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ABSTRACT

The ability of Vision-Language Models (VLMs) to reason depends on a complex
interplay between visual perception and abstract cognition. While it is widely
recognized that perception is a significant bottleneck, systematically diagnosing
how it fails and developing methods to unlock latent reasoning capabilities remains
a key challenge. To address this, we introduce a cognitively-inspired framework
that decomposes VLM behavior through four distinct paradigms: 1) Direct Vi-
sual Rule Learning (holistic processing), 2) Deductive Rule Learning (explicit
rule extraction), 3) Componential Analysis (CA), which decouples perception by
reasoning over task-agnostic textual descriptions, and 4) Interactive Componential
Analysis (ICA), which introduces a feedback loop for targeted visual probing.
Our framework’s emphasis on task-agnostic decomposition and cognitive parallels
provides a unique lens for analysis compared to prior decoupling efforts. Applying
this framework across an expanded suite of benchmarks, we conduct a compre-
hensive evaluation on both proprietary and open-source multi-image VLMs. Our
results confirm that perception is a primary bottleneck and show that our CA and
ICA paradigms yield substantial performance gains, unlocking the latent reasoning
abilities of powerful LLMs. Crucially, ICA demonstrates that an interactive loop
can resolve fine-grained visual ambiguities that static descriptions cannot, outper-
forming the non-interactive CA approach. Our work provides a robust diagnostic
toolkit for the community and offers concrete architectural insights, demonstrating
that interactive, decoupled systems are a promising path toward more general and
capable visual intelligence.

1 INTRODUCTION

Human cognition adeptly integrates visual perception with abstract reasoning to navigate the world
(Kunda, 2020; Lake et al., 2017). While Vision-Language Models (VLMs) have made remarkable
progress (Zhao et al., 2023; Radford et al., 2021), their ability to perform complex visual reasoning
remains brittle. It is widely recognized that a primary failure point is the model’s visual perception,
but we lack systematic tools to diagnose how these perceptual systems fail and frameworks to mitigate
these failures to unlock latent reasoning.

To investigate these questions, we test models on two challenging task families that probe the limits
of perception and reasoning. First, Bongard Problems (BPs) (Bongard, 1968), a classic test requiring
few-shot discovery of an abstract visual rule. We use natural image variants, Bongard-OW (Wu et al.,
2024) and Bongard-HOI (Jiang et al., 2022). Second, Winoground (Thrush et al., 2022), which tests
visio-linguistic compositional reasoning through minimally contrastive image-caption pairs.

This paper introduces an evaluation framework designed to dissect the cognitive processes of VLMs
on these tasks. Our core contribution is a framework grounded in cognitive science that, unlike prior
work that inventories static capabilities, uses dynamic paradigms to model problem-solving strategies:

1. Direct Visual Rule Learning (DVRL): Simulates holistic processing (Biederman, 1987),
where the model analyzes all images simultaneously.

2. Deductive Rule Learning (DRL): Mimics explicit, rule-based deduction (Rips, 1994),
separating rule extraction from application.
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3. Componential Analysis (CA): Parallels analytical decomposition (Gluck et al., 2008),
reasoning over structured, task-agnostic textual descriptions.

4. Interactive Componential Analysis (ICA): Extends CA with a feedback loop, allowing
the reasoning module to actively probe the perception module for targeted details.

This framework allows for systematic analysis of VLM behavior, identifying specific processing
bottlenecks. By generating comprehensive, task-agnostic image descriptions, our componential
paradigms allow us to disentangle perception from reasoning. ICA enhances this by enabling
a dynamic perceptual process guided by reasoning needs. This approach facilitates multi-image
reasoning on single-image architectures and even allows us to evaluate text-only LLMs by providing
high-quality descriptions (Section 7.2).

Applying this framework across a broadened set of benchmarks and models, we find that our CA and
ICA paradigms yield substantial performance gains. These methods achieve highly competitive results
on Bongard-OW, Bongard-HOI, and Winoground, primarily by pairing high-fidelity descriptions with
powerful reasoning models. This success across diverse tasks highlights the robustness of decoupling
perception from reasoning. Concurrently, our analysis confirms a significant perception bottleneck,
as models’ performance drastically improves when their perceptual front-end is bypassed or guided.

Our contributions are:

1. A novel, cognitively-inspired framework with four distinct paradigms (including interactive
reasoning) for the diagnostic evaluation of VLMs.

2. A componential method (CA and ICA) to disentangle perception from reasoning, enabling
multi-image task evaluation for diverse architectures and unlocking latent reasoning in
LLMs.

3. Comprehensive empirical results on multiple benchmarks and models, confirming the percep-
tion bottleneck and demonstrating that our interactive, decoupled methods can significantly
mitigate it.

4. A demonstration of the effectiveness of this approach, achieving strong, competitive perfor-
mance on challenging visual reasoning tasks.

2 RELATED WORK

VLM Benchmarks. The evaluation of VLMs has rapidly evolved from foundational tasks like
VQA (Antol et al., 2015) to benchmarks testing more complex reasoning. Recent efforts focus
on multi-image understanding through interleaved corpora (Laurençon et al., 2024) and dedicated
benchmarks such as MuirBench (Wang et al., 2024) or low-level perception tests like BLINK (Fu
et al., 2024). Our work complements these by focusing on benchmarks specifically designed to
probe core cognitive abilities that resist simple linguistic mediation: abstract few-shot rule discovery
using natural image Bongard Problems (BPs) (Wu et al., 2024; Jiang et al., 2022) and fine-grained
compositional reasoning via Winoground (Thrush et al., 2022).

Cognitive Science Grounding. Our framework is grounded in cognitive science perspectives on hu-
man problem-solving (Newell et al., 1972). Our paradigms model distinct cognitive strategies: Direct
Visual Rule Learning (DVRL) mirrors rapid, holistic processing (Biederman, 1987); Deductive Rule
Learning (DRL) reflects explicit, rule-based deduction (Rips, 1994); and our Componential Analysis
(CA) paradigms parallel analytical decomposition, where problems are broken into constituent parts
for systematic reasoning (Gluck et al., 2008).

Decoupling Frameworks and Chain-of-Thought. Our approach is related to a growing body of
work on decoupling perception and reasoning in VLMs. This includes Multimodal Chain-of-Thought
(CoT) prompting (Zhang et al., 2023; Zheng et al., 2023) and dedicated evaluation frameworks. For
instance, Prism (Qiao et al., 2024) provides a valuable framework for assessing a static inventory of
fine-grained VLM skills like object recognition and counting.

Our contribution is distinct in three key ways. First, our paradigms are grounded in cognitive
processes (e.g., holistic vs. deductive), analyzing how a model solves a problem, not just what
skills it possesses. Second, our CA paradigm deliberately uses task-agnostic descriptions, creating a
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clean separation between raw perceptual capability and downstream reasoning, unlike many CoT
methods that generate task-conditioned descriptions. Finally, our new Interactive CA (ICA) paradigm
introduces a novel dynamic feedback loop, where the reasoning module actively probes the perception
module. This moves beyond the static, one-pass evaluations common in prior work to model a more
realistic, iterative reasoning process.

3 MODELS

We evaluated a diverse suite of VLMs, distinguishing between models based on their multi-image con-
text capacity. State-of-the-art proprietary systems, including GPT-4o (OpenAI, 2024) and Gemini 2.0
(Google, 2024), can natively process the large number of images (13) required for our DVRL and
DRL paradigms on Bongard Problems. In contrast, while some contemporary open-source models
like Pixtral-12B (Agrawal et al., 2024), Llama-Vision-3.2 (Meta, 2024), and LLaVA variants (Liu
et al., 2023; XTuner, 2025) accept multiple images, none currently support the large context required
for a direct evaluation in these paradigms. This technical constraint underscores the necessity of our
Componential Analysis (CA) paradigm as the primary method for assessing complex, multi-image
reasoning on these powerful open-source architectures. For ablation studies, we also used text-only
LLMs (Llama3 (Grattafiori et al., 2024), Phi-4 (Abdin et al., 2024), etc.). All evaluations used
few-shot prompting at zero temperature. Further details are in Appendix A.4.

4 DATASET AND TASK

Figure 1: Example Bongard-OW task. Left: Posi-
tive examples. Center: Negative examples. Right:
Query. Rule: A group photo at a wedding recep-
tion. Query is negative. (3 of 6 examples shown
per set).

We test our framework on a diverse suite of
benchmarks chosen to probe distinct cognitive
abilities. Our primary testbed is Bongard-OW
(Wu et al., 2024), a 500-case subset testing
few-shot abstract rule discovery on natural im-
ages (see Figure 1 for an example). To as-
sess generalization, we use Bongard-HOI (Jiang
et al., 2022) (400 samples) to evaluate rea-
soning about human-object interactions, and
Winoground (Thrush et al., 2022) (400 samples)
for fine-grained compositional grounding. To-
gether, these tasks provide a robust testbed for
analyzing high-level visual reasoning, from ab-
straction to compositionality, across our differ-
ent cognitive paradigms.

5 COGNITIVELY-INSPIRED EVALUATION PARADIGMS

We evaluate VLMs using four paradigms designed to probe different facets of visual reasoning and
assess performance under systematically varied cognitive demands, inspired by human cognitive
strategies. All paradigms require the model to output a structured response including analysis,
the derived rule, query description, and classification (positive/negative). Figure 2 provides a
schematic overview. Specific prompts are detailed in Appendix A.5.

5.1 DIRECT VISUAL RULE LEARNING (DVRL)

This paradigm assesses holistic reasoning by presenting all 13 images (6 positive, 6 negative, 1 query)
simultaneously to the VLM. It demands the model integrate information across the entire set to
identify the rule and classify the query in one step. This mirrors the human ability to quickly grasp
the ‘gist’ of a visual scene or problem. Due to requiring simultaneous multi-image input, only models
like Gemini 2.0 and GPT-4o were tested under this paradigm.

5.2 DEDUCTIVE RULE LEARNING (DRL)

Mimicking deliberative, rule-based deduction, DRL involves two stages:
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Figure 2: Cognitively-Inspired Evaluation Paradigms. DVRL (Direct Visual Rule Learning):
Concurrent processing of all images, mimicking holistic perception. Requires multi-image input
capability. DRL (Deductive Rule Learning): Two-stage process separating rule extraction from appli-
cation, mimicking explicit deduction. CA (Componential Analysis): Multi-stage process involving
individual image description followed by reasoning over text, mimicking analytical decomposition
and enabling perception-reasoning separation.

1. Rule Extraction: The VLM analyzes the 12 context images (positive/negative sets) to
identify and concisely summarize (max 20 words) the distinguishing rule.

2. Rule Application: The VLM receives the previously generated rule summary and the query
image, classifying the query based solely on the provided rule.

This separation allows examining the fidelity of both rule formation and rule application processes.

5.3 COMPONENTIAL ANALYSIS (CA)

Reflecting analytical problem decomposition, CA proceeds in stages based on textual representations:

1. Image Description: The VLM generates a detailed, structured, and ideally task-agnostic
JSON description for each of the 13 images individually.

2. Text-Based Reasoning: A powerful LLM receives the collection of 13 JSON descriptions
(labeled positive/negative/query) and performs rule extraction and query classification based
only on this textual input.

This paradigm is crucial as it (a) allows evaluating models lacking direct multi-image input, (b)
enables assessing reasoning largely independent of perceptual errors, and (c) facilitates evaluation of
text-only LLMs on visual reasoning tasks.

5.4 INTERACTIVE COMPONENTIAL ANALYSIS (ICA)

To mitigate the limitations of static perception revealed by CA, this paradigm extends it with a
dynamic, multi-step feedback loop that emulates a "look again" strategy.

1. Initial Description: Same as in CA, the VLM generates initial, task-agnostic descriptions
for each image.
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2. Ambiguity Identification & Question Formulation: A reasoning LLM analyzes the initial
descriptions and the task goal (e.g., the Winoground captions) to identify the most critical,
ambiguous visual detail needed for a confident decision. It then formulates a specific,
targeted question about this detail.

3. Focused Re-Perception: The VLM is shown the relevant image again, but this time is asked
to answer only the targeted question from the previous step.

4. Synthesized Reasoning: The LLM integrates the initial descriptions with the new, high-
precision information from the Q&A step to make its final classification.

This interactive process allows the model to actively resolve perceptual ambiguities, moving beyond
a single static "glance" to perform more robust, human-like visual verification.

6 RESULTS AND ANALYSIS

This section details the performance of the evaluated VLMs, beginning with the primary Bongard-OW
benchmark and then examining generalizability.

6.1 PERFORMANCE ON BONGARD-OW

Model DVRL DRL CA
GPT-4o 80.0 88.0 92.8
Gemini 2.0 82.2 86.8 93.6
Pixtral-12B - - 87.2
Llama-Vision-11B - - 53.4
Llama-Vision-90B - - 55.1
Llava-7B - - 66.2
Llava-Llama3-8B - - 53.2
Prior SOTA (GPT-4 + InstructBLIP) 63.8

Human Average (across samples) 91.0

Table 1: Classification accuracy (%) across evaluation
paradigms on the Bongard-OW subset. Paradigms ab-
breviated: DVRL, DRL, CA. Dashes (-) indicate non-
applicability due to model input limitations.

Table 1 presents the core results on
our 500-sample Bongard-OW subset.
Under Direct Visual Rule Learning
(DVRL), applicable only to GPT-4o
and Gemini 2.0, performance was strong
but below optimal (Gemini 2.0: 82.2%,
GPT-4o: 80.0%), suggesting limitations
in purely holistic, simultaneous multi-
image reasoning for this complex task.

Performance improved markedly under
DRL for both models (GPT-4o: 88.0%,
Gemini 2.0: 86.8%). The explicit sepa-
ration of rule extraction and application
stages appears beneficial, aligning with
the idea that breaking down complex cog-
nitive tasks can improve performance.

Componential Analysis (CA), reason-
ing over textual descriptions, yielded the
highest accuracies for the top models (GPT-4o: 92.8%, Gemini 2.0: 93.6%). Notably, these results
establish a new state-of-the-art (SOTA) on the Bongard-OW Text-score benchmark, surpassing
the reported human average (91.0% Wu et al. (2024)). The previous best machine performance Wu
et al. (2024) involved using GPT-4 to reason over captions generated by models such as InstructBLIP,
achieving a maximum accuracy of 63.8%. Our significant improvement with the CA paradigm under-
scores the efficacy of its comprehensive, task-agnostic description generation (Stage 1) coupled with
advanced reasoning engines (Stage 2). Pixtral-12B also achieved strong CA performance (87.2%).
However, a significant gap emerged with other open-source models. Models like Llama-Vision
and LLaVA variants exhibited much lower CA accuracy, often with dramatic imbalances between
positive and negative sample performance (e.g., Llava-Llama3-8B: 53.2% overall, heavily biased
towards negative samples). This pattern strongly suggests that the bottleneck for these models is not
necessarily the abstract reasoning itself, but rather the fidelity of their internal visual perception and
subsequent translation into usable representations. (here, text descriptions).

The consistent trend of accuracy increasing from DVRL through DRL to CA for GPT-4o and
Gemini 2.0 further reinforces the value of structured reasoning and, particularly, the effectiveness of
the component-based textual reasoning approach for this task when perception is adequate.

6.2 PERFORMANCE ON BONGARD HOI

5
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Model Avg

Gemini 2.0
DVRL 50.8
DRL 61.3
CA 74.5

GPT-4o
DVRL 68.5
DRL 71.8
CA 77.3

Prior SOTA PMF 76.4

Human Avg. – 91.4

Table 2: Average performance (%)
on Bongard-HOI four test-splits
across three paradigms.

On Bongard-HOI, we evaluated GPT-4o and Gemini 2.0
across the four standard test splits (sosa, soua, uosa, uoua;
N=100 each from balanced sampling). The results, shown in
Table 2, largely replicated the trends observed on Bongard-OW.
Performance systematically improved with increased paradigm
structure (DVRL < DRL < CA) for both models. Our Compo-
nential Analysis (CA) paradigm, particularly with GPT-4o as
the reasoning engine, achieved an average accuracy of 77.3%
across the splits (with individual splits like sosa and soua
reaching 83%), establishing a new state-of-the-art for VLM-
based approaches on this benchmark. This surpasses prior
SOTA Raghuraman et al. (2024) results from non-VLM spe-
cialized methods, such as the reported 76.4% average from a
CLIP fine-tuned via PMF approach Raghuraman et al. (2024).
Gemini 2.0 with CA also demonstrated strong competitive per-
formance with an average of 74.5%. This consistency validates
our framework’s applicability and the benefit of structured eval-
uation across different complex natural image reasoning datasets. Notably, overall model performance
on HOI is lower than on OpenWorld, and a significant gap remains to the high human average scores
(avg. 91.4% Jiang et al. (2022)), suggesting HOI’s unique challenges in discerning subtle interaction-
based rules.

6.3 PERFORMANCE ON WINOGROUND WITH STATIC CA

We applied our static CA paradigm to Winoground, generating task-agnostic descriptions and then
using an LLM for matching. As shown in Table 3, this approach achieves new state-of-the-art results
across all three metrics. Using GPT-4o as the reasoning engine yields Text: 75.5%, Image: 58.5%,
and Group: 52.0%, significantly surpassing prior SOTA. This success demonstrates that our task-
agnostic, decoupled strategy is highly effective not just for rule-discovery, but also for fine-grained
compositional reasoning.

6.4 INTERACTIVE CA ON WINOGROUND: MITIGATING PERCEPTUAL GAPS

While CA is powerful, we hypothesized its static, one-pass descriptions might miss the single, subtle
visual detail that differentiates Winoground pairs. To address this, we applied our Interactive CA
(ICA) paradigm, allowing the reasoner to "look again" by asking a targeted question to the perception
module.

The results, presented in Table 3, show a significant and consistent performance uplift over the static
CA approach for both models tested.

Model Text Score Image Score Group Score
GPT-4o + CA 75.50 58.50 52.00
Gemini 2.0 + CA 71.00 48.75 42.00

GPT-4o + ICA 78.00 62.75 55.25
Gemini 2.0 + ICA 72.50 55.25 46.75

Llama3.3-70B + CA 68.25 49.25 41.75
Qwen2.5-32B + CA 67.00 46.25 40.00
Phi-4-14B + CA 65.25 46.00 37.75
Qwen2.5-14B + CA 59.25 34.50 27.25

MMICL + CoCoT (Zhang et al., 2024) 64.25 52.5 50.75

Table 3: State-of-the-art performance on the Winoground benchmark achieved using our Compo-
nential Analysis (CA) paradigm. Scores reported are the standard Winoground metrics: Text Score
(correct caption selection per image description), Image Score (correct image selection per caption),
and Group Score (all selections correct per sample), averaged over 400 samples.
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Critically, the largest gains are on the Image and Group scores, which are most sensitive to fine-
grained visual details. For instance, Gemini’s Image Score improved by a remarkable 6.5 points.
This demonstrates that the interactive feedback loop is highly effective at resolving the exact visual
ambiguities that Winoground is designed to test. This finding confirms that the perception bottleneck
is not immutable; it can be actively mitigated by a dynamic, multi-pass reasoning process that guides
perception.

In summary, across diverse reasoning tasks, our Componential Analysis paradigms consistently
achieve high and often state-of-the-art performance. The success of the interactive ICA variant further
highlights that dynamic, decoupled approaches—where reasoning can actively probe perception—are
a powerful and promising direction for building more robust and accurate VLMs.

7 ABLATION STUDIES: ISOLATING PERCEPTION AND REASONING

To further investigate the interplay between visual perception, rule representation, and reasoning, we
conducted targeted ablation studies. Both studies presented below serve to underscore the critical role
of the initial representation derived from visual input – whether it’s applying a rule to a perceived
query image (Section 7.1) or reasoning from perceived context images (Section 7.2).

7.1 RULE APPLICATION FIDELITY

Model Acc
LLaVA-7B + DRL 72.0
Llama-vision-11B + DRL 68.2
Pixtral-12B + DRL 83.8
LLaVA-13B + DRL 70.0
LLaVA-34B + DRL 74.8
Llama-vision-90B + DRL 74.2

Table 4: Rule Application Accu-
racy: Accuracy (Acc) in % when
classifying query images based on
externally provided rules in DRL
paradigm.

How well can models apply an abstract rule once it’s formu-
lated? To isolate rule application from rule extraction, we
provided models with high-quality rule summaries (generated
by GPT-4o) and the query image, tasking them solely with
classification based on the given rule. This tests the model’s
ability to ground the symbolic rule in the visual input of the
query image.

Table 4 shows performance for several open-source models
under this condition. Models like Pixtral-12B demonstrate
relatively strong and balanced rule application. Comparing
this to Table 1, the generally higher scores here than in CA
(where models generate their own descriptions) support the
idea that rule application itself is less challenging for these
models than the initial perception/description phase.

7.2 IMPACT OF DESCRIPTION QUALITY ON REASONING

Model Acc
Llava:7b + CA 80.56
Llava:34b + CA 81.56
Llama-vision:11b + CA 84.17
Llama-vision:90b + CA 90.98

Deepseek-r1:14b + CA 87.98
Gemma2:27b + CA 88.98
Qwen2.5:7b + CA 90.38
Phi4:14b + CA 91.98
Qwen2.5:32b + CA 92.79
Qwen2.5:14b + CA 92.99

Table 5: Impact of High-Quality Descriptions:
Accuracy (Acc) in % using Componential Anal-
ysis (Stage 2 reasoning) with image descriptions
generated externally by GPT-4o. Includes VLMs
and LLMs models respectively separated by line.

Complementing the previous ablation, we in-
vestigated how reasoning performance changes
when the initial perceptual stage (description
generation) is standardized using a high-fidelity
source. We generated descriptions for all con-
text and query images using GPT-4o and then
used these descriptions as input to the reasoning
stage (Stage 2) of the Componential Analysis
paradigm for various target models, including
weaker VLMs and even text-only LLMs.

The results in Table 5 were revealing. Provid-
ing high-quality descriptions dramatically im-
proved the reasoning accuracy of VLMs that
struggled when using their own descriptions.
Llama-Vision-11B, for example, improved from
53.4% (Table 1) to 84.17%, and Llama-Vision-
90B from 55.1% to 90.98%. This provides
strong evidence that the reasoning capabilities
of these models are significantly underestimated

7
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by end-to-end evaluations; their primary limi-
tation lies in generating accurate perceptual representations. Further illustrating this sensitivity
to description source quality, Table A.6 in the Appendix details a comparison using components
generated by Pixtral-12B.

Remarkably, this approach also enabled text-only LLMs to perform the visual reasoning task ef-
fectively. Models such as Phi-4 (14B) achieved 91.98% accuracy, while several Qwen models also
exceeded 90%. This demonstrates that: (1) High-quality textual descriptions can serve as effective
surrogates for visual input, enabling modality transfer for reasoning tasks. (2) The CA paradigm,
particularly when coupled with controlled descriptive input, serves as a powerful tool for isolating
and evaluating the core symbolic reasoning abilities of both VLMs and LLMs, independent of their
integrated perceptual systems. These findings strongly reinforce the conclusion that improving visual
perception is paramount for enhancing end-to-end visual reasoning in many current models.

7.3 ADDITIONAL ANALYSIS

Semantic Similarity Analysis during DRL (Table A.3) confirmed that derived rules generally
aligned well with query descriptions, particularly for positive samples. The relatively high similarity
for negative samples highlights the challenge of the dataset’s near-miss counterexamples.

Qualitative Error Analysis Examining samples misclassified by both top models (GPT-4o,
Gemini 2.0) under CA revealed recurring error patterns (details in Appendix A.7.7, Table A.9).
Frequent issues involved over-generalizing rules, missing critical objects/properties present in posi-
tive examples, focusing on spurious correlations, or failing to consistently apply derived rules. These
qualitative examples underscore that even highly capable models exhibit fragility in nuanced visual
detail processing and robust symbolic rule manipulation.

8 DISCUSSION

This research leveraged a cognitively-inspired framework to dissect the mechanisms of visual reason-
ing in VLMs. By evaluating performance across paradigms mirroring human cognitive strategies
(holistic-DVRL, deductive-DRL, analytical-CA), we moved beyond aggregate scores to probe how
these models process complex information. A central finding emerges: a critical perception bottle-
neck limits many contemporary VLMs, masking strong downstream reasoning capabilities. While
advanced models (GPT-4o, Gemini 2.0) excel when reasoning over high-fidelity textual descriptions,
many open-source models falter, pointing to failures in reliably extracting relevant visual information.

The success of the CA paradigm is particularly insightful. Its strength lies in effectively decoupling
perception from reasoning via task-agnostic descriptions. Unlike context-dependent CoT approaches,
CA first builds a comprehensive, independent textual "world model" of each image. This allows pow-
erful LLMs to apply their sophisticated reasoning abilities on a clean, symbolic representation. The
resulting robust performance across different reasoning types (abstraction in BPs, compositionality
in Winoground) suggests that modular architectures—featuring specialized perception modules that
output rich symbolic data for general reasoning engines—are a highly promising direction.

The success of our Interactive CA (ICA) paradigm takes this insight a crucial step further. While static
CA bypasses the bottleneck, ICA demonstrates how to actively mitigate it. On a fine-grained task
like Winoground, where a single detail is critical, the ability for the reasoner to formulate a targeted
question and prompt a "second look" from the perception module led to significant performance
gains (Table 3). This result is pivotal: it suggests the perception bottleneck is not an immutable
property but often a failure of one-pass processing. By modeling a more realistic, iterative process of
verification—akin to human visual scanning—ICA shows that the connection between perception
and reasoning modules should not be a one-way street, but a dynamic, bidirectional dialogue.

Our ablation studies provide strong converging evidence. Isolating reasoning by providing high-
quality external descriptions (Section 7.2) resulted in dramatic performance improvements for bottle-
necked models and enabled high performance even from text-only LLMs. This clearly demonstrates
that a model’s latent reasoning capability often far exceeds what its end-to-end performance suggests.
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In conclusion, our cognitively-inspired framework serves a dual purpose. It is both a valuable
diagnostic tool for pinpointing the prevalent perception bottleneck and a proof-of-concept for a
more powerful architectural class. The success of our componential, and especially our interactive,
paradigms reveals the significant latent reasoning potential within today’s models. More importantly,
it offers a clear path forward: building modular, interactive systems where reasoning can dynamically
guide perception is a key step towards more robust and general visual intelligence.

Limitations Our work has several important limitations that define avenues for future research.

The primary limitation of our componential paradigms (CA and ICA) is their reliance on language
as an intermediate representation. Their effectiveness is likely highest on tasks where critical visual
properties are readily verbalizable. For challenges that hinge on non-verbalizable or geometric
reasoning—such as the fine-grained correspondence tasks in benchmarks like BLINK (Fu et al.,
2024)—the utility of a purely text-mediated approach may be reduced. While our interactive ICA
shows that a dynamic dialogue can resolve ambiguities missed by static descriptions, its scope is still
bounded by what can be effectively queried and described in text.

Second, while our study covers abstract, compositional, and interactive reasoning, the framework’s
applicability to other complex visual domains, such as scientific chart interpretation or mathematical
reasoning, requires further investigation.

Finally, we acknowledge several practical scope limitations. This work did not conduct a systematic
analysis of prompt sensitivity, a known factor in VLM performance. A deeper investigation into the
computational costs and latency trade-offs of our multi-stage paradigms, especially the interactive
ICA, is also warranted for practical application.

9 CONCLUSION

This paper introduced a cognitively-inspired framework to dissect the perception-reasoning interface
in VLMs. Through four distinct paradigms—including our novel Interactive Componential Analysis
(ICA)—we systematically analyzed VLM problem-solving strategies, revealing two key insights.
First, our diagnostic approach confirms that a critical perception bottleneck limits many contemporary
VLMs, masking significant latent reasoning abilities.

Second, and more importantly, we demonstrate a powerful architectural solution. Our componential
paradigms, which decouple perception from reasoning via task-agnostic textual descriptions, achieve
highly competitive performance across diverse benchmarks testing abstraction (Bongard-OW), in-
teraction (Bongard-HOI), and compositionality (Winoground). The success of the interactive ICA
paradigm, which allows the reasoning module to actively probe and guide perception, is particularly
significant. It shows that the perception bottleneck is not an immutable barrier but can be dynamically
mitigated.

Ultimately, our work suggests that the path toward more robust visual intelligence lies not just in
scaling monolithic models, but in developing modular, interactive architectures. By providing both a
diagnostic toolkit and a proof-of-concept for this interactive approach, we offer a blueprint for a new
class of systems capable of more deliberate, verifiable, and human-like visual reasoning.
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APPENDIX

A.1 BROADER RELEVANCE

This study offers insights with broader implications for developing more robust and human-like
AI systems. Our cognitively-inspired evaluation paradigms provide valuable tools for assessing
and understanding the strengths and limitations of Vision-Language Models (VLMs) on complex
visual reasoning tasks. The insights gained extend beyond Bongard problems, contributing to the
development of VLMs capable of advanced reasoning in real-world applications. Our key finding
regarding the visual processing bottleneck in many models has significant implications for future
research aimed at bridging the performance gap and unlocking the full potential of accessible models.
The demonstration of high performance by advanced VLMs underscores the potential for sophisticated
visual understanding, reinforcing the importance of architectures integrating robust perception and
reasoning. Finally, our comparative evaluation contributes to discussions about AI accessibility and
transparency, identifying specific areas for improvement and paving the way for more reliable AI.

A.2 ATTENTION AND MEMORY IN VISUAL REASONING

While our study primarily focuses on the interplay between perception and reasoning, the roles of
attention and memory are also implicitly present in our paradigms. The DVRL paradigm likely
engages VLM “visual attention” mechanisms (Bahdanau et al., 2016) to identify salient features across
the image set, akin to human holistic processing (Biederman, 1987; Li et al., 2002). DRL relies on
the model’s ability to “memorize” the extracted rule, involving processes related to working memory
(Baddeley, 2012) and internal representation storage (Squire, 1992). Although not directly measured,
their involvement is inherent. Future work could explore these aspects more explicitly, perhaps via
attention map analysis (Vaswani et al., 2017) or probing memory representations (Vaishnav and Serre,
2023).

A.3 DATASET DETAILS

A.3.1 BONGARD OPENWORLD DATASET

We utilize a subset of 500 test cases from the Bongard OpenWorld dataset (Wu et al., 2024). The full
dataset contains 1001 samples, each with 7 positive and 7 negative real-world images distinguished by
a “commonsense” rule. Our evaluation set was created by taking the first 250 samples and generating
two test cases from each (one positive query, one negative query), resulting in 500 balanced test cases.
Specific sample IDs used will be released.

A.3.1.1 COMMONSENSE VALUE CATEGORIES

Table A.1 summarizes the rule categories.

ID Concept Category Example
0 Anything else Animals are running.
1 Human-Object Interaction (HOI) A person playing the guitar.
2 Taste / Nutrition / Food A plate of high-calorie food.
3 Color / Material / Shape A wooden floor in the living room.
4 Functionality / Status / Affordance An animal capable of flying in the tree.
5 And / Or / Not A man without beard.
6 Factual Knowledge A building in US capital.
7 Meta Class Felidae animals.
8 Relationship A bench near trees.
9 Unusual Observations Refraction of light on a glass cup.

Table A.1: Commonsense ID Categories and Examples in Bongard OpenWorld dataset (Wu et al.,
2024).
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A.3.1.2 COMMONSENSE VALUE DISTRIBUTION IN OUR SUBSET

Table A.2 shows the distribution in our subset. Category ‘0’ is predominant.

ID Count Percentage (%)
0 365 73.0
3 36 7.2
9 26 5.2
1 15 3.0
2 14 2.8
4 12 2.4
5 10 2.0
6 10 2.0
8 8 1.6
7 4 0.8

Total 500 100.0

Table A.2: Distribution of Commonsense ID Categories in the 500 Bongard-OW test cases used in
our evaluation subset.

A.3.2 BONGARD-HOI DATASET

To assess generalizability on natural images with a different reasoning focus (human-object interac-
tions), we used the Bongard-HOI dataset (Jiang et al., 2022). We evaluated performance on its four
standard test splits, defined by object/action novelty:

• sosa: seen object, seen action
• soua: seen object, unseen action
• uosa: unseen object, seen action
• uoua: unseen object, unseen action

The original splits vary significantly in size and balance (e.g., sosa: 200 pos/200 neg queries; soua:
2236 pos/1348 neg; uosa: 660 pos/660 neg; uoua: 695 pos/695 neg). For consistent cross-split
evaluation in this work, we created balanced subsets by sampling 100 test cases from each of the
four splits, ensuring an equal distribution of 50 positive and 50 negative query images per split. This
resulted in a total evaluation set of 400 samples for Bongard-HOI (100 per split), used for the results
reported in Table 2.

A.3.3 WINOGROUND DATASET

To test performance on fine-grained visio-linguistic compositional reasoning, we utilized the
Winoground dataset (Thrush et al., 2022). This dataset comprises 400 samples specifically designed
to challenge compositional understanding. Each sample contains a pair of minimally contrastive
images (I0, I1) and a corresponding pair of minimally contrastive captions (C0, C1), requiring models
to correctly match image I0 to caption C0 and image I1 to caption C1. We used all 400 samples
provided in the standard dataset release for our Winoground evaluations reported in Section 6.3 and
Table 3.

A.3.4 DATASET AVAILABILITY

Bongard OpenWorld: https://rujiewu.github.io/Bongard-OW.github.io/.
Bongard-HOI: https://github.com/NVlabs/Bongard-HOI/blob/master/assets/dataset.md.
Winoground: https://huggingface.co/datasets/facebook/winoground

Details on the specific subsets and samples used in our evaluations will be released upon publication.
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A.4 MODEL AND EXPERIMENT DETAILS

A.4.1 MODEL DETAILS

VLMs: GPT-4o; Gemini 2.0; Pixtral-12B; Llama-Vision-3.2 (11B, 90B); LLaVA (Llama-2 based;
7B, 13B, 34B); LLaVA-Llama3-8B. Text-Only LLMs (for Ablation 7.2): Phi-4 (14B) (Abdin et al.,
2024); Qwen2.5 (7B, 14B, 32B) (Yang et al., 2024); Deepseek-r1 (32B, 70B) (Guo et al., 2025);
Gemma2 (27B) (Team et al., 2024).

A.4.2 EXPERIMENT CONFIGURATION

• Access: APIs for closed models; Ollama for open models.

• Input: Base64 images in prompts (see Appendix A.5).

• Image Handling: API defaults or max 1024px (Ollama). Multi-image calls for DVRL
where supported.

• Decoding: Temperature 0.

• Fine-tuning: None.

• Hardware: NVIDIA GPUs (2080Ti, 3090, 6000 Ada).

A.4.3 EVALUATION METRICS

• Classification Accuracy: Primary metric (% correct).

• Semantic Similarity: Cosine similarity of OpenAI embeddings (‘text-embedding-3-large‘)
between descriptions/rules. Inspired by (Risch et al., 2021).

A.4.4 WINOGROUND SCORE CALCULATION USING COMPONENTIAL ANALYSIS

This section defines the calculation of Winoground (Thrush et al., 2022) scores (text_score,
image_score, group_score) within our Componential Analysis (CA) paradigm (Section 6.2).

In the standard Winoground task, a sample i consists of two images I0,i, I1,i and two captions
C0,i, C1,i, where (C0,i, I0,i) and (C1,i, I1,i) are the ground truth correct pairs. Models are typically
evaluated based on a scoring function s(C, I) indicating the match between a caption and an image.

In our CA paradigm, the reasoning model (Stage 2) does not access images I0,i, I1,i directly. In-
stead, it operates on textual image descriptions D0,i, D1,i generated in Stage 1. The model is
prompted to make explicit choices about the best match between descriptions and captions. Let
ChoiceC(Dk, {C0, C1}) denote the caption (C0 or C1) chosen by the model as the best match for
description Dk. Similarly, let ChoiceD(Ck, {D0, D1}) denote the description (D0 or D1) chosen
for caption Ck.

The scores for each sample i in the dataset W (where N = |W | = 400) are calculated as follows:

1. Text Score (fCA): This measures if the correct caption is selected for each image description. We
use an indicator function I[·] which is 1 if the condition inside is true, and 0 otherwise.

fCA(i) = I
[ChoiceC(D0,i, {C0,i, C1,i}) = C0,i

and

ChoiceC(D1,i, {C0,i, C1,i}) = C1,i

]
(1)

This score is 1 only if the model correctly identifies the caption for both description D0,i and
description D1,i.

2. Image Score (gCA): This measures if the correct image description is selected for each caption.

gCA(i) = I
[ChoiceD(C0,i, {D0,i, D1,i}) = D0,i

and

ChoiceD(C1,i, {D0,i, D1,i}) = D1,i

]
(2)
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This score is 1 only if the model correctly identifies the description for both caption C0,i and caption
C1,i.

3. Group Score (hCA): This requires all associations within the sample to be correct.
hCA(i) = fCA(i) ∧ gCA(i) (3)

Equivalently, hCA(i) = 1 if and only if fCA(i) = 1 and gCA(i) = 1.

A.5 MODEL PROMPTS

A.5.1 DIRECT VISUAL RULE LEARNING

The prompt used for the Direct Visual Rule Learning paradigm is designed to elicit a holistic analysis
of the provided images, encouraging the model to identify a distinguishing rule and apply it to the
query image. The prompt emphasizes the distinction between positive (cat_2) and negative (cat_1)
examples and guides the model to provide a structured output containing its analysis, the identified
rule, details about the query image, and the final classification.

def visual_concept_test_prompt(m, n):
"""
Generates a visual analysis prompt.

Args:
m (int): Number of positive samples.
n (int): Number of negative samples.

Returns:
str: The formatted prompt string.

"""
return f"""
You are provided with {m + n + 1} images: the first {m} samples are

‘cat_2 ‘, the next {n} samples are ‘cat_1 ‘, and the last image is
the ‘query image ‘.

Analyze the common characteristics or patterns found in the ‘cat_2 ‘
samples (positive samples: following 1 common rule) that
distinctly separate them from the ‘cat_1 ‘ samples (negative
samples: it might not follow any possible rule).

Your task is to:

1. Determine the rule or criterion that distinguishes the ‘cat_2 ‘
samples from the ‘cat_1 ‘ ones.

2. Analyse the ‘query image ‘ (last image).
3. Provide your conclusion for the ‘query image ‘ if it can be

categorized as either ‘cat_1 ‘ or ‘cat_2 ‘ based on the analysis
and the rule.

Ensure that the output is clear , well -formatted , and free of
unnecessary explanations.

Omit the ‘‘‘ tags at the beginning and end of the page. The format
of your output should be as follows:

- ** Analysis **: (Your analysis here)
- **Rule **: (The distinguishing rule here)
- **Query Image **: (Query image details)
- ** Conclusion **: (cat_1 or cat_2)
"""

A.5.2 DEDUCTIVE RULE LEARNING

The Deductive Rule Learning paradigm employs a two-stage prompting strategy. The first stage
focuses on rule extraction from positive and negative examples, while the second stage applies the
extracted rule to classify a query image. The prompts for each stage are detailed below.
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A.5.2.1 FIRST-STAGE PROMPT (RULE EXTRACTION)

This prompt guides the model to identify and summarize a distinguishing rule based on provided
positive and negative examples. It emphasizes conciseness in the rule summary.

def visual_concept_prompt(m, n):
try:

if m < 0 or n < 0:
raise ValueError(f"Invalid input: m and n must be

non -negative. Received m={m}, n={n}.")

if m > 0 and n > 0:
prompt = f"""

You are provided with {m + n} images: the first {m}
samples are cat_2 , the next {n} samples are cat_1.
Analyze the common characteristics or patterns found
in the cat_2 samples (positive samples: following 1
common rule) that distinctly separate them from the
cat_1 samples (negative samples: it might not follow
any possible rule).

Your task is to provide the rules that defines cat_2
samples. At the end , write "summary" of the rule
identified in less than 20 words.

Ensure that the output is clear , well -formatted , and
free of unnecessary explanations. Omit the ‘‘‘ tags
at the beginning and end of the page.

"""
if n == 0:

prompt = f"""
You are provided with {m} images: {m} samples are cat_2.

Analyze the common characteristics or patterns found
in the cat_2 samples (positive samples: following 1
common rule) that distinctly separate them from
negative samples which might not follow any possible
rule.

Your task is to provide the rules that defines cat_2
samples. At the end , write "summary" of the rule
identified in less than 20 words.

Ensure that the output is clear , well -formatted , and
free of unnecessary explanations. Omit the ‘‘‘ tags
at the beginning and end of the page.

"""
return prompt

except ValueError as e:
print(f"Error: {e}")
raise

A.5.2.2 SECOND-STAGE PROMPT (RULE APPLICATION)

This prompt presents the previously extracted rule summary and a query image, prompting the model
to classify the image based on the rule. It reinforces the Bongard problem context and requests a
structured output.

# Define the visual analysis prompt
def visual_concept_test_prompt(m, n, summary):

return f"""
We are working with Bongard dataset where there are {m} image in the

cat_2 and {n} images in the cat_1. Summary of the common
characteristics or patterns found in the cat_2 samples (positive
samples: following 1 common rule) that distinctly separate them
from the cat_1 samples (negative samples: it might not follow
any possible rule) is as follows: \n {summary }.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Your task is to ponder over the rule and provide your conclusion for
the ‘query image ‘ if it can be categorized as either "cat_1" or
"cat_2".

Ensure that the output is clear , well -formatted , and free of
unnecessary explanations.

Omit the ‘‘‘ tags at the beginning and end of the page. The format
of your output should be as follows:

- ** Analysis **: (Your analysis here)
- **Rule **: (The distinguishing rule here)
- **Query Image **: (Query image details)
- ** Conclusion **: (cat_1 or cat_2)
"""

A.5.3 COMPONENTIAL ANALYSIS

The Componential Analysis paradigm also uses a two-stage prompting strategy. The first stage
generates detailed image descriptions, while the second stage derives a rule from these descriptions
and applies it to a query image. The specific prompts for each stage are presented below.

A.5.3.1 FIRST-STAGE PROMPT (IMAGE DESCRIPTION GENERATION)

This prompt instructs the model to generate a comprehensive, hierarchical description of a given
image in JSON format. It guides the model to cover various aspects of the image, from scene
and objects to activities and contextual elements, facilitating detailed comparative analysis in the
subsequent stage.

# Define the visual analysis prompt
def visual_concept_prompt ():

"""
Generates a visual analysis prompt.

Args:

Returns:
str: The formatted prompt string.

"""
return """

Carefully examine the provided image and identify all
possible visual elements , organizing them into a
detailed hierarchical structure. Start with broad
categories and progress to more specific subcategories.
This should cover everything visible in the image ,
ensuring no detail is overlooked. Structure your
findings in a JSON format to enable easy comparison and
synthesis of data from other images. This will help
discern patterns , contexts , and rules valuable for
identifying or understanding query images.

Your hierarchy might encompass the following elements:

1. **Scene/Environment **: Description of the overall setting
depicted , such as urban , natural , indoor , or outdoor
scenes.

2. ** Objects **: Define distinct items or entities present in
the scene.

- ** Living Beings **: Animals , humans , or other biological
entities.
- Species or classification (e.g., dog , bird , human).
- Characteristics (e.g., color , posture , movement).

- ** Inanimate Objects **: Both synthetic and natural elements.
- Categories (e.g., vehicle , building , trees).
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- Properties (e.g., color , size , material , shape).
3. ** Activities **: Observable actions or interactions

involving any objects or beings.
- Specific descriptions of actions (e.g., walking , flying).
- Participants involved in these actions.
4. ** Contextual Elements **: Environmental conditions and

time markers , such as time of day or weather.
- Detailed characteristics (e.g., cloudy , night , winter).
5. ** Visual Patterns **: Prominent colors , textures , and

patterns that are visually significant.
6. ** Emotional Undertones **: Any emotional presence or

expressions evident in the image.
7. ** Textual Information **: Any visible text within the

image , including what it says and its visual style.
8. ** Summary **: A concise narrative summarizing the overall

content and context of the image.

Ensure that every aspect from the image is represented under
these categories. The information should be presented in
the following JSON format:

{
"Scene": {

"Description ": "..."
},
"Objects ": {

"Living Beings ": [...],
"Inanimate Objects ": [...]

},
"Activities ": [...],
"Contextual Elements ": {

"Time of Day": "...",
"Weather ": "..."

},
"Visual Patterns ": {

"Dominant Colors ": [...],
"Textures ": [...]

},
"Emotional Undertones ": "..."
"Textual Information ": "..."
"Summary ": "..."
}
Ensure that the JSON output is clear , well -formatted , and

free of unnecessary explanations. Omit the ‘‘‘json tags
at the beginning and end of the page.

"""

A.5.3.2 SECOND-STAGE PROMPT (RULE DERIVATION INSTRUCTION)

This prompt guides the model to analyze the JSON descriptions generated in the first stage, derive
a distinguishing rule, and apply it to classify a query image. It emphasizes the use of the provided
JSON format and requests a structured output.

def user_eval_prompt(all_image_specs , m, n):
return f"""

We are working with the Bongard dataset , which contains {m}
images in cat_2 (positive samples) and {n} images in cat_1
(negative samples). These categories are defined as follows:

- Cat_2: Positive samples that follow a single common rule.
- Cat_1: Negative samples that may not follow any specific rule.

The image descriptions for the positive samples , negative
samples , and the test image are provided in JSON format.
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Analyze the common patterns or characteristics in the cat_2
samples that distinguish them from cat_1 samples.

Your task is to:
1. Derive the rule that defines the cat_2 samples.
2. Apply this rule to categorize the test image.

Here are the image descriptions:

### Positive Samples (cat_2):
{all_image_specs [:m]}

### Negative Samples (cat_1):
{all_image_specs[m:m+n]}

### Test Image:
{all_image_specs [-1]}

Provide your output in the following format:

- ** Analysis **: (Your analysis here)
- **Rule **: (The distinguishing rule here)
- **Test Image **: (Test image details)
- ** Conclusion **: (cat_1 or cat_2)
"""

A.6 PROMPTS FOR WINOGROUND COMPONENTIAL ANALYSIS (STAGE 2
REASONING)

For the Winoground benchmark (Thrush et al., 2022), Stage 2 of our Componential Analysis (CA)
paradigm requires a reasoning model to evaluate matches between image descriptions (JSON strings
generated in CA Stage 1 from the Winoground images) and the provided captions. The following
prompts were used to guide the reasoning LLM in selecting the best match, forming the basis for
calculating the Text Score and Image Score components as detailed in Appendix A.4.4. Both prompts
instruct the model to perform a systematic, step-by-step comparison and to return its analysis and
final categorization in a structured JSON format.

A.6.1 PROMPT FOR TEXT SCORE COMPONENT DECISION

The following Python function defines the prompt presented to the reasoning LLM. Given one image’s
detailed JSON description and two candidate captions (Caption 0 and Caption 1), the model is tasked
to determine which caption has a higher possibility of matching the image description. This process
is repeated for the second image description in the Winoground pair to gather the necessary data
points for the Text Score.

def text_score_prompt(image_description , caption_0 , caption_1):
’’’
Generates a prompt for an LLM to determine if an image description

has a higher possibility
of matching caption_0 or caption_1 by evaluating each match

individually and comparing them ,
using a detailed JSON description and commonsense reasoning.

Args:
image_description (str): A JSON string description of an image.
caption_0 (str): The first candidate caption.
caption_1 (str): The second candidate caption.

Returns:
str: The formatted prompt string.

’’’
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prompt = f"""You are provided with a detailed JSON description of a
single image and two different captions (Caption 0 and Caption
1). Your task is to evaluate how well the image description
matches *each* caption individually , determine which caption
provides a stronger match (higher possibility), and explain why.
Apply commonsense reasoning where needed.

**Image Description (JSON):**
‘‘‘json
{image_description}‘‘‘

** Caption 0:** "{ caption_0 }"
** Caption 1:** "{ caption_1 }"

** Instructions :**
1. ** Deconstruct Image Description :** Identify the main entities

(using ‘id‘s), actions (‘Activities ‘), attributes
(‘characteristics ‘, ‘properties ‘), and relationships (‘Spatial
Relationships ‘) detailed in the JSON description. Use
commonsense to understand the full context implied by the
description.

2. ** Evaluate Match with Caption 0:** Systematically check how well
the key elements identified in Caption 0 (entities , actions ,
attributes , relationships) are supported by the details in the
‘Image Description ‘ JSON.
* Look for specific ‘id‘s, ‘characteristics ‘, ‘actor_ids ‘,

‘target_ids ‘, ‘action ‘ descriptions , ‘relationship ‘ types ,
etc., in the JSON that align with Caption 0’s elements.

* Use commonsense reasoning to map JSON details to caption terms
(e.g., ‘characteristics ‘ like "elderly" might correspond to
"old person ").

* Assess the overall strength of the match (e.g., "strong
support", "partial support", "weak support",
"contradiction "). Note any discrepancies.

3. ** Evaluate Match with Caption 1:** Perform the same systematic
check and assessment against Caption 1.
* Look for specific JSON details supporting or contradicting

Caption 1’s elements.
* Use commonsense reasoning.
* Assess the overall strength of the match for Caption 1. Note

any discrepancies.
4. ** Compare Matches and Conclude :** Compare the strength of the

match assessed for Caption 0 versus Caption 1. Explain *why* the
image description represents one caption with a higher
possibility or accuracy than the other. Highlight the specific
JSON details (or lack thereof) that lead to this conclusion.
Explicitly mention where commonsense was applied during the
evaluation or comparison.

5. ** Categorize :** Assign ’cat_0’ if the image description has a
higher possibility of matching Caption 0, or ’cat_1’ if it has a
higher possibility of matching Caption 1.

Return your response strictly in the following JSON format:
{{

"analysis ": (Your detailed analysis comparing the match strength
for each caption against the image description , explaining
why one is a better fit , and noting the use of commonsense),

"category ": (’cat_0’ or ’cat_1 ’)
}}

Do not include any text outside of the JSON structure. Your decision
must be based on evaluating the match between the image
description and each caption , then comparing those evaluations.

"""
return prompt
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A.6.2 PROMPT FOR IMAGE SCORE COMPONENT DECISION

Similarly, the following Python function defines the prompt used for the Image Score component.
Given one caption and two candidate image descriptions (Image 0 Description and Image 1 Descrip-
tion, both JSON strings), the model is tasked to determine which image description has a higher
possibility of matching the caption. This is repeated for the second caption in the Winoground pair.

def image_score_prompt(caption , image_0_description ,
image_1_description):
’’’
Generates a prompt for an LLM to determine if a caption has a higher

possibility
of matching image_0_description or image_1_description by evaluating

each match
individually and comparing them , using detailed JSON descriptions

and commonsense reasoning.

Args:
caption (str): The caption to evaluate.
image_0_description (str): The JSON string description of the

first image.
image_1_description (str): The JSON string description of the

second image.

Returns:
str: The formatted prompt string.

’’’
prompt = f"""You are provided with a single caption and detailed

JSON descriptions of two different images (Image 0 and Image 1).
Your task is to evaluate how well the caption matches *each*
image description individually , determine which description
provides a stronger match (higher possibility), and explain why.
Apply commonsense reasoning where needed.

** Caption **: "{ caption }"

**Image 0 Description (JSON):**
‘‘‘json
{image_0_description}‘‘‘

**Image 1 Description (JSON):**
‘‘‘json
{image_1_description}‘‘‘

** Instructions :**
1. ** Deconstruct Caption :** Identify the main entities , actions ,

attributes , and relationships mentioned in the caption (e.g.,
"old person", "kisses", "young person "). Use commonsense to
understand the full context implied by the caption.

2. ** Evaluate Match with Image 0:** Systematically check how well
the key elements identified in the caption are supported by the
details in ‘Image 0 Description ‘.
* Look for specific ‘id‘s, ‘characteristics ‘, ‘actor_ids ‘,

‘target_ids ‘, ‘action ‘ descriptions , ‘relationship ‘ types ,
etc., in the JSON that align with the caption ’s elements.

* Use commonsense reasoning to map caption terms to JSON details
(e.g., "old person" might correspond to ‘characteristics ‘
like "elderly ").

* Assess the overall strength of the match (e.g., "strong
support", "partial support", "weak support",
"contradiction "). Note any discrepancies.

3. ** Evaluate Match with Image 1:** Perform the same systematic
check and assessment against ‘Image 1 Description ‘.
* Look for specific JSON details supporting or contradicting the

caption ’s elements.
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* Use commonsense reasoning.
* Assess the overall strength of the match for Image 1. Note any

discrepancies.
4. ** Compare Matches and Conclude :** Compare the strength of the

match assessed for Image 0 versus Image 1. Explain *why* one
description represents the caption with a higher possibility or
accuracy than the other. Highlight the specific JSON details (or
lack thereof) from *both* descriptions that lead to this
conclusion. Explicitly mention where commonsense was applied
during the evaluation or comparison.

5. ** Categorize :** Assign ’cat_0’ if the caption has a higher
possibility of matching Image 0 Description , or ’cat_1’ if it
has a higher possibility of matching Image 1 Description.

Return your response strictly in the following JSON format:
{{

"analysis ": (Your detailed analysis comparing the match strength
for each description against the caption , explaining why one
is a better fit , and noting the use of commonsense),

"category ": (’cat_0’ or ’cat_1 ’)
}}

Do not include any text outside of the JSON structure. Your decision
must be based on evaluating the match between the caption and
each description , then comparing those evaluations.

"""
return prompt

A.7 RESULTS AND EXTENDED ANALYSIS

A.7.1 PERFORMANCE ON BONGARD OPENWORLD

Gemini 2.0 GPT-4o
Category Mean Std Dev Mean Std Dev
Positive 0.915 0.02 0.902 0.02
Negative 0.868 0.02 0.866 0.02

Table A.3: Semantic Similarity (Cosine) between query descriptions and rules derived during
Deductive Rule Learning.

A.7.2 PERFORMANCE ON BONGARD-HOI

(Refer to Table A.4 in main text)

A.7.3 WINOGROUND PERFORMANCE CONTEXT

To contextualize the performance of our Componential Analysis (CA) paradigm applied to Gemini 2.0
on Winoground (reported in Section 6.2), we also ran evaluations using Gemini Pro Vision with several
prompting strategies. Table A.5 shows these comparative results on the 400-sample Winoground set
used. While advanced CoT methods like DDCoT and CoCoT improve over the baseline for Gemini
Pro Vision, the CA paradigm applied to Gemini 2.0 achieves competitive scores, particularly on the
text metric, demonstrating its effectiveness.

A.7.4 COMPARISON OF DESCRIPTION SOURCES (PIXTRAL-12B VS. GPT-4O)

The results, detailed in Table A.6, consistently show that using image components described by
GPT-4o yielded higher downstream reasoning accuracy compared to using components described
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Model Paradigm sosa soua uosa uoua Avg

Gemini 2.0
DVRL 50 54 49 50 50.8
DRL 63 62 55 65 61.3
CA 77 74 70 77 74.5

GPT-4o
DVRL 68 75 61 70 68.5
DRL 73 77 64 73 71.8
CA 83 83 66 77 77.3

Human Avg. – 87.2 90.0 93.6 94.9 91.4

Table A.4: Performance (%) on Bongard-HOI splits across paradigms. Human average taken from
(Jiang et al., 2022) Splits: sosa: seen_obj_seen_act, soua: seen_obj_unseen_act, uosa: unseen_obj_seen_act,
uoua: unseen_obj_unseen_act. Human average from cited source.

Model / Strategy Text Image Group
Gemini (Baseline) 30.75 26.00 25.00
Gemini + DDCoT 45.00 25.00 23.75
Gemini + CCoT 22.50 33.00 20.75
Gemini + CoCoT 40.00 32.50 27.75

Gemini 2.0 + CA (Ours) 71.91 48.71 42.01

Table A.5: Performance comparison on Winoground (400 samples). CA refers to our Componential
Analysis paradigm. Other results use Gemini Pro Vision with different prompting strategies.

by Pixtral-12B across all tested reasoning models. While both description sources enabled strong
performance, the advantage conferred by GPT-4o’s descriptions (ranging from approximately 2% to
over 11% improvement depending on the reasoning model) further underscores the critical dependence
of reasoning outcomes on the fidelity, richness, and potentially the alignment of the initial perceptual
descriptions with the concepts required by the reasoning task. This reinforces the significance of the
VLM’s front-end visual processing and description capabilities as a key factor influencing overall
visual reasoning performance.

Components (%)
Model Pixtral-12B GPT-4o
Deepseek-R1-14B 83.21 87.98
Llama3.2-vision-90B 89.05 90.98
Phi-4-14B 86.86 91.98
Qwen2.5-14B 90.51 92.99
LLaVA-7B 68.61 80.56
Llama3.2-vision-11B 80.29 84.17
LLaVA-34B 79.56 81.56
Phi-3-14B 84.67 86.97

Table A.6: Performance comparison using Componential Analysis (Stage 2) with image descriptions
generated by either Pixtral-12B or GPT-4o. Evaluated across various reasoning models.

A.7.5 COMPONENTIAL ANALYSIS RESULTS BY COMMONSENSE CATEGORY

Analysis of GPT-4o and Gemini 2.0 performance in CA across commonsense categories (Appendix
Table A.7) showed generally strong performance, indicating robustness to varied conceptual rules.
Minor variations suggested potential differences in handling specific types of context or attributes,
possibly reflecting training data nuances.
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ID Concept Category GPT-4o (%) Gemini 2.0 (%)
0 Anything else 92.88 94.23
1 Human-Object Interaction

(HOI)
86.67 92.86

2 Taste / Nutrition / Food 100.00 85.71
3 Color / Material / Shape 88.89 91.67
4 Functionality / Status /

Affordance
100.00 100.00

5 And / Or / Not 90.00 80.00
6 Factual Knowledge 90.00 90.00
7 Meta Class 100.00 100.00
8 Relationship 100.00 100.00
9 Unusual Observations 92.31 92.31

Table A.7: Overall accuracy (%) of GPT-4o and Gemini 2.0 on the Bongard-OW test set using Com-
ponential Analysis, broken down by Commonsense ID category. Performance variations highlight
differing model strengths on specific concept types.

A.7.6 IMPACT OF COT-LIKE STRUCTURE

(Refer to Table A.8 below)

Prompt Type Accuracy (%)
Overall neg pos

Minimal (No CoT) 61.6 39.2 84.0
Structured (CoT-like) 80.0 66.4 93.6

Table A.8: Impact of Structured Prompting on DVRL accuracy (GPT-4o).

A.7.7 DETAILED ERROR ANALYSIS EXAMPLES

(Refer to Table A.9 below)

No. Test ID Caption (Rule) Reason for Error (Based on GPT-4o o/p)

1 0021_neg_0 Cars on the city
streets at night

Weak reasoning (similarity): Rule requires
vehicles, test image (painting) lacks them
explicitly, though context implies city.

2 0014_neg_0 A person playing a
guitar.

Rule extraction error: Rule too general (e.g.,
“person with instrument”), misses specific object
(guitar) mentioned in analysis.

3 0033_neg_0 A bicycle is placed in
the corner

Rule extraction error: Misses key property (in a
corner / specific placement context). Test image
(collage) lacks this context.

4 0037_neg_0
The girl has long and

thin braids on her
head.

Rule extraction error: Rule too general (e.g., “girl
with braids”), misses specific property (long and
thin).

5 0076_pos_0 Various kinds of
rings

Rule extraction error: Rule misses specific object
(ring), focuses on property (intricate design)
absent in query.

6 0076_neg_0 Various kinds of
rings

Rule extraction error: Rule misses specific object
(ring), too general.

Continued on next page
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No. Test ID Caption (Rule) Reason for Error (Based on GPT-4o Output)

7 0082_neg_0 Live coral on the sea
floor.

Weak reasoning (similarity): Rule identifies
‘coral’, but test image description fails to mention
it. Perceptual description error.

8 0084_neg_0
A wooden fence

surrounding a grassy
field.

Rule extraction error: Rule misses specific object
(grass), uses broader term (greenery). Test image
has greenery but not clearly grass.

9 0112_neg_0 A wooden floor in
the living room.

Rule extraction error: Misses key objects (living
room, floor), focuses only on ‘wooden’ and
general ‘indoor’.

10 0117_neg_0 Colorful ribbons. Rule extraction error: Rule too general, misses
specific object (ribbons).

11 0122_neg_0 A satellite view of
Earth.

Rule extraction error: Misses specific viewpoint
(top-down satellite), uses more general ‘aerial’.

12 0136_pos_0 Spectator seats view
in the stadium.

Weak reasoning/Rule Application error: Rule
mentions “sports or spectators”, query image
description lacks both, leading to incorrect
negative classification despite being stadium seats.

13 0213_neg_0 Checkerboard pattern
fabrics

Rule extraction error: Misses specific object
context (fabric), although pattern is identified.

14 0234_neg_0 A beautiful stone
sculpture

Rule extraction error: Focuses on wrong property
(‘prominent’ obelisk) instead of the intended rule
property (‘tall’ obelisk).

15 0247_pos_0 Small river filled
with reeds

Rule extraction error: Misses key object (reeds),
while focusing on negative constraints (no
industrial presence) which are weakly present.

Table A.9: Error Analysis: Examples of Bongard-OW cases misclassified
by both GPT-4o and Gemini 2.0 in Componential Analysis. Captions
indicate the ground truth rule (Wu et al., 2024). Reasoning based on
analyzing GPT-4o’s generated analysis, rule, and query description.
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