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ABSTRACT

Pretraining large language models often requires significant computational re-
sources and memory due to their vast parameter amount. An effective approach
to enhance parameter efficiency in both training and inference is to parameterize
each full-size weight as the product of two trainable low-rank factors. While low-
rank fine-tuning has achieved great success, low-rank pretraining remains chal-
lenging as it requires learning extensive knowledge from scratch under the restric-
tive low-rank parameterization. During standard low-rank pretraining, separately
optimizing the low-rank factors introduces redundant information from the full
gradient, which hinders the learning process. To achieve efficient yet effective
low-rank pretraining, we propose a Low-rank Riemannian Optimizer (LORO).
At each LORO update step, the low-rank factor pairs are jointly updated to ensure
their full-size product moves along the steepest descent direction on the low-rank
manifold, without the need to compute any memory-intensive full-size matrices
or gradients. Hence, our LORO finds low-rank models that achieve high per-
formance comparable to full-size pretrained models, while significantly reducing
memory usage and accelerating both training and inference. A LLaMA 1B model
pretrained with LORO achieves a perplexity score of 2% better than the full-size
baseline, with a 54% reduction in model memory, a×1.8 speedup in training, and
a ×2.2 speedup in inference. The code is available on GitHub1.

1 INTRODUCTION

In recent years, large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023a;b; Team
et al., 2024a;b), whose parameter sizes often reach hundreds of billions, have obtained remarkable
performance across a wide range of applications. Typically, a pretraining and fine-tuning paradigm
is adopted for building powerful LLMs from scratch: a model is first pretrained on large-scale
unsupervised corpora (Devlin et al., 2019; Brown et al., 2020) to acquire general semantics and
extensive knowledge, and then fine-tuned on a smaller downstream dataset to enhance its domain-
specific capabilities (Hu et al., 2022; Team et al., 2024b; Ramesh et al., 2024).

An extensive amount of trainable parameters results in a substantial memory footprint and high
computational costs during pretraining and fine-tuning. To alleviate these issues, various memory-
efficient training techniques have been proposed to reduce memory usage and accelerate training.
These approaches stem from either an engineering perspective, such as gradient checkpointing
(Chen et al., 2016), memory offloading (Rajbhandari et al., 2020), or an optimization perspective,
including low-rank optimizers (Hu et al., 2022; Zhang et al., 2023; Hayou et al., 2024; Lialin et al.,
2024) and low-precision optimizers (Dettmers et al., 2021; Li et al., 2023; Zhang et al., 2024b).
Since low-rank adaptation (LoRA) (Hu et al., 2022) has gained increasing attention, becoming one
of the most popular parameter-efficient fine-tuning methods. At each layer, LoRA replaces the full-
size pretrained weight W ∈ Rd×d with W + BA, where B ∈ Rd×r and A ∈ Rr×d are two
trainable low-rank factors, while W is frozen during fine-tuning to reduce training memory foot-
print. However, these methods depend on full-size pretrained weights, making them inapplicable to

1https://github.com/mzf666/LORO-main
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pretraining scenarios. Furthermore, they ultimately produce models with full-size weights, which
do not result in any memory reduction or speedup in the inference phase.

In this work, we aim to enhance efficiency during both the training and inference by exploring the
pretraining of low-rank parameterized language models, where each weight matrix is parameterized
as W ≜ BA, the product of two rank-r matrices. In practice, such low-rank parameterization enjoys
great potential in improving both training and inference efficiency, as it reduces the parameter size
at each layer from d2 to 2rd and decreases the FLOPS from O(d3) to O(rd2). Theoretically, a
low-rank model can achieve a ×(2r/d) memory reduction and a ×(d/2r) inference speedup.
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Figure 1: Visualization of the perplex-
ity (log scaled) and memory-efficiency
trade-off of pretraining LLaMA-1B on
C4 (Table 1). Methods closer to the
bottom-left corner and associated with
smaller bubble sizes exhibit superior
performance and memory efficiency.

However, pre-training low-rank language models from
scratch using standard stochastic gradient descent meth-
ods is much more challenging. As shown in (Kamalakara
et al., 2022; Zhao et al., 2024), separately optimizing each
low-rank factor of the model may result in a significant
performance drop compared to full-size models. There-
fore, as a compromise, recent works consider pretrain-
ing language models with full-size weights while utiliz-
ing low-rank or sparse updates to enhance training effi-
ciency: ReLoRA (Lialin et al., 2024) periodically merges
a low-rank update into the full-size weight after a full-size
warm-up training phase; GaLore (Zhao et al., 2024) up-
dates the full-size model weights using low-rank yet full-
size gradients; SLTrain (Han et al., 2024) proposes sparse
plus low-rank pretraining, where the full-size weights are
decomposed into sum of sparse and low-rank matrices.
However, these methods can merely produce full-size
models, leading to limited or no memory reduction or acceleration during inference.

While recent studies (Zhao et al., 2024; Han et al., 2024) observe that the rank of the resulting
weight matrix W obtained from full-size pretraining methods is typically high (close to d), this
does not necessarily mean that low-rank pretraining approaches (learning BA instead of W) are
incapable of achieving satisfactory performance in learning foundation models. We argue that with
careful design of the learning process for the low-rank factors A and B, it is possible to train a
model with performance comparable to full-size models. Therefore, this paper aims to address the
research question: Can we train a low-rank parameterized language model from scratch to achieve
performance comparable to the full-size baseline? In essence, low-rank pretraining is more chal-
lenging than fine-tuning. Given the pretrained full-size weights, fine-tuning only requires capturing
the minor domain-specific knowledge through a low-rank adaptation. In contrast, learning exten-
sive pretraining knowledge from scratch under the restrictive low-rank parameterization requires a
more careful optimization process. As noted in the discussions of (3) in Section 3, optimizing the
low-rank factors separately introduces redundant information from the full gradient, which hinders
the feature learning process. In this scenario, the separate optimization of B and A fails to direct
their product BA along the steepest descent direction of the loss on the rank-r matrix manifold.
This necessitates considering the intricate geometry of the manifold, prompting us to optimize the
low-rank factors jointly through Riemannian optimization. While recent works (Savostianova et al.,
2023; Schotthöfer et al., 2022) have attempted to train low-rank vision classifiers using Riemannian
gradient methods, they either require evaluating full-size gradients or rely on SVD-like parameter-
ization, which introduces O(r2) additional parameters, making them less preferable for pretraining
language models. To the best of our knowledge, this paper is the first to explore the pretraining of
low-rank language models through the lens of Riemannian optimization.

Contributions. We propose the Low-rank Riemannian Optimizer (LORO) for effective low-rank
pretraining. At each LORO update step, each pair of low-rank factors is jointly updated to ensure
their product is transported along the Riemannian gradient of the rank-r matrix manifold to pursue
effective descent in the model loss. All LORO’s updates are performed directly within the low-
rank parameterization, without the need to evaluate the costly full-size weights or gradients. To our
knowledge, we are the first to show that pretraining low-rank language models with Riemannian gra-
dients achieve perplexity scores comparable to full-size pretraining, based on extensive experiments
conducted on LLaMA models ranging from 60M to 1B in size. On LLaMA-1B, LORO achieves a
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perplexity score of 2% better than the full-size baseline, with 54% less model memory cost and of-
fers a×1.8 speedup in training and a×2.2 speedup in inference. Within the same parameter budget,
we further show that LORO outperforms its full-size counterparts, highlighting LORO’s capacity to
unblock the potential of low-rank parameterization for enhanced representation learning.

2 RELATED WORKS

Low-rank fine-tuning. Pioneered by LoRA (Hu et al., 2022), which achieves parameter-efficient
fine-tuning by restricting optimization exclusively to the low-rank factors BA, various low-rank
fine-tuning methods have been proposed to enhance downstream adaptation (Zhang et al., 2023;
Ding et al., 2023; Hayou et al., 2024; Zhang & Pilanci, 2024; Xia et al., 2024), improve cross-
task generalization (Agiza et al., 2024; Huang et al., 2023; Buehler & Buehler, 2024), and increase
fine-tuning efficiency (Chen et al., 2023; Dettmers et al., 2023; Gamal & Rabusseau, 2023; Kooh-
payegani et al., 2024; Valipour et al., 2023). However, all these low-rank fine-tuning methods require
access to the full-size pretrained weights so the model can be adapted within a low-rank parame-
ter space. When directly applied to pretraining, the absence of pretrained full-size weights—where
most knowledge resides—often results in significant performance drops.

Low-rank pretraining. While a few works have attempted to train low-rank vision models (Sui
et al., 2023; Khodak et al., 2021; Savostianova et al., 2023), training low-rank parameterized lan-
guage models from scratch has been observed to be challenging and remains an open problem (Ka-
malakara et al., 2022; Zhao et al., 2024). Existing methods circumvent these challenges by employ-
ing low-rank or sparse updates while still using full-size weights, such as updating full-size weights
with low-rank gradients (Zhao et al., 2024; Zhang et al., 2024b), periodically merging low-rank
factors into full-size weights (Lialin et al., 2024), or using a low-rank plus sparse weight parameter-
ization (Han et al., 2024). As a result, these methods provide little to no improvement in inference
efficiency. In contrast, LORO is the first to directly tackle language model pretraining using low-
rank parameterized weights.

Optimization on low-rank matrix manifolds. Abundant theories and algorithms (Absil & Os-
eledets, 2015; Absil et al., 2009; Mishra et al., 2014) have been proposed to perform Riemannian
optimization on low-rank matrix manifolds for traditional applications, such as matrix completion
(Vandereycken, 2013; Bian et al., 2023) and regressions (Bleakley & Yamanishi, 2009; Yuan et al.,
2007; Amit et al., 2007). Recent works (Savostianova et al., 2023; Schotthöfer et al., 2022) aim
to train low-rank vision classifiers using Riemannian gradient flow (Koch & Lubich, 2007). How-
ever, these methods either require evaluating full-size gradient and weight matrices or rely on SVD-
like parameterization, which introduces parameter overhead, making them incompatible with low-
rank parameterized language models. In contrast, LORO operates under low-rank parameterization,
avoiding full-size matrix evaluations and enabling efficient pretraining on language models.

3 PRELIMINARIES

Low-rank pretraining. The rank-r parameterization of a d-by-d matrix is defined as W = BA,
where B ∈ Rd×r and A ∈ Rr×d are the associated rank-r factors. When r < d, BA is called the
low-rank parameterization of W. In this work, we focus on training the decoder-only transformer-
based language models (Vaswani et al., 2017; Touvron et al., 2023a) from scratch using low-rank
parameterization. Recall that the two fundamental building blocks of the transformer model are the
linear projection fproj(·) and the self-attention function fattn(·), which are defined as

fproj(X) ≜ XWp, fattn(X) ≜ softmax
(
XWqW

⊤
k X

⊤/
√
d
)
XWv, (1)

where X ∈ Rn×d is the hidden feature, n is the token number, d is the hidden dimension, and Wp,
Wq , Wk, Wv ∈ Rd×d denote the trainable projection, query, key, and value matrices, respectively.
For notation simplicity, we assume that d remains constant across all layers, though all derivations
in this work also apply to scenarios with varying dimensions. As the composition of multiple layers
of linear projections, self-attention functions, and various operations (e.g., activation, normalization,
and positional embedding), the target language model can be parameterized by the stack of trainable
matrices across all N layers, denoted as (W1, · · · ,WN ). Therefore, the rank-r parameterized
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language model is implemented by parameterizing each trainable matrix as a rank-r factorization
Wi = BiAi with Bi ∈ Rd×r and Ai ∈ Rr×d, and is represented by (B1A1, . . . ,BNAN ). In
practice, we set r < d for parameter efficiency. During pretraining, the rank-r model is trained from
scratch on unsupervised corpus data for the next token prediction, defined as:

minL(W1, · · · ,WN ), s.t.Wi = BiAi,Bi ∈ Rd×r,Ai ∈ Rr×d, i = 1, ..., N, (2)

where L(·) : Rd×d × · · · × Rd×d 7→ R+ denotes the smooth next token prediction loss (i.e., the
logarithm of perplexity score (Radford & Narasimhan, 2018)). At the t-th training step with learning
rate η > 0, the full-size weight is updated by the full gradient Wt+1

i ← η∇Wt
i
L. In contrast, during

the standard low-rank pretraining, the low-rank factors are updated separately, which leads to

Wt+1
i ←(Bt

i − η ∇Bt
i
L)(At

i − η ∇At
i
L) ≈Wt

i − η (Bt
iB

t⊤
i · ∇Wt

i
L+∇Wt

i
L ·At⊤

i At
i) (3)

where the last line is derived from the chain-rule Bt⊤
i ∇Wt

i
L = ∇At

i
and ∇Wt

i
L ·At⊤

i = ∇Bt
i
L.

The update direction in (3) is the sum of two sketched versions of the full gradient, each projected
onto the low-rank subspaces spanned by the columns of Bt

i and the rows of At
i. When these two

subspaces overlap, the sketched gradient introduces redundant information from the full gradient,
hindering the learning of effective representations. From a geometric perspective, separately opti-
mizing the low-rank factors overlooks the intricate structure of the low-rank parameterization and
fails to guide their product toward the steepest loss descent on the low-rank matrix manifold 2. To
address this issue, we recast (2) into a Riemannian optimization problem:

min
Bi∈Rd×r, Ai∈Rr×d

L(B1A1, · · · ,BNAN ) =⇒ min
(BiAi)∈Mr

L(B1A1, · · · ,BNAN ), (4)

where Mr denotes the manifold of all d-by-d rank-r matrices. In essence, this reformulation ac-
counts for the geometric structure ofMr by treating the product (BiAi) as a whole: it emphasizes
that the principle for updating Bi and Ai is to guide the product (BiAi) towards the steepest descent
direction within the manifold, rather than optimizing them separately in the ambient space.

Optimization on low-rank matrix manifold. We briefly review the retraction-based Riemannian
optimization on manifolds and refer interested readers to (Lee, 2019; Absil & Oseledets, 2015) for
rigorous definitions and a more comprehensive review. Imagine an ant on the Earth’s surface seek-
ing the highest point. Although it wants to climb straight up along the steepest path—an infeasible
option that would send it into space—it must navigate the curved surface, choosing the best direction
from the feasible tangents at its current location to remain on the Earth. This thought experiment
helps illustrate the difference between optimization in the flat full-size matrix space (e.g., the ambi-
ent space) and on the curved rank-r matrix manifoldMr (e.g., the Earth).

Figure 2: Retraction-based Rie-
mannian optimization, where the
grey plane is the tangent space,
∇L(Wt) and grad L(Wt) denote
the Euclidean and Riemannian gra-
dient at Wt, respectively.

As visualized in Figure 2, when optimizing in the ambient
space, we evaluate the negative Euclidean gradient (blue vec-
tor) at each step by backpropagation, then update the current
weight by moving it a small step towards the blue vector. How-
ever, this update is infeasible onMr, as it moves the current
weight out of the manifold. Instead, we aim to update along the
black dashed curve on the manifold, which guides us toward
smaller loss values. To this end, we need to identify the Rie-
mannian gradient (red solid vector) within the tangent space
(gray plane) that aligns most closely with the Euclidean gra-
dient. This can be done by projecting the blue vector onto
the tangent space. We then update the weight for a small step
along the red solid vector and retract it back to the manifold
(via the red dashed vector) to avoid violating the rank con-
straint. This process is known as the retraction-based Rieman-
nian optimization step, involving: 1. Updating with the pro-
jected gradient and 2. Retracting back to the manifold.

Thanks to the embedded manifold theories, Proposition 1 (see (Lee, 2019, Example 8.14) and (Absil
et al., 2009, Equation 3.37)) shows how to compute the Riemannian gradient via orthogonal projec-
tion onto the tangent space, while Proposition 2 (see (Lewis & Malick, 2008, Lemma 2.1)) shows
that retraction toMr can be done by rank-r singular value decomposition (SVD).

2See Appendix C for more detailed discussions on the issues in standard low-rank pretraining.
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Proposition 1 (Tangent Space and Riemannian Gradient onMr). Mr is a smooth submanifold em-
bedded in the ambient space Rd×d. For any base point W ∈Mr with singular value decomposition
W = UΣV⊤ with U,V ∈ Rd×r being orthogonal, the tangent space at W is given by

TWMr ≜
{
UZV⊤ +U′V⊤ +UV

′⊤ : Z ∈ Rr×r,U′,V′ ∈ Rd×r,U⊤U′ = V⊤V′ = 0
}
, (5)

and the orthogonal projection to TWMr is given by P(G) = UU⊤G+GVV⊤−UU⊤GVV⊤.
When equipped with the matrix inner-product metric,Mr becomes a Riemannian manifold. Then,
the Riemannian gradient of any smooth function L(·) : Rd×d 7→ R evaluated at W, denoted as
grad L(W), can be calculated by projecting the Euclidean gradient∇L(W) to TWMr:

grad L(W) = P(∇L(W)) = UU⊤∇L(W) +∇L(W)VV⊤ −UU⊤∇L(W)VV⊤. (6)

Proposition 2 (Retraction toMr via SVD). Informally, for any base point W ∈ Mr and tangent
vector G ∈ TWMr, a retraction is a function R(·) that maps the shifted base point (W+G) back
toMr. A feasible retraction onMr is R(W+G) ≜ SVDr(W+G), where SVDr(·) is the rank-r
singular value decomposition, projecting the updated base point from Rd×d back toMr.

4 METHODOLOGY

4.1 RIEMANNIAN UPDATE UNDER LOW-RANK PARAMETERIZATION

Proposition 1 and Proposition 2 enable us to perform Riemannian low-rank pretraining onMr via

Wt+1
i ← R(Wt

i − η grad L(Wt
i)) = SVDr

(
Wt

i − η Pi

(
∇Wt

i
L
))

, (7)

wherePi(·) denotes the orthogonal projection to the tangent space TWiMr as defined in Proposition
1. For each trainable weight, we: 1. evaluate the Euclidean gradient ∇WiL, and derive the tangent
space projection Pi(·) from the SVD of base point Wi = UiΣiV

⊤
i ; 2. find the Riemannian gradient

Pi(∇WiL) by projecting∇WiL to the tangent space; 3. transport the base point along the negative
Riemannian gradient; 4. retract the updated base point back toMr via the SVDr(·) projection.

However, these update steps encounter several practical issues that render them incompatible with
low-rank parameterization: First, the full-size gradient ∇Wi

L is inaccessible during backpropaga-
tion (Rumelhart et al., 1988); we can only obtain ∇BiL and ∇AiL, the gradients of the low-rank
factors. Second, in steps 1, 2, and 4, we need to manipulate the memory-intensive full-size matrix
Wi, either by performing SVD or matrix multiplication, which compromises memory efficiency.

This motivates us to revise the update steps of (7) into a “low-rank parameterization friendly”
form by avoiding any computations with full-size d-by-d matrices (e.g., the weight Wi and gradient
∇Wi

L) and ensuring all operations can be performed under the low-rank parameterization. To
achieve this objective, our focus is on the following two goals: 1. Eliminating the need for the
full-size gradient when calculating the Riemannian gradient through tangent space projection; 2.
Keeping the Riemannian update in its factorized form to avoid the necessity of performing SVD
on full-size matrices. To achieve the 1st goal, we propose Proposition 3, which shows that the
Riemannian gradient onMr can be computed from∇Bi

L and ∇Ai
L.

Proposition 3 (Riemannian Gradient under Low-rank Parameterization). Following the previous
notation, for any low-rank parameterized weight W = BA ∈ Mr, where B ∈ Rd×r and A ∈
Rr×d, the Riemannian gradient of any smooth function L(·) : Rd×d 7→ R evaluated at W is

grad L(W) = B(B⊤B)−1 · ∇AL+∇BL · (AA⊤)−1A−B(B⊤B)−1 · ∇AL ·A⊤(AA⊤)−1A. (8)

The proof of Proposition 3 can be obtained from Proposition 1 based on two key observations: 1.
Let UΣV⊤ be the SVD of BA, the column space of B coincides with that of U, and the row space
of A coincides with the column space of V. 2. Backpropagation gives ∇WL · A⊤ = ∇BL and
B · ∇WL = ∇AL. The proof details are postponed to the Appendix B. In practice, for each weight
matrix Wi, (8) involves only multiplications of r-by-d and r-by-r matrices, as well as the inversion
of r-by-r matrices, eliminating the need to compute any expensive d-by-d matrices or use the d-by-d
gradient∇WiL. Additionally, all terms in (8) can be efficiently computed from the readily available
variables—Bi, Ai,∇BiL, and ∇AiL—obtained during backpropagation.
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Although Proposition 3 provides a memory-efficient approach for calculating the Riemannian gradi-
ent, the resulting grad L(W) remains a full-size d-by-d matrix, which compromises the feasibility
of the subsequent Riemannian update and retraction. To address this issue and achieve the 2nd goal,
we propose Proposition 4, which shows that the successive update steps can be achieved within a
factorized form, avoiding the need to compute any full-size weight or gradient.
Proposition 4 (Riemannian Update under Low-rank Parameterization). Following the previous
notations, for any low-rank parameterized weight W = BA ∈ Mr, let B = QBRB and
A⊤ = QARA be the QR-decompositions of B and A⊤. Then the Riemannian updated weight
W′ ≜ SVDr(W − η grad L(W)) admits a low-rank factorization W′ = B′A′, with B′ =(
QB ,QB

)
U∗Σ

1/2
∗ and A′ = Σ

1/2
∗ V⊤

∗
(
QA,QA

)⊤
. Specifically, U∗Σ∗V

⊤
∗ is determined by the

rank-r SVD of the following 2r-by-2r matrix, i.e.,

U∗Σ∗V
⊤
∗ = SVDr

(
S −η R

⊤
A

−η RB 0

)
∈ R2r×2r, S ≜ RBR

⊤
A − η R−⊤

B ∇AL ·QA ∈ Rr×r, (9)

and QBRB is the QR decomposition of the d-by-r matrix (∇BL ·R−1
A −QBQ

⊤
B∇BL ·R−1

A ), while
QARA is the QR decomposition of the d-by-r matrix (∇AL⊤R−1

B −QAQ
⊤
A∇AL⊤R−1

B ).

The proof of Proposition 4 can be derived from Proposition 3 using the tangent space decomposition
(Vandereycken, 2013; Bian et al., 2023) and the proof details are postponed to Appendix B. The
key to avoiding SVD on full-size d-by-d matrices lies in factorizing the d-by-d tangent vector into
a product of a d-by-2r orthogonal matrix, a 2r-by-2r full-rank matrix, and a 2r-by-d orthogonal
matrix, enabling SVD to be applied to the smaller 2r-by-2r matrix instead. Notably, the revised
Riemannian update in Proposition 4 only involves QR decomposition of a d-by-r matrix, inversion
of an r-by-r matrix, SVD on a 2r-by-2r matrix, and multiplication of d-by-2r matrices.

4.2 LOW-RANK RIEMANNIAN OPTIMIZER

In Proposition 4, we have derived the “low-rank parameterization friendly” Riemannian update:

Bt+1
i ← (QB ,QB)U∗Σ

1/2
∗ , At+1

i ← Σ1/2
∗ V⊤

∗ (QA,QA)
⊤, (10)

where QB , QB , QA, QA, U∗, Σ∗, and V∗ can be directly computed from Bt
i, A

t
i, ∇Bt

i
L, and

∇At
i
L, without evaluating any full-size weight or gradient. Although memory-efficient, the QR

decomposition, SVD, and matrix inversion involved in (10) impede the computational efficiency of
low-rank pretraining. This motivates us to develop a rough but efficient approximation of the exact
Riemannian update, which enables us to amortize the computational cost across multiple steps by
periodically applying the exact update while primarily using the approximated update.

To this end, a simple approach is to skip the costly Riemannian SVD retraction and directly update
the weight along the Riemannian gradient. Unfortunately, the Riemannian gradient in (8) has a
maximum rank of 2r, making it incompatible with the rank-r parameterization. To establish an
approximate update that can be applied to Bi and Ai respectively, we highlight the differences
between the standard low-rank update (3) and Riemannian update (8) in blue:

Standard low-rank update = −η
(
Bt

i · ∇At
i
L+∇Bt

i
L ·At

i

)
+O(η2),

Riemannian update = −η
(
Bt

i(B
t⊤
i Bt

i)
−1∇At

i
L · (I−At⊤

i (At
iA

t⊤
i )

−1
At

i)︸ ︷︷ ︸
Orthogonal projection

+∇Bt
i
L · (At

iA
t⊤
i )

−1
At

i

)
.

In the Riemannian update, the gradients are additionally normalized by multiplying them with ei-
ther (Bt⊤

i Bt
i)

−1 or (At
iA

t⊤
i )−1. Additionally, ∇At

i
L is projected onto the orthogonal space of

the row space of At
i (the middle blue term), thereby removing the redundant gradient components.

This motivates us to approximate this normalization by scaling the gradient terms in proportion to
the spectral norm of either (Bt⊤

i Bt
i)

−1 or (At
iA

t⊤
i )−1. The orthogonal projection can be omit-

ted, as it does not affect the gradient scale. Notice that
∥∥(Bt⊤

i Bt
i)

−1
∥∥
2
= σ1

(
(Bt⊤

i Bt
i)

−1
)
=

σr

(
Bt⊤

i Bt
i

)−1
= σr (B

t
i)

−2, where ∥ · ∥2 is the spectral norm and σk(·) denotes the k-th largest
singular value of a matrix. We estimate σr(B

t
i)

2 by the average of the squared singular values, i.e.,
(1/r)

∑r
k=1 σk(B

t
i)

2, which equals (1/r)∥Bt
i∥2F, where ∥ · ∥F denotes the Frobenius norm. As-

suming each row of Bt
i contains no extreme values and its norm is upper-bounded by a constant, we
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obtain ∥Bt
i∥2F = O(d). Thus, we approximate the scaling factor as r/d to avoid explicitly computing

∥Bt
i∥2F. We set the approximated Riemannian update step as

Bt+1
i ← Bt

i − η · (r/d) · ∇Bt
i
L, At+1

i ← At
i − η · (r/d) · ∇At

i
L. (11)

Algorithm 1 Low-rank Riemannian Optimizer

Input: current update step t, trainable low-rank fac-
tors Bt

i,A
t⊤
i ∈ Rd×r, backward gradients ∇Bt

i
L,

∇At
i
L, learning rate η, exact update frequency K.

Output: updated low-rank factors Bt+1
i , At+1

i .
if t mod K ̸= 0 then
Bt+1

i ← Bt
i − η(r/d)∇Bt

i
L

At+1
i ← At

i − η(r/d)∇At
i
L

else
(QB ,RB)← QR(Bt

i), (QA,RA)← QR(At⊤
i )

ZB ← ∇Bt
i
L ·R−1

A , ZA ← ∇At
i
L⊤R−1

B

(QB ,RB)← QR(ZB −QBQ
⊤
BZB)

(QA,RA)← QR(ZA −QAQ
⊤
AZA)

S← RBR
⊤
A − ηR−⊤

B ∇At
i
L ·QA

U∗Σ∗V
⊤
∗ ← SVDr

(
S −ηR⊤

A

−ηRB 0

)
Bt+1

i ←
(
QB ,QB

)
U∗Σ

1/2
∗

At+1
i ← Σ

1/2
∗ V⊤

∗
(
QA,QA

)⊤
end if
return Bt+1

i , At+1
i

We now propose the Low-rank Riemannian Optimizer):
for every K training steps, LORO periodically employs
an exact low-rank Riemannian update step (equation 10),
while in between, it uses the approximated low-rank Rie-
mannian update (equation 11). In practice, LORO accu-
mulates the gradients of Bt

i and At
i using the momentum

strategy as the Adam optimizer (Kingma & Ba, 2015). A
pseudo-code of LORO is outlined in Algorithm 1, and a
PyTorch code is attached in Algorithm 2. We refer the
readers to Appendix C for more detailed discussions on
how LORO benefits low-rank pretraining.

Complexity Analysis. As shown in Algorithm 1, the
algorithmic complexity of the approximate LORO up-
date step is O(rd) as it only involves element-wise op-
erations. On the other hand, the exact update step in-
cludes QR decomposition of d-by-r matrices with a com-
plexity of O(r2d), inversion of r-by-r triangular matrices
with a complexity of O(r2), SVD of 2r-by-2r matrices at
O(r3), and matrix multiplications with a complexity of O(r2d). Suppose the frequency of the exact
update is K, then the average complexity of LORO is O(r2(r+ d)/K + rd). In practice, we set the
frequency K in the same order as r, which simplifies the LORO complexity to O(r2 + rd). There-
fore, when comparing with the standard Euclidean low-rank pretraining with a O(rd) complexity,
LORO does not introduce evident computational overhead.

5 EXPERIMENT RESULTS

5.1 EFFICIENT LOW-RANK PRETRAINING

Experiment setup. In this section, we evaluate the effectiveness of our proposed LORO in training
low-rank language models from scratch. All the experiments are implemented in PyTorch (Paszke
et al., 2019) and conducted on NVIDIA 40G A100 GPUs. For a fair comparison with existing
baselines, we follow a standard experiment setup used in (Zhao et al., 2024; Lialin et al., 2024).
Specifically, we adopt the LLaMA-based language model (Touvron et al., 2023b) equipped with
RMSNorm (Zhang & Sennrich, 2019) and SwiGLU activations (Shazeer, 2020). We follow the
same model configurations as (Zhao et al., 2024, Table 5) for the LLaMA-60M, -130M, -350M, and
-1B models3 and we conduct all the pretraining experiments using BF16 (bfloat16) format. We train
all the models on the C4 (Colossal Clean Crawled Corpus) dataset (Raffel et al., 2019), a large-scale
cleaned dataset designed for language models pretraining. The models are trained on a sufficiently
large volume of data without repetition to simulate the pretraining setting in practice.

LORO configurations. We consider the low-rank parameterization that represents each target
weight matrix as the product of a rank-r tall matrix and a rank-r wide matrix as defined in equa-
tion 2. In this paper, we apply low-rank parameterization to all weights in attention functions (e.g.
query-, key-, value-, and out-projection) and all linear projection layers (e.g. down-, up-, and gate-
projection) with the same rank r. Following the setup in (Zhao et al., 2024; Han et al., 2024), we
keep the embedding layer and the output language model head to be full-size. We fix the LORO up-
date frequency as K = 500 step for all pretraining experiments, and we only tune the learning rate.
We refer the readers to Appendix A for implementation details of the experiments in this subsection.

Baselines. We compare our LORO against multiple baselines that involve low-rank structures. ‘Full-
size’ denotes pretraining the full-size model with the Adam optimizer (Kingma & Ba, 2015). ‘Low-
rank’ is a traditional low-rank training approach (Kamalakara et al., 2022). ‘LoRA’ (Hu et al.,

3Since this study primarily focuses on comparing performance using BF16 across various pertaining meth-
ods, we did not conduct experiments on larger models due to limited computational resources.
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Table 1: Results of low-rank pretraining on C4 dataset, including validation perplexity (PPL), the
number of parameters in millions (Param), the estimated total memory cost in GB (Mem), where
1GB contains 109 bytes. r, d1, and d2 denote the rank, the hidden- and intermediate-dimension of
the LLaMA model. Results of the baselines are reported from (Zhao et al., 2024; Han et al., 2024).

Model (# Token) LLaMA-60M (1.1B) LLaMA-130M (2.2B) LLaMA-350M (6.4B) LLaMA-1B (13.1B)
r / d1 / d2 128 / 512 / 1376 256 / 768 / 2048 256 / 1024 / 2736 512 / 2048 / 5461

Method PPL (↓) Param Mem (↓) PPL (↓) Param Mem (↓) PPL (↓) Param Mem (↓) PPL (↓) Param Mem (↓)

Full-size 34.06 58 0.35 24.36 134 0.81 18.80 368 2.21 15.56 1339 8.04

Low-rank 78.18 43 0.24 45.51 94 0.57 37.41 185 1.11 142.53 609 3.66
LoRA 34.99 58 0.36 33.92 134 0.84 25.58 368 1.85 19.21 1339 6.34
ReLoRA 37.04 58 0.36 29.37 134 0.84 29.08 368 1.85 18.33 1339 6.34
GaLore 34.88 58 0.28 25.36 134 0.61 18.95 368 1.59 15.64 1339 4.76
SLTrain 34.15 44 0.26 26.04 97 0.60 19.42 194 1.24 16.14 646 4.16
LORO 33.96 43 0.24 24.59 94 0.57 18.84 185 1.11 15.19 609 3.66

Table 2: Training efficiency metrics evaluated on 1×40G A100 GPU, including token batch size
(TBS), ratio of memory cost reduction (MemRd), and throughput (Tokens / sec).

Model Method PPL (↓) TBS Mem (↓) MemRd (↑) Tokens / sec (↑) Speedup (↑)

LLaMA 350M
Full-size 18.80 16K 2.21 0% 35264 ×1
GaLore 18.95 16K 1.59 28% 35427 ×1
LORO 18.84 16K 1.11 50% 40640 ×1.15

LLaMA 1B
Full-size 15.56 8K 8.04 0% 7890 ×1
GaLore 15.64 8K 4.76 41% 7886 ×0.98
LORO 15.19 8K 3.66 54% 14351 ×1.82

2022) is a low-rank fine-tuning method that reparameterizes each weight as W + BA, where W
is a full-size matrix that remains fixed during training, and B and A are trainable low-rank factors.
In pretraining scenarios, the full-size matrix W is randomly initialized. ‘ReLoRA’ (Lialin et al.,
2024) is a variant of LoRA that are adapted to pretraining by periodically absorbing the updated
BA into W. ‘GaLore’ (Zhao et al., 2024) leverages a low-rank gradient to update the full-size
weights. ‘SLTrain’ (Han et al., 2024) parameterizes each weight as the sum of low-rank factors and
a sparse matrix, with both components being jointly optimized. However, all baselines, except for
‘Low-rank’, work with full-size models and do not engage in the challenging low-rank pretraining.

LORO finds high-performing low-rank Models. Table 1 shows that, our LORO consistently out-
performs all other memory-efficient baselines in terms of both perplexity and total memory cost
(including the memory usage of model parameters and optimizer states, as estimated in (Han et al.,
2024, Appendix C)) across all settings. For LLaMA-1B model, our LORO achieves a perplexity
score that is 2% lower than the full-size baseline. These results validate the existence of competitive
low-rank models within the low-rank matrix manifold, which exhibit comparable or superior per-
formance compared to the full-size baselines. Moreover, our LORO offers a practical approach for
training low-rank models from scratch without sacrificing performance.

LORO enhances training efficiency. Section 1 shows that a low-rank model with d1 = d2 = d is
expected to achieve a (2r/d)-times reduction in memory and a (d/2r)-times speedup in inference.
In practice, we set r = d1/4 across all runs to pursue an approximate ×0.5 FLOPS reduction and
about ×0.5 model size reduction. As shown in Table 2, for a LLaMA-1B model, LORO achieves
×1.82 training speedup and a 54% reduction in memory compared to the full-size baseline, while
GaLore does not exhibit practical speedup as it still works on the full-size model. We observe that the
training speedup of LORO is less evident on LLaMA-350M model. This is because the data loading
process introduces additional overhead and execution time, which overshadow the efficiency gains
provided by LORO on smaller models.

LORO enhances inference efficiency. In Table 3, we empirically evaluate the inference effi-
ciency of the low-rank LLaMA-1B model obtained by LORO with varying batch sizes and se-
quence lengths. Compared to the full-size baseline, our LORO achieves a ×2.08 ∼ ×4.04 infer-
ence speedup and a 5% ∼ 17% reduction in maximum memory allocation, across all settings. The
speedup of LORO is evident for small batch sizes, and it converges to×2 as the batch size increases.
This occurs as full-size baselines benefit more from GPU parallelization at larger batch sizes.
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Table 3: Inference efficiency metrics on 1×40G A100 GPU, including maximum memory allocation
in GB (MaxMem), memory reduction (MemRd), and total time of processing 500 batches.

LLaMA
1B

Batch size = 512 Batch size = 256
Seq len MaxMem (↓) MemRd (↑) Time (↓) Speedup (↑) Seq len MaxMem (↓) MemRd (↑) Time (↓) Speedup (↑)

Full-size 128 26.47 - 4.31 - 256 26.50 - 6.67 -
LORO 128 25.07 5% 1.57 ×2.14 256 25.10 5% 3.07 ×2.17
Full-size 64 14.49 - 1.79 - 128 14.52 - 4.69 -
LORO 64 13.08 10% 0.79 ×2.27 128 13.11 10% 1.54 ×3.04
Full-size 32 8.49 - 1.41 - 64 8.52 - 3.28 -
LORO 32 7.09 17% 0.43 ×3.32 64 7.12 16% 0.81 ×4.04
LLaMA

1B
Batch size = 128 Batch size = 64

Seq len MaxMem (↓) MemRd (↑) Time (↓) Speedup (↑) Seq len MaxMem (↓) MemRd (↑) Time (↓) Speedup (↑)

Full-size 512 26.52 - 13.21 - 1024 26.53 - 26.63 -
LORO 512 25.12 5% 6.33 ×2.09 1024 25.12 5% 12.79 ×2.08
Full-size 256 14.53 - 6.67 - 512 14.54 - 14.68 -
LORO 256 13.13 10% 3.1 ×2.15 512 13.14 10% 6.31 ×2.33
Full-size 128 8.54 - 3.73 - 256 8.55 - 7.59 -
LORO 128 7.14 16% 1.61 ×2.32 256 7.15 16% 3.23 ×2.35

Figure 3: Linear interpolation between LORO
pretrained models and full-size baselines.
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Table 4: Comparison between LORO and other pre-
trained full-size architectures within the same pa-
rameter budget.

Model LLaMA-130M LLaMA-350M
# Token 2.2 B 6.4 B
r / d1 / d2 256 / 768 / 2048 256 / 1024 / 2736

Method PPL (↓) Param Mem (↓) PPL (↓) Param Mem (↓)

Full-size 24.36 134 0.81 18.80 368 2.21

Low-rank 45.51 94 0.57 37.41 185 1.11
Full-size Shallow 28.49 94 0.57 21.67 185 1.11
Full-size Slim 25.34 94 0.57 21.40 185 1.11
LORO + Slim MLP 25.16 94 0.57 18.95 185 1.11
LORO 24.59 94 0.57 18.84 185 1.11

LORO finds flatter minima. As Table 1 shows that LORO is able to find minima within the
low-rank matrix manifold with high performance comparable to the full-size models, we aim to
compare between the low-rank minima found by LORO, denoted by (B∗

iA
∗
i ), and the full-size

minima, denoted by (W∗
i ). To this end, we probe the loss landscape of these minima by via linear

model interpolation (Lucas et al., 2021; Gueta et al., 2023). Specifically, for α ∈ {0, 0.1, ..., 1},
we visualize the perplexity score of the model with weights (1 − α)B∗

iA
∗
i + αW∗

i . As shown in
Figure 3, a steep loss barrier is observed between the low-rank LORO-pretrained models and the
full-size pretrained models, indicating that the LORO minima do not reside in the same basin as the
full-size minima. Furthermore, the loss barrier exhibits an asymmetry, with the side closer to the
full-size models being significantly steeper than the side closer to the low-rank models. This implies
that LORO can find flatter low-rank minima, which may explain why it sometimes outperforms the
full-size baselines as shown in Table 2.

LORO explores effective low-rank structures. We compare the performance of LORO low-rank
pretrained models against various full-size counterparts within the same parameter budget. Specif-
ically, we evaluate three full-size variants of the original model: 1) ‘Full-size Shallow,’ with fewer
layers than the full model, 2) ‘Full-size Slim,’ with a reduced hidden dimension but the same num-
ber of layers, and 3) ‘LORO + Slim MLP,’ where LORO is applied only to the attention weights,
while the MLP layers are slimmer but retain full-size matrices. Their configurations are detailed
in Appendix A. As reported in Table 4, the LORO low-rank pretrained models outperform full-size
variants, demonstrating that LORO unlocks the potential of low-rank structures as a more effec-
tive parameterization scheme. We attribute this to the fact that, within the same parameter budget,
low-rank structures benefit from a larger hidden dimension, which enhances their ability to learn
high-dimensional features.

5.2 ABLATION STUDIES

Ablation on the LORO rank r. In Table 5, we evaluate the perplexity scores of LORO pretrained
LLaMA-60M models with varying ranks. As anticipated, the performance decays as r decreases. In
practice, setting r = d1/4 is preferable, as it achieves a 50% reduction in both memory and FLOPS
while maintaining high performance.
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Table 5: Ablation on LORO rank r.

Model LLaMA-60M
# Token 1.1 B
d1 / d2 512 / 1376
Method Rank PPL (↓) Param Mem (↓)

Full-size 512 34.06 58 0.35

Low-rank 128 78.18 43 0.24
LORO 256 31.54 53 0.31
LORO 128 33.96 43 0.24
LORO 64 39.40 38 0.22
LORO 32 49.88 35 0.21

Figure 4: Ablation on LORO exact update frequency K.
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Table 6: Extending LORO to fine-tuning RoBERTa-base models on GLUE benchmark. Results of
the baselines are reported from (Zhao et al., 2024; Han et al., 2024).

RoBERTa-base Memory CoLA STS-B MRPC RTE SST2 MNLI QNLI QQP Avg

Full-size 747M 62.24 90.92 91.3 79.42 94.57 87.18 92.33 92.28 86.28

LoRA, r = 4 257M 61.38 90.57 91.07 78.70 92.89 86.82 92.18 91.29 85.61
Galore, r = 4 253M 60.35 90.73 92.25 79.42 94.04 87.00 92.24 91.06 85.89
LORO, r = 4 257M 61.58 90.75 92.60 78.69 94.14 86.15 92.58 90.64 85.89
LoRA, r = 8 264M 61.83 90.80 91.90 79.06 93.46 86.94 92.25 91.22 85.93
Galore, r = 8 257M 60.06 90.82 92.01 79.78 94.38 87.17 92.2 91.11 85.94
SLTrain, r = 8 - 60.35 90.74 92.38 79.42 94.15 86.53 92.40 91.27 85.93
LORO, r = 8 257M 63.10 90.97 93.12 78.92 94.61 86.65 92.75 91.00 86.39

Ablation on the LORO exact update frequency K. In Figure 4, we compare the convergence of
different runs of LORO with varying exact update frequencies. It is observed that for K ⩾ 750
when the LORO exact update is overly lazy, the training curve tends to explode and fail to converge
to performing minima. In practice, we recommend setting K = 500, as it significantly reduces
training overhead and results in competitive low-rank models with performance comparable to full-
size baselines across LLaMA models of varying sizes, ranging from 60M to 1B parameters.

5.3 EFFICIENT LOW-RANK FINE-TUNING

Following the experiment setup in (Zhao et al., 2024, Section 5.4), we extend our LORO to fine-
tune the pretrained RoBERTa-base model (Liu et al., 2019) on GLUE datasets (Wang et al., 2019).
Specifically, we reparameterized each weight in the query- and key-projections as W+BA, where
W is the full-size pretrained weight and B and A are low-rank factors. Then, we apply LORO
to B and A exclusively and freeze the remaining parameters. The hyperparameters are detailed
in Appendix A.2. In Table 6, we compare the fine-tuning performance of LORO with three base-
lines, including ‘LoRA’ (Hu et al., 2022), ‘GaLore’ (Zhao et al., 2024), and ‘SLTrain’ (Han et al.,
2024). Although LORO achieves decent performance, its outperformance over other baselines in
fine-tuning is less significant than in pretraining. We argue that, with full-size pretrained weights
provided, fine-tuning requires learning only a small amount of domain-specific knowledge, which
can be easily captured through low-rank adjustments in each weight matrix. As a result, the potential
for improvement with different low-rank techniques is limited, and the performance gains become
less noticeable.

6 CONCLUSION

In this paper, we proposed LORO for efficient yet effective pretraining of low-rank parameterized
language models. Specifically, LORO optimizes the full-size product of the low-rank factors toward
the steepest gradient descent direction on the low-rank matrix manifold, without computing any ex-
pensive full-size weight or gradient. Extensive experiments demonstrate that LORO can discover
competitive low-rank models with performance comparable to full-size baselines, while providing
significant memory reduction and acceleration in both training and inference. This work demon-
strates the potential of low-rank structures in language model pretraining, inspiring us to explore
efficient low-rank pretraining methods for vision and multi-modal generative models.
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ward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: an imperative style, high-performance deep
learning library. Curran Associates Inc., Red Hook, NY, USA, 2019.

Alec Radford and Karthik Narasimhan. In Improving Language Understanding by Generative Pre-
Training, 2018. URL https://api.semanticscholar.org/CorpusID:49313245.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. CoRR, abs/1910.10683, 2019. URL http://arxiv.org/abs/1910.10683.

13

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1137/050639703
https://doi.org/10.1137/050639703
https://openreview.net/forum?id=TjfXcDgvzk
https://openreview.net/forum?id=TjfXcDgvzk
https://books.google.com.sg/books?id=UIPltQEACAAJ
https://books.google.com.sg/books?id=UIPltQEACAAJ
https://doi.org/10.1287/moor.1070.0291
https://doi.org/10.1287/moor.1070.0291
https://openreview.net/forum?id=nN8TnHB5nw
https://openreview.net/forum?id=nN8TnHB5nw
https://openreview.net/forum?id=DLJznSp6X3
http://arxiv.org/abs/1907.11692
https://api.semanticscholar.org/CorpusID:233346934
https://api.semanticscholar.org/CorpusID:233346934
https://doi.org/10.1007/s00180-013-0464-z
https://doi.org/10.1007/s00180-013-0464-z
https://api.semanticscholar.org/CorpusID:258999971
https://api.semanticscholar.org/CorpusID:258999971
https://api.semanticscholar.org/CorpusID:49313245
http://arxiv.org/abs/1910.10683


Published as a conference paper at ICLR 2025

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: memory optimizations
toward training trillion parameter models. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC ’20. IEEE Press, 2020.
ISBN 9781728199986.

Amrutha Varshini Ramesh, Vignesh Ganapathiraman, Issam H. Laradji, and Mark Schmidt. Block-
LLM: Memory-efficient adaptation of LLMs by selecting and optimizing the right coordinate
blocks, 2024. URL https://openreview.net/forum?id=L0pXYjtfE3.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-
propagating errors, pp. 696–699. MIT Press, Cambridge, MA, USA, 1988. ISBN 0262010976.

Dayana Savostianova, Emanuele Zangrando, Gianluca Ceruti, and Francesco Tudisco. Robust low-
rank training via approximate orthonormal constraints. In Thirty-seventh Conference on Neu-
ral Information Processing Systems, 2023. URL https://openreview.net/forum?id=
NJPSvv0u3R.
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A IMPLEMENTATION DETAILS

A.1 PRETRAINING LLAMA MODELS ON C4 DATASET

The implementation details introduced in this subsection apply to the experiments in Table 1, Table
2, Table 3, Table 4, Table 5, Figure 3, and Figure 4. To achieve a fair comparison with other
pretraining baselines, we follow the same model architecture and pretraining hyperparameters as
in (Zhao et al., 2024, Appendix C.1). For all runs, we set the max data sequence length as 256
with a batch size of 512 (i.e., a token batch size of 131K). For a fair comparison in terms of the
pretraining efficiency, we run all the experiments on 1× NVIDIA 40G A100 GPU, without using
model parallelization or data parallelization. To achieve the 512 training batch size, we adjust the
per-device batch size and vary the number of gradient accumulation steps according to the size
of the LLaMA models. Based on (Zhao et al., 2024, Appendix C.1), we employ a learning rate
warmup starting from 0 during the first 10% of the pretraining steps, followed by a cosine annealing
scheduler that decays to 10% of the maximum learning rate. We initialize the low-rank factors with
Xavier initialization (Glorot & Bengio, 2010) across all experiments.

We implement LORO following the pseudo-code attached in 2. Following (Zhao et al., 2024; Tou-
vron et al., 2023b), we impose low-rank parameterization to all the weight matrices in the self-
attention modules (including q proj, k proj, v proj, and o proj) and linear projection mod-
ules (including down proj, up proj, and gate proj) and we update them with LORO, while
we apply the standard Adam optimizer to update the token emb, lm head, and other layer nor-
malization modules. All modules share the same learning rate. Specifically, for all LORO pretrain-
ing results reported in Section 5.1, we set the LORO exact update frequency to K = 500 and the
learning rate to 0.01 for the LLaMA-60M, -130M, and -350M models, while for LLaMA-1B, we
set K = 200 and the learning rate to 0.005. To stabilize the training process, at each LORO exact
update step, we apply a 5-step linear learning rate warmup and we refresh the Adam statistics.

A.2 FINE-TUNING ROBERTA MODELS ON C4 DATASET

For a fair comparison on fine-tuning with other baselines, we follow the same model architecture,
datasets and evaluation processes as in (Zhao et al., 2024, Appendix D.1). We report Matthew’s
correlation score for CoLA, the Pearson correlation score for STS-B, matched and mismatched
accuracy for MNLI, F1 score for MRPC, and accuracy for other tasks. Specifically, we fine-tune
the pretrained RoBERTa-base checkpoint from Huggingface4 on the GLUE benchmark. For each
weight matrices in q proj and k proj, we adopt the standard LoRA parameterization W+λBA,
where W denotes the full-size pretrained weight, λ is the LoRA scale hyperparameter, and B and
A are the trainable low-rank factors. During fine-tuning, we apply LORO to update the low-rank
factors in the same manner as in pretraining, while keeping all other parameters unchanged. The
training hyperparameters are attached in Table 8.

Table 7: Model architecture and pretraining settings. d1 and d2 denotes the hidden- and
intermediate-dimension of the LLaMA model. ‘# Tokens’ denotes the amount of training tokens,
‘PD-BSZ’ denotes the per-device batch size, and ‘# Grad Accum’ denotes the number of gradient
accumulation steps.

Model Params d1 d2 Heads Layers Steps # Tokens PD-BSZ # Grad Accum

60M 58M 512 1376 8 8 10K 1.1B 256 2
130M 134M 768 2048 12 12 20K 2.2B 128 4
94M Shallow 94M 820 1720 12 6 20K 2.2B 128 4
94M Slim 94M 640 1250 12 12 20K 2.2B 128 4
94M Slim MLP 94M 768 928 12 12 20K 2.2B 128 4
368M 368M 1024 2736 16 24 60K 6.4B 64 8
185M Shallow 185M 1024 1880 16 12 60K 6.4B 64 8
185M Slim 185M 736 1640 16 24 60K 6.4B 64 8
185M Slim MLP 185M 1024 940 16 24 60K 6.4B 64 8
1B 1339M 2048 5461 24 32 100K 13.1B 32 16

4https://huggingface.co/docs/transformers/model_doc/roberta
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Table 8: Hyperparameters of LORO in fine-tuning RoBERTa experiments.

CoLA STS-B MRPC RTE SST-2 MNLI QNLI QQP

R
an

k
r
=

4 Batch Size 64 16 16 16 16 16 16 16
# Epochs 30 40 20 30 40 30 30 30
Learning Rate 4e-4 4e-4 2e-4 5e-4 5e-5 5e-5 4e-4 5e-5
LoRA λ 32 8 32 8 8 8 8 8
LORO Freq K 100 200 100 100 100 100 100 100

R
an

k
r
=

8 Batch Size 64 16 16 16 16 16 16 16
# Epochs 30 40 20 30 40 30 30 30
Learning Rate 4e-4 4e-4 2e-4 5e-4 5e-5 5e-5 4e-4 5e-5
LoRA λ 16 16 8 8 8 16 8 16
LORO Freq K 20 100 100 100 500 200 100 200

A.3 PYTORCH IMPLEMENTATION OF LORO

Algorithm 2 Low-rank Riemannian Optimizer (LORO) in PyTorch (Paszke et al., 2019)

def LORO_step(B,A,lr,n_step,K):
# B: [d, r], A: [d, r]
if (n_step + 1) % K != 0: # Approximate Riemannian update

d, r = B.shape
B = B - lr * (r / d) * B.grad
A = A - lr * (r / d) * A.grad

else:
dB, dA = B.grad, A.grad # dB: [d, r], dA: [r, d]
Qb, Rb = torch.qr(B) # Qb: [d, r], Rb: [r, r]
Qa, Ra = torch.qr(A) # Qa: [d, r], Ra: [r, r]
# dB_Ra_inv: [d, r], dA_Rb_inv: [d, r]
dB_Ra_inv = torch.linalg.solve(Ra.T, dB.T).T
dA_Rb_inv = torch.linalg.solve(Rb.T, dA).T
# Qb_: [d, r], Rb_: [r, r], Qa_: [d, r], Ra_: [r, r]
Qb_, Rb_ = torch.qr(dB_Ra_inv - Qb @ Qb.T @ dB_Ra_inv)
Qa_, Ra_ = torch.qr(dA_Rb_inv - Qa @ Qa.T @ dA_Rb_inv)
S = Rb @ Ra.T - lr * dA_Rb_inv.T @ Qa # [r, r]
# SVD on [2r, 2r], U: [2r, r], Sig: [r,r], V: [2r,r]
U, Sig, V = torch.svd(mat([[S, - lr * Ra_.T], [- lr * Rb, zeros]]))

B = mat([Qb, Qb_]) @ U @ Sig.sqrt()
A = Sig.sqrt() @ V.T @ mat([Qa, Qa_]).T # Exact Riemannian update

return B, A

B PROOF DETAILS

Proposition 3 (Riemannian Gradient under Low-rank Parameterization). Following the previous
notation, for any low-rank parameterized weight W = BA ∈ Mr, where B ∈ Rd×r and A ∈
Rr×d, the Riemannian gradient of any smooth function L(·) : Rd×d 7→ R evaluated at W is

grad L(W) = B(B⊤B)−1 · ∇AL+∇BL · (AA⊤)−1A−B(B⊤B)−1 · ∇AL ·A⊤(AA⊤)−1A. (12)

Proof of Proposition 3. We first need to show that, for any ambient point G ∈ Rd×d, the orthogonal
projection to the tangent space T(BA)Mr is given by

P(G) = B(B⊤B)−1B⊤ ·G+G ·A⊤(AA⊤)−1A−B(B⊤B)−1B⊤ ·G ·A⊤(AA⊤)−1A.

Then, the proof can be completed by taking G = ∇WL, and showing that∇WL ·A⊤ = ∇BL and
B · ∇WL = ∇AL.

According to Proposition 1 ((Lee, 2019, Example 8.14) and (Absil et al., 2009, Equation 3.37)), the
othorgonal operator is P(G) ≜ UU⊤ ·G+G ·VV⊤−UU⊤ ·G ·VV⊤, where W = UΣV⊤ is
the singular value decomposition (SVD) of W. Suppose the QR decompositions of B and A⊤ are
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QBRB = B and QARA = A⊤, and the SVD of the full-rank r-by-r matrix RBR
⊤
A is URΣRV

⊤
R .

Then, it holds that (QBUR)ΣR(V
⊤
RQ

⊤
A) = UΣV⊤, where (QBUR), (V

⊤
RQ

⊤
A) ∈ Rd×r are

column-wise orthogonal and ΣR ∈ Rr×r is diagonal. By the uniqueness of SVD, it holds that
QBUR = U and QAVR = V, which implies

UU⊤ =QBURU
⊤
RQ

⊤
B = QBQ

⊤
B = (QBRB)(R

−1
B Q⊤

BQBR
−⊤
B )(R⊤

BQ
⊤
B) (13)

=(QBRB)(R
⊤
BQ

⊤
BQBRB)

−1(R⊤
BQ

⊤
B) = B(B⊤B)−1B⊤. (14)

Similarly, we have VV⊤ = A⊤(AA⊤)−1A, which completes the proof. In intuition, the deriva-
tion above proves that the row-space of B coincides with that of U, and the column-space of A⊤

coincides with that of V. Therefore, the orthogonal projection to the tangent space can be reparam-
eterized under the basis of B and A.

Proposition 4 (Riemannian Update under Low-rank Parameterization). Following the previous
notations, for any low-rank parameterized weight W = BA ∈ Mr, let B = QBRB and
A⊤ = QARA be the QR-decomposition of B and A⊤, such that QB ,QA ∈ Rd×r are column-
wise orthogonal, and RB ,RA ∈ Rr×r are upper-triangular. Then the Riemannian updated weight,
defined by W′ ≜ SVDr(W − η grad L(W)), admits a low-rank factorization W′ = B′A′, with
B′ =

(
QB ,QB

)
U∗Σ

1/2
∗ and A′ = Σ

1/2
∗ V⊤

∗
(
QA,QA

)⊤
. Specifically, U∗Σ∗V

⊤
∗ is determined

by the rank-r SVD of the following 2r-by-2r matrix, i.e.,

U∗Σ∗V
⊤
∗ = SVDr

(
S −η R

⊤
A

−η RB 0

)
∈ R2r×2r, S ≜ RBR

⊤
A − η R−⊤

B ∇AL ·QA ∈ Rr×r, (15)

and QBRB is the QR decomposition of the d-by-r matrix (∇BL ·R−1
A −QBQ

⊤
B∇BL ·R−1

A ), while
QARA is the QR decomposition of the d-by-r matrix (∇AL⊤R−1

B −QAQ
⊤
A∇AL⊤R−1

B ).

Proof of Proposition 4. This proof follows a similar spirit of orthogonal tangent vector decompo-
sition as in (Vandereycken, 2013, Section 3) and (Bian et al., 2023, Section 2.2.3). To complete
the proof, we need to perform such decomposition under the unnormalized basis spanned by B
and A, such that the full-size weight and gradient terms can be canceled out using the relation
∇WL ·A⊤ = ∇BL and B · ∇WL = ∇AL.

As the low-rank representation of the Riemannian gradient is provided in Proposition 3, we only
need to manipulate the terms in the updated weight W − η grad L(W) such that it can be de-
composed as ŨΣ̃Ṽ⊤, where Ũ, Ṽ ∈ Rd×2r are column-wise othorgonal matrices. Thereby, the
Riemannian SVD retraction can be performed on a smaller 2r-by-2r matrix instead, since

SVDr(ŨΣ̃Ṽ⊤) = Ũ · SVDr(Σ̃) · Ṽ⊤. (16)

To complete the proof, we only need to identify the representation of Ũ, Σ̃, Ṽ by orthogonal tangent
vector decomposition, under low-rank parameterization. Based on Proposition 3, it holds that

grad L(W)

=B(B⊤B)−1B⊤ · ∇WL+∇WL ·A⊤(AA⊤)−1A−B(B⊤B)−1B⊤ · ∇WL ·A⊤(AA⊤)−1A

=QBQ
⊤
B · ∇WL+∇WL ·QAQ

⊤
A −QBQ

⊤
B · ∇WL ·QAQ

⊤
A

=QBQ
⊤
B · ∇WL ·QAQ

⊤
A + (I−QBQ

⊤
B) · ∇WL ·QAQ

⊤
A +QBQ

⊤
B · ∇WL · (I−QAQ

⊤
A),

where the latter two terms are orthogonal to the column space of B and A⊤ respectively. To cancel
out the full-size gradient terms, we leverage the relations Q⊤

B ·∇WL = R−⊤
B ∇AL and∇WL·QA =

∇BL ·R−1
A , which shows that

grad L(W)

=QBR
−⊤
B ∇AL ·QAQ

⊤
A + (I−QBQ

⊤
B) · ∇BL ·R−1

A ·Q
⊤
A +QBR

−⊤
B ∇AL · (I−QAQ

⊤
A).
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Therefore, the updated weight can be represented by
W − η grad L(W)

=QB(RBR
⊤
A)Q

⊤
A − η

(
QBR

−⊤
B ∇AL ·QAQ

⊤
A

+ (I−QBQ
⊤
B) · ∇BL ·R−1

A ·Q
⊤
A +QBR

−⊤
B ∇AL · (I−QAQ

⊤
A)
)

=QB

(
RBR

⊤
A − η R−⊤

B ∇AL ·QA

)
Q⊤

A − η QB ·RB ·Q⊤
A − η QB ·R

⊤
A ·Q

⊤
A

=
(
QB QB

)(RBR
⊤
A − η R−⊤

B ∇AL ·QA −η R
⊤
A

−η RB 0

)(
Q⊤

A

Q
⊤
B

)
.

Notice that (QB ,QB) and (QA,QA) are column-wise orthogonal matrices, making them a desir-
able choice of the aforementioned Ũ and Ṽ, and hence completes the proof.

C FURTHER DISCUSSIONS ON THE MECHANISM OF LORO

In this section, we provide a supplementary analysis and discussion of the LORO mechanism.
Specifically, Section C.1 analyzes the limitations of standard low-rank pretraining, while Section
C.2 discusses how LORO effectively overcomes these limitations, leading to significant improve-
ments.

C.1 LIMITATIONS IN STANDARD LOW-RANK OPTIMIZER

In this subsection, we present additional theoretical and empirical evidence demonstrating that
the standard low-rank optimizer (i.e. independently optimizing low-rank factors) is inefficient for
achieving satisfactory training performance.

In Section C.1.1, our empirical evidence demonstrates that: 1. the standard low-rank optimizer
produces spiky training curves and high perplexity across various initialization schemes and learning
rates, 2. it learns low-rank weights with high condition numbers (i.e., the ratio of the largest singular
value to the smallest nonzero singular value), and 3. it continues to yield poor performance even
when combined with optimizer state refreshing.

In Section C.1.2, our theoretical analysis indicates that: 1. the standard low-rank gradient in (3)
fails to preserve adequate information from the full-size gradient within the tangent space, and 2. a
nearly-stationary point obtained through standard low-rank gradient descent with a near-zero gradi-
ent norm may be significantly far away from a true stationary point on the manifold.

Based on these observations and analysis, we conjecture that the failure of the standard low-rank
optimizer stems from the following factors: 1. the standard low-rank gradient contains redundant
full-size gradient information, preventing it from accurately approximating the steepest descent di-
rection on the manifold, 2. the lack of proper scaling in the standard low-rank gradient causes de-
viations from the steepest descent direction on the manifold, and 3. the standard low-rank gradient
biases towards ill-conditioned weights, leading to instability during training.

C.1.1 EMPIRICAL EVIDENCE

Standard low-rank optimizer generally leads to poor performance. To validate that pretrain-
ing a low-rank language model is generally hard, we train a rank-128 LLaMA-60M model with a
standard low-rank optimizer under different initialization schemes and learning rates. Specifically,
we initialize the low-rank factors with Xavier initialization (Glorot & Bengio, 2010), or standard
Gaussian initialization with standard deviation varying in {0.1, 0.01, 0.001}, and we tried different
learning rates in {0.01, 0.005, 0.001}. We report the training curve and the final perplexity of the
models.

As shown in Figure 5, in all settings, the training curve of the vanilla low-rank optimizer is spiky and
unstable, leading to unsatisfactory evaluation perplexity. This suggests that independent updates of
the low-rank factors are insufficient for good performance across different configurations. Training
a low-rank language model to match the full-size baseline is generally challenging.
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Figure 5: Ablation study on the impact of learning rate and initialization schemes on standard low-
rank training for a rank-128 LLaMA-60M model. The y-axis (log-scale) represents perplexity, with
the gray horizontal dashed line indicating the performance of full-size training.
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Figure 6: Ablation study on the impact of optimizer state refreshing on standard low-rank training
for a rank-128 LLaMA-60M model. The y-axis (log-scale) represents perplexity, with the gray
horizontal dashed line indicating the performance of full-size training.

Standard low-rank optimizer leads to poor performance even when combined with optimizer
state refreshing. To assess whether optimizer state refreshing can enhance the standard low-rank
optimizer, we perform an ablation study by varying the refreshing frequency in the standard low-
rank optimizer. Following the setup in Section 5.1, we trained rank-128 LLaMA-60M models using
vanilla low-rank gradient descent with different learning rates (chosen from {0.01, 0.005, 0.001})
and optimizer state refreshing frequencies (chosen from {0, 100, 500, 1000}).
As shown in Figure 6, all trials exhibit spiky training curves and unsatisfactory performance. This
validates that applying optimizer state refreshing to standard low-rank gradient descent still leads to
bad training performance. We conjecture that this is because the standard low-rank gradient does
not actively explore new optimization subspace, and the training process biases towards low-rank
weights with increasing condition numbers. In this case, refreshing the past momentum statistics
resided does not help in exploring beneficial optimization subspace.

Standard low-rank optimizer learns ill-conditioned weights. To understand the cause of the
instability and spiky training curves in the standard low-rank optimizer, we inspect the condition
number and norm of the low-rank factors throughout the training process. Specifically, we train
rank-128 LLaMA-60M models with Xavier initialization and a learning rate of 0.01, using different
optimizers: the standard low-rank optimizer, the full-size Adam optimizer (Kingma & Ba, 2015),
and LORO. We visualize the evolution of the singular values, Frobenius norm, and condition num-
bers of the learned weights at various layers throughout the training process.

As shown in Figure 13, Figure 14, and Figure 15, the standard low-rank gradient results in model
weights with significantly higher condition numbers compared to LORO or full-size Adam. We
conjecture that the standard low-rank gradient update introduces imbalances among the singular
values of the low-rank factors, thereby impairing the stability of the feature learning process.

C.1.2 THEORETICAL EVIDENCE

Standard low-rank gradient fails to approximate the full-size gradient well. To understand
the difference between the training dynamic of the standard low-rank optimizer and its full-size
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counterpart, we examine the gap between the standard low-rank gradient and the full-size gradient.
Following (3), we define the standard low-rank gradient as Z ≜ BB⊤∇WL+∇WLA⊤A, where
∇WL is the full-size gradient and W = BA is the low-rank weight. We show that Z fails to
adequately preserve the full-size gradient information. In contrast, LORO adopts the Riemannian
gradient, which provides the best approximation of the full-size gradient within the tangent space
TWMr, thereby preserving the full-size gradient information more effectively than the standard
low-rank gradient.

According to Proposition 1 and Proposition 3, the orthogonal projection onto the tangent space is

P(G) = UU⊤G+GVV⊤ −UU⊤GVV⊤ = PBG+GPA −PBGPA, (17)

where PB ≜ B(B⊤B)−1B⊤ and PA ≜ A⊤(AA⊤)−1A are the orthogonal projection matrices
onto the column space of B and the row space of A. We first study how well the full-size gradient
can be approximated within the tangent space w.r.t Frobenius norm ∥ · ∥F . For any tangent vector
G resides in the tangent space, the full-size gradient approximation error equals to

∥G−∇WL∥F = ∥G− P(∇WL)∥F + ∥P⊥(∇WL)∥F , (18)

where P⊥(·) is the orthogonal projection to the complemented subspace of the tangent space. This
implies that the full-size gradient approximation error is minimized at G = P(∇WL), which is
exactly the Riemannian gradient as shown in Proposition 3. Therefore, the Riemannian gradient
represents the steepest gradient descent direction on the manifold, as it provides the best approxi-
mation of the full-size gradient within the tangent space.

Now, we can study how well the standard low-rank gradient Z approximates the full-size gradient.
Since Z is an element in the tangent space (can be proven by showing P(Z) = Z), the full-size
gradient approximation error of Z is determined by ∥Z− P(∇WL)∥, which equals

∥B((B⊤B)−1 − I)B⊤∇WL+∇WLA⊤((AA⊤)−1 − I)A+PB∇WLPA∥F . (19)

This error arises from two main factors: 1. the scale of gradient components, BB⊤∇WL and
∇WLA⊤A, is not properly normalized to match that of PBG and GPA, and 2. the redundant
gradient information, PB∇WLPA—which represents the gradient component in the intersection
of the column space of B and the row space of A—is double-counted across the two sketched
gradient terms. Our conclusions align with the findings in (Zhang et al., 2024a), which suggests that
down scaling the learning rates of some specific modules (e.g., the low-rank weights) is beneficial.

Therefore, instead of updating B and A independently, we should employ LORO to update the low-
rank weight W = (BA) in the direction of the negative Riemannian gradient, which represents
the steepest descent direction on the manifold. This approach ensures that the full-size gradient
information is maximally exploited.

Nearly-zero standard low-rank gradient norm does not indicate a true stationary point. To
understand the performance gap between the standard low-rank optimizer and its full-size counter-
part, we study and compare their stationary point conditions. As mentioned in (Absil et al., 2009;
Vandereycken, 2013; Olikier et al., 2023), in Riemannian optimization, a nearly-zero Riemannian
gradient norm indicates that the parameter is close to a stationary point on the manifold, showing
that the training process nearing convergence.

When using the standard low-rank optimizer, however, while the norm of the standard low-rank
gradient is nearly zero, the learned parameter can significantly deviate from a true stationary point
on the manifold. This is because

∥(∇BL,∇AL)∥2F = ∥∇WLA⊤∥2F + ∥B∇WL∥2F ⩾ (σr(A)2 + σr(B)2)∥∇WL∥2F , (20)

where σr(·) denotes the r-th largest singular value (i.e. the smallest nonzero singular value). This
further implies

∥P(∇WL)∥2F ⩽ (σr(A)2 + σr(B)2)−1∥(∇BL,∇AL)∥2F . (21)

Consequently, when B and A are ill-conditioned (i.e., when the condition numbers σ1(A)/σr(A)
and σ1(B)/σr(B) are large) or nearly singular (i.e., σr(A) and σr(B) are small), the Riemannian
gradient norm can remain large even if the norm of the standard low-rank gradient is nearly-zero.
This indicates the inferior convergence of the standard low-rank optimizer. To mitigate this issue,
we adopt the Riemannian gradient to optimize the product of the low-rank factors.
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C.2 EFFECTIVENESS OF LORO

In this section, we present additional theoretical and empirical evidence showing that LORO can
overcome the limitations of standard low-rank training. Furthermore, we show that both the exact
and approximate LORO updates are necessary and effective.

In Section C.2.1, our empirical evidence shows that: 1. the exact LORO update is necessary and
effective, 2. the approximate LORO update is necessary and effective, 3. LORO benefits from
optimizer state refreshing.

In Section C.2.2, our theoretical evidence shows that: 1. the exact LORO update balances the
singular values of low-rank factors, and 2. the exact LORO update potentially reduces the full-size
gradient approximation error in the successive approximate LORO updates.

Based on our observations and analysis, we argue that the performance improvement stems from
the LORO update itself, because: 1. LORO approximates the Riemannian gradient better than
the standard low-rank gradient, and it benefits from utilizing more information from the full-size
gradient, 2. LORO effectively explores new optimization subspace which reduces the condition
number of the low-rank weights, leading to a more stable training process, and 3. LORO minimizes
the accumulative error during successive approximate LORO steps.

C.2.1 EMPIRICAL EVIDENCE

The exact LORO update is necessary and effective. To validate the effectiveness of the exact
LORO update, we conduct a finer ablation study on the exact LORO update frequency. Following
Section 5.1, we train rank-256 LLaMA-130m models with K ∈ {10, 50, 100, 250, 500, 650, 750}.
We visualize the training curve and report the final perplexity.

As shown in Figure 7, as the LORO exact update is getting more frequent, the loss curve is less
spiky and the evaluation perplexity exhibits a slight improvement. However, when the LORO exact
update is overly lazy, i.e. K > 650, the learning curve explodes. Our results show that while the
exact LORO update is necessary, it does not need to be applied at every update step. In practice,
performing the LORO update every 500 steps achieves satisfactory performance.
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Figure 7: Ablation study on the impact of exact LORO update frequency K on LORO for training
rank-256 LLaMA-130M models. The y-axis (log-scale) represents perplexity, with the gray hori-
zontal dashed line indicating the performance of full-size training.

The approximate LORO update is necessary and effective. To validate the necessity of using
the approximate LORO steps, we train rank-256 LLaMA-130M models with LORO, both with and
without learning rate down-scaling between successive exact LORO updates.

As shown in Figure 8, the training curve either fails to converge or yields poor results when the
approximate LORO steps are omitted. These results imply that the exact LORO update is necessary
and effective. The performance improvement stems from the exact LORO update. In practice,
LORO with K = 500 can achieve satisfactory training performance without the need to apply the
exact LORO update at every step.
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Training curves and Validation Curves of LORO (rank = 256, K = 500) on LLaMA-130M

Figure 8: Ablation study on the impact of learning rate down-scaling in approximate LORO updates
for training rank-256 LLaMA-130M models. The y-axis (log-scale) represents perplexity, with the
gray horizontal dashed line indicating the performance of full-size training.

LORO benefits from optimizer state refreshing. To study how optimizer state refreshing affects
LORO, we conduct an ablation study on the optimizer state refreshing. Following the setup in Sec-
tion 5.1, we compare the training curve and validation perplexity of rank-256 LLaMA-130M models
trained with LORO, both with and without refreshing the optimizer states periodically. As shown
in Figure 9, both configurations lead to satisfactory performance. While refreshing the optimizer
states introduces spikes in the early stages of training, it eventually improves the validation loss of
the LORO results. This suggests that LORO benefits from optimizer state refreshing.

We conjecture that the stability of LORO against optimizer state refreshing arises because the exact
LORO step shifts the low-rank factors (B,A) to a new optimization subspace with a reduced condi-
tion number. This conjecture is partially supported by the analysis in Section C.2.2. In this scenario,
the optimizer state retains momentum statistics accumulated many steps ago, originating from an
obsolete subspace that significantly deviates from the current one. This indicates that dropping the
old momentum statistics can help reduce accumulated error during the approximate LORO steps and
encourage exploration in the new subspace.
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Figure 9: Ablation study on the impact of optimizer state refreshing on LORO updates for training
rank-256 LLaMA-130M models. The y-axis (log scale) represents perplexity.

C.2.2 THEORETICAL EVIDENCE

Exact LORO update balances the singular values of low-rank factors. As discussed in Section
C.1.2, in contrast to the standard low-rank gradient, LORO adopts Riemannian gradients, which pro-
vides the best approximation of the full-size gradient within the tangent space. To better understand
the mechanism of the exact LORO update, we need to inspect how the exact LORO update affects
the singular values of low-rank weights.

We show that the exact LORO update implicitly balances the singular values of the low-rank factors.
According to (10) and Algorithm 1, the exact LORO update ensures σi(B) = σi(A) =

√
σi(W),
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for i = 1, ..., r. Therefore, the exact LORO update minimize each σi(B)2 + σi(A)2 among all
the low-rank factors (B,A) that satisfy σi(B)σi(A) = σi(W). This implies LORO prevents
(σr(A)2 + σr(B)2) to be overly small, and it can potentially reduce the condition number of the
weights and stabilize the training process. As discussed in Section C.1.2, smaller condition numbers
of B and A also indicate better convergence property.

Exact LORO update potentially reduces error in approximate LORO updates. As discussed
in Section C.1.1, the exact LORO plays a subtle yet crucial role in successful low-rank training. To
understand how a few exact LORO steps can stabilize the whole training process, we study how an
exact LORO step affects the successive approximate LORO steps.

Resuming from the derivations above, we show that the singular value balancing effect in the exact
LORO step minimizes an upper bound of the full-size gradient approximation error. Specifically,
the full-size gradient approximation error can be bounded by

∥B((B⊤B)−1 − I)B⊤∇WL+∇WLA⊤((AA⊤)−1 − I)A+PB∇WLPA∥F + ∥P⊥(∇WL)∥F
⩽(∥I− Λ2

B∥F + ∥I− Λ2
A∥F )∥∇WL∥2 + 2∥∇WL∥F , (22)

where ΛB,ΛA denote the singular value matrices of B and A. Suppose ΛW is the top-r singu-
lar values matrix of the low-rank weight W = (BA), among all the choices of (B,A) satisfying
ΛBΛA = ΛW, the bound (∥I−Λ2

B∥F + ∥I−Λ2
A∥F ) is minimized when ΛB = ΛA = Λ

1/2
W . This

condition is satisfied by the exact LORO steps, implying that the exact LORO update potentially re-
duces the accumulative full-size gradient approximation error in the successive approximate LORO
updates.

In summary, we conjecture that LORO benefits from two key factors: 1. The exact LORO update
explores the new subspace by balancing the singular values of the low-rank factors. Thereby, it
reduces the condition numbers, leading to smaller accumulative gradient approximation errors in
the successive approximate LORO updates. Section C.2.1 provides supportive empirical evidence
for this conjecture. 2. The approximated LORO update downscales the standard low-rank gradients,
preventing the rapid accumulation of redundant gradient information and avoiding undesired loss
spikes before the next exact LORO update.

D FURTHER ABLATION STUDIES AND DISCUSSIONS

Ablation study on the LORO scaling factor. To study how the learning rate scaler affects the
approximate LORO steps, we conducted an additional ablation study on the learning rate scaler
scheme of low-rank factors in the approximated LORO steps. Following the same configuration
as Section 5.1, we train the rank-128 LLaMA-60M model with LORO, using learning rate scaler
choosing from {1, 0.5, 0.25, 0.1, 0.01}, where 0.25 = r/n = 128/512 is exactly the Reimannian
down-scaling rate we used in (11). We report the final perplexity of the resulting models. As shown
in Figure 10, our LORO exhibits robustness across a range of learning rate scalers (i.e. from 0.1 to
0.5).
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Figure 10: Ablation study on the impact of learning rate scaler on approximate LORO updates for
training rank-128 LLaMA-60M models. The y-axis (log scale) represents perplexity.
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Comparing LORO against preconditioned LoRA. We conduct further experiments to compare
our approximate LORO update against the preconditioned LoRA (denoted by “PrecondLoRA”)
proposed in (Zhang & Pilanci, 2024). We design two experiments to study the following research
questions: 1. Is PrecondLoRA, originally proposed for low-rank fine-tuning, sufficient to achieve
strong performance in low-rank pretraining? 2. Is the PrecondLoRA update step more ideal than the
approximate LORO update (11) in low-rank pretraining?

Specifically, we train rank-128 LLaMA-60M models under the following configurations:

• “PrecondLoRA”: Following (Zhang & Pilanci, 2024), both the low-rank factors are up-
dated by: B← B− η∇BL · (AA⊤)−1 and A← A− η(B⊤B)−1 · ∇AL.

• “PrecondLoRA+ exact-LORO”: We replace the approximate LORO step in Equation (12)
with the PrecondLoRA update above, while we keep the exact LORO step in every K =
500 steps unchanged.

To ensure a fair comparison with LORO, we use the same learning rate η = 0.01, the same cosine
learning decay schedule, and fix the frequency of optimizer state refreshing as 500.

In Figure 11, we visualize the training curve between PrecondLoRA, “PrecondLoRA+ exact-
LORO”, and our original LORO. Our observations are summarized as follows:

• LORO > PrecondLoRA: Interestingly, while PrecondLoRA achieves a faster descent in
both training and validation loss during the early stages of model training, it eventually
exhibits a surge in validation loss. We conjecture that PrecondLoRA bias towards ill-
conditioned low-rank factors, making the matrix inversion in the PrecondLoRA update
numerically unstable. In low-rank fine-tuning, where the rank r is as small as r = 8, 16, 32,
the numerical instability in the r × r matrix inversion is not severe. However, in low-rank
pretraining scenarios, where the rank r is as large as r = 128 or 256, the instability of
matrix inversion becomes evident and hinders the final performance.

• LORO > “PrecondLoRA + exact-LORO”: It is observed that the validation loss of “Pre-
condLoRA + exact-LORO” exceeds that of LORO during the early training stages but
eventually falls behind. We conjecture that performing matrix inversion at every step is
overly frequent, which compromises the performance of PrecondLoRA. In contrast, our
approximate LORO step demonstrates better performance, without the need to compute
the expensive matrix inversion at every update step.

• “PrecondLoRA+ exact-LORO” > PrecondLoRA: It is observed that “PrecondLoRA+
exact-LORO” does not exhibit a surge in validation loss at the end of the training. This
implies that our exact LORO update is effective in alleviating the instability in Precond-
LoRA training.

In conclusion, for low-rank pretraining, our observation indicates that our approximate/exact LORO
update is preferable to PrecondLoRA update which is initially designed for low-rank fine-tuning.
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Figure 11: Comparing LORO against preconditioned LoRA (Zhang & Pilanci, 2024) on training
rank-128 LLaMA-60M models. The y-axis (log scale) represents perplexity.
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Comparing exact LORO update against standard SVD projection. To study whether replac-
ing the exact LORO update with a simple low-rank SVD projection is sufficient for good training
performance, we conduct further experiments to evaluate the effectiveness of the simple low-rank
projection. We train rank-128 LLaMA-60M models, where we replace the exact LORO update with
a simple SVD projection every K steps (chosen from {500, 100, 10}). Specifically, the projection
update comprises of (U,S,V) ← SVDr(BA) and B ← U

√
S, A ←

√
SV⊤. To ensure a fair

comparison with LORO, we use the same learning rate η = 0.01, the same cosine learning decay
schedule, and fix the frequency of optimizer state refreshing as 500.

As shown in Figure 12, for all K ∈ {10, 100, 500}, it is observed that the exact SVD step exhibits a
less satisfactory performance. As the exact update gets more frequent (K decreases from 500 to 10),
the training curve and validation loss get worse. On the contrary, Figure 7 shows that our LORO
enjoys improved training stability and performance under increasing K. This suggests that: 1.
using simple SVD projection update (retraction without Riemannian update) is insufficient for good
training, and 2. using Riemannian update before SVD projection leads to improved performance.

We conjecture that this is because the low-rank SVD projection plays a crucial role in exploring an
effective new optimization subspace for the low-rank factors B and A. Therefore, before performing
the low-rank SVD projection to balance the singular values, we need to carefully determine the
successive updated version of the low-rank weight (BA). From this perspective, LORO benefits
from using the Riemannian gradient, which updates the product (BA) in the direction of the steepest
descent on the low-rank manifold. In future work, we will focus on developing more advanced
techniques for exploring better optimization subspaces for low-rank pretraining.
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Figure 12: Comparing exact LORO update against simple SVD projection on training rank-128
LLaMA-60M models. The y-axis (log scale) represents perplexity.

LORO finds competitive low-rank language models with comparable performance to the full-
size baselines. Based on our experimental results and observations, we empirically validate the
existence of strong low-rank language models capable of achieving performance comparable to their
full-size counterparts. This area remains under-explored in the existing literature. In this paper, we
have demonstrated that LORO consistently achieves competitive performance that is comparable
to the full-size baselines across various scenarios, indicating that its effectiveness is not merely a
coincidence or the result of specific experimental setups or hyperparameter tuning.

Generally, full-size training provides satisfactory stability and strong performance, even with stan-
dard optimizers. However, these advantages come at the cost of high memory and computation de-
mand. From an environmentally friendly and economic perspective, our LORO approach achieves
a better balance between efficiency and performance.

In pretraining, the fact that a “low-rank language model can be pretrained to achieve high perfor-
mance comparable to the full-size baseline” is neither entirely unexpected nor surprising. As shown
in Figures 2 and Figure 3 of (Jaiswal et al., 2024), full-size pretrained LLaMA models demonstrate
low-rank structures in both their weight matrices and gradients. As shown in (Chen et al., 2021)
and (Wang et al., 2024), low-rank compressed language models also exhibit competitive perfor-
mance against the full-size baseline. These observations suggest the feasibility of training low-rank
parameterized language models to achieve performance comparable to their full-size counterparts.
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In fine-tuning, the fact that “low-rank fine-tuning achieves comparable or better performance than
full-parameter fine-tuning” has also been reported in (Hu et al., 2022), (Zhang et al., 2023), and
(Zhao et al., 2024). In fine-tuning scenarios where the downstream dataset (e.g., GLUE) is relatively
small, full-parameter fine-tuning can lead to overfitting, resulting in suboptimal performance. More-
over, in such cases, a full-size pretrained checkpoint is typically available, allowing new knowledge
to be incorporated through a low-rank adaptation step. This makes it feasible to adopt a full-size
pretrained model to downstream tasks within a low-rank subspace.

In summary, “low-rank pretraining” and “low-rank fine-tuning” are two distinct settings, with our
work focusing on the former. Our empirical results and analysis suggest that the potential of low-
rank language models was under-explored in existing literature. In future work, we aim to dedicate
more effort to developing advanced low-rank pretraining methods and theoretical tools for analyzing
the dynamics of low-rank pretraining.
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Figure 13: Visualization of the condition number and Frobenius norm for linear and self-attention
layers in rank-128 LLaMA-60M model.
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Figure 14: Visualization of the singular value distribution for the linear layers in rank-128 LLaMA-
60M model. The y-axis represents the order of singular values, the x-axis represents the training
steps. Deeper color indicates a larger singular value is observed.
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Figure 15: Visualization of the singular value distribution for the self-attention layers in rank-128
LLaMA-60M model. The y-axis represents the order of singular values, the x-axis represents the
training steps. Deeper color indicates a larger singular value is observed.
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