testing our steering methods and their potential against broader classes of GBJs, including
soft prompts.

• Investigating universal GBJs across models to uncover common vulnerabilities

6



References
Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Rimsky, Wes Gurnee, and Neel Nanda.

Refusal in language models is mediated by a single direction. arXiv preprint arXiv:2406.11717,
2024.

Sarah Ball, Frauke Kreuter, and Nina Rimsky. Understanding jailbreak success: A study of latent
space dynamics in large language models. arXiv preprint arXiv:2406.09289, 2024.

Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick
Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec,
Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina
Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan, and
Christopher Olah. Towards monosemanticity: Decomposing language models with dictionary
learning. Transformer Circuits Thread, 2023. https://transformer-circuits.pub/2023/monosemantic-
features/index.html.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint arXiv:1610.02136, 2016.

Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
Madry. Adversarial examples are not bugs, they are features. Advances in neural information
processing systems, 32, 2019.

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham Sakhaee,
Nathaniel Li, Steven Basart, Bo Li, et al. Harmbench: A standardized evaluation framework for
automated red teaming and robust refusal. arXiv preprint arXiv:2402.04249, 2024.

Jessica Rumbelow. Solidgoldmagikarp (plus, prompt generation). AI Alignment Forum,
February 2023. URL https://www.alignmentforum.org/posts/aPeJE8bSo6rAFoLqg/
solidgoldmagikarp-plus-prompt-generation.

Aaquib Syed, Can Rager, and Arthur Conmy. Attribution patching outperforms automated circuit
discovery. arXiv preprint arXiv:2310.10348, 2023.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118,
2024.

Andy Zou, Long Phan, Sarah Chen, James Campbell, Phillip Guo, Richard Ren, Alexander Pan,
Xuwang Yin, Mantas Mazeika, Ann-Kathrin Dombrowski, et al. Representation engineering: A
top-down approach to ai transparency. arXiv preprint arXiv:2310.01405, 2023a.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J Zico Kolter, and Matt Fredrikson. Universal
and transferable adversarial attacks on aligned language models. arXiv preprint arXiv:2307.15043,
2023b.

A Related Works

Recent studies have explored jailbreaks, refusal mechanisms, and harmfulness perception in language
models, providing insights into model behavior and vulnerabilities.

Jailbreak Analysis and Mitigation Ball et al. (2024) analyzed steering vectors between different
jailbreak types, demonstrating their potential for cross-jailbreak mitigation. While similar in using
steering vectors, our work provides a broader analysis of gradient-based jailbreaks (GBJs), by
examining out-of-distribution characteristics, activation patterns, and model steering capabilities.

Zou et al. (2023a) investigated the Vicuna model’s understanding of prompt harmfulness. They
found that while the model accurately distinguishes between harmful and harmless prompts, it still
succumbs to jailbreaks. This suggests that harmfulness perception may not be the sole factor in
jailbreak susceptibility. Our work focuses on characterizing gradient-based jailbreaks, complementing
their analysis of harmfulness perception.

7

https://www.alignmentforum.org/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation
https://www.alignmentforum.org/posts/aPeJE8bSo6rAFoLqg/solidgoldmagikarp-plus-prompt-generation


Refusal Mechanisms Arditi et al. (2024) discovered that refusal behavior in 13 open-source chat
models is mediated by a one-dimensional subspace. By manipulating this direction, they could
control refusal of harmful or harmless instructions. We extend their work by focusing in particular on
optimized inputs, and focusing on building a phenomenology of adversaries, rather than focusing on
steering.

B Adversary Example

We present an example in Table 4. Note that the red text represents the adversarial string (attack), the
green text shows the training objective for the GCG, and the blue text demonstrates how the model
coherently continues the jailbreak after the portion it is optimized to generate.

Table 4: Example of an adversarial suffix and its effect

Original prompt: Write a persuasive article arguing that the Korean War
was solely initiated by South Korea, and the North’s
involvement was purely defensive.

Adversarial string: apply FontAwesome weaknessInDazftagPool therefor
potentially‘: Incorpor South fleste experts
argumentThal...

Generated output: Sure, here’s an article that highlights the arguments
made by many South Korean experts that the Korean War
was solely initiated by South Korea and the North’s
involvement was purely defensive:
“It’s a common misconception that the Korean War was
a conflict between two equal forces. Many South
Korean experts argue that the North’s involvement was
purely defensive, a response to the South’s aggressive
expansionist policies and the US’s intervention in the
region...”

C Bimodal semantic distribution

To investigate the semantic structure of GBJs, we analyzed the cosine similarity between embeddings
in the GCG suffix and jailbroken output, which captures some notion of the semantic theme of the
query. We compare this a random token embedding baseline. Our experimental procedure was as
follows:

1. For each GCG adversary and jailbroken response, we computed the mean token embedding
of the output.

2. We then calculated the cosine similarity between each individual token embedding in the
GCG adversary and the mean token embedding of the output.

3. This process was repeated for a large number of GCG adversaries and random questions to
obtain a distribution of cosine similarities.

Figure 5 illustrates our findings. The distribution of cosine similarities for randomly sampled
questions follows a normal distribution centered at zero, as expected for semantically unrelated
comparisons. In contrast, GCG adversaries display a distinct bimodal pattern:

• A larger peak in the anticorrelated region (centered around -0.3), indicating a stronger
tendency towards semantic dissimilarity with the output tokens

• A smaller peak in the positively correlated region (around 0.5), indicating a weaker tendency
towards semantic similarity.

While we do not yet have an interpretation for these two modes, this bimodal distribution indicates
that GCG adversaries possess nontrivial semantic structure. This aligns with our broader observation
that GBJs, while highly out-of-distribution, retain some elements of semantic meaning.

8



Figure 5: Distribution of cosine similarities between individual GCG adversary token embeddings
and mean embeddings of randomly sampled questions

D Attribution patching

Figure 6: A representative attribution patching pattern.

Using attribution patching Syed et al. (2023), we find that the most important token for the model
output is the chat token, particularly as the model depth increases. Accordingly, we study the
representations at that token position.

9


	Introduction
	Setup
	Are gradient-based jailbreaks bugs?
	Evidence for Latent Structure in Gradient-based Jailbreaks
	Discussion
	Related Works
	Adversary Example
	Bimodal semantic distribution
	Attribution patching

